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Abstract

The distribution of data changes over time; models operating in dynamic environ-
ments need retraining. But knowing when to retrain, without access to labels, is an
open challenge since some, but not all shifts degrade model performance. This pa-
per formalizes and addresses the problem of post-deployment deterioration (PDD)
monitoring. We propose D3M, a practical and efficient monitoring algorithm
based on the disagreement of predictive models, achieving low false positive rates
under non-deteriorating shifts and provides sample complexity bounds for high
true positive rates under deteriorating shifts. Empirical results on both standard
benchmark and a real-world large-scale internal medicine dataset demonstrate the
effectiveness of the framework and highlight its viability as an alert mechanism for
high-stakes machine learning pipelines.

1 Introduction

Performance guarantees of conventional machine learning (ML) models hinge on the belief that the
distribution of data with which these models train is identical to the distribution on which they are
deployed [1, 2, 3]. In many real-world scenarios such as healthcare, however, this assumption fails
due to distribution shift during model deployment. Benchmarks such as WILDS [4] and WILD-
Time [5] have encouraged machine learning researchers to study and better understand how data
shifts influence predictive systems. Yet, the number of tools at a practitioner’s disposal for building
predictive models far exceeds those to monitor model failures. There is a need to create guardrails
that self-detect and alert end-users to critical changes in the model when its performance drops below
acceptable thresholds [6, 7].

We define post-deployment deterioration (PDD) as the scenario where a trained ML model underper-
forms on a distributionally shifted deployment query with respect to its validation performance. PDD
presents a distinct set of systemic challenges stemming from considerations over the feasibility of
deployment in real-world ML pipelines. Predominant is the scarcity of labels during deployment: for
many downstream tasks such as in healthcare, labels are expensive to obtain [8] or require human
intervention [9]. Due to deployed models predicting events temporally extended in the future [10, 11],
labels might even be unavailable. Another is the robustness of the monitoring system: it should
flag critical changes in model deterioration early, using few samples, while remaining resilient to
non-deteriorating changes to minimize unnecessary interruptions of service among other practical
considerations.

To address these challenges, we conceive a set of desiderata for any algorithm monitoring PDD,
targeting their practicality and effectiveness as plug-ins to ML pipelines. To address the scarcity of
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labels, PDD monitoring algorithms should operate on unlabeled data from the test distribution to
ascertain potential deterioration of the deployed model. Further, PDD monitoring algorithms should
not depend on training data during deployment, as continuous (even indefinite) access to sensitive
or personally identifiable training data might violate certain regulations protecting the privacy of
data subjects [12]. An algorithm satisfying this desideratum is scalable, as it only audits a model’s
input stream during monitoring with minimum data storage and regulatory concerns. Finally, PDD
monitoring mechanisms should be robust to flagging non-deteriorating changes and effective even
when samples from the deployment distribution are scarce.

When it comes to designing monitoring protocols that satisfy the above desiderata, recent related
works only partially attend to individual desiderata. The literature on distribution shifts while
achieving strong empirical performance on unlabeled deployment data [13, 14, 15], are not robust to
false positives when the distribution shift is non-deteriorating. The model disagreement framework
[16, 17, 18, 19, 20] emerges as a competitive setup for monitoring with downstream performance
considerations via the tracking of disagreement statistics, while foregoing explicit distribution shift
computations. However, shift-based and disagreement-based monitoring methods all depend on the
presence of training data post-deployment, and do not provide any guarantees on robustness against
false positives in the monitoring of non-deteriorating shifts.

In this work, we answer all desiderata for PDD monitoring via the disagreement framework by
proposing Disagreement-Driven Deterioration Monitoring (D3M). Our contributions are as follows:

Answering desiderata. D3M is a novel algorithm operating in the label-free deployment setting
(1), requiring no training data during monitoring (2), and is provably robust in flagging deteriorating
shifts as well as resilient to flagging non-deteriorating shifts (3). A comparison of the satisfaction of
the PDD desiderata of our method with other related work in the literature is in Table 1.

Practical and scalable. D3M is model agnostic so long as the base model’s feature extractor can
be optimized via gradient descent. This flexibility allows D3M to monitor various modalities of
high-dimensional data. Unlike previous work, D3M avoids the retraining or finetuning of the base
model via posterior sampling, crucial for the efficient monitoring of large models. Finally, owing to
the decoupling of the algorithmic protocol into two distinct stages, D3M is efficiently scalable in the
size of the training dataset, a critical consideration on the feasibility of its application onto current
ML pipelines that is not enjoyed by standard baselines.

Empirical validation. We showcase experimental results on various shift scenarios in the UCI Heart
Disease dataset [21], CIFAR-10/10.1 [2], Camelyon17 (WILDS) [4], and the GEneral Medicine
INpatient Initiative (GEMINI) dataset [22, 23] to demonstrate its effectiveness in monitoring models
of various modalities. Our method effectively detects deployment-time deterioration with low false
positive rates (FPR) when shifts are non deteriorating, and achieves competitive true positive rates
(TPR) when shifts are deteriorating compared to standard baselines. In particular, we discuss how
results on the internal medicine dataset suggest D3M to be well-suited for integration into real-world
clinical monitoring pipelines.

Provable algorithm. Under certain assumptions about the underlying distribution changes, D3M
provably monitors model deterioration when a deteriorating shift is present. In the presence of
non-deteriorating shifts, D3M provably resists detection, thereby achieving low false positive rates.

Table 1: Comparisons between related work. Training data-free: whether post-deployment monitor-
ing requires training data; Deteriorating: whether the method provably monitors the deteriorating
shift; Non-deteriorating: whether the method is provably robust in the non-deteriorating shift;
Disagreement: whether the method is based on the disagreement framework.

Training data-free Deteriorating Non-deteriorating Disagreement
Yu and Aizawa, 2019 [16] ✓ ✗ ✗ ✓

Liu et. al., 2020 [13] ✗ ✗ ✗ ✗
Jiang et. al., 2021 [18] ✗ ✗ ✗ ✓
Zhao et. al., 2022 [14] ✗ ✗ ✗ ✗

Rosenfeld and Garg, 2023 [20] ✗ ✓ ✗ ✓
Ginsberg et. al., 2023 [19] ✗ ✓ ✗ ✓

D3M (ours) ✓ ✓ ✓ ✓
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2 Background and Algorithm

2.1 Problem setup

Assume a base model f is supervisedly trained to classify inputs x ∈ X into finite discrete classes
Y = {1, . . . , C} from training examplesDn = {xi, yi}i=1:n where tuples (xi, yi)i=1:n ∼ P n for all
i ∈ [n]. For a joint distribution P over X ×Y , let Px denote its marginal distribution over X . We are
interested in designing a mechanism such that upon seeing a collection of unlabeled inputs {x′i}i=1:m

sampled from a deployment distribution Qx, the mechanism flags model deterioration if Qx ̸= Px

and f underperforms on Qx without being able to observe labels for Qx. On the other hand, if
Qx ̸= Px while f remains performant on Qx, the mechanism should resist flagging. Achieving so
ensures that our mechanism only flags deployment-time changes that are truly deteriorating.

How can we monitor ML models for deployment deterioration due to distribution shift without
indiscriminately flagging any changes in the data?

We require a computable quantity ϕ, independent of labels, whose value statistically differs in-
distribution (ID) and out-of-distribution (OOD) if and only if model deterioration occurs. Monitoring,
then, regresses to recording baseline values for ϕ evaluated on ID held-out validation samples. Then,
upon collecting unsupervised deployment samples from an unknown distribution, the monitoring
mechanism computes ϕ̃ and compares it to the recorded baseline values, and finally outputs a verdict.

Leveraging insights from [16, 24, 19], the framework of model disagreement possesses this property
under certain assumptions about the underlying distribution change (see Appendix A). We say that
two models h1 and h2 disagree on an input x ∈ X if h1(x) ̸= h2(x). In particular, models exhibit
greater predictive disagreement on unsupervised samples that lead to model deterioration, compared
to in-distribution (ID) samples. This is observed through the increased entropy-based discrepancy
between classification heads in [16], or maximum disagreement between models in the same ensemble
in [24] and [19], as signal for detecting deployment deterioration. Maximizing classification head
discrepancy for OOD detection [16] is efficient for monitoring at deployment time, requiring only
one forward pass to compute a verdict. However, this trades off classification accuracy as this training
procedure alters the original trained decision boundaries. On the other hand, computing model
disagreement between ensembles [19] requires finetuning a potentially large network to collect ID
and deployment-time disagreement statistics ϕ. In addition, ID training data is required at deployment,
further limiting the scalability of such framework.

2.2 Overview of D3M

To avoid needing the original training set at deployment, we replace finetuning with a Bayesian
approach that models a posterior predictive distribution (PPD) over logits. This yields a distribution
over decision boundaries that remains faithful to ID behavior. By comparing samples from the PPD to
the mean prediction, we approximate maximum disagreement without retraining or access to training
data. As the PPD is usually intractable, we instead model it with a variational distribution, easily
optimizable using standard methods.

Sampling disagreement statistics ϕ in this way yields a reference distribution Φ of ID maximum
disagreement rates. At deployment, we compute the same statistic ϕ̃ and flag model deterioration
when ϕ̃ exceeds a high quantile of Φ. This enables unsupervised, training-free monitoring. Our
method—Disagreement-Driven Deterioration Monitoring (D3M)—follows three key steps: Train,
Calibrate, and Deploy.

1. (Train) Base model training. Firstly, a neural feature extractor FEθ : X → Rd coupled with a
Variational Bayesian Last Layers [25] VBLLθ : Rd → P(RC) parametrized by θ ∈ Θ, are trained
on supervised ID data Dn ∼ P n to output posteriors over logits corresponding to C classes. For an
input x ∈ X and its ground-truth label y ∈ Y:

ψ = FEθ(x)

qθ(·|x) = VBLLθ(ψ)

We define our base model as the variational posterior predictive distribution (PPD) given by
integrating with respect to qθ:

P(y|x,Dn) = Ez∼qθ(·|x) [softmax(z)y]
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Figure 1: Overview of D3M. (1) Train: a feature extractor (FE) and a Variational Bayesian Last
Layer (VBLL) are trained to model a posterior predictive distribution (PPD) over class logits. (2)
Calibrate: disagreement statistics are computed by bootstrapping held-out ID datasets, sampling
from the learned posteriors, and comparing sampled predictions to the base model’s outputs to collect
a set of maximum disagreement rates Φ. For illustrative purposes, agreements and disagreements
between ŷ(3) and ȳ are colored green and orange, respectively. (3) Deploy: at deployment, D3M
monitors the model on incoming unlabeled data by computing the maximum disagreement rate ϕ̃ and
flags deteriorating shift if ϕ̃ ≥ Quantile1−α(Φ).

where predictions are assigned by computing the argmax of the PPD. Classification training is
performed by maximizing the ELBO with a standard Gaussian prior p(z):

LELBO(θ;x, y) = Ez∼qθ(·|x) [log softmax(z)y]−KL [qθ(z|x) ∥ p(z)]
2. (Calibrate) Training of ID max disagreement rates with respect to the base model. We are
to gather disagreement statistics ϕ into Φ computed on ID samples for deployment time compar-
ison. For rounds t ∈ [T ], on a held-out ID collection, we bootstrap an unsupervised ID dataset
Dm

t = {xi}mi=1 ∼ Pm and acquire posteriors over logits (qθ(·|x1), qθ(·|x2), . . . , qθ(·|xm)). Instead,
pseudolabels ȳi are assigned by the base model using the mean predictive distribution:

ȳi = argmax
y=1,...,C

Ezi∼qθ(·|xi) [softmax(zi)y] , ∀xi ∈ Dm
t

We draw K samples from the variational posteriors qθ(·|xi) in parallel using vectorized sampling,
apply a temperature-scaled softmax, and sample class labels from the resulting categorical distribution:

z
(k)
i ∼ qθ(·|xi) =⇒ p

(k)
i := softmax

(
z
(k)
i

τ

)
, ∀i ∈ [m], k ∈ [K]

ŷ
(k)
i ∼ Categorical

(
p
(k)
i

)
For each posterior sample k ∈ [K] and their corresponding predictions (ŷ(k)1 , . . . , ŷ

(k)
m ), the disagree-

ment rate of k with respect to the base model predictions (ȳ1, . . . , ȳm) is calculated as:

DisRate(k) :=
1

m

m∑
i=1

1

{
ŷ
(k)
i ̸= ȳi

}
, ∀k ∈ [K]

Finally, for the bootstrapped dataset Dm
t , the maximum disagreement rate is given by:

ϕt := max
k∈[K]

DisRate(k)
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After T rounds, we store our collection of ID maximum disagreement rates Φ := {ϕt : t ∈ [T ]}.
3. (Deploy) Deployment monitoring of the base model. Our base model is now ready to be
deployed in a test environment and outputs predictions for an unsupervised input stream. To monitor
it for deployment deterioration, we periodically gather inputs into a unsupervised deployment
dataset Dm

te ∼ Qm and compute its maximum disagreement rate ϕ̃ as previous. D3M outputs 1 if
ϕ̃ ≥ Quantile1−α(Φ) else 0 for a desired significance level α.

The entire protocol is summarized in Figure 1. Assume that the deployment distribution is the same
as the training distribution. In this case, we expect that ϕ̃ > Quantile1−a(Φ) with probability α,
thus having immediate control over the false positive rate (FPR) of D3M. When there is, however,
distribution shift between training and deployment distributions, under certain assumptions about the
underlying shift and ground truth labeling, we show that D3M provably flags deteriorating changes,
i.e. a high true positive rate (TPR) is achieved, while being resistant to flagging non-deteriorating
changes, i.e. changes in the input distribution that do not result in the base model underperforming.
We defer the presentation and discussion of our theoretical analysis to Appendix A.

2.3 Algorithmic insights

D3M is free from training data. D3M is designed to monitor deployment-time input streams without
requiring the training data of its base model. This is an important advantage shared by [16], however
not enjoyed by other baselines in Table 1, whose computation of ϕ statistics require maintaining
agreement on training data. When the neural feature extractor FE is millions or billions of parameters,
trained with a comparably large dataset, it becomes infeasible to store the training data within edge
compute nodes in order to run the monitoring mechanism.

No tradeoff with prediction accuracy. Furthermore, D3M does not trade-off prediction accuracy
as the mean prediction model from the PPD is not modified during the construction of Φ nor its
deployment (Appendix C.1). Therefore, ID generalization theories remain applicable [26, 27, 28,
29, 30, 31]. In addition, recording a collection of ID maximum disagreement rates reinforces the
robustness of the method. While single instances of maximum disagreement rate are subject to noise
in the choice of the held-out validation set, the sampling of posterior logits z(k)i , and the number of
drawn samples K, a collection Φ of maximum disagreement rates coupled with a quantile test softens
the effect of noise by leveraging large sample statistics.

Less diverse samples compared to its fully Bayesian counterpart. Harrison et. al., 2024 [25]
suggests that one may apply a variational Bayesian treatment to the last layer only, saving on
computational costs of forward and backward propagating through a Bayesian neural network, and
enjoy largely the same uncertainty estimation and OOD detection performance. However, the usage
of VBLL in D3M is unorthodox with respect to the original work: by sampling posterior weights from
a Bayesian model, we are hoping to land on a set of weights such that the resulting model strongly
disagree with the base model. VBLL allows more efficient sampling compared to to a fully Bayesian
network, though lacking diversity in the sampled predictions, as the variability comes from the last
layer only. This results in K sampled logits mostly agreeing with the mean prediction. To improve
the diversity of sampling, we employ (1) temperature scaling and (2) the sampling of predictions
from the categorical distribution for the computation of maximum disagreement rather than argmax
labeling. We defer the study of this tradeoff between fully Bayesian and VBLL to Appendix C.5.

2.4 Implementing D3M

The composition VBLLθ ◦FEθ : X → P(RC) is readily trained end-to-end on ID data of size n
by maximizing the ELBO. For rounds t ∈ [T ], on a large held-out ID validation set, we sample
datasets Dm

t of size m≪ n with replacement for calibration. Dm
t is processed in a single forward

pass, producing m independent C-dimensional Gaussian posteriors:

qθ(zi|xi) = N (zi|µθ(xi),diag(σ
2
θ(xi))), for i = 1, . . . ,m

For each posterior, we draw 2K samples, K for our Monte-Carlo estimation of the mean model
and K for maximum disagreement computations. We keep the sampling temperature τ , the size
of bootstrapped datasets m, and the number of posterior samples K as tunable hyperparameters.
Importantly, these should be the exact same for the computation of Φ and the subsequent deployment-
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time monitoring test, where the exact same computational procedure is employed on a deployment
sample Dm

te . A detailed implementation can be found here: https://github.com/teivng/d3m.

2.5 Theoretical foundation and practical approximation

Indeed, D3M monitors ML models for deteriorating shifts. As formulated, D3M is an approximation
of Idealized D3M (Algorithms 1 and 2 in Appendix A). Our theory formalizes model deterioration
under some conditions into a set of inequalities (Definition 2) where Idealized D3M is designed to
track their satisfiability. However, this idealized version requires an oracle that can exactly solve
the optimization problem of finding the hypothesis inHp (well-performing models on the training
distribution, Appendix A) that maximally disagrees with the base model. In practice, this search
is computationally intractable for large function classes. D3M addresses this by replacing the
intractable optimization with the described sampling procedure to approximate hypotheses that likely
belong toHp, trading off exact optimization for computational efficiency while maintaining the core
disagreement-based monitoring principle. Our theoretical analysis demonstrates that Idealized D3M
provably detects deteriorating shifts while controlling false positive rates (FPR)—guarantees that
D3M inherits approximately through its posterior sampling strategy.

In fact, our ablation results empirically show that D3M oversamples hypotheses beyondHp, deviating
from theoretical guarantees. Despite this, D3M demonstrates remarkable robustness in practice,
achieving strong empirical performance across diverse datasets. This suggests that the variational
posterior sampling, while not perfectly constrained to Hp, still captures sufficient disagreement
signal to effectively detect deteriorating shifts. We refer the reader to Appendix A for the theoretical
setup and analysis, Appendix C.4 for our results and discussion on our oversampling ablation, and
Appendix C.5 for a comparison between an oversampling VBLL and a fully Bayesian neural network.

3 Experiments

In all experiments, at minimum, competitive performance in detecting deteriorating shifts (when
present) should be achieved. This would validate D3M’s effectiveness in alerting end-users of critical
changes in deployment. Results on the vision datasets (CIFAR-10/10.1, Camelyon17) show that D3M
is effective in monitoring high-dimensional, structure-rich data, in addition to tabular setups. Finally,
we explore D3M in monitoring deteriorating and non-deteriorating changes in the GEMINI dataset, a
real-world longitudinal electronic health record dataset to study how well our method aligns with
clinically meaningful degradation, bringing forth discussions on our mechanism’s practical utility for
trustworthy, low-intervention deployment in healthcare settings.

3.1 Experimental setup

Datasets. (1) The UCI Heart Disease prediction dataset [21], where each hospital corresponds to
a different domain. Here, the distribution shift is due to differences in patient populations and data
collection practices across hospitals. (2) CIFAR-10/10.1 datasets [32, 33] where shift comes from
subtle changes in the dataset creation process. By viewing samples from CIFAR-10 as P , we test our
models’ ability to flag deteriorating shift from samples in Q = CIFAR-10.1. (3) The Camelyon17
dataset from the WILDS benchmark [4, 5] a histopathology image dataset for detecting metastases
in lymph node slides, where distribution shift arises from variations in slide staining and image
acquisition between hospitals contributing the data. (4) The General Medicine Inpatient Initiative
(GEMINI) [22, 23] dataset, a comprehensive repository of standardized clinical and administrative
data from hospitalizations within general internal medicine. We focus on predicting patient mortality
within a 14-day horizon, leveraging static and longitudinal clinical features. This task is deemed
essential for facilitating timely clinical interventions, optimizing the allocation of healthcare resources,
and ultimately striving to improve patient outcomes [34, 35, 36]. Detailed data descriptions can be
found in B.3. Full sweeping details and hyperparameter configurations are reported in B.5.

Implementation & Baselines. For tabular data (UCI, GEMINI 14-day mortality), in our implementa-
tion, FEθ corresponds to sequences of affine transformations and nonlinearities with skip-connections.
For image datasets (CIFAR-10/10.1, Camelyon17), FEθ is either a trained or a finetuned ResNet
[37]. In particular, the D3M mechanism is agnostic to the choice of feature extractor, provided that
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the architecture reflects appropriate inductive biases for the data modality and permits gradient flow
through the extracted features.

To demonstrate that our D3M enjoys low FPR on non deteriorating shifts and high TPR on deterio-
rating shifts, we compare it against several distribution divergence-based detection methods from
the literature: Deep Kernel MMD (MMD-D) [13], H-divergence [14], Black Box Shift Detection
(BBSD) [38], Relative Mahalanobis Distance (RMD) [39], Deep Ensembles [40], CTST [41], Domain
Classifier (DC) [1], and Detectron [19]. Details can be found in Appendix B.1.

Evaluations. For all experiments, the significance level α is fixed to 0.10. (2) For UCI Heart Disease,
CIFAR-10/10.1, and Camelyon17, where there are known post-deployment deterioration, we evaluate
the baselines’ and D3M’s ability to monitor shift for query sizes {10, 20, 50} of the deployment
distribution. In doing so, we require that good monitors quickly recognize whether the deployment
distribution has deteriorating consequences to the model or not. (3) For the GEMINI dataset, we study
the detection rates on temporally-split sub-datasets and mixtures of subpopulation splits incurring
deteriorating changes and report TPR/FPR where appropriate. For D3M, all TPRs reported are
achieved while maintaining an ID FPR below α. This is due to the temperature τ : increasing τ can
cause D3M to overfit its reference disagreement distribution Φ to the held-out validation set, allowing
perfect TPR but also maximal FPR.

UCI Heart Disease CIFAR 10.1 Camelyon 17
10 20 50 10 20 50 10 20 50

BBSD .13±.03 .22±.04 .46±.05 .07±.03 .05±.02 .12±.03 .16±.04 .38±.05 .87±.03
Rel. Mahalanobis .11±.03 .36±.05 .66±.05 .05±.02 .03±.03 .04±.02 .16±.04 .40±.05 .89±.03
Deep Ensemble .13±.03 .32±.05 .64±.05 .33±.05 .52±.05 .68±.05 .14±.03 .26±.04 .82±.04
CTST .15±.04 .51±.05 .98±.01 .03±.02 .04±.02 .04±.02 .11±.03 .59±.05 .59±.05
MMD-D .09±.03 .12±.03 .27±.04 .24±.04 .10±.03 .05±.02 .42±.05 .62±.05 .69±.05
H-Div .15±.04 .26±.04 .37±.05 .02±.01 .05±.02 .04±.02 .03±.02 .07±.03 .23±.04
Detectron .24±.04 .57±.05 .82±.04 .37±.05 .54±.05 .83±.04 .97±.02 1.0±.00 .96±.02

D3M (Ours) .38±.19 .25±.28 .69±.33 .40±.10 .45±.10 .74±.12 .89±.20 .93±.05 .99±.02

Table 2: True positive rates (TPR) comparison across datasets and query sizes. As models do
experience deterioration, the higher TPR the better. Bold indicates best in column. We report the
means and standard deviations of TPRs obtained from 10 independently seeded runs.

3.2 Discussions and Analysis

UCI Heart, CIFAR-10/10.1, and Camelyon17. Model deterioration is present, thus the higher
reported TPR the better. Consistently, across the 3 benchmark datasets, we observe that for each
query size, D3M enjoys comparable TPR to the top achieving baselines. Results on the Camelyon17
experiments at all query sizes highlight D3M’s ability to detect diagnostically-relevant deterioration.

High-variance reported TPR and limitations. However, remarkable is the high variance of the
TPRs reported on the UCI benchmark. We believe this is a shortcoming of D3M compared to the
other baselines in that our results are noisier and less performant. On the one hand, there is merit in
high-risk settings to flag critical changes as soon as possible. But on the other hand, more samples
may be required in order to truly ascertain the deteriorating nature of a shift. It is up to users of
D3M to decide the batching size of collected deployment samples depending on what provides a
meaningful signal for further analyses or actionable items. This also reflects the user’s tolerance for
alert fatigue as noisier estimates on smaller deployment samples may get flagged more liberally. We
discuss how selecting this deployment size implicitly allows control of the FPR of the model with
additional results of D3M on larger query sizes in the above benchmarks in B.6.

Comparisons with Detectron. [19] While D3M and Detectron achieve similar monitoring per-
formance—both successfully flagging all deteriorating shifts in higher query size scenarios (see
B.6)—D3M is significantly more scalable and practical for real-world deployment, especially at the
edge (Appendix C.2). Unlike Detectron, which requires persistent access to the original training data
and gradient-based finetuning during deployment, D3M operates in a truly “source-free” fashion
post-training: it needs neither storage nor access to sensitive training samples, nor does it perform
computationally expensive or potentially destabilizing finetuning in production. Furthermore, by
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Figure 2: Performances in time evolving shifted test data from GEMINI. (a) Performance drop (bar
plot) is small, thus a non-deteriorating shift is observed. (b) Time evolving shift monitoring. D3M is
robust with small False Positive Rate (FPR) at level α = 0.05.
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Figure 3: Monitoring results on artificially shifted test data from the GEMINI dataset. (a) Perfor-
mance drop (bar plot) is significant when the degree of shift is large (0.0 → 1.0) (b) Results on
different monitoring methods, D3M achieves competitive TPRs at level α = 0.05.

relying solely on forward passes and simple statistics over deployment data, D3M is inherently
robust and less susceptible to the risks associated with continual retraining, such as accidental data
contamination or privacy leakage.

GEMINI Evaluations. Notably, the GEMINI dataset possesses an inherent temporal covariate shift,
as patient demographics, laboratory values, and treatment patterns evolve over time, particularly
during the COVID-19 period. While we expect distribution shift to occur, whether it represents
performance deterioration or benign drift remains unknown a priori, mirroring real-world deploy-
ment uncertainty. This makes GEMINI the closest available approximation to prospective clinical
deployment, where D3M selectively flags shifts those that provably deteriorate performance while
ignoring benign drift, ensuring intervention occurs exclusively when warranted. As such, GEMINI
serves as a realistic testbed for evaluating both model robustness under distribution shift and D3M’s
practical utility in settings that closely resemble actual clinical practice.

GEMINI Temporal Shift Results. We train the mean model on pre-2018 data and deploy on half-
year splits thereafter. As shown in Fig.2(a), there is little to no performance drop over time, indicating
a non-deteriorating temporal shift. Accordingly, D3M resists unnecessary alerts, maintaining a low
false positive rate compared to baselines (Fig.2(b)).

GEMINI Age Shift Results. For deteriorating shifts, we train on adults aged 18–52 and test on
various mixtures of age groups. Fig.3(a) shows a clear performance drop as more out-of-distribution
samples are included. Here, all methods—including D3M—successfully flag these shifts (Fig.3(b)),
with D3M achieving competitive detection across all mixture ratios. This demonstrates that D3M
matches the strongest baselines in detecting genuine post-deployment deterioration.
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Clinical integration and flexibility of monitoring. In real-world clinical settings, the deployment
of monitoring systems like D3M must be complemented with clear guidelines for human interven-
tion. One practical integration point is within existing model governance frameworks in hospital
information systems, where D3M’s alerts could be logged and periodically reviewed by clinical data
stewards or model governance committees. Therein lies the flexibility of detecting versus agnostic
adaptation: monitoring provides a choice on what to do next given a deterioration flag, whether it be
retraining, triggering deeper performance audits, shadow deployments, or even adapting. We believe
D3M offers a tunable layer of oversight that can flexibly support both real-time and retrospective
clinical review processes.

Notably, we view the success of D3M on the real-life D3M as representing a paradigmatic shift in
the AI in Healthcare space: current ML models are trained on historical data, validated on held-out
test sets, and then deployed directly into clinical practice with minimal ongoing monitoring for
performance degradation. While existing approaches relying on heuristic thresholds or requiring
expensive retraining cycles have been limitedly employed, our method offers healthcare practitioners
a principled mechanism to maintain model reliability in production environments. The validation
of the D3M monitoring framework on the GEMINI dataset, which exhibits natural temporal shifts
including the COVID-19 disruption, demonstrates the practical utility of this approach in real-world
clinical settings where model deterioration can directly impact patient care decisions.

4 Related Work

Adaptation. Test-time adaptation (TTA) concerns itself more with how one achieves strong de-
ployment performance in spite of a critical change, rather than how one would flag this critical
change. To this end, we fundamentally believe that monitoring offers an additional level of flexibility:
when a deterioration flag is raised, adaptation is a possible course of action among many others. A
few works from this rich body of literature are tangentially related to disagreement-based monitor-
ing. [42, 43, 44] all leverage prediction uncertainty or discrepancy to drive unsupervised domain
adaptation. [45], measures and minimizes prediction disagreement at test time, adaptively aligning
target-domain features to a domain-invariant feature space, improving performance without requiring
access to target domain data during training. In the continual learning literature, [46] also leverages
classifier disagreement as a unsupervised proxy of distributional change.

Performance monitoring of ML models & deteriorating shift. Evaluating a model’s reliability
during deployment is crucial for the safety and effectiveness of the machine learning pipeline over
time. [47, 48] provided a causal viewpoint wherein the challenge to adapt to diverse scenarios still
remain due to a lack of access to the true causal graph. Model disagreement is often used as a
monitoring tool for the model generalization [49, 17, 19, 20]. These works align strongly with our
method, though the framing is orthogonal to ours as our analysis provides FPR and TPR guarantees
whereas they provided sufficient conditions in either ID or other shifts beyond our scope. Several
works in the recent literature differentiate shifts in terms of deteriorating or non-deteriorating shifts.
[50] studied (deteriorating) shift detection in the continuous monitoring setting using a sequential
hypothesis test. Due to the setting being sequential in nature, their method requires true labels from
Q immediately after prediction or at the least in a delayed fashion. [51] approached the monitoring
problem from a time-continuous anomaly detection perspective, allowing periodic querying of
deployment-time ground truths from experts. Other related empirical works along this literature are
[52, 53], and the very applied [54].

Distribution shift detection. Methods to detect distribution shift arise from different perspectives. In
covariate shift detection, [41, 13, 14] treated detection as two-sample tests via classifier, Deep Kernel
MMD, and H-divergence. For label shift on the other hand, [38, 55] formulated the problem as a
convex optimization problem by solving the label distribution ratio α = Q(y)/P (y). The problem of
OOD detection [56, 53] seeks to detect if an individual sample x comes from the training distribution
x ∼ P (x). Some previous works [57, 58] also adopted the methods in covariate shift detection and
generalization by estimating the density ratio for the identification of OOD samples. Whilst these
methods detect shifts, they are constrained by their requirement of training data post-deployment and
do not consider the extent to which shifts affect model performance.

Estimating test error with unlabeled data. Another rich body of research is the estimation of
(OOD) test error. This technique and its variants are often inspired by domain adaptation theories [59,
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60, 61, 62], seeking guarantess in the form of err(f ;Qg) ≤ err(f ;Pg) + ∆(f,H), with ∆(f,H) =
suph∈H | err(h;Pf ) − err(h;Qf )|. This objective can be alternatively viewed as searching for a
critic function h ∈ H to maximize a performance gap [20, 18]. One could thus provably estimate the
upper bound of the test distribution error. These theories also implicitly assume the availability of
training data. Further, they assume that test error should be larger than the training error (granted this
is often the case for deteriorating OOD), making them sensitive to non deteriorating shifts as well i.e.,
a high FPR in detection. Our theoretical analysis addresses this gap.

5 Conclusion and Limitations

Two core limitations to D3M are of note when considering deployment in a real-world setting. Firstly,
confidence intervals in Table 2 evidences the noisiness of our method compared with other baselines
on low query sizes, due to the inherent randomness arising from sampling alternate hypotheses. We do
remark, however, that at larger query sizes of 100 and 200, both performance and confidence regions
of D3M match those of the strongest baselines (Table 7). We believe that a stronger, more general
feature representation helps alleviate this issue as well as enhances performance. Empirically, we
observe that by borrowing pretrained ResNet features on ImageNet in the Camelyon17 experiments,
D3M achieves high performance at low noise. Future work may explore how performance and
stability vary as a function of the quality of representation in the base model. Second, our provided
theory only provides provable guarantees when labels are assigned by a ground-truth function. Future
work could leverage stronger analytical tools in statistical learning such as PAC-Bayes to derive
tighter bounds when labels are noisy, more closely matching real-life deployment scenarios on
mislabeled, or even adversarially poisoned labels.

In sum, we study the problem of post-deployment deterioration monitoring of machine learning
models in the setting where labels from test distribution are unavailable. We propose a three-stage
disagreement-based Bayesian monitoring algorithm, D3M, which monitors and detects deteriorating
changes in the deployment dataset while being resilient to flagging non-deteriorating changes.
Importantly, our method does not require any training data during deployment monitoring, allowing
for efficient out-of-the-box deployment in many machine learning pipelines across various domains.
While D3M enjoys increased efficiency, larger confidence intervals demand stricter hyperparameter
settings (and thus, bigger initial sweeps) to function effectively. On the theory side, under certain
assumptions, statistical guarantees are provided for achieving low FPR in non-deteriorating shifts
and high TPR in deteriorating shift.

Empirically, we validate insights from our theory on various synthetic and real-world vision and
healthcare datasets evidencing the effective use of D3M. Critically, on the GEMINI dataset—our
closest approximation to prospective clinical deployment—D3M demonstrates the precise selectivity
required for real-world viability: it resists flagging during periods of non-deteriorating temporal
shift while reliably detecting and flagging true performance deterioration. This behavior, validated
under realistic conditions with inherent distribution drift, suggests D3M’s readiness for practical
deployment scenarios where distinguishing actionable degradation from benign evolution is essential.
Our work signals a step toward the robust, scalable, and efficient deployment of mechanisms to audit
and monitor machine learning pipelines in the break of dawn of ubiquitous AI.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Indeed, in the abstract and introduction, we enumerate our contributions (1),
(2), (3). The rest of the main paper demonstrates (1) the practical and scalable aspect of
our method, (2) provides empirical validation, while (3) the promised theoretical analysis is
referred to in the Appendix section.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We do acknowledge our noisier results in few-shot settings, we provide
discussions and provide our interpretation of the results. As our method seeks to pad the
shortcomings of two prior works, we make those comparisons clear in the discussions
section as well as the potential tradeoffs.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: The theoretical setup is presented with full proofs in the supplementary
Appendix. We clearly state that theoretical guarantees are provided for a particular problem
setup which we devise.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Yes. Our code is structured as a package and is entirely modular. We report
hyperparameters and the random seed schedule used to reproduce our reported results. In
addition, we provide boilerplate code in iPython notebooks for users looking to familiarize
with our system and even build upon it.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Yes, please see the above.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Yes. This is extensively documented in the relevant Appendix section.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Yes. We provide standard deviations across 10 runs as confidence interval.
To the best of our knowledge, this quantity captures our method and the baseline methods’
capability to accurately monitor model deterioration at deployment.
Guidelines:
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide an Appendix section for the statement on computing resources
and detail our cluster usage. As the functioning of our method depends heavily on correct
hyperparameters, sweeping details and costs are also discussed.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: To the best of our knowledge, our research has no potential for harm and does
not incur any concerns regarding data privacy.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
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Answer: [Yes]
Justification: Yes. We believe the reliable monitoring of ML model deployment will
contribute positively to society. Our method, while achieving this in certain conditions,
comes at a cost from (pre)computation, albeit much lesser than some of the baselines we
compare to. We discuss this openly.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: To the best of our knowledge, this work poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Yes. We extensively use the VBLL library by [25] and cite them properly.
Guidelines:

• The answer NA means that the paper does not use existing assets.
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• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [Yes]

21

paperswithcode.com/datasets


Justification: Usage of the IM dataset (anonymized for now) is IRB-approved. We do not
do any research with human subjects, though the data is a processed EHR dataset which is
produced by measurements on humans and interventions on humans.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Confertences/2025/LLM)
for what should or should not be described.
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Appendix
A Theoretical Setup and Analysis

A.1 Overview

In our experiments, we find that the D3M algorithm is effective in monitoring deteriorating changes
in multi-class classification. As a proof of concept, we provide sample complexity analyses for the
binary classification, where deteriorating shifts are shifts in the covariate distribution of data. We
show that an ideal D3M algorithm can achieve strong TPR/FPR guarantees at desirable significance
levels under these assumptions. We discuss the extent to which empirical observations from our
experiments match with the insights revealed by this analysis.

A.2 Post-Deployment Deterioration (PDD) and Disagreement-based Post-Deployment
Deterioration (D-PDD)

Consider a function class H of h : X → Y = {0, 1} in the binary classification setting. We use
g ∈ H to denote the ground truth labeling function. We denote the marginal distribution w.r.t x
as Px(x) and the joint distribution with the labeling function in the subscript, that is, for a data
distribution Px over the domain X and any labeling function g(x), we define the joint distribution as
Pg = Pg(x, y) = Px(x, g(x)). For a f ∈ H, define its generalization error with respect to Pg and
its corresponding empirical counterpart with respect to a sample Dn = {(xi, yi)}ni=1 ∼ Pg as:

err(f ;Pg) := Pr
(x,y)∼Pg

[f(x) ̸= y] , êrr(f ;Dn) := êrr(f ;Pg) :=
1

n

n∑
i=1

|f(xi)− yi|

Training and deployment distribution. We denote Px as the training (marginal) distribution, and
Qx as the deployment distribution. We assume sampled batches of data are I.I.D. with respect to their
underlying distribution Px and/or Qx. We consider that n labeled samples from Pg are available
before deployment, and m unlabeled samples from Qx are collected during the deployment’s input
stream.

Disagreement. For any two functions f and h inH, we say that they disagree on any point x ∈ X
if f(x) ̸= h(x). Given the binary classification setting, we can write the disagreement rate of the
function h with f on distribution Qx in terms of error as err(h;Qf ) or err(f ;Qh).

Moving forward, f ∈ H will be understood to mean our base classifier obtained during training
on Dn ∼ Pg, while g is the ground truth on Px and h ∈ H denotes auxiliary classifiers in the
same hypothesis space, unless otherwise stated. Our goal is to study and monitor the following
phenomenon:
Definition 1 (Post-deployment deterioration, PDD). Denote g and g′ as ground truth labeling
functions in the training and deployed distributions Px and Qx respectively. We say that PDD has
occurred when:

err(f ;Qg′) > err(f ;Pg) (1)

Intuitively, Eq. (1) suggests that PDD occurs when a model f experiences higher error during
deployment than during its training. Due to the unsupervised nature of the deployment dataset, PDD
monitoring is difficult for any arbitrary g′ ̸= g as we cannot trivially compute empirical errors for the
LHS. Though tools from the literature of OOD error estimation may be used, we propose to proxy
via a related notion. Def. 2 introduces a new and practical concept—model disagreement-based
PDD—equivalent to PDD under specific assumptions.
Definition 2 (Disagreement based PDD (D-PDD)). We say that D-PDD has occurred when the
following holds for some ϵf < 1:

∃h ∈ H s.t. err(h;Pg) ≤ ϵf and err(f ;Pg) ≤ ϵf and err(h;Qf ) > err(h;Pf ) (2)

D-PDD in Def. 2 is defined as the situation where there exists an auxiliary model h ∈ H achieving
equally good performance on P (with a small error ϵf ) but exhibits strong disagreement with f in Q.
In this case, the distribution Q is further referred to as a deteriorating shift. In the following lemma,
we demonstrate the conditions for the equivalence of PDD and D-PDD.
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Lemma A.1 (Equivalence condition). Assume that the ground truth at training and deployment
are identical, i.e. g = g′, and that TV(P ,Q) ≤ κ, we have that when err(f,Qh)− err(f,Ph) ≥
2(κ+ ϵ), i.e. the disagreement gap is large enough, D-PDD and PDD are equivalent.

Proof. To show PDD =⇒ D-PDD, assume g = g′, i.e. identical concepts during training and
deployment. Assume our base classifier f is well-trained with err(f,Pg) = ϵ. We have that

err(f,Qg) > err(f,Pg)

Let our candidate auxiliary function h ∈ H be given by h = g. Then, h satisfies all conditions for
D-PDD.

We now show that D-PDD =⇒ PDD. Assume that there is no concept shift, i.e. the ground truth
distribution is identical, g = g′.

We transport the D-PDD condition ∃h ∈ H s.t. err(f,Qh) > err(f,Ph) to the general PDD
condition err(f,Qg) > err(f,Pg) by leveraging the proximity of h to g on P and that the total
variation between P and Q are constrained by κ.

We observe that for any f, g, h ∈ H:

|err(f,Pg)− err(f,Ph)| < ϵ

Indeed, this is true since:

|err(f,Pg)− err(f,Ph)| = |P (f ̸= g)− P (f ̸= h)|
= |EP [1{f ̸= g} − 1{f ̸= h}]|
≤ EP [|1{f ̸= g} − 1{f ̸= h}|]
≤ EP [|1{g ̸= h}|]
= P (g ̸= h) ≤ ϵ

where we used Jensen’s inequality, and that |1{f ̸= g}+ 1{f ̸= h}| = |1{g ̸= h}|.
Let TV(P ,Q) ≤ κ for some κ > 0. We further observe that for any f, g ∈ H:

|err(f,Qg)− err(f,Pg)| = |Q(f ̸= g)− P (f ̸= g)|
≤ sup

A
|Q(A)− P (A)| = κ

Putting our two observations together yields following decomposition:

|err(f,Qh)− err(f,Qg)| ≤ |err(f,Qh)− err(f,Ph)|
+ |err(f,Ph)− err(f,Pg)|+ |err(f,Pg)− err(f,Qg)|
≤ 2κ+ ϵ

For PDD to hold, err(f,Qg) needs to be no less than err(f,Ph) + ϵ and at most 2κ + ϵ less than
err(f,Qh). Equating yields:

err(f,Ph) + ϵ ≤ err(f,Qh)− 2κ− ϵ

=⇒ err(f,Qh)− err(f,Ph) ≥ 2(κ+ ϵ)

prescribing the conditions for which D-PDD implies PDD.

□

Thus, if an algorithm monitors D-PDD, then under the assumptions of Lemma A.1, the algorithm
also monitors post-deployment deterioration (PDD). In fact, D3M approximately monitors D-PDD.
To see this, we show that an ideal version of D3M monitors D-PDD in the above subsection.
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A.3 Idealized D3M and D-PDD Monitoring

Tracking D-PDD in finite samples as formulated requires training data during deployment, which
runs counter to the set of desiderata we previously established. To circumvent this, we decouple
the detection of D-PDD into two Calibrate and Deploy stages. The Calibrate stage finds a subset
Hp ⊂ H whose elements satisfy conditions on Pg in Def. 2 as well as approximates err(h;Pf ),
while the Deploy stage tracks the satisfaction of the last inequality. In this way, information from
the training data is compressed into Hp and the approximation of err(h;Pf ). Meanwhile, the
approximation of the disagreement threshold err(h,Pf ) for h ∈ Hp can be done via its empirical
distribution Φ computed during the Calibrate phase. We thus present the idealized versions of the
Calibrate and Deploy stages of D3M.

Algorithm 1 Idealized D3M: Calibrate

Require: Dn ∼ Pg , f , ϵ,H
1: Train a sub hypothesis spaceHp := {h ∈ H; êrr(h;Pg) ≤ ϵ}
2: Φ← []
3: for t← 1, 2, . . . , T do
4: Dm ∼ Pf

5: h← argmax
h∈Hp

êrr(h;Dm)

6: append êrr(h;Dm) to Φ
7: end for
8: return Φ,Hp

1. Calibration in P . Given in-distribution training data Dn, a base model f trained on Dn, an
error tolerance ϵ, and the hypothesis class H, we formulate the subset of H achieving the error
tolerance,Hp = {h ∈ H; err(h;Pg) ≤ ϵ}. Then, the disagreement distribution Φ is trained: for T
rounds, m samples pseudo-labeled by f (Dm) is used to train auxiliary models h by maximizing
disagreement between h and f under Hp on Dm to approximate disP = max

h∈Hp

err(h;Pf ). The

empirical disagreement rate achieved by h is appended to Φ. Finally, the pre-training procedure
returns Φ andHp.

Algorithm 2 Idealized D3M: Deploy

Require: Hp, Φ, f , α
1: Dm ∼ Qf

2: h← argmax
h∈Hp

êrr(h;Dm)

3: return êrr(h;Dm) > (1− α) quantile of Φ

2. Deploy in Q. Given Φ and Hp, we compute the one-sample approximation of the maximal
disagreement with f on Q: disQ = maxh∈Hp

err(h;Qf ). We say D-PDD happens when disQ lies
in the top α quantile of Φ.

The idealized algorithms 1 and 2 together track D-PDD in finite samples. Indeed, a deployment on Q
is flagged when the last inequality in Def. 2 is detected, while the imposition of the other inequalities
are done via formulating the constrained hypothesis spaceHp of hypotheses that already satisfy these
inequalities and searching over it. Of note is that at deployment time, the original training set Dn is
not required.

D3M approximates Idealized D3M. The primary implementation consideration in the Idealized
D3M algorithms is the search overHp, which for large function classes cannot be done trivially. D3M
“Bayesianly” approximates this search by turning the intractable optimization problem into a sampling
problem. By drawing from our (VBLLθ ◦FEθ) posterior, we are hoping to sample hypotheses that
belong inHp with high probability. When viewed this way, the correspondence between D3M and
its idealized version above follows. The price of the increased efficiency from avoiding intractable
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searches over Hp is thus the sampling noise from D3M which may return hypotheses beyond the
constraints ofHp.

A.4 Provable Guarantees of Idealized D3M

We present theoretical guarantees for Idealized D3M (Algorithms 1 and 2), which we refer to as
D3M for the remainder of this section. Recall that D3M is tracking a sufficient condition of D-PDD.
We show that with enough samples, when there is non-deteriorating shift, the algorithm achieves low
false positive rates with high probability. Then, we show that with enough samples, when there is
deteriorating shift, the algorithm provably succeeds. Finally, we discuss pathological cases where
monitoring fails irrespective of sample size.

A.4.1 Preliminary quantities

Definition 3 (Deployed classifier error). This quantifies the generalization error of the deployed base
classifier f . This is measured on the distribution seen during training Pg ,

ϵf := err(f ;Pg) (3)

Indeed in Def. 2, we want the population error to be at most ϵf , which results in the constraint for
the empirical error in the optimization problems of Algorithm 1 at most ϵ = ϵf − ϵ0, where ϵ0 is a
hyper-parameter to measure the gap between the empirical and population error.

We also define the VC dimensions of the hypothesis spaceH and the subset of interestHp as:

Hp := {h ∈ H : err(h;Pg) ≤ ϵf} , dp := VC(Hp), d := VC(H)
Note that dp ≤ d. If the base classifier f is well-trained (ϵf is low), then dp can be much smaller
than d i.e., dp ≪ d.
Definition 4 (ϵp, ϵq maximum error in Hp). The maximum error in Hp for both P and Q using
pseudo-labels from f is defined as:

ϵp = max
h∈Hp

err(h;Pf ), ϵq = max
h∈Hp

err(h;Qf ) (4)

Note that empirical quantities of these are also the maximum empirical disagreement rates used in
Algo. 1 and Algo. 2. Effectively, the algorithm detects ϵq − ϵp > 0 with finite samples.
Definition 5 (ξ quantifies D-PDD). We define ξ to quantify the degree of D-PDD. We adopt Def. 2
and define ξ as

ξ := max
h∈Hp

{err(h;Qf )− err(h;Pf )} (5)

Therefore, D3M detects whether ξ > 0. Furthermore, ξ is non-negative since f ∈ Hp. Hence, in case
of non-deteriorating shift, ξ = 0.

Note that ξ ≥ ϵq − ϵp. It follows that ϵq − ϵp > 0 =⇒ ξ > 0, though the reverse implication is
not necessarily true. Therefore Algo. 2, (ϵq − ϵp > 0) is detecting a sufficient condition of D-PDD
(ξ > 0).

Next, we relate the amount of D-PDD, ξ, with the amount of distribution shift in the form of TV-
distance between Px and Qx. As seen in the Eq. 5, deterioration depends on the complexity of the
function class and ϵf which affects the size ofHp. We capture these factors by introducing a mixture
distribution U :

U =
1

2
(Pf +Q1−f ) (6)

Definition 6 (η error gap betweenHp and Bayes optimal). For the distribution U , the gap in error
between the best classifier h ∈ Hp in the function class and the Bayes optimal classifier is η:

η := min
h∈Hp

err(h;U)− err(fbayes;U) (7)

Note that η depends on the shift and complexity of the function class. We relate various definitions
introduced in this section as follows.
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Proposition A.2 (D-PDD and TV distance). The relations between ξ (in Def. 5), η (in Def. 6), and
ϵp, ϵq (in Def. 3 and 4) are as follows:

ξ = TV−2η ≥ 0 (8)
ξ ≥ ϵq − ϵp ≥ ξ − 2ϵf (9)

We denote the total variation distance between Px and Qx as TV. Intuitively, D-PDD is defined
in such a way that after deployment, if we are uncertain of the performance of f , then the shift is
deteriorating. In general, for simpler function classes such as linear models, by looking at one region
of the domain (Px) it may be possible to be certain about the performance of another region (Qx),
this is captured in Eq. 8. For very complex function classes, η can be low, hence ξ > 0 for most
shifts. For simple function classes, η can be high, in which case ξ may not be positive and hence a
non-deteriorating shift. This thus highlights a trade-off with selecting expressive functions to capture
complex patterns in the data.

A.4.2 D3M algorithm in non-deteriorating shift

D3M aims to monitor and detect D-PDD in finite samples, which can inherently lead to false positives
(FPR) when the shift is non-deteriorating. Therefore we set a tolerance factor α in Alg. 2 to account
for the test’s robustness. We show that for D3M, the FPR of the detection can be close to α for any
shift in the data distribution. Furthermore, we show that the FPR can also be less than α in some
cases. In the case of non deteriorating shift, by Def. 2, the following holds:

∀h ∈ Hp : err(h;Qf ) ≤ err(h;Pf ) =⇒ ϵq ≤ ϵp (10)

Note that D3M intuitively detects whether ϵq > ϵp. Since the above equation shows that ϵq ≤ ϵp,
given enough samples, the test will succeed. Recall that n is the number of samples given from Pg

and m is the number of samples required from Qx. In the theorem below, the significance level α
refers to the desired FPR.
Theorem A.3. For γ ≤ α, when there is no deteriorating shift (no D-PDD) in Eq. 10, for a chosen
significance level of α, the FPR of D3M is at most γ + (1− γ) O

(
exp

(
−nϵ20 + d

))
if

m ∈ O

(1−
√
δ

ϵp − ϵq

)2(
dp + ln

1

γ

) (11)

and ϵp − ϵq > 0, where δ = (dp + ln 1
α )/(dp + ln 1

γ ) and we define ϵ0 ≤ ϵf − êrr(h;Pf ).

In the case of non deteriorating shifts (specifically ϵp > ϵq) the FPR may be even less than α given
that m and n are sufficiently large. The more samples from Qx we have, the lesser the FPR in these
cases. For any general case, by setting γ = α (i.e., δ = 1) in the above theorem, we immediately
have:
Corollary A.4. For a chosen significance level α, the FPR of D3M (Alg. 2) is no more than
α+ (1− α) O

(
exp

(
−nϵ20 + d

))
.

Practical insights. The corollary asserts the robustness of D3M against unnecessarily flagging non-
deteriorating shifts. Independent of the number of deployment samples m, for any given significance
level α, the FPR is only slightly worse, with the additive term decaying exponentially in the number
of training samples. For many practical ML pipelines that by-and-large employ linear and forest
models among others of manageable VC-dimension, having these guarantees means that a D3M audit
likely won’t negatively impact the continuity and quality of the model usage.

A.4.3 D3M algorithm in deteriorating shift

When deteriorating shift occurs:
∃h ∈ Hp : err(h;Qf ) > err(h;Pf ) (12)

However, this does not necessarily imply that ϵq > ϵp which is ultimately the condition monitored by
D3M. In the following, we break down the possible scenarios.

Regime 1. Deteriorating shift and ϵq > ϵp. In this case, Theorem A.5 demonstrates that the
D3M algorithm detects deteriorating shift with provable high TPR. Here, the significance level α is
understood to be 1 minus the desired TPR.
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Theorem A.5. For β > 0, when deteriorating shift occurs, for a chosen significance level of α, the
TPR of D3M (Alg. 2) is at least (1− β)

(
1−O

(
exp

(
−nϵ20 + d

)))
if

m ∈ O

( 1 +
√
δ

ξ − 2ϵf

)2(
dp + ln

1

β

) (13)

and ϵq − ϵp > 0, where δ = (dp + ln 1
α )/(dp + ln 1

β ), and ϵ0 ≤ ϵf − êrr(h;Pf ).

Notably, ξ in the denominator indicates that as the shift becomes more deteriorating, D3M requires
fewer samples m to detect, evidencing its effectiveness. Further, having a high-quality base classifier
f with low ϵf is better for detection: this is seen through in Eq. 9 where low ϵf makes the monitoring
more faithful at a lower sample complexity m. Another remark is that m depends on dp which can be
much less than d with n being dependent on the latter. The test, thus, can work for a m significantly
smaller than n. The dependency on n is due to the requirement of satisfaction of the first condition
in Def. 2. In the constrained optimization problems in Algo. 1, the constraint is satisfied but the
population constraint will be satisfied either for a larger ϵ0 or for sufficiently large n as seen in the
above theorem.

Regime 2. (Possible tradeoff) -Deteriorating shift but ϵq ≤ ϵp. In this case, Theorem A.6 demon-
strates that either the false negative or false positive rates (FNR, FPR) should be high. The illustration
in Fig. 4 exemplifies this failure mode, and how a low ϵf can help alleviate it.
Theorem A.6. When deteriorating shift occurs and ϵq ≤ ϵp, for a chosen significance level of α, the
TPR of Alg. 2 is O(α).

If α is low, then by Theorem A.6 we have that the FNR is high. On the other hand, if α is high, then
by Corollary A.4 we have that the FPR can be very high, thereby trading off the significance level of
D3M to reduce FNR but loosening guarantees on FPRs.

A.4.4 Solutions for FNR/FPR tradeoff

This part provides a possible failure scenario illustrated in Fig. 4. Notably, we will highlight a badly
trained base classifier f in the possible failure scenario (Fig. 4 (a)), if f is trained with lower ϵf , can
move to the scenarios (Fig. 4 (b) and (c)) where the D3M algorithm can succeed.
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Figure 4: Illustration of the FNR/FPR tradeoff and its remedy. The background color indicates
the fixed ground truth. Positive and Negative points are from Pg (labeled) and the unlabeled points
are from Qx. The solid black curve represents the deployed base classifier f . The dotted Pink (h1)
and Blue (h2) curves represent the envelope boundary forHp i.e., all the functions passing between
these two curves are contained in Hp. (a) Failure scenario (i.e, Regime 2) where D3M algorithm
fails. (b) No deteriorating shift scenario. (c) Deteriorating shift and the D3M algorithm succeeds. In
summery, a decreasing on ϵf could move the failure scenario to the solvable scenarios (a) or (b).

In Fig. 4 (a), if f is not well-trained, we will encounter a failure scenario. The disagreement of h1
with f on Qx is larger than that of Px, evidencing D-PDD. However, note that h2 can maximize ϵp
more than any function (in Hp) can maximize ϵq, which implies ϵp > ϵq. If f is better trained in
Fig. 4 (b), for all functions inHp (curves between h1 and h2) disagreement with f on Px is not less
than that of Qx. Hence there is no deteriorating shift and D3M algorithm could provably address this.
Alternatively, if f is trained well and is closest to the ground truth Fig. 4 (c) the disagreement of h2
with f on Qx is more than that of Px. Also, note that ϵp = 0 since there is no function that can have
any error on Pf . However, h2 can be the classifier to get non-zero ϵq which gives ϵq > ϵp. Hence (c)
recovers the Regime 1 and is solvable.
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Practical implications. Training base classifiers with strong in-distribution generalization perfor-
mance helps in reducing the likelihood of falling into Regime 2. Then, Theorem A.6 guarantees that
with high probability, the desired TPR of D3M can be achieved modulo an exponentially decaying
factor in the number of training samples. In this way, D3M is robust in monitoring deteriorating shifts
with provable TPR guarantees, satisfying the robustness desiderata for PDD monitoring.

A.5 Proofs

Lemma A.7. For any γ > 0, µ > ϵq, we have êrr(h;Qf ) ≤ µ for all h ∈ Hp with probability at
least 1− γ if

m ∈ O

(
dp + ln 1

γ

(µ− ϵq)2

)
(14)

Proof. We use the generalization bound for agnostic learning in [63].

cedpe−ϵ2m ≥ Pr
X,Y∼Qm

1−f

[∃h ∈ Hp : err(h;Q1−f )− êrr(h;Q1−f ) ≥ ϵ] (15)

= Pr
X,Y∼Qm

1−f

[∃h ∈ Hp : êrr(h;Qf ) ≥ err(h;Qf ) + ϵ] (16)

≥ Pr
X,Y∼Qm

1−f

[∃h ∈ Hp : êrr(h;Qf ) ≥ ϵq + ϵ] (17)

Choose ϵ = µ− ϵq for any µ > ϵq . Now,

cedpe−ϵ2m ≤ γ (18)

m ∈ O

(
dp + ln 1

γ

(µ− ϵq)2

)
(19)

□

Lemma A.8. For any h ∈ H, if the êrr(h;Pf ) ≤ ϵf − ϵ0 then with probability at least
1−O

(
exp

(
−nϵ20 + d

))
, h will be inHp

Proof. We use the generalization bound for agnostic learning in [63].

cede−ϵ2n ≥ Pr
X,Y∼Pn

g

[∃h ∈ H : err(h;Pg)− êrr(h;Pg) ≥ ϵ] (20)

= Pr
X,Y∼Pn

g

[∃h ∈ H : err(h;Pg) ≥ êrr(h;Pg) + ϵ] (21)

≥ Pr
X,Y∼Pn

g

[∃h ∈ H : err(h;Pg) ≥ ϵf − ϵ0 + ϵ] (22)

Choose ϵ = ϵ0 to get

Pr
X,Y∼Pn

g

[∃h ∈ H : err(h;Pg) ≥ ϵf ] ≤ cede−ϵ2n (23)

□

Theorem A.9. For γ ≤ α, when there is no deteriorating shift, for a chosen significance level of α,
the FPR of Algo. 2 is at most γ + (1− γ) O

(
exp

(
−nϵ20 + d

))
if

m ∈ O

(1−
√
δ

ϵp − ϵq

)2(
dp + ln

1

γ

) (24)

and ϵp − ϵq > 0, where δ = dp+ln 1
α

dp+ln 1
γ
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Proof. We show that in the case of no deteriorating shift (which implies ϵp ≥ ϵq) the false positive
rate cannot be more than α and also having more samples from Qx will decrease the false positive
rate if ϵp > ϵq .

We assume that during pre-training phase, while populating Φ we discard disagreement from h /∈ Hp

i.e., not satisfying the constraint err(h;Pf ) ≤ ϵf . We cannot do the same during the detection phase
since the detection phase is time-sensitive. Due to this, we have to account for h /∈ Hp in the FPR
calculation.

Now, FPR can be written and bounded as follows. Let µ be the disagreement at 1− α percentile of Φ

FPR = Pr [êrr(h;Qf ) ≥ µ] (25)
= Pr [{{h /∈ Hp} ∧ {êrr(h;Qf ) ≥ µ}} ∨ {{h ∈ Hp} ∧ {êrr(h;Qf ) ≥ µ}}] (26)
≤ Pr [{h /∈ Hp} ∨ {{h ∈ Hp} ∧ {êrr(h;Qf ) ≥ µ}}] (27)
≤ Pr [h /∈ Hp] + Pr [{êrr(h;Qf ) ≥ µ} | {h ∈ Hp}] Pr [h ∈ Hp] (28)
= γ + (1− γ) Pr [h /∈ Hp] (29)

FPR ≤ γ + (1− γ) O
(
exp

(
−nϵ20 + d

))
(30)

where last equation comes from A.8 and γ := Pr [{êrr(h;Qf ) ≥ µ} | {h ∈ Hp}]
Now, we derive sample complexity m in terms of γ. Using A.7 on P with 1− α probability we get

m ∈ O

(
dp + ln 1

α

(µ− ϵp)2

)
(31)

We use µ ∈ Ω

(
ϵp +

√
dp+ln 1

α

m

)
from above while using A.7 on Q with 1− γ probability to get

m ∈ O


1−

√
dp+ln 1

α

dp+ln 1
γ

(ϵp − ϵq)


2(

dp + ln
1

γ

) for γ < α (32)

Note that since the chosen µ was greater than ϵp and we are dealing with the case ϵp > ϵq, we get
that the chosen µ is greater than ϵq . Thus the requirement of µ is satisfied for A.7 while using for Q.

□

This theorem shows that when there are non deteriorating shifts (specifically ϵp > ϵq) FPR may be
even less than α, given m and n is sufficiently large. The more samples from Qx we have the lesser
the FPR in these cases. For any general case, by setting γ = α (i.e., δ = 1) in the above theorem, we
obtain the following:
Corollary A.10. For a chosen significance level α, the FPR of the D3M algorithm is no more than
α+ (1− α) O

(
exp

(
−nϵ20 + d

))
.

Note that this statement is independent of m and the distribution shift. If n is sufficiently large, the
exponential term is small. This is often the case when the base classifier error ϵf is small, which is an
indicator that a large number of samples (n) were available from Pg . Ignoring non deteriorating shift
(and Qx ̸= Px) cases while calculating Φ in Algo. 2 does not adversely affect the FPR of the test.
Lemma A.11. For any β > 0, µ < ϵq, there exists an h ∈ Hp such that êrr(h;Qf ) ≥ µ with
probability at least 1− β if

m ≥ O

(
dq + ln 1

β

(ϵq − µ)2

)
(33)
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Proof. We use the generalization bound for agnostic learning case [63].

cedpe−ϵ2m ≥ Pr
X,Y∼Qm

1−f

[∃h ∈ Hp : êrr(h;Q1−f )− err(h;Q1−f ) ≥ ϵ] (34)

= Pr
X,Y∼Qm

1−f

[∃h ∈ Hp : êrr(h;Qf ) ≤ err(h;Qf )− ϵ] (35)

(a)
= Pr

X,Y∼Qm
1−f

[∀h ∈ Hp : êrr(h;Qf ) ≤ ϵq − ϵ] (36)

where (a) follows from Def. 4
Choose ϵ = ϵq − µ for any µ < ϵq

cedqe−ϵ2m ≤ β (37)

m ≥ O

(
dq + ln 1

β

(ϵq − µ)2

)
(38)

□

Proposition A.12 (D-PDD and TV distance). The relations between ξ (in Def. 5), η (in Def. 6), and
ϵp, ϵq (in Def. 3 and 4) are as follows:

ξ = TV−2η ≥ 0 (39)
ξ ≥ ϵq − ϵp ≥ ξ − 2ϵf (40)

Proof. Recall the definition of U from 6. We first derive the Bayes error in terms of TV distance.
Let

A = {x ∈ X |Qx(x) ≤ Px(x)} (41)

A′ = {x ∈ X |Qx(x) > Px(x)} (42)

The TV distance is equal to half of the L1 distance. Note that Px(A) + Px(A
′) = 1 and similarly

for Qx. 2

TV(Px,Qx) =
1

2
(Px(A)−Qx(A) +Qx(A

′)− Px(A
′)) (43)

= 1− Px(A
′)−Qx(A) (44)

Now, we use the definition of U and the above TV relation to get the following

err (fbayes;U) =
1

2
(err (fbayes;Pf ) + err (fbayes;Q1−f )) =

1

2
(Qx(A) + Px(A

′)) (45)

=
1

2
(1− TV(Px,Qx)) (46)

Next, with the above result and η in Eq. 6 we derive Eq. 8

η + err(fbayes;U) = min
h∈Hp

err(h;U) =
1

2
min
h∈Hp

(err(h;Pf ) + err(h;Q1−f )) (47)

2η + 1− TV = min
h∈Hp

(err(h;Pf ) + err(h;Q1−f )) ≥ min
h∈Hp

err(h;Q1−f ) (48)

2η + 1− TV = min
h∈Hp

(err(h;Pf )− err(h;Qf )) + 1 (49)

2η − TV = min
h∈Hp

− (err(h;Qf )− err(h;Pf )) (50)

TV−2η = max
h∈Hp

(err(h;Qf )− err(h;Pf )) = ξ (51)

For Eq. 9, we use Eq. 48 and the above result to get the following

ϵq = max
h∈Hp

err(h;Qf ) = 1− min
h∈Hp

err(h;Q1−f ) ≥ TV−2η = ξ (52)

2With some abuse of notation, we use the same notation for both pdf and probability measure.
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We can write an inequality for errors similar to triangle inequality as follows
err(h;Pf ) ≤ err(h;Pg) + err(g;Pf ) (53)

= err(h;Pg) + err(f ;Pg) = err(h;Pg) + ϵf (54)
ϵp = max

h∈Hp

err(h;Pf ) ≤ max
h∈Hp

err(h;Pg) + ϵf = 2ϵf (55)

The last equality follows from the definition ofHp. Thus we get
ϵq − ϵp ≥ ξ − 2ϵf (56)

By definition it follows that ξ ≥ ϵq − ϵp □

Proposition A.13. For β > 0, when the deteriorating shift occurs, for a chosen significance level of
α, the TPR of Algo. 2 is at least (1− β)

(
1−O

(
exp

(
−nϵ20 + d

)))
if

m ∈ O

( 1 +
√
δ

ξ − 2ϵf

)2(
dp + ln

1

β

) (57)

and ϵq − ϵp > 0, where δ = dp+ln 1
α

dp+ln 1
β

Proof. Similar to the proof of Theorem. A.3, we derive the statistical power (TPR) of the test as
follows. Let µ be the disagreement at 1− α percentile of Φ

TPR = 1− Pr [êrr(h;Qf ) ≤ µ] (58)
= 1− Pr [{{h /∈ Hp} ∧ {êrr(h;Qf ) ≤ µ}} ∨ {{h ∈ Hp} ∧ {êrr(h;Qf ) ≤ µ}}] (59)
≥ 1− Pr [{h /∈ Hp} ∨ {{h ∈ Hp} ∧ {êrr(h;Qf ) ≤ µ}}] (60)
≥ 1− Pr [h /∈ Hp]− Pr [{êrr(h;Qf ) ≤ µ} | {h ∈ Hp}] Pr [h ∈ Hp] (61)
= (1− β) Pr [h ∈ Hp] (62)

TPR ∈ (1− β)
(
1−O

(
exp

(
−nϵ20 + d

)))
(63)

where last equation comes from A.8 and β := Pr [{êrr(h;Qf ) ≤ µ} | {h ∈ Hp}]
Next, we derive the sample complexity m in terms of β. We show that there exists a µ∗ such that
both A.7 (for P and α) and A.11 (for Q and β) hold.

ϵp < µ < ϵq (64)
This implies some µ exists if ϵq − ϵp > 0
We find optimal µ∗ such that the maximum of m in Eq. 14 and Eq. 33 is minimized.(

µ− ϵp
ϵq − µ

)2

=
dp + ln 1

α

dp + ln 1
β

:= δ (65)

µ∗ =
ϵp +

√
δϵq

1 +
√
δ

(66)

Plugging this µ∗ in Eq. 33 gives

m ∈ O

 d+ ln 1
β

(ϵq − ϵp)2

(
1 +

√
d+ ln 1

α

d+ ln 1
β

)2
 (67)

Use Eq. 9 to get the result. □

ξ in the denominator indicates that as the shift becomes more deteriorating, it is easier (fewer samples
m) to monitor, indicating the effectiveness of the D3M algorithm. Also, having a high-quality base
classifier (low ϵf ) is better for D3M which was also seen in Eq. 9 where low ϵf makes the algorithm
more faithful. Note that m depends on dp which can be much less than d which n depends on,
suggesting that monitoring may be effective in few-shot settings. The dependence on n is due to the
requirement of satisfaction of condition 1 in Def. 2. In the optimization problems in Algo. 1, the
empirical constraint is satisfied but the population constraint will be satisfied either for larger ϵ0 or
for sufficiently large n as seen in the theorem.

Next, we move to the regime where deteriorating shift occurs but ϵq − ϵq ≤ 0. As a negative result,
the following theorem states that in such cases the statistical power of the test is low.
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Theorem A.14. When deteriorating shift occurs and ϵq ≤ ϵp, for a chosen significance level of α,
the statistical power of the test in Alg. 2 is O(α).

Proof. From the proof of Theorem. A.5 we have

TPR ≥ (1− β)
(
1−O

(
exp

(
−nϵ20 + d

)))
(68)

β := Pr [{êrr(h;Qf ) ≤ µ} | {h ∈ Hp}] (69)

Using A.7 on P and α we get

α ∈ O(exp
(
−n(µ− ϵp)2 + dp

)
) (70)

Using A.7 on Q we get

Pr ({êrr(h;Qf ) ≥ µ} | {h ∈ Hp}) ∈ O
(
exp

(
−n(µ− ϵq)2 + dp

))
(71)

1− β ∈ O
(
exp

(
−n(µ− ϵq)2 + dp

))
(72)

1− β ∈ O (α) (73)

The last equation follows since we are dealing with the case where ϵp ≥ ϵq. Thus, the TPR is O(α)
irrespective of the magnitude of n, as desired. □
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B Experimental Setup and Additional Details

B.1 Baselines Details

We compare D3M against several other methods from the literature that either detect distribution
changes or can be converted into a PDD monitoring protocol. Let X = {x(i)}ni=1 from Px and
Y = {y(i)}mi=1 from Qx be given. These algorithms seek to accept or reject the hypothesis that
Px = Qx in distribution.

1. Deep Kernel MMD (MMD-D, [13]) The algorithm first learns a deep kernel by optimizing a
criterion which yields the most powerful hypothesis test. With this learned kernel, permuta-
tion tests are run multiple times in order to determine a true positive rate for the algorithm.
We interface the authors’ original source code with our repository and recycle their training
procedures. Theirs can be found at https://github.com/fengliu90/DK-for-TST.

2. H-Divergence (H-Div, [14]) The algorithm fits Gaussian kernel density estimates for Px,
Qx, and their uniform mixture (Px +Qx)/2. Then, permutation tests are performed using
the test statistic Hℓ((Px +Qx)/2)−min{Hℓ(Qx), Hℓ(Px)} where Hℓ is the H-entropy
with ℓ(x, a) the negative log likelihood of x under distribution a estimated by the Gaussian
kernel density, in order to determine a true positive rate for the algorithm. This test statistic
is an empirical estimate of the H-Min divergence. The choice of the particular H-divergence
is a hyperparameter and is problem dependent, as well as the choice for how to generatively
model the data distributions. The original paper further experimented with fitting Gaussian
distributions as well as variational autoencoders (VAEs), both of which are not explored
here. We interface the authors’ original source code with our repository. Theirs can be found
at https://github.com/a7b23/H-Divergence/tree/main.

3. f -Divergences (KL-Div for KL-Divergence, JS-Div for Jensen-Shannon Divergence, [61])
f -divergence generalizes several notions of distances between probability distributions
commonly used in machine learning. In this paper, we convert the Kullback-Leibler (KL)
and the Jensen-Shannon (JS) divergences, particular cases of f -divergences, into permu-
tation tests. More specifically, we first fit Gaussians on samples coming from Px and Qx

using maximum likelihood. In the case of KL-divergence, the empirical KL-divergence is
computed between the fitted Gaussians whereas for the JS-divergence, we fit an additional
Gaussian on the mixture distribution M and leverage the identity:

JS(Px||Qx) =
1

2
(KL(Px||M) + KL(Qx||M))

We run permutation tests by permuting the samples in the union (X ∼ P n
x ) ∪ (Y ∼ Qm

x ).
It is worth noting that as with H-divergence, more elaborate generative models could be
fitted onto samples X and Y , which we do not explore in this work.

4. Black Box Shift Detection (BBSD, [38]) involves estimating the changes in the distribution
of target labels p(y) between training and test data while assuming that the conditional dis-
tribution of features given labels p(x|y) remains constant. This is achieved by using a black
box model’s confusion matrix to identify discrepancies in the marginal label probabilities
between the training and test distributions, allowing detection and correction of the shift.
We borrow the experimental setup directly from [1].

5. Relative Mahalanobis Distance (RMD, Rel-MH, Rel. Mahalanobis, [39]) RMD modifies the
traditional Mahalanobis Distance (MD) for out-of-distribution (OOD) detection by account-
ing for the influence of non-discriminative features. It subtracts the MD of a test sample
to a background class-independent Gaussian from the MD to each class-specific Gaussian,
effectively isolating discriminative features and improving OOD detection, especially for
near-OOD tasks. We test for shift by performing a KS test directly on the distribution of the
RMD confidence scored computed on Qx and Px.

6. Classifier two-sample test (CTST, C2ST, a.k.a. Domain Classifier, DC, [41]) Following the
procedure presribed by the original work, a binary domain classifier is trained to predict
whether a sample came from Px or Qx. Then, on a held-out mixture of data from Px and
Qx, we compute the domain classifier’s accuracy and compare its performance to random
chance using a binomial test.
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7. Deep Ensemble (Deep Ensemble, [40]) An ensemble of neural networks are trained indepen-
dently on the entire training dataset using random initialization. A KS test is then performed
on the distribution of entropy values computed from each sample in P and Q.

B.2 Standard Benchmark Datasets

UCI Heart Disease. The UCI Heart Disease dataset (UCI) [21, 64] includes 76 variables gathered
from four distinct patient cohorts located in Cleveland, Hungary, Switzerland, and the VA Long
Beach. To reduce the impact of missing data, we focus on nine out of the 14 most frequently used
features: age, sex, chest pain type, resting blood pressure, serum cholesterol, fasting blood sugar,
resting ECG results, maximum heart rate achieved, and exercise-induced angina. The objective is
to predict heart disease diagnosis, measured on a scale from 0 to 4—where 0 denotes no disease
and values 1 through 4 indicate increasing severity related to arterial narrowing. Using the proposed
setup in [19], the task is binarized, distinguishing between patients with a normal angiographic
diagnosis (label 0) and those with any abnormal diagnosis (label greater than 0). The Cleveland and
Hungary datasets serve as the ID domain, while Switzerland and VA Long Beach datasets form the
deteriorating OOD domain.

CIFAR-10/10.1. The CIFAR-10 image dataset [32] consists of 60,000 color images, each sized
32x32 pixels, divided into 10 different classes such as airplanes, cars, birds, and dogs. The dataset
is split into 50,000 training images and 10,000 test images, with each class represented equally.
Due to its manageable size and diversity of categories, CIFAR-10 is commonly used for testing and
comparing the performance of image recognition models. The CIFAR-10.1 dataset [2] is a test set
designed to evaluate how well models trained on CIFAR-10 generalize to new, but similar, data. It
consists of 2,000 images collected in a way that closely matches the original CIFAR-10 distribution,
but from a separate data source to reduce the risk of overlap or memorization. CIFAR-10.1 was
introduced to assess model robustness and identify potential overfitting to the original test set. Despite
its similarity to CIFAR-10, many models perform slightly worse on CIFAR-10.1, highlighting the
challenge of generalization in machine learning.

The CIFAR-10 dataset is used as the ID dataset with which the mean model of D3M is trained, while
the CIFAR-10.1 dataset is considered as a deteriorating shift from CIFAR-10. Thus, we gauge the
ability to recognize CIFAR-10.1 as deterioratingly OOD by D3M and its competing baselines.

Figure 5: (Left) Random samples from CIFAR-10.1. (Right) Random samples from CIFAR-10’s
test set. The images above are borrowed from Recht et. al. “Do CIFAR-10 Classifiers Generalize to
CIFAR-10?” [2].

Camelyon17. The Camelyon17 dataset is a challenging histopathology image classification dataset
originally described by [65]. It comprises 327,680 color images (96×96) extracted from lymph node
tissue slides, with binary labels indicating the presence of metastatic cancer in the central 32×32
region. Following the WILDS setup, we treat the hospitals from which data was collected as domains:
hospitals 1, 2, and 3 are used as source domains for training, while hospital 5 serves as the target test
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domain. We use the WILDS framework [4] to handle dataset download, preprocessing, and domain
partitioning.

Figure 6: Samples from the Camelyon17 dataset, where hospitals 1, 2, 3 are treated as ID, while
hospitals 4 and 5 are deterioratingly OOD. The image above is borrowed from Koh and Sagawa et. al.
“WILDS: A benchmark of in-the-wild distribution shifts” [4].

B.3 The GEneral Medicine INpatient Initiative (GEMINI) Dataset

Year Patient Count Label Ratio
Pre-2017 72316 3.99%
2017H2 17208 3.60 %
2018H1 18233 4.15%
2018H2 18469 3.83%
2019H1 19041 3.50%
2019H2 18601 3.49%
2020H1 15575 4.50%
2020H2 11155 3.48%
2021H1 10625 3.46%
2021H2 7396 2.95%
Table 3: Temporal Split Data Summary

Age Patient Count Label Ratio
18-52 33220 0.82 %
52-66 33146 2.36 %
66-72 31048 3.36 %
76 - 85 34055 4.77 %
85+ 32399 7.82 %

Table 4: Age Split Data Summary

GEMINI Dataset: Study and Preprocessing. The GEMINI study is a retrospective cohort study
of adult patients and their clinical and administrative data[22, 23]. This analysis used data from over
200,000 patients from the GEMINI database, spanning 7 different hospitals that participated in the
GEMINI Study. Each patients information is processed into 900 features including but not limited
to: (i) laboratory results and vital results collected up to 48-hours after admission, split into 6 hour
intervals, (ii) patient demographic information: age, sex etc, (iii) Patient diagnosis using ICD-10-CA
codes. Missing feature values are imputed based on simple averaging. The predictive task related to
this data is 14-day mortality for patients based on these collected features. This dataset is temporal
by nature as data splits are arranged per half-years starting from 2017, where shifts in patient features
become even more pronounced during the COVID period of 2020-2021. Since our D3M base models
trained on data before 2018 surprisingly do not underperform on later splits (Figure 2), we make the
assessment that this shift is non-deteriorating.

Furthermore, an important feature of this dataset is its inherent temporal covariate shift, the evidence
of which is in the elevated FPR of divergence/distance-based detectors of Deep Kernel MMD
(MMD-D) and Relative Mahalanobis Distance (Rel-MH). Functionally, this means that patients’
static covariates as well as their labs, medications, and medical interventions have drifted over time,
especially into the COVID years.
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Data Splitting and Shift. Based on this pre-processed data, 2 shifts are analyzed: (i) temporal shift,
and (ii) age-group shift. The temporal shift analysis splits data into half-years - 2018H1, 2019H2, etc.
The baseline model uses 2017H1 and prior data for training, and 2017H2 for validation; Tab. 3 shows
patient statistics for this split. It is subsequently tested on unseen in distribution data and later splits.
The different age groups are created by splitting the data into 5 equally sized groups based on ages of
patients: (1) 18-52, (2) 52-66, (3) 66-72, (4) 76 - 85, (5) 85+; Tab. 4 shows patient statistics for this
split. The reported analysis trains a baseline model on group 1 (18-52) and then tests on test-sets that
contain some portion of data from the 5th group (85+) and the remaining as unseen in distribution
data. The portions [0.0, 0.2, 0.4, 0.6, 0.8, 1.0] represent what percentage of the test set is OOD (from
group 5), whilst the remaining amount is ID (from group 1). For example a ratio of 0.2 means 20%
of the test data is from group 5(OOD) whilst 80% is from group 1(ID). We chose to experiment on
such portions instead of just subsequent age groups as this process better displays the TPR of D3M
as well as baselines with respect to the degree of shift / performance deterioration.

B.4 Configurations for FEθ and VBLLθ

Tabular features. In the tabular setting, we chain affine layers of similar hidden dimension coupled
with exponential linear unit (ELU) non-linearities [66]. We use a standard dropout rate of 0.2 across
all experiments and employ skip connections between hidden layers. This architecture is used in all
experiments with the UCI Heart Disease dataset as well as the GEMINI dataset.

Convolutional features. For CIFAR-10/10.1, we pass the input through an initial convolution and
max-pooling, then through a sequence of same-dimension convolutions with batch normalization
[67] and skip-connections. Another max-pool is applied, before the representation is flattened and
forwarded through an affine layer to obtain a representation.

For Camelyon17 experiments, we employ pre-trained ResNets [37] and either train from scratch,
finetune them during the training of the VBLLθ layer, or freeze them while only training the VBLL
layer.

Variational Bayesian Last Layers (VBLL). We borrow the implementation from [25] which
can be readily coupled with the above neural feature extractors for end-to-end ELBO maxi-
mization. In our experiments, we employ the VBLL variant for discriminative classification
vbll.DiscClassification, and parametrize the covariance matrix of the normal distribution
of logits as a diagonal. As for VBLL’s hyperparameters, the prior scale and wishart scale hyperparam-
eters are as described in the original manuscript, while we use the regularization factor to VBLL to
be a factor of n−1 where n is the size of the training set. This factor controls the weight of the KL
estimate during ELBO maximization at training.

B.5 Sweeping and Hyperparameters

In each experiment, for each test sample size m, we run a hyperparameter sweep in order to identify
hyperparameters that (1) achieves the most consistent low FPR when tested in-distribution, and (2)
achieves the highest deterioration monitoring TPR. As mentioned previously, the distribution of
disagreement rates can be overfitted so that D3M flags any sample, regardless of whether they are ID
or not, thus justifying the choice of selecting hyperparameters jointly satisfying (1) and (2).

Once the best sets are identified, we run 10 independent seeded runs for each test sample size m =
10, 20, 50. We report used hyperparameters in Tables 5 and 6 for transparency and reproducibility. In
CIFAR-10/10.1, “Hidden dimension” refers to the dimensionality of the final output of FEθ, and test
size m is identical for D3M and other baseline algorithms for each set of experiments.

Common to all setups. For all experiments, the number of posterior samples K is set to 5000,
the size of the empirical distribution of maximum disagreement rates |Φ| is set to 1000. For each
experiment, once Train and Calibrate is completed, we deploy the model on 100 independent
samplings of the questionable test data. If model deterioration occurs (this is the case for the standard
benchmark experiments as well as the GEMINI dataset temporal shift experiment but not the GEMINI
dataset age shift experiment), we report the number of times D3M flagged these deteriorating samples
out of 100 as TPR. Finally, confidence statistics are aggregated and computed on TPRs reported from
seeded, independent Train-Calibrate-Deploy D3M cycles. All optimization is done using AdamW
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Table 5: Hyperparameters for UCI Heart Disease and GEMINI datasets
Group Hyperparameter UCI GEMINI

Train

Learning rate 1× 10−3 1× 10−3

Batch size 64 64
Epochs 50 50
Weight decay 1× 10−4 1× 10−4

Model
Hidden dimension 16 128
Num. hidden layers 4 4
Dropout 0.2 0.2

VBLL
Regularization factor 100.0 100.0
Prior scale 1.0 1.0
Wishart scale 1.0 1.0

D3M Sampling temperature 1.0 1.0
Test size m 10, 20, 50 200

Table 6: Hyperparameters for CIFAR-10/10.1 and Camelyon17 datasets

CIFAR-10/10.1
Group Hyperparameter Value

Train

Learning rate 1× 10−3

Batch size 64
Epochs 10
Weight decay 1× 10−4

Model

Hidden dimension 256
Num. mid layers 3
Initial kernel size 9
Kernel size 7
Num. mid channels 128

VBLL
Regularization factor 10.0
Prior scale 1.0
Wishart scale 1.0

D3M Sampling temperature 1.0
Test size m 10, 20, 50

Camelyon17
Group Hyperparameter Value

Train

Learning rate 1× 10−5

Batch size 256
Epochs 2
Weight decay 1× 10−4

Model
ResNet type ResNet34
From pretrained True
Freeze features True

VBLL
Regularization factor 100.0
Prior scale 5.0
Wishart scale 2.0

D3M Sampling temperature 2.0
Test size m 10, 20, 50

[68]. Finally, we start seeded, independent, identical runs beginning at seed = 57 since it is our
favorite prime number, and increase seed by +1 for each run.

Only reporting TPRs of runs achieving low FPR. Importantly, we aggregate only TPRs achieved
when a FPR below 0.10 in-distribution is achieved. This FPR is calculated on a held-out ID validation
set that D3M has not yet seen during Train nor Calibrate. Therefore, for all experiments we run
seeded runs until 10 runs recording ID FPR below 0.10 are found, and their TPR statistics are
computed, as certain runs do not achieve the ID FPR tolerance desired.

When deploying D3M in a real-world healthcare setting, for instance, upon the completion of
the Calibrate step, one could imagine validating this calibration step by computing an ID FPR
score, independent of deployment. IF this ID FPR score is higher than a tolerated threshold α, the
practitioner could either increase the size of Φ to eliminate noise from sampling, or consider finding
another set of hyperparameters that would lead to more stable calibration.

B.6 Additional D3M Results on Standard Benchmark

We further tested D3M on 100 and 200 calibration/test samples on the same set of hyperparameters
above. Table 7 summarizes our findings.
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UCI Heart Disease CIFAR 10.1 Camelyon 17
100 200 100 200 100 200

D3M (Ours) .93±.10 .99±.01 .91±.11 .99±.01 1.0±.00 1.0±.00

Table 7: True positive rates (TPR) for D3M across datasets and test sizes 100, 200.

At higher test sizes, D3M achieves near-perfect TPR. This is consistent across all experiments.
This suggests that D3M could be an effective tool to monitor model deterioration. However, of
note is that for test size 100, in the UCI Heart Disease and CIFAR-10/10.1 experiments, D3M is
still logging unusually high standard deviation, where we suspect the noise to be coming from the
sampling procedure from the VBLLθ distribution of logits.

Trading off deployment-time computations with sweeping D3M is efficient when comparing to
other disagreement-based detection and monitoring algorithms. However, the method is inherently
noisier due to several levels of approximation to its idealized version (Algorithms 1 and 2). In
particular, we found that D3M is sensitive to the choice of hyperparameters in order to achieve great
performance. Therefore, the payment of computational cost is carried through prior to deployment
in the sweeping itself, rather than during deployment as is done in [19]. We argue, however, that
this is preferable in edge deployment scenarios, such as in hospitals or embedded systems, where
real-time responsiveness and resource constraints are critical by front-loading the computational
burden during the sweeping phase. One can imagine that for an AI terminal as part of a hospital
computational infrastructure for instance, the ability to perform robust detection and monitoring with
minimal overhead at deployment time significantly enhances reliability and usability in practice.

B.7 Statement on the Usage of Computing Resources

All experiments were run on High Performance Computing (HPC) clusters.

UCI Heart Disease. UCI Heart Disease experiments were run on GPU nodes with at minimum
8GB of GPU memory, 6 CPU cores, and 8GB RAM. The total runtime of D3M prior to deployment
is less than 5 minutes.

CIFAR-10/10.1. CIFAR-10/10.1 experiments were run on GPU nodes with at minimum 24GB of
GPU memory to accomodate the largest configurations of convolutions, 12 CPU cores, and 12GB
RAM. The total runtime of D3M prior to deployment is less than 10 minutes.

Camelyon17. Camelyon17 experiments were run on GPU nodes with at minimum 80GB of GPU
memory to accomodate the largest ResNets during sweeping, 12 CPU cores, and 12GB RAM. The
total runtime of D3M prior to deployment is less than 1 hour.

GEMINI Dataset. Experiments on the GEMINI datset were run on GPU and CPU nodes. We
request at minimum 16GB of GPU memory (when applicable), 9 CPU cores, and 32GB of RAM. The
total runtime of D3M prior to deployment is less than 1 hour. Although models for GEMINI were
significantly smaller than vision models for Camelyon17 and CIFAR-10/10.1, due to the number of
samples available as well as older CPU hardware, the runtime was significantly extended.
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C Ablations

To complement the theoretical analysis and main results, we provide additional ablation studies that
clarify the empirical behavior of D3M. Each ablation isolates a specific modeling or design choice,
allowing us to assess its contribution to performance, stability, and efficiency. These results also
serve to validate our claims about scalability and robustness, while highlighting trade-offs between
alternative design choices (e.g., linear vs. VBLL heads). We organize this section as follows: (i)
VBLL head vs. Linear head, (ii) computational costs, especially when compared with Detectron,
(iii) sensitivity to hyperparameters such as temperature and ID thresholds, and (iv) the relationship
between empirical oversampling and the theoretical D3M framework. Importantly, where applicable,
all ablation experiments are run with the same best hyperparameter sets which we isolated during our
sweeps and reported in Appendix B.5.

C.1 VBLL Head vs. Linear Head

Implementing a VBLL head is what allows D3M to sample alternate hypotheses (re: Idealized D3M
formulation, i.e. Algorithms 1 and 2). It is important that transitioning to VBLL from a classical
linear head does not amount to significant decreases in base model performance on the ID task. The
following table reports model accuracy, F1 score, AUROC, and Mathew’s Correlation Coefficient
(MCC), all computed on an ID validation set, along with a deployment accuracy drop.

Table 8: Comparison of D3M vs. Linear head (Lin) across datasets.

Dataset Model Accuracy F1 Score AUROC MCC Acc. Drop OOD

UCI D3M 0.76± 0.02 0.75± 0.02 0.86± 0.01 0.51± 0.04 −0.11± 0.02
Lin 0.77± 0.01 0.76± 0.01 0.87± 0.01 0.52± 0.02 —

CIFAR-10/10.1 D3M 0.70± 0.02 0.70± 0.02 0.96± 0.00 0.67± 0.02 −0.13± 0.02
Lin 0.72± 0.01 0.72± 0.01 0.96± 0.00 0.69± 0.01 —

Camelyon17 D3M 0.94± 0.01 0.94± 0.01 0.98± 0.00 0.88± 0.01 −0.05± 0.00
Lin 0.94± 0.00 0.94± 0.00 0.98± 0.00 0.88± 0.01 —

In the above, for multi-class classification datasets, F1, AUROC, and MCC are averaged across all
pairs of classes. All hyperparameters of the feature extractors in the above setup are kept the same.
We confirm that consistently across all metrics, the performance of D3M’s base model with a VBLL
head nearly matches that of a base linear head. We argue that this is a worthwhile tradeoff in order to
leverage hypothesis sampling with VBLL. We observe that there is virtually no performance drop for
Camelyon17. We suspect this is due to the base model being finetuned from a pretrained ResNet-34
on ImageNet-1K, having learned more general representations, as opposed to our ConvNet feature
extractors implemented for the CIFAR-10/10.1 experiments that may have overfitted to the ID training
dataset.

C.2 Computational Costs Analysis

To better understand the scalability of D3M relative to existing approaches, we report the floating
point operation counts (FLOPs) required by each algorithm across their main computational stages.
Table 9 presents the breakdown of cost into (1) base model training and (2) calibration, along with
the total compute required. We assume a query size of 100, and all hyperparameters are identical to
those reported in the experimental setup.

We observe several consistent patterns across datasets and architectures. First, in D3M, the bulk
of the computational burden lies in the one-time base training of the feature extractor, after which
calibration incurs only a marginal cost. This scaling behavior arises because calibration in D3M
consists of freezing the backbone in evaluation mode and drawing samples from the VBLL layers. As
a result, no backpropagation or fine-tuning steps are required once the base model has been trained.

In contrast, Detectron’s design requires fine-tuning on held-out subsets during calibration. This
entails repeating gradient computations and updating parameters at deployment time. Consequently,
the calibration phase is nearly as expensive as the initial training phase, and in some cases exceeds
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Table 9: Comparison of FLOPs between D3M and Detectron across computational stages.

Algorithm Dataset Base Model Training Calibration Total
D3M UCI 0.23 GFLOPs 9.00 GFLOPs 9.23 GFLOPs
Detectron UCI 0.15 GFLOPs 18.69 GFLOPs 18.84 GFLOPs

D3M CIFAR-10/10.1 1.56 PFLOPs 0.13 PFLOPs 1.69 PFLOPs
Detectron CIFAR-10/10.1 1.56 PFLOPs > 1.95 PFLOPs > 3.51 PFLOPs

D3M Camelyon17 12.02 PFLOPs 0.74 PFLOPs 12.76 PFLOPs
Detectron Camelyon17 12.02 PFLOPs > 11.04 PFLOPs > 23.06 PFLOPs

it. For example, on Camelyon17, calibration in Detectron adds over 11 PFLOPs on top of the 12
PFLOPs needed for training, while D3M incurs less than 1 PFLOP in calibration overhead.

These results highlight that as feature extractors scale in size, D3M’s compute is dominated by the
unavoidable cost of initial training, whereas Detectron continues to accrue significant additional cost in
deployment. The difference grows more pronounced for large-scale datasets and larger-scale models,
where Detectron effectively doubles its compute requirements, while D3M remains lightweight in
its post-training stages. This distinction is especially important for real-world deployment settings,
where calibration often needs to be performed repeatedly under strict resource constraints. In sum,
FLOP comparisons show that D3M achieves up to 10x training reduction and 2x overall reduction
versus Detectron, requiring no training data once the base model completes training.

C.3 Temperature Sensitivity and ID Thresholds

We conduct an ablation study to assess the effect of the temperature parameter used in sampling from
the VBLL layers. Figure 7 report results across UCI, CIFAR-10/10.1, and Camelyon17. Metrics
include the false positive rate under ID data (FPR ID), true positive rate (TPR) for deteriorating OOD
detection, and the mean disagreement rates on both ID and OOD samples.

Across datasets, we observe a consistent trend: increasing the temperature broadens the effective
sampling distribution, which amplifies disagreement rates for both ID and OOD samples. While this
increases diversity among hypotheses, it also skews the base ID disagreement rate distribution toward
higher values. As a consequence, the separation between ID and OOD disagreement rates diminishes,
leading to elevated FPR ID and reduced TPR for deteriorating OOD detection. For instance, on
CIFAR-10/10.1, raising the temperature from 2 to 10 causes TPR to collapse from nearly perfect
detection to just 0.34, despite higher disagreement values overall. Similar trends are evident in UCI
and Camelyon17.

We further plot the gap between the mean ID and OOD disagreement rates across our datasets and
report in Figure 8. We find that as the temperature increases, the mean disagreement rates in- and
out-of-distribution tend closer to each other. Since D3M’s core functionality is to track this difference,
as the temperature increases, ID and OOD become harder to distinguish on known deteriorating tasks,
which explains why the TPR of D3M drops as temperature τ grows.

These findings highlight the critical role of temperature as an important tradeoff parameter where
high temperatures blur the ID–OOD boundary and degrade detection reliability. In practice, we find
that values in the range 1 to 5 offer the most stable trade-off across datasets, providing both sufficient
hypothesis diversity and reliable threshold calibration.
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Figure 7: Ablation on the temperature parameter τ for D3M. We plot the ID FPR, TPR, ID
mean disagreement rate, and deteriorating OOD mean disagreement rate across temperatures
{1, 2, 3, 5, 10, 20}. We remark that as the temperature increases, softening the sampling logits
distributions of D3M’s Calibration and Deployment, while the ID FPR stays roughly within the same
range, the TPR tanks significantly across all datasets.

Finally, we study the variation of the ID threshold during the Calibration step itself as ID disagreement
rates measured on bootstrapped ID validation subsets get appended to Φ. The ID threshold here
refers to the (1− α) Quantile of Φ, where disagreement rates beyond the ID threshold is labeled as
deteriorating OOD by D3M.

Table 10: ID thresholds for α = 0.1 across 10 independent runs. Columns are the rounds t ≤ T =
1000 from which the 1− α quantile is computed for Φ.

Dataset t = 5 t = 50 t = 100 t = 500 t = T = 1000
UCI Heart Disease 0.457± 0.011 0.468± 0.007 0.467± 0.004 0.468± 0.004 0.470± 0.000
CIFAR-10/10.1 0.452± 0.013 0.464± 0.009 0.463± 0.008 0.465± 0.005 0.463± 0.005
Camelyon17 0.306± 0.011 0.312± 0.004 0.312± 0.004 0.310± 0.000 0.310± 0.000

Table 10 shows that although some variability is exhibited for early t ≤ T , the threshold stabilizes
with more independent rounds, as evidenced by the decrease in standard deviation. Across our
datasets, we observe that the ID threshold seems to increase with more independent realizations
of Calibration rounds, as observed by the pronounced increment going from t = 5 to t = 50, but
stabilizes beyond this point. A rough recommendation is to choose T = |Φ| ≥ 50, but we note
that each round t ≤ T has the same wall-clock time as they all involve the same 1. bootstrapping a
random ID validation subset with replacement from a ID validation set, 2. sampling K candidate
hypotheses, and 3. computing maximum disagreements across all candidate hypotheses.

C.4 Oversampling of the ideal restricted hypothesis spaceHp

We investigate the gap between the empirical version of D3M and Idealized D3M (Algorithms 1 and
2). In particular, we investigate whether hypotheses sampled during the Calibration and Deployment
phases of D3M belong in Hp = {h ∈ H : err(h,Pg) ≤ ϵf}, or that D3M oversamples Hp and
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Figure 8: Evolution of ID–OOD disagreement gap over temperatures τ . We find that the gap
decreases monotonically (with the exception of a spike at τ = 2 for Camelyon17) across datasets as
τ increases. Since D3M’s core functionality relies on distinguishing deteriorating OOD disagreement
rates from ID disagreement rates, too high temperatures result in worse disagreement gaps, which
lead to significantly worse TPRs.

obtains hypotheses beyond it. Our experiment setup is as follows. During Calibration, instead of
sampling labels and computing maximum disagreement rates for bootstrapped unsupervised ID
datasets, we sample labels for this bootstrapped set concatenated with the original training set along
with the true training labels. For the Monte-Carlo sample resulting in the maximum disagreement
rate (only computed on the bootstrapped set), we compute the accuracy against the true labels of the
training set. For |Φ| = 1000 independent runs on the UCI dataset and the CIFAR-10/10.1 datasets,
we report the mean and standard deviation of training accuracy scores, the mean model’s validation
score, and the percentage drop.

Table 11: Comparison of accuracy of MaxDisRate hypothesis against the ID validation accuracy
across datasets

Dataset MaxDisRate Acc. (Train) Validation Acc. (ID Valid) % Difference
UCI 0.65± 0.02 0.76± 0.02 −11%
CIFAR-10/10.1 0.55± 0.00 0.70± 0.02 −15%
Camelyon17 — 0.94± 0.01 —

We remark that for no oversampling to occur, the sampled labels’ training accuracy should be at
least as good as the ID validation accuracy. Since we have significant drops on these above datasets
in Table 11, we conclude that the sampled decision boundaries of D3M most likely lie beyond the
desired setHp.

We further remark that a single sample of labels from a Bayesian model is not representative of
the model’s predictive capabilities as the latter relies on averaging over large samples of labels.
We therefore make the preliminary assessment that models achieving the maximum disagreement
rate are “oversampling”, i.e. they do not fall in Hp. In addition, the second sampling from the
categorical distribution given by logits further derails our empirical D3M from the idealized D3M
as with respect to the training data, this can be seen as a noisy assignment of labels for a training
accuracy computation.

In contrast, Detectron [19] optimizes a joint loss term trading off between a training error minimization
and a target unsupervised dataset’s error maximization (with respect to its pseudolabels). As this
tradeoff is tunable, it’s possible to enforce stronger adherence to hypotheses withinHp at the heavy
price of requiring the training set to be at arm’s length.
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Given this significant deviation from the idealized setup where candidate hypotheses are obtained
following an optimization oracle returning hypotheses only within Hp, to what extent can one
trust the verdicts outputted by D3M? Intuitively, D3M is ID-oversampling “by the same amount”
during calibration and deployment, akin to a miscalibrated balance scale. Oversampling on an ID
deployment sample would result in disagreement rates resembling those in Φ, thus incurring no more
false positives. For a deteriorating OOD deployment sample, the effect of oversampling exacerbates
disagreement rates but only to the extent that it exacerbates disagreement rates for bootstrapped ID
samples during the calculation of Φ. In contrast, oversampling might result in a wider dispersion of
Φ, meaning the 1− α quantile might be pushed closer to 1, resulting in more false negatives.

Our analysis reveals that D3M consistently samples hypotheses beyond the ideal restricted hypothesis
space Hp, with training accuracies falling 11-15% below validation performance across datasets.
Despite this departure from the idealized framework, D3M operates as a "miscalibrated balance
scale" that maintains relative consistency between calibration and deployment phases. The systematic
nature of this oversampling means both ID and OOD samples are subject to the same bias, potentially
preserving discriminative power while increasing variance in Φ and risking higher false negative
rates.

C.5 Comparisons with a fully Bayesian network

We hereby provide an additional ablation comparing D3M’s performance against a fully Bayesian
network. Bayesian networks offer the most principled approach to approximating the idealized
D3M (Algorithms 1 and 2) when viewing optimization inHp as sampling from a distribution over
hypotheses modeled by said network. Given that D3M’s sampling is only restricted to the last layer,
it follows that D3M’s sampled hypotheses are less diverse than their fully Bayesian counterparts.

Without (double) sampling once again from the categorical distribution generated by the sampled
logits, the maximum disagreement rates achieved across 10000 runs hover around 5% for both ID
and deteriorating OOD samples, making them nearly indistinguishable by D3M. Instead, sampling
candidate disagreeing predictions from softmaxed and temperature-scaled logits rather than argmaxing
allows us to bring the ID disagreement rates in Φ to around 30%-50%, where deteriorating OOD
samples often score 5%-10% higher, making them distinguishable. How would a fully Bayesian
model fare? The following table compares the mean ID disagreement rates of a fully Bayesian (FB)
model and a VBLL model (D3M), all using the same set of best hyperparameters for each dataset.

Table 12: Comparison of mean ID disagreement rates in Φ of fully Bayesian and VBLL models.

Dataset Mean ID DisRate (FB) Mean ID DisRate (VBLL) FB Accuracy
UCI 0.30± 0.04 0.44± 0.01 0.79± 0.02
CIFAR-10/10.1 0.36± 0.01 0.42± 0.03 0.70± 0.02
Camelyon17 — — —

We remark that using the mean model of a FB network as the predictive function does not trade off
performance as shown in the last column. Further, we observe that even without the double sampling
scheme used for VBLL, the mean ID disagreement rate of FB does not collapse into 0.05 as is usually
the case with VBLL without any adjustments.

In Figure 9, we compare the fully Bayesian neural network’s decision against various instances of
VBLL neural networks. Indeed, we find that when no double sampling is used, decision boundaries
tend to collapse to the mean function. This is evidenced in very low disagreement rates for VBLL
compared to fully Bayesian models. With double sampling, however, we observe that predictions are
more stochastic, leading to increasingly more likely disagreement with respect to the mean model.
This illustrates how we may approximate the boundary/decision diversity of a fully Bayesian network
with VBLL and additional double sampling.

Notably, on UCI, while VBLL trains each element Φ in approximately 1 second, a FB base model
in D3M takes approximately 17 minutes. The gap worsens for CIFAR-10/10.1 as it takes FB
and hours for CIFAR-10/10.1 while only 2 minutes for VBLL. This example further showcases
the computational overhead incurred when sampling iteratively rather than in parallel. One either
reparametrizes layers, making each forward pass’s output essentially a sample of logits, requiring
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Figure 9: Toy experiment on the Two Moons dataset generator [69]. 500 points are noisily sampled
from each class at noise level 0.3. We visualize 200 total samples here for clarity. (Figure 9a) A
fully Bayesian neural network is trained on this dataset. The decision boundaries correspond to the
level set of the probabilities of predicting either class at level 0.5. Forward passing the full grid
through this net, we find different decision boundaries pictured in green. (Figure 9b) A comparable
VBLL model is trained. Without our double sampling scheme, most decision boundaries samples
collapse onto the mean model’s boundary, highlighted by the yellow region. Figures 9c, 9d, and 9e
depict probabilities under double sampling with temperatures τ = 2, 5, 10 respectively. We observe
that sampling predictions from gradually softer probabilities give noisier estimates across the space.
Although this does not provide a concrete continuous level set at 0.5, the colors depict the distribution
of predictions from which D3M samples, which “simulates” the diversity of decision boundaries.

sequential forward passes to collect MC logits, or one must lift all weight tensors to include a sample
dimension and ensure every downstream operation — including residual connections, batch norm,
and other architectural components — is broadcast-compatible.

While this is realizable, it offers no benefits to our two-stage sampling strategy. We find that when
temperatures are tuned to yield ID disagreement rates in the 30% to 50% range, deteriorating OOD
disagreement rates are easily discernable as on those inputs, D3M tends to disagree 5%-10% better,
thus easily achieving high TPR.
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