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Abstract
Due to its simplicity, effectiveness and robustness,
naive Bayes (NB) has continued to be one of the
top 10 data mining algorithms. To improve its per-
formance, a large number of improved algorithms
have been proposed in the last few decades. How-
ever, in addition to Gaussian naive Bayes (GNB),
there is little work on numerical attributes. At the
same time, none of them takes into account the
correlations among instances. To fill this gap, we
propose a novel algorithm called instance correla-
tion graph-based naive Bayes (ICGNB). Specifi-
cally, it first uses original attributes to construct
an instance correlation graph (ICG) to represent
the correlations among instances. Then, it em-
ploys a variational graph auto-encoder (VGAE)
to generate new attributes from the constructed
ICG and uses them to augment original attributes.
Finally, it weights each augmented attribute to
alleviate the attribute redundancy and builds GNB
on the weighted attributes. The experimental
results on tens of datasets show that ICGNB
significantly outperforms its deserved competi-
tors. Our codes and datasets are available at
https://github.com/jiangliangxiao/ICGNB.

1. Introduction
Supervised classification is one of the most fundamental and
significant tasks in data mining (Han et al., 2011). Due to the
explicit interpretability and the powerful expression ability,
Bayesian networks (Pearl, 1989; Friedman et al., 1997; Tang
et al., 2016; Zhang et al., 2020a) are commonly used in su-
pervised classification. Assume that A1, A2, ..., Aj , ..., Am

are m attribute variables, an instance x can be represented as
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an attribute value vector < a1, a2, ..., aj , ..., am >, where
aj is the value of x on Aj . Let C represent the class variable
and c represent the value that C takes, Bayesian networks
use Eq. (1) to classify x:

ĉ(x) = arg max
c∈C

πcP (a1, a2, ..., aj , ..., am|c), (1)

where ĉ(x) is the class label of x predicted by Bayesian
networks and πc is the prior probability of c. Because di-
rectly estimating P (a1, a2, ..., aj , ..., am|c) is an NP-hard
problem (Chickering, 1995), naive Bayes (NB) proposes an
assumption that all attributes are fully independent given the
class, i.e. attribute conditional independence assumption.
Based on this assumption, NB uses Eq. (2) to classify x:

ĉ(x) = arg max
c∈C

πc

m∏
j=1

θaj |c, (2)

where θaj |c is the conditional probability of aj given c.

Despite its simplicity, NB has demonstrated remarkable
performance and continued to be one of the top 10 data
mining algorithms (Wu et al., 2008). Nevertheless, the at-
tribute conditional independence assumption is difficult to
hold in reality, which limits the performance of NB. To
mitigate the attribute conditional independence assump-
tion, numerous improved algorithms of NB have been pro-
posed, which can be broadly divided into four categories:
structure-oriented, probability-oriented, attribute-oriented
and instance-oriented algorithms.

However, in addition to Gaussian naive Bayes (GNB), there
is little work on numerical attributes. At the same time,
none of them takes into account the correlations among
instances. To address these issues, we propose a novel algo-
rithm called instance correlation graph-based naive Bayes
(ICGNB). Firstly, we construct an instance correlation graph
(ICG) using original attributes to represent the correlations
among instances. Then, we employ a variational graph
auto-encoder (VGAE) (Kipf & Welling, 2016) to generate
new attributes from the constructed ICG and use them to
augment original attributes. Finally, we weight each aug-
mented attribute by maximizing the model’s conditional
log-likelihood (CLL) to alleviate the attribute redundancy
and then build GNB on the weighted attributes. In summary,
the contributions of this paper can be highlighted as:
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• We argue that the correlations among instances should
be introduced to improve NB. In contrast to existing im-
proved algorithms focusing on individual instances, we
intend to mine additional information across instances.

• We develop a novel instance correlation graph (ICG)-
based representation learning method, which exploits
the correlations among instances to generate new at-
tributes and thus enhances the identification abilities
of the original attributes.

• We propose an instance correlation graph-based naive
Bayes (ICGNB) algorithm, which enjoys the advan-
tages of attribute generation, attribute augmentation
and attribute weighting and thus provides a new path-
way to improve NB.

The rest of this paper is organized as follows: Section 2
conducts a survey on improved algorithms of NB. Section 3
describes the proposed ICGNB in detail. Section 4 reports
the experiments and results. Section 5 concludes this paper
and outlines the research directions for future work.

2. Related work
In recent years, numerous improved algorithms of NB have
been proposed, which can be broadly divided into four cat-
egories: structure-oriented, probability-oriented, attribute-
oriented and instance-oriented algorithms.

Structure-oriented algorithms (Webb et al., 2005; Jiang et al.,
2009; Qiu et al., 2015) improve NB by extending its net-
work structure. Specifically, the original network structure
lacks edge connections among attribute vertices, which re-
stricts the ability of NB to represent attribute dependen-
cies. To overcome this limitation, structure-oriented algo-
rithms extend the network structure by adding directed arcs,
which point from the parent vertices to the child vertices
to represent attribute dependencies. Distinguished from
NB, where the conditional probabilities are calculated given
the class vertex, in structure-oriented algorithms, the con-
ditional probabilities of each attribute are calculated given
both the class vertex and its parent vertices.

Probability-oriented algorithms (Hindi, 2014; Diab & Hindi,
2017; Hindi et al., 2020; Zhang & Jiang, 2022) provide a
strategy to obtain more reliable conditional probabilities
than those estimated by NB. In NB, conditional probabili-
ties are roughly estimated based on frequencies, however,
they might be unreliable when a dataset is too small or the
attribute conditional independence assumption is violated.
Probability-oriented algorithms adjust them to be more reli-
able conditional probabilities by employing eager and lazy
learning. Eager learning spends the main calculating cost
in the training stage, while lazy learning spends the main
calculating cost in the classification stage.

Attribute-oriented algorithms handle attributes through dif-
ferent strategies, which can be further divided into attribute
selection, attribute weighting and attribute generation. In
attribute selection (Hall, 2000; Tang et al., 2016; Chen et al.,
2020), irrelevant and redundant attributes are removed from
original attributes to obtain an optimal subset of attributes.
Attribute selection includes filters and wrappers, which re-
move attributes by employing general data characteristics
and classification accuracies of NB, respectively. In at-
tribute weighting (Zaidi et al., 2013; Jiang et al., 2019b;
Zhang et al., 2020b), due to attributes holding different im-
portance on classification, they should be assigned different
weights based on their predictive abilities (Lee et al., 2011).
Evaluating the predictive ability of each attribute is the most
crucial problem of attribute weighting. The same as at-
tribute selection, attribute weighting also includes filters and
wrappers. In attribute generation (Ou et al., 2022; He et al.,
2023; Zhang et al., 2023), new attributes are generated by
mapping original attributes to another attribute space, which
can capture latent characteristics of the data. New attributes
can enhance the identification abilities of original attributes
by replacing, augmenting or acting as a new view.

Instance-oriented algorithms can also be further divided into
instance selection, instance weighting and instance genera-
tion. In instance selection (Bilmes & Ng, 2009; Langley &
Sage, 2013; Wang et al., 2015), a local subset of instances
is selected to build NB. Considering that the attribute condi-
tional independence assumption is difficult to satisfy on the
entire training instances, however, it may hold by selecting a
local subset of instances for a given test instance. In instance
weighting (Jiang et al., 2012; 2014; Xu et al., 2019), each
instance is assigned a numerical weight between 0 and 1
based on its reliability. Then the weight of each instance is
incorporated into the formulae of the prior and conditional
probabilities to get a more accurate probability estimation.
In instance generation (Jiang et al., 2005; Jiang & Zhang,
2005; Jiang et al., 2008), new instances are generated based
on the original instances and added to the dataset. The in-
stance distribution of the data is optimized by using new
instances and original instances simultaneously.

To the best of our knowledge, except for two attribute-
oriented algorithms (Ou et al., 2022; He et al., 2023), al-
most all above improved algorithms focus on nominal at-
tributes. Moreover, all of these improved algorithms con-
sider individual instances solely and ignore the correlations
among instances. These limitations motivate us to propose
a more comprehensive algorithm that can handle numerical
attributes and leverage the correlations among instances.

3. ICGNB
To address the limitations mentioned above, we first develop
a novel ICG-based representation learning method. In our
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Figure 1. Framework of ICGNB.

method, we construct an ICG to represent the correlations
among instances and transform the correlations into new
attributes to augment original attributes. Based on the de-
veloped representation learning method, we further propose
a novel algorithm called instance correlation graph-based
naive Bayes (ICGNB). The framework of ICGNB is graphed
in Figure 1. From Figure 1, we can see clearly that ICGNB
is a three-stage algorithm. In the first stage, we mine the cor-
relations among instances from the original attribute matrix
and construct an ICG to represent the correlations. In the
second stage, we input ICG and the original attribute matrix
into VGAE to generate a new attribute matrix and augment
the original attribute matrix by it. In the third stage, we max-
imize the CLL by the gradient descent search to optimize
the weight vector and finally build attribute weighted GNB
on augmented attributes.

3.1. ICG construction

In this subsection, we construct ICG to connect all instances
into a complete structure and represent the correlations as
an undirected graph. ICG presents a topological structure
of the data, connecting instances with high correlations
while separating those with low correlations. In ICG, to
avoid containing redundant correlations, we construct it as a
sparse graph. Under the condition that all instances should
be connected into a complete structure, we add as few edges
as possible to ICG.

Given a dataset with n instances and m attributes, it can
be represented as D = {X, c}, where X ∈ Rn×m is the
original attribute matrix, c is the class label vector. The
i-th row in X is represented as xi, corresponding to the
i-th instance. The ICG is represented as O =< V,E >,
where V is the set of vertices, and E is the set of edges.
Each vertex in ICG represents an instance, and each edge
represents a connection between two instances. In addition,
we define EF as the set of edges in a full connection graph
of instances, which contains n(n− 1)/2 edges. The ICG is
constructed using original attributes, and the construction
(ICG-construction) process is depicted by Algorithm 1.

Algorithm 1 ICG-construction(X)
1: Input: X - the original attribute matrix.
2: Output: E - the set of edges in ICG.
3: Construct a full connection graph of instances and store its

edges in EF ;
4: for i = 1 to n do
5: for t = 1 to n do
6: Calculate d(xi,xt) between xi and xt by Eq. (3);
7: end for
8: end for
9: Sort edges in EF by Euclidean distances in ascending order;

10: Initialize an empty set E;
11: for i = 1 to n(n− 1)/2 do
12: if two vertices connected by the i-th edge in EF are not

reachable through the edges in E then
13: Add the the i-th edge in EF to E;
14: if E contains n-1 edges then
15: Break;
16: end if
17: end if
18: end for
19: for i = 1 to n do
20: Add a self-connecting edge for the i-th vertex to E;
21: end for
22: return E.

Firstly, we construct a full connection graph of instances
and store its edges in EF . Then, we calculate the distances
between instances two by two and sort edges in EF by
the distances in ascending order. In this paper, we take
advantage of the widely used Euclidean distance to measure
the distance d(xi,xt) between two instances xi and xt,
which can be formulated as Eq. (3):

d(xi,xt) =

√√√√ m∑
j=1

(aij − atj)2, (3)

where aij and atj are the j-th attribute values of xi and xt,
respectively. Next, we process each edge in EF iteratively,
checking whether the two vertices connected by it are reach-
able through the edges in E. If not reachable, the edge is
added to E. This process continues until exactly n-1 edges
have been added. Finally, we add a self-connecting edge
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for each vertex to consider the correlation between each
instance and itself. After constructing ICG, we transform O
into an adjacency matrix G. The element of G in the i-th
row and the j-th column is represented as Gij , which takes
the value 1 if there is an edge between the i-th vertex and
the j-th vertex and 0 otherwise.

3.2. Attribute generation and augmentation

In this subsection, to fully leverage the correlations among
instances and mine additional information across instances,
we take an embedding matrix generated from ICG as the
new attribute matrix for instances. During the generation of
the embedding matrix, the graph convolution operation in
VGAE plays a crucial role, which calculates the response
of a vertex based on its neighbors through Fourier trans-
form(Kipf & Welling, 2017). Through the graph convo-
lution operation, we encode the correlations among each
instance and its neighbors into the embedding matrix.

In VGAE, the embedding matrix Z consists of n embedding
vectors, and the i-th row in Z is the i-th embedding vector
zi. Similar to the variational auto-encoder (VAE) (Kingma
& Welling, 2014), VGAE contains an encoder q(Z|X,G),
a decoder p(G|Z) and a variational prior p(Z). Among
them, the encoder q(Z|X,G) transforms X and G into Z
based on p(Z). The decoder p(G|Z) reconstructs G from
Z. According to the mean field theory (Blei et al., 2016),
p(Z) can be expressed by several mutually independent
components. Specifically, treating the embedding vectors as
the independent components, the process of generating Z
through q(Z|X,G) can be represented as Eq. (4):

q(Z|X,G) =

n∏
i=1

M(zi|ϕi), (4)

where M(zi|ϕi) is the vector prior of zi, ϕi is the parame-
ter set of M(zi|ϕi). For each embedding vector, we design
a mixture of two multivariate Gaussian distributions with di-
agonal covariance as the vector prior (Blundell et al., 2015).
The two multivariate Gaussian distributions have the same
means but different variances, and the vector prior can be
represented as Eq. (5):

M(zi|ϕi)

=M(zi|µi,σ1i,σ2i)

=
1

2
(N (zi|µi, diag(σ

2
1i)) +N (zi|µi, diag(σ

2
2i))),

(5)

where µi is the mean vector, σ2
1i and σ2

2i are the variance
vectors, diag(σ2

1i) and diag(σ2
2i) are the diagonal covari-

ance matrices. The variances of the first multivariate Gaus-
sian distribution are configured to be considerably larger
than those of the second, i.e. σ2

1i >> σ2
2i. σ2

1i and σ2
2i

increase the diversity of the vector prior by providing a heav-
ier tail and a higher peak in the two multivariate Gaussian

distributions, respectively. µi, σ1i and σ2i are inferred by
the graph convolution operation. Formally, the graph convo-
lution operation from the r-th layer to the (r+1)-th layer in
VGAE can be represented as Eq. (6):

Hr+1 = δ(D̃− 1
2GD̃− 1

2HrW r), (6)

where δ(·) is a RELU function, D̃ is the degree matrix of
G, D̃ii =

∑n
j=1 Gij , W r is the weight matrix in the r-th

layer, Hr is the activation matrix in the r-th layer, H0 = X .
The inference of means and variances can be represented as
Eq. (7) and Eq. (8), respectively:

µ = D̃− 1
2GD̃− 1

2HWµ, (7)

σ = D̃− 1
2GD̃− 1

2HWσ, (8)

where Wµ and Wσ are the weight matrices corresponding
to the mean and variance, respectively. After inferring Z,
the decoder p(G|Z) is employed to reconstruct the original
adjacency matrix G from Z through adopting the inner
product by Eq. (9):

p(G|Z) =

n∏
i=1

n∏
j=1

ζ(zT
i zj), (9)

where ζ(·) is a sigmoid function. q(Z|X,G) and p(G|Z)
are trained simultaneously by maximizing the evidence
lower bound (ELBO), which can be formulated as Eq. (10):

L = Eq(Z|X,G)[log p(G|Z)]−KL(q(Z|X,G)||p(Z)),
(10)

where Eq(Z|X,G)[log p(G|Z)] is the expectation of
the binary cross entropy loss between the original
adjacency matrix and the reconstructed matrix, and
KL(q(Z|X,G)||p(Z)) is the Kullback-Leibler divergence
between q(Z|X,G) and variational prior p(Z).

To make new attributes align with the attribute conditional
independence assumption and the Gaussian distribution re-
quired by GNB, we set the variational prior p(Z) as an
independent zero-mean Gaussian distribution with unit vari-
ances. VGAE ensures that the distribution of the embedding
matrix closely approximates p(Z). Each variate in p(Z)
corresponds to a new attribute in Z, and thus the new at-
tribute closely approximates the Gaussian distribution. The
independent zero-mean in p(Z) ensures that the covariance
matrix of p(Z) is a diagonal matrix, implying that covari-
ances between new attributes approximate zero, i.e., new
attributes are approximately independent of each other.

Based on L, we update the parameters W of VGAE over P
iterations by Eq. (11):

Wp+1 = Wp − η
∂L
∂W

, (11)
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where Wp represents the parameters in the p-th iteration and
η represents the learning rate. When p = 1, Wp represents
randomly initialized parameters.

Finally, after generating Z, to enhance the identification
abilities of original attributes, we augment original attributes
by concatenating Z with X . In this paper, we construct a
VGAE consisting of three layers of neurons, with the num-
ber of neurons in each layer being m, 2m and m, respectively.
Therefore, a total of m new attributes are added. For each
instance, we represent the j-th value of zi as zij and define
zij as the (m + j)-th attribute value of xi.

3.3. Attribute weighting

Although attribute augmentation enhances the identification
abilities of original attributes, it may lead to redundant at-
tributes. To alleviate the attribute redundancy, we can assign
different weights for different augmented attributes. Then,
we build attribute weighted GNB based on the weighted
attributes and use Eq. (12) to predict the class label:

ĉ(x) = arg max
c∈C

πc

2m∏
j=1

θ
wj

aj |c, (12)

where wj is the weight of Aj . πc and θaj |c are estimated by
Eq. (13) and Eq. (14), respectively:

πc =

∑nt

i=1 I(ci, c) + 1

nt + k
, (13)

θaj |c =
1√

2πσcj

exp

(
− (aj − µcj)

2

2σ2
cj

)
, (14)

where k is the number of classes, nt is the number of training
instances, ci is the class label of the i-th instance, µcj and
σcj are the mean and standard deviation of Aj given c,
respectively, and I(·) is a binary function, which takes the
value 1 if its two parameters are identical and 0 otherwise.

Now, the only left question is how to calculate attribute
weights. At first, we initialize each weight in the weight
vector w using a random value between 0 and 1. Then,
we optimize the initialized weights by the gradient descent
search. The objective function of optimization is defined to
maximize the CLL of the attribute weighted GNB, which
can be formulated as Eq. (15):

CLL(w) = log P̂ (C|Dt,w) =

nt∑
i=1

log P̂ (ci|xi,w),

(15)
where Dt is the training dataset, P̂ (ci|xi,w) is the posterior
probability of ci estimated by the weighted GNB given xi

and w, which can be formulated as Eq. (16):

P̂ (ci|xi,w) =
γcixi(w)
k∑

c=1
γcxi

(w)

, (16)

where γcxi
(w) is the product of πc and each θ

wj

aj |c of xi,
which can be formulated as Eq. (17):

γcxi
(w) = πc

2m∏
j=1

θ
wj

aj |c. (17)

Before calculating the gradient of CLL(w) with respect to
wj , we can first calculate the gradient of γcxi(w) with
respect to wj as Eq. (18):

∂

∂wj
γcxi(w) =

πc

2m∏
j′=1∧j′ ̸=j

θ
wj′

aj′ |c

 ∂

∂wj
θ
wj

aj |c

=

πc

2m∏
j′=1∧j′ ̸=j

θ
wj′

aj′ |c

 θ
wj

aj |c log(θaj |c)

= γcxi(w) log(θaj |c).
(18)

Then, the gradient of CLL(w) with respect to wj can be
represented as Eq. (19):

∂

∂wj
CLL(w)

=
∂

∂wj

nt∑
i=1

(
log (γcixi

(w))− log

(
k∑

c=1

γcxi
(w)

))

=

nt∑
i=1

γcixi
(w) log(θaj |ci)

γcixi(w)
−

k∑
c=1

γcxi
(w) log(θaj |c)

k∑
c=1

γcxi(w)


=

nt∑
i=1

(
log(θaj |ci)−

k∑
c=1

P̂ (c|xi,w) log(θaj |c)

)
.

(19)
ICGNB can be partitioned into training (ICGNB-training)
and classification (ICGNB-classification) algorithms. They
are depicted by Algorithms 2 and 3 provided in Appendix
A. The time complexity is provided in Appendix B.

4. Experiments and results
We design two groups of experiments on 24 real-world
datasets and a synthetic dataset, respectively. On the real-
world datasets, we observe the classification performance
of ICGNB compared to its five competitors and conduct an
ablation study. On the synthetic dataset, we validate the ef-
fectiveness, independence and Gaussianity of the generated
new attributes as well as the sensitivity of ICGNB.

4.1. Experiments on real-world datasets

From the real-world datasets published by the KEEL1

dataset repository, we choose the whole 24 datasets only

1https://sci2s.ugr.es/keel/category.php?cat=clas
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Table 1. Classification accuracy (%) comparisons for ICGNB versus WANBIA, CFWNB, AG-NBC, AE-NBC and GNB.

Dataset ICGNB WANBIA CFWNB AG-NBC AE-NBC GNB

appendicitis 89.09±7.66 88.18±7.66 90.00±6.03 83.64±6.80 83.18±10.77 86.36±6.10
balance 88.00±3.12 90.24±2.84 88.32±3.87 91.68±1.53 79.84±5.22 90.24±2.84
banana 69.53±0.80 62.00±0.91 59.74±1.48 84.80±3.83 62.41±3.19 62.00±0.91
cleveland 57.67±4.84 58.00±4.27 54.83±4.86 53.67±3.86 55.50±7.82 51.67±10.22
ecoli 79.12±5.46 79.12±6.06 60.29±11.60 70.00±6.35 78.53±2.81 60.74±6.61
glass 63.02±8.85 59.07±7.44 51.40±11.74 60.70±6.61 60.47±8.06 47.21±9.70
iris 96.33±3.14 96.00±3.27 95.33±3.71 90.33±6.90 91.00±7.31 95.33±3.71
led7digit-01 72.40±4.27 70.40±5.90 64.20±9.11 71.30±4.73 71.70±3.26 63.30±12.12
magic 78.38±0.78 77.05±0.67 74.56±0.56 75.04±1.33 77.69±1.35 72.56±0.64
movement libras 56.11±4.31 62.92±4.97 62.22±4.76 69.17±6.77 70.97±6.38 61.94±5.63
phoneme 76.46±1.10 75.91±1.40 76.85±1.58 77.22±1.69 76.91±1.62 75.97±1.65
pima 75.32±2.29 75.52±2.69 75.06±2.99 73.12±2.23 73.70±2.94 74.61±3.45
ring 97.98±0.36 97.90±0.20 97.96±0.30 93.34±1.18 94.73±0.51 97.92±0.28
segment 90.41±1.59 88.81±1.26 80.52±1.26 88.01±1.76 83.35±2.60 79.42±1.48
sonar 78.57±5.73 78.33±5.05 67.86±5.46 76.67±7.81 67.15±8.05 66.67±5.11
spambase 90.67±1.08 89.99±1.08 83.71±1.26 86.52±1.83 86.51±0.98 82.08±1.25
texture 96.84±0.52 84.47±1.00 78.35±1.38 94.91±0.78 94.22±0.74 77.45±1.39
titanic 77.41±1.19 77.64±1.21 76.98±0.89 75.51±1.70 76.98±0.89 76.98±0.89
twonorm 97.66±0.23 97.72±0.27 97.71±0.29 96.37±0.61 95.31±0.91 97.70±0.28
wdbc 96.32±1.51 96.40±1.54 93.95±1.90 94.65±1.69 85.53±2.97 92.98±2.29
wine 96.94±1.94 97.50±1.50 96.94±1.94 97.50±1.94 92.22±5.53 97.50±1.50
winequality-red 59.53±2.56 58.44±1.78 58.47±1.49 58.84±3.19 57.16±2.93 54.72±2.56
winequality-white 52.64±1.27 52.21±1.51 49.23±1.14 51.02±1.94 51.51±1.43 44.38±1.61
yeast 56.53±3.26 54.28±3.20 18.22±3.83 50.03±3.07 55.49±1.87 14.41±3.38
(W / T / L) 17/0/7 18/1/5 19/0/5 22/0/2 20/0/4
Average 78.87 77.84 73.03 77.67 75.92 71.84

Table 2. Wilcoxon tests for ICGNB versus WANBIA, CFWNB, AG-NBC, AE-NBC and GNB.

Algorithm ICGNB WANBIA CFWNB AG-NBC AE-NBC GNB
ICGNB - ◦ ◦ ◦ ◦ ◦
WANBIA • - ◦ ◦ ◦
CFWNB • • - • ◦
AG-NBC • ◦ - ◦
AE-NBC • • - ◦
GNB • • • • -

containing numerical attributes, which represent a wide
range of domains and data characteristics. The detailed de-
scription of these datasets is provided in Appendix C. In our
experiments, we apply z-score normalization (Patro & Sahu,
2015) to attributes before inputting them into algorithms.
We compare the classification accuracy (%) of ICGNB with
its five competitors and ablation variants on these datasets by
running 10 separate stratified hold-out validations. In each
validation, we use stratified sampling to split the dataset into
a training set (80%) and a testing set (20%).

Classification performance. We compare ICGNB with
its five competitors, including weighting attributes to alle-
viate naive Bayes’ independence assumption (WANBIA)
(Zaidi et al., 2013), correlation-based feature weighting fil-
ter for naive Bayes (CFWNB) (Jiang et al., 2019a), attribute
grouping-based naive Bayesian classifier (AG-NBC) (He
et al., 2023), auto-encoding naive Bayesian classifier (AE-

NBC) (Ou et al., 2022) and GNB. WANBIA and CFWNB
are two existing state-of-the-art improved algorithms of NB
focusing on nominal attributes with attribute weighting. In
our experiments, to enable them to handle numeric attributes
directly, we replace the NB in them with GNB. AG-NBC
and AE-NBC are two existing state-of-the-art improved
algorithms of NB focusing on numerical attributes with at-
tribute generation. Different from our proposed ICGNB,
they generate independent attribute groups or attributes to
align with the attribute conditional independence assump-
tion. Among all competitors, GNB is the baseline. We
implement ICGNB, WANBIA, CFWNB, AG-NBC, AE-
NBC and GNB by using Python, respectively. In ICGNB,
the number of iterations P is 500, the learning rate η is 0.01,
and σ1i≈1000σ2i. In AE-NBC, the number of iterations
and the learning rate are the same as those of ICGNB. In
AG-NBC, the stopping threshold δ is 0.001 and the regular-
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ization factors ε1, ε2 are 1, -1, respectively.

Table 1 shows the detailed classification accuracy of each
algorithm on each dataset. We bold the highest classifica-
tion accuracy on each dataset to show the algorithm which
performs best in that dataset. If two algorithms have the
same accuracy on the same dataset, we bold the accuracy
with a small variance. The Win / Tie / Lose values and the
averages are summarized at the bottom of the table. The
Win / Tie / Lose (W / T / L) values of each entry in the table
provide a concise summary of how ICGNB fares against its
competitors. They imply that, compared to its competitors,
ICGNB wins on W datasets, ties on T datasets, and loses on
L datasets. The average (arithmetic mean) of each algorithm
across all datasets provides a gross indicator of the relative
performance. Based on the classification accuracy results
presented in Table 1, we employ the Wilcoxon signed-ranks
test (Demsar, 2006) to conduct a comprehensive comparison
of each pair of algorithms. This non-parametric statistical
test ranks the differences in performance for each dataset,
ignoring the signs, and compares the ranks for positive and
negative differences. The comparison results are summa-
rized in Table 2, where • indicates that the algorithm in the
column outperforms the one in the corresponding row, and
◦ signifies the opposite. The lower-diagonal significance
level is α = 0.05, while the upper-diagonal level is α = 0.1.
These results show that our proposed ICGNB significantly
outperforms all the other competitors. Now, we summarize
the highlights as follows:

(1) Compared to WANBIA and CFWNB, ICGNB wins on
17 and 18 datasets and only loses on 7 and 5 datasets, respec-
tively. ICGNB obtains much better performance than the
existing state-of-the-art competitors with attribute weight-
ing. This indicates the effectiveness of using new attributes
containing the correlations among instances.

(2) Compared to AG-NBC and AE-NBC, ICGNB wins on
19 and 22 datasets and loses on 5 and 2 datasets, respectively.
ICGNB performs much better than existing state-of-the-art
competitors with attribute generation. This indicates the
effectiveness of alleviating the attribute redundancy by as-
signing different weights for different augmented attributes.

(3) Compared to GNB, ICGNB wins on 20 datasets and
loses only on 4 datasets. This verifies that ICGNB demon-
strates significant effectiveness in enhancing the perfor-
mance of NB and our proposed ICG-based representation
learning method is powerful.

(4) The average classification accuracy of ICGNB on
24 datasets is 78.87%, which is remarkably higher than
those of WANBIA (77.84%), CFWNB (73.03%), AG-NBC
(77.67%), AE-NBC (75.92%) and GNB (71.84%), respec-
tively. This proves that ICGNB is generally the best among
all the competitors.
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Figure 2. Results of the ablation study.

(5) According to the Wilcoxon signed-ranks test results
presented in Table 2, ICGNB significantly outperforms all
existing state-of-the-art competitors whether α = 0.05 or α =
0.1, which strongly validates the classification performance
of ICGNB.

Ablation study. To thoroughly analyze whether each part
in ICGNB takes effect, we conduct an ablation study about
three ablation variants. They retain different parts in ICGNB
to observe the effectiveness of specific parts. ICGNB-N is
the first variant, in which the part of attribute generation is
the same as that of ICGNB while attribute augmentation
and weighting are removed. ICGNB-A is the second variant,
in which the parts of attribute generation and augmentation
are the same as those of ICGNB while attribute weight-
ing is removed. In addition to ICGNB-N and ICGNB-A,
WANBIA can serve as another ablation variant of ICGNB.
We represent it as ICGNB-W, in which the part of attribute
weighting is the same as that of ICGNB while attribute gen-
eration and augmentation are removed. According to the
results shown in Figure 2, we summarize the conclusions as
follows: (1) The accuracy of ICGNB-A is higher than that
of GNB and ICGNB-N, which indicates that attribute aug-
mentation is necessary for leveraging original attributes and
new attributes simultaneously. (2) The accuracy of ICGNB
is higher than that of ICGNB-A, which proves that attribute
weighting is necessary for alleviating the attribute redun-
dancy. (3) The accuracy of ICGNB is also higher than that
of ICGNB-W, which suggests that attribute generation and
augmentation are necessary for enhancing the identification
abilities of original attributes.

4.2. Experiments on synthetic dataset

To further verify the effectiveness, independence and Gaus-
sianity of the generated new attributes as well as the sensi-
tivity of ICGNB, we design another group of experiments
on a synthetic dataset. The synthetic dataset contains 2
classes, 100 instances and 50 attributes. The synthesis pro-
cess initially creates Gaussian clusters around the vertices of
a 40-dimensional hypercube and assigns an equal number of
clusters to each class. By sampling from these clusters, in-
stances containing 40 informative attributes can be obtained.
Then, 10 redundant attributes are generated by random lin-
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(a) original attributes (b) ICG (c) new attributes

Figure 3. Class distributions of the synthetic dataset.

(a) original attributes - class 1 (b) original attributes - class 2

(c) new attributes - class 1 (d) new attributes - class 2

Figure 4. Pearson coefficients between original attributes and new
attributes in two classes.

ear combinations of these informative attributes. To shift the
distribution of each attribute away from the Gaussian distri-
bution, attribute values are mapped by using the transform
function as Eq. (20):

a′s = sign(as) · as2, (20)

where a′s is the mapped attribute value, as is an original
attribute value, sign(·) is a signed function taking 0, 1, -1 if
as is zero, positive, negative, respectively.

Effectiveness. To facilitate clear observations of the class
distributions of the synthetic dataset, we employ the t-SNE
algorithm (van der Maaten & Hinton, 2008) to map the syn-
thetic dataset to a two-dimensional dataset. Figure 3 shows
the class distributions with original attributes, ICG and aug-
mented attributes. For ICG, we hide the self-connecting
edges of instances. In Figure 3b, we can see that ICG effec-

(a) statistics

(b) significances

Figure 5. Gaussianity of attribute comparisons of the Kolmogorov-
Smirnov tests.

tively connects instances of the same class. This is helpful
in representing the correlations among instances on original
attributes. In Figure 3c, instances of the same classes are
generally distributed within the same regions, and instances
of different classes can be separated by a clear boundary.
The class distribution with augmented attributes demon-
strates significant distinguishability compared to that with
original attributes in Figure 3a, in which instances of dif-
ferent classes are scattered. This suggests that augmented
attributes containing new attributes are more effective for
classification than original attributes.

Independence. To investigate whether new attributes align
better with the attribute conditional independence assump-
tion than original attributes, we calculate the absolute value
of the Pearson coefficient (Cohen & Israel, 2009) as the
correlation between each pair of attributes given c. We plot
the correlations as heat maps, in which the lower correla-
tions correspond to the lighter colors, as shown in Figure
4. The elements on the diagonal indicate the correlations of
the attributes to themselves, which are excluded from our
analysis and are set to the darkest color. Figure 4c and Fig-
ure 4d are much lighter in color than Figure 4a and Figure
4b, indicating that new attributes have lower correlations
with each other given c than original attributes. Therefore,
new attributes align better with the attribute conditional
independence assumption than original attributes.

Gaussianity. We use the Kolmogorov-Smirnov test to in-
vestigate whether new attributes conform to the Gaussian
distribution required by GNB better than original attributes.
The Kolmogorov-Smirnov test can compare whether there is
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Figure 6. Average classification accuracy (%) of ICGNB with dif-
ferent parameters.

a significant difference between two distributions. On origi-
nal attributes and new attributes, we calculate the statistics
and significances between the conditional probability distri-
bution of each attribute given c and the Gaussian distribution
which has the same mean and variance as the distribution
to be tested. The higher statistics indicate the greater dif-
ference between the two distributions. A significance level
below 0.05 indicates that the conditional probability distribu-
tion is significantly different from the Gaussian distribution.
Conversely, the conditional probability distribution demon-
strates significant Gaussianity. We present the comparisons
of sorted statistics for original attributes and new attributes
in two classes in Figure 5a. The comparisons show that new
attributes consistently exhibit lower statistics compared to
original attributes in both class 1 and class 2. This indicates
that new attributes are generally closer to the Gaussian dis-
tribution than original attributes. We present the number
of attributes with significance levels exceeding 0.05 in two
classes in Figure 5b. It can be found that there are 10 and
14 original attributes in class 1 and class 2 demonstrating
significant Gaussianity, respectively. In contrast, there are
44 and 41 new attributes in class 1 and class 2 demonstrating
significant Gaussianity, respectively. These results indicate
that new attributes conform to the Gaussian distribution
required by GNB better than original attributes.

Sensitivity. To analyze the sensitivity of ICGNB with differ-
ent parameters and graph convolution functions, we observe
its classification performance on the synthetic dataset, and
the experimental setup remains identical to that outlined in
subsection 4.1. In ICGNB, the main adjustable parameters
are the number of iterations P and the learning rate η. We
conduct two parameter sensitivity analysis experiments by
fixing one parameter while changing another one, and then
observe the classification performance. The detailed exper-
imental results are shown in Figures 6a and 6b, where the
blue circle corresponds to P = 500 and η = 0.01. From
these results, we can see that the average classification ac-
curacy is consistently near the blue circle, displaying no
significant fluctuation with the changing of P or η. This
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Figure 7. Average classification accuracy (%) of ICGNB with dif-
ferent graph convolution functions.

demonstrates that ICGNB is not sensitive to P and η. In
addition to changing the adjustable parameters, we replace
the graph convolution function of VGAE in ICGNB with
those of GraphSAGE (Hamilton et al., 2017) and Graph
Attention Network (GAT) (Velickovic et al., 2018), and then
observe the classification performance. The detailed experi-
mental results are shown in Figure 7. From Figure 7, we can
see that the average classification accuracy corresponding
to three graph convolution functions are 77.50%, 78.00%
and 76.50%, respectively. These results show that using
the graph convolution function of GraphSAGE slightly in-
creases the performance of ICGNB, while using that of GAT
slightly reduces it. This demonstrates that ICGNB is not
sensitive to the graph convolution function.

5. Conclusion and future work
To leverage the correlations among instances and then en-
hance the identification abilities of original attributes, we
develop an instance correlation graph (ICG)-based represen-
tation learning method. Based on this method, we propose
a novel algorithm called instance correlation graph-based
naive Bayes (ICGNB). In ICGNB, we first construct an
ICG by using original attributes to represent the correlations
among instances. Then, we employ a variational graph auto-
encoder (VGAE) to generate new attributes from the ICG
and then augment original attributes using the generated
new attributes. Finally, we weight each augmented attribute
to alleviate attribute redundancy and then build GNB on the
weighted attributes.

The strategy of constructing ICG is critical, which deter-
mines the precision and effectiveness of representing the
correlations among instances. In this paper, we do not incor-
porate class labels when constructing ICG, leading to the
omission of the supervised information. Exploring how to
construct ICG with supervised information is the main di-
rection for future work. In addition, we construct ICG using
a greedy search strategy, which increases the computational
cost of ICGNB. In this context, exploring how to design a
strategy with lower computational cost is another direction
for future work.
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A. Training (ICGNB-training) and classification (ICGNB-classification) algorithms of ICGNB.

Algorithm 2 ICGNB-training(D)

1: Input: D = {X, c} - the dataset.
2: Output: Z - the new attribute matrix, w - the weight vector.
3: Construct ICG by Algorithm 1;
4: Transform ICG into an adjacency matrix G;
5: Initialize the parameters of VGAE as W1;
6: for p = 1 to P do
7: Generate the embedding matrix by Eq. (4) with Wp;
8: Reconstruct the original adjacency matrix by Eq. (9);
9: Calculate the loss by Eq. (10);

10: Update the parameters by Eq. (11);
11: end for
12: Generate the new attribute matrix Z by Eq. (4) with WP+1;
13: for i = 1 to nt do
14: for j = 1 to m do
15: Define the zij as the (m + j)-th attribute value of xi;
16: end for
17: end for
18: for c = 1 to k do
19: Estimate the prior probability πc by Eq. (13);
20: for j = 1 to 2m do
21: Estimate the conditional probability θaj |c by Eq. (14);
22: end for
23: end for
24: Initialize each weight in the weight vector w;
25: Optimize the initialized weight vector w by Eqs. (15) - (19);
26: return Z, w.

Algorithm 3 ICGNB-classification(Z, w, x)

1: Input: Z - the new attribute matrix, w - the weight vector, x - a test instance.
2: Output: ĉ(x) - the predicted class label of x.
3: Extract the embedding vector z corresponding to x from Z;
4: for j = 1 to m do
5: Define zij as the (m + j)-th attribute value of x;
6: end for
7: for c = 1 to k do
8: Estimate the prior probability πc by Eq. (13);
9: for j = 1 to 2m do

10: Estimate the conditional probability θaj |c by Eq. (14);
11: end for
12: end for
13: Predict the class label ĉ(x) of x by Eq. (12);
14: return ĉ(x).
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B. Time complexity of ICGNB.
In Algorithm 1, line 3 constructs a full connection graph with a time complexity of O(n2). Lines 4-8 calculate the Euclidean
distance with a time complexity of O(n2m). Line 9 sorts edges with a time complexity of O(n2logn). Lines 10-18 add
edges to ICG with a time complexity of O(n2α(n)), where O(α(n)) is the time complexity of checking if two vertices are
reachable. Lines 19-21 add self-connecting edges with a time complexity of O(n). Due to m usually being greater than
logn and α(n), considering only the highest-order terms, the overall time complexity of Algorithm 1 is O(n2m).

In Algorithm 2, line 3 constructs ICG with a time complexity of O(n2m). Lines 4-5 transform ICG into G and initialize
the parameters in VGAE with a time complexity of O(n2). Lines 6-11 train a VGAE with a time complexity of O(P (nm2 +
n2m)). Line 12 generates new attributes with a time complexity of O(nm2). Lines 13-17 augment original attributes with a
time complexity of O(nm). Lines 18-23 train a GNB with a time complexity of O(knm). Lines 24-25 weight augmented
attributes with a time complexity of O(β(m)), where β(m) has a linear relationship with m. Due to n usually being greater
than m, considering only the highest-order terms, the overall time complexity of Algorithm 2 is O(Pn2m).

In Algorithm 3, line 3 extracts the embedding vector with a time complexity of O(1). Lines 4-6 augment original attributes
with a time complexity of O(m). Lines 7-12 estimate πc and each θaj |c with a time complexity of O(km). Line 13 predicts
ĉ(x) with a time complexity of O(m). Considering only the highest-order terms, the overall time complexity of Algorithm
3 is O(km).

C. Descriptions of 24 real-world datasets used in experiments.

Table 3. Descriptions of 24 real-world datasets used in experiments. “#Attributes” denotes the number of attributes, “#Classes” denotes
the number of classes and “#Instances” denotes the number of instances.

Dataset #Attributes #Classes #Instances

appendicitis 7 2 106
balance 4 3 625
banana 2 2 5300
cleveland 13 5 297
ecoli 7 8 336
glass 9 7 214
iris 4 3 150
led7digit-01 7 10 500
magic 10 2 19020
movement libras 90 15 360
phoneme 5 2 5404
pima 8 2 768
ring 20 2 7400
segement 19 7 2310
sonar 60 2 208
spambase 57 2 4597
texture 40 11 5500
titanic 3 2 2201
twonorm 20 2 7400
wdbc 30 2 569
wine 13 3 178
winequality-red 11 11 1599
winequality-write 11 11 4898
yeast 8 10 1484
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