
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ANSWER-CONSISTENT CHAIN-OF-THOUGHT REIN-
FORCEMENT LEARNING FOR MULTI-MODAL LARGE
LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent advances in large language models (LLMs) have demonstrated that rein-
forcement learning with verifiable rewards (RLVR) can significantly enhance rea-
soning abilities by directly optimizing correctness, rather than relying solely on
supervised imitation. This paradigm has been extended to multimodal LLMs for
complex video and image understanding tasks. However, while outcome-driven
RL improves answer accuracy, it can inadvertently decouple the reasoning chain
from the final answer, leading to situations where models produce inconsistency
between the reasoning trace and final answer. In our experiments on multiple-
choice visual question-answering tasks, the standard GRPO method yields only
79.7% consistency on MMVU between the reasoning steps and the chosen an-
swers, indicating frequent mismatches between answers and reasoning. To this
end, we propose Answer-Consistent REinforcement Learning (ACRE) that mod-
ifies the GRPO algorithm with an auxiliary consistency check. After the model
generates a chain of thought and an initial answer for a given question, we shuffle
the answer options and prompt the model again with the same reasoning trace to
predict a second answer. We design a consistency-verification reward that grants
a high reward only if both the original and the post-shuffle answers agree and
are correct; otherwise, a lower reward is assigned accordingly. This mechanism
penalizes reasoning-answer misalignment and discourages the model from rely-
ing on spurious patterns, such as option ordering biases. We evaluate ACRE on
challenging Video Reasoning benchmarks and multimodal math reasoning bench-
marks, achieving an average 2.2% and 1.5% improvement for Video Reasoning
and Math Reasoning tasks over the GRPO baseline.

1 INTRODUCTION

The remarkable advancements in Large Language Models (LLMs) have been largely attributed to
their emergent reasoning capabilities, often elicited through techniques like Chain-of-Thought (CoT)
prompting. A pivotal step in refining these abilities has been the application of Reinforcement Learn-
ing (RL) with verifiable rewards, a paradigm that has demonstrated significant success in models
like DeepSeek-R1 (Guo et al., 2025). This approach, which rewards the model for generating cor-
rect outcomes, has proven to be highly effective in enhancing the multi-step reasoning abilities of
LLMs, particularly in domains where the final answer can be easily verified, such as mathematics
and coding.

The success of RL in the text domain has naturally inspired researchers to explore its application in
the realm of Multi-modal Large Language Models (MLLMs). The goal is to imbue these models,
which can process and understand information from various modalities like images and videos, with
sophisticated reasoning skills. Recent works such as Visual-RFT (Liu et al., 2025), Video-R1 (Feng
et al., 2025), and Vision-R1 (Huang et al., 2025) have made significant strides in this direction.
Visual-RFT extends reinforcement fine-tuning to visual perception tasks, demonstrating its data
efficiency. Video-R1 adapts the Group Relative Policy Optimization (GRPO) algorithm to the video
domain by introducing a temporal-aware reward mechanism. Vision-R1 employs GRPO with the
hard formatting result reward function to gradually refine the model’s ability to learn correct and
complex reasoning processes on a 10K multimodal math dataset.
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Question:
 Which musical instrument plays first? A. Both instruments begin simultaneously. B. Violin on the right. C. Violin on the left. 
D. Neither instrument produces any sound.

GRPO:
 <think>The video shows two musicians playing instruments. The musician on the left is holding a violin and appears to be
preparing to play, while the musician on the right is already playing the violin. Therefore, the violin on the right plays first.
</think><answer> A</answer>'

Question:
 Which law is behind the above phenomenon? A. Lenz’s Law. B. Kepler’s Third Law. C. Newton’s First Law. D. Hooke’s Law. E.
Coulomb's Law 

GRPO:
 <think>Let me think about this for a moment. The image shows a magnet being used to lift a metal object, which is a classic
demonstration of magnetic force. The phenomenon in question is the interaction between the magnet and the metal object, ......
The phenomenon in the image is due to the magnetic force between the magnet and the metal object. The correct answer is
not listed in the options. However, the closest option that relates to the phenomenon is Option A, Lenz's Law, as it is related to
the induced current in a conductor when it is moved through a magnetic field. Let's verify. The correct answer is A, Lenz's Law.
</think><answer>A</answer>

Figure 1: Reasoning-Answer inconsistency of GRPO models. Red denotes correct answer or rea-
soning trace and orange denotes flawed answer or reasoning trace. The top one is an example of
Correct Reasoning but Wrong Answer, while the bottom one is an example of Wrong Reasoning but
Correct Answer.

Despite these advances, our experiments reveal a subtle yet significant issue when applying RL to
multi-choice image and video question-answering (QA) tasks. When we examine their reasoning
trace and final answers, we observe an increasing trend of reasoning-answer mismatch. Specifically,
of two undesirable states: either generating a correct and logical reasoning process but culminating
in an incorrect final answer (denoted as CR–WA), or producing a flawed and inconsistent reasoning
process that, by chance, leads to the correct answer (denoted as WR–CA). As illustrated in Fig.1,
the top and bottom examples show CR–WA and WR–CA, respectively. Specifically, when analyzing
Video-R1-7B’s inference results on MMVU, there are 18.4% and 2.5% samples that belong to CR–
WA and WR–CA, respectively. Specifically, in the CR–WA case, a negative advantage suppresses
otherwise sound reasoning tokens and implicitly favors shorter, hedged traces, drifting the policy
away from faithful step-by-step deduction. Conversely, in the WR–CA case, a positive advantage
reinforces spurious shortcuts—such as option-index priors, positional heuristics, or visual/textual
artifacts—that happened to yield the right letter, thereby increasing order sensitivity and brittle gen-
eralization. Together, these two modes amplify rationale–answer decoupling under outcome-only
rewards. This ”reasoning-answer inconsistency” suggests that the reward signal, which is based
solely on the correctness of the final answer, may be inadvertently encouraging the model to find
shortcuts or ”guess” the right answer, rather than fostering a robust and reliable reasoning process.
These behaviors undermine the trustworthiness and interpretability of the model, which are crucial
for real-world applications.

To address this challenge, we propose ACRE: Answer-Consistent Chain-of-Thought Reinforcement
Learning. Our method introduces a novel reward mechanism that explicitly promotes consistency
between the reasoning process and the final answer. We modify the GRPO algorithm by introducing
an auxiliary consistency check. During training, for a given multi-modal input and question, we
first generate a response that includes a CoT reasoning process and a final answer. Then, to test the
robustness of the generated reasoning, we shuffle the multiple-choice options and, using the original
reasoning process, ask the model to generate a new answer. A maximal reward rmax is given only if
the answers from both the original and the shuffled-option settings are consistent with each other and
match the ground truth. Otherwise, a lower reward is assigned. This second completion is solely for
generating a more reliable reward signal for the first, complete generation (reasoning and answer),
ensuring that the model is rewarded for producing a reasoning process that is not only correct but
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also robust to variations in the answer space. By doing so, ACRE encourages the MLLM to develop
a more grounded and reliable reasoning ability, resulting in more trustworthy and accurate responses
in multimodal QA tasks.

To summarize, our contributions are listed as follows: 1) We provide a comprehensive evaluation of
the reasoning-answer inconsistency phenomenon in Multi-modal Reasoning Large Language Mod-
els. 2) We curate a video-reasoning evaluation set on which GRPO-trained models are particularly
prone to inconsistency errors, to help the community investigate implicit biases. 3) We propose
ACRE, a reinforcement learning algorithm based on GRPO that encourages more trustworthy rea-
soning traces. Comprehensive experiments in video reasoning benchmarks and multi-modal math
reasoning benchmarks demonstrate our advantages over the GRPO baseline, surpassing 2.2% and
1.5% on average for video and math tasks, respectively. Even out-performing the models post-
trained on 28 × samples.

2 RELATED WORK

Reinforcement Learning for (Multi-modal) Large Language Models. Reinforcement Learn-
ing for (Multi-modal) Large Language Models has evolved from preference-based alignment (e.g.,
DPO (Rafailov et al., 2023), ORPO (Hong et al., 2024)) to verifiable or outcome-based rewards that
score answers with programmatic checks, unit tests, or reference solutions. DPO replaces Rein-
forcement Learning with Human Feedback (Bai et al., 2022; Ouyang et al., 2022) (RLHF)’s reward
model and PPO loop with a closed-form objective, while ORPO further simplifies preference opti-
mization without a reference model; both improve stability but still optimize preferences rather than
correctness. Recent work formalizes and scales RLVR, often implemented with Group Relative Pol-
icy Optimization (GRPO) (Shao et al., 2024), and analyzes its effective loss and training dynamics
for reasoning gains. However, pure outcome-based methods may bring unexpected behavior. Exist-
ing literature has preliminarily demonstrated the mismatches between the reasoning traces and final
answers. (Lanham et al., 2023; Turpin et al., 2023)

Multi-modal Reasoning Large Language Models. Inspired by advances in LLM reasoning, many
studies have sought to enhance the reasoning capabilities of MLLMs. A primary strategy involves
leveraging Chain-of-Thought (CoT) prompting to elicit step-by-step reasoning from the model (Wei
et al., 2022). To further instill this capability, researchers have constructed specialized Supervised
Fine-Tuning (SFT) datasets that contain detailed, step-level reasoning annotations. A prominent
example is the ScienceQA dataset, which provides rich, explanatory rationales for multi-modal sci-
entific questions (Lu et al., 2022). However, the CoT generated by these methods often follows a
rigid, unidirectional inference path. This process frequently lacks the natural cognitive mechanisms
inherent to human problem-solving, such as questioning, reflection, and inspection, which limits its
effectiveness in complex, multi-step reasoning tasks. For instance, when faced with an ambiguous
visual cue, the model cannot pause to ask a clarifying question or re-evaluate its initial interpretation.
To address this gap, recent work has focused on developing more dynamic and iterative reasoning
frameworks. These advanced models aim to emulate human-like cognition by incorporating self-
correction and active exploration. For example, some frameworks enable MLLMs to critique and
refine their own outputs in a feedback loop, thereby improving the accuracy and logical coherence of
their reasoning paths (Madaan et al., 2023). Other approaches have endowed MLLMs with tool-use
capabilities, allowing them to proactively seek external information or employ specialized models to
verify intermediate steps, which is crucial for tasks requiring factual grounding and inspection (Lu
et al., 2023b). By moving beyond static CoT, these methods aim to foster a more robust and flexible
reasoning process, better equipping MLLMs to tackle the nuances of complex, real-world prob-
lems. Our work sits at the intersection of these lines: rather than relying solely on SFT-style CoT
supervision or outcome-only RL, we shape the RL objective with an explicit consistency signal

3 REASONING-ANSWER INCONSISTENCY IN MULTI-MODAL LARGE
LANGUAGE MODELS

In this section, we dive into the Reasoning-Answer Inconsistency in the post-training of Multi-modal
Large Language Models. Specifically, we are interested in Multi-modal Reasoning Large Language
Models. That is, the reasoning MLLM, termed as Mr. When given a multi-modal input x and a text
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query q, the model first generates a reasoning trace othink enclosed within <think> and </think>
tags and then a final answer oans enclosed within <answer> and </answer> tags.

A large amount of multimodal data is organized in the form of multiple-choice QA, not only be-
cause of its evaluation reliability and low labeling cost, but also because of its training convenience.
It naturally supports binary rewards without external graders, making it ideal for GRPO-style post-
training. However, models may unexpectedly learn option priors or lexical cues during reinforce-
ment learning with pure outcome-based reward, leading to the reasoning-answer inconsistency. To
systematically evaluate the phenomenon, we designed two tests, namely CoT Answer Consistency
Test and Option Shuffle Consistency Test.

3.1 COT ANSWER CONSISTENCY TEST

Ideally, a reasoning MLLM should produce a final answer that is logically consistent with its chain-
of-thought (CoT). Otherwise, the reported reasoning cannot be deemed reliable. We empirically
observe that, after GRPO training, MLLMs more frequently generate final answers that contradict
their own CoT. To quantify this effect, we adopt the LLM-as-Judge protocol. Let fjudge denote the
judge model and Pjudge its evaluation prompt. For each example d ∈ Dtest, the model outputs a
reasoning trace othink and a final answer oans. The CoT and Answer Consistency Rate (CACR) is
defined as

CACR =
1

|Dtest|
∑

d∈Dtest

1
[
fjudge

(
Pjudge, o

(d)
think, o

(d)
ans

)
= “consistent”

]
, (1)

where 1[·] is the indicator function that returns 1 if the judge deems the final answer consistent
with the provided reasoning trace, and 0 otherwise. Please refer to the Appendix for the exact
specification of Pjudge.

3.2 OPTION SHUFFLING CONSISTENCY TEST

A strong reasoning MLLM should yield the same final answer when the user query is rephrased.
Specifically, it should stay the same when the options are shuffled, provided that the multimodal
evidence and the model’s generated reasoning trace are held fixed. Let S(·) be the option shuffling
function applied to the query. The Option Shuffling Consistency Rate (OSCR) over a test set Dtest is
defined as

OSCR =
1

|Dtest|
∑

d∈Dtest

1
[
Mr

(
x(d), q(d), o

(d)
think

)
= Mr

(
x(d), S(q(d)), o(d)think

)]
, (2)

where 1[·] is the indicator function that returns 1 if the two answers are identical and 0 otherwise.
Higher values indicate better option shuffling consistency.

3.3 RESULTS ANALYSIS

We follow the same inference configuration as in Qwen2.5-VL, which is detailed in Sec.5. Table 1
illustrates the CACR on math reasoning benchmark, i.e., MathVista (Lu et al., 2023a), and the
video reasoning benchmark, i.e., MMVU (Zhao et al., 2025). Table 2 demonstrates the OSCR on
three video reasoning benchmarks. Since we use LLM-as-judge in computing CACR, to make the
results more reliable, we additionally include human expert evaluations on a 50-sample subset of
MathVista and MMVU, respectively. The results are denoted by MathVista-Human and MMVU-
human, respectively.

CACR patterns across training regimes. We observe that CoT-SFT strengthens CACR while
GRPO erodes CACR. Moving from instruction-only to CoT-SFT yields large CACR gains (e.g.,
MathVista: 77.2 → 85.2, MMVU: 78.5 → 82.3), suggesting that supervised exposure to step-by-
step traces teaches models to use their CoT as faithful rationales. While directly applying the COT
prompts on Instruct models may not generate a reliable reasoning trace. GRPO lowers CACR rel-
ative to CoT-SFT across all columns (e.g., MathVista: 85.2→ 81.3, MMVU: 82.3→ 79.7), con-
firming that optimizing for correctness without explicitly coupling the rationale can decouple the
decision head from the produced trace.
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Table 1: Results of CoT and Answer Consistency Rate (CACR) (%)

Model MathVista MathVista-Human MMVU MMVU-Human
Qwen2.5-VL-7B-Instruct 77.2 78.0 78.5 74.0
Qwen2.5-VL-7B-CoT-SFT 85.2 88.0 82.3 86.0
Qwen2.5-VL-7B-CoT-SFT-GRPO 81.3 82.0 79.7 82.0
ACRE 87.5 90.0 82.8 86.0

Table 2: Results of Option Shuffling Consistency Rate (OSCR) (%)

Model TempCompass MMVU VideoMME
Qwen2.5-VL-7B-Instruct 88.8 97.0 86.4
Qwen2.5-VL-7B-CoT-SFT 5.9 31.4 12.5
Qwen2.5-VL-7B-CoT-SFT-GRPO 10.4 49.8 25.6
ACRE 17.3 74.6 29.6

OSCR patterns across training regimes. Table 2 shows that the Qwen2.5-VL-7B-Instruct base-
line attains the highest option–order robustness, achieving 88.8, 97.0, and 86.4 on TempCompass,
MMVU, and VideoMME, respectively. This indicates that its final choices are tied to option con-
tent rather than index tokens. However, CoT-SFT collapses OSCR dramatically. For example,
88.81→ 5.89 on TempCompass. This reveals a strong index-binding effect: supervised traces of-
ten conclude with patterns like “thus the answer is (C)”, which become brittle under permutation.
Vanilla GRPO partially recovers robustness. For example, 12.5→ 25.6 on VideoMME, suggesting
some reduction of index reliance but leaving substantial order sensitivity. Both results indicate that
models after post-training somehow lose the power to retrieve the correct answer, given the correct
reasoning trace.

4 ANSWER-CONSISTENT REINFORCEMENT LEARNING (ACRE)

While GRPO (Guo et al., 2025; Shao et al., 2024) effectively improves outcome accuracy, we ob-
serve that it can decouple the reasoning trace from the final answer in multimodal multiple-choice
settings, leading to inconsistent behavior, as detailed in Sec.3. Granting a positive reward to WR-
CA case and a negative reward to CR-WA is not desired. To address this, we propose Answer-
Consistent REinforcement Learning (ACRE), a GRPO-compatible reward shaping scheme that
explicitly aligns the generated chain-of-thought with the final answer (Figure 2).

Consistency check via Query Option Shuffling. Given multimodal input x (e.g., videos or im-
ages), a multiple-choice question q with option set O, and ground-truth answer y ∈ O, the policy
first produces a reasoning trace t and an initial answer a:

t, a ∼ πθ(· | x, q).
We then apply a query option shuffling function R(·) to obtain a rephrased question S(q) while
holding both x and t fixed, and re-prompt the model to produce a second answer ã:

ã ∼ πθ(· | x,S(q), t).
Define the agreement indicator agree = 1[a = ã] and correctness indicators corr = 1[a = y],
c̃orr = 1[ã = y].

Consistency-verification reward. Let ri denote the base reward for trajectory i that includes out-
come correctness and format constraints following DeepSeek-R1 (Guo et al., 2025). ACRE adds a
consistency term rc defined as

rc =


α1, if agree = 1 and corr = c̃orr = 1,

α2, if agree = 0 and
(
corr + c̃orr = 1

)
,

α3, if agree = 1 and corr = c̃orr = 0,

0, otherwise.

(3)
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Multi-modal Input

Text Query
Options: 
A. Content A
B. Content B
C. Content C

MLLM

Reasoning Trace Final Answer

First generation

Second generation

Final Answer

Consistency
Check

Reasoning Trace

Aux. Text Query
Options:
A. Content C
B. Content A
C. Content B

Copy

Generate

Generate

Figure 2: Overview of our proposed ACRE. Given a multi-modal input, the MLLM first generates
a reasoning trace and a final answer (top path). We then feed the same reasoning trace back to the
MLLM along with an auxiliary query where the answer options are shuffled (bottom path). The
consistency between the final answers from both paths serves as a reward signal for reinforcement
learning, encouraging the model to generate reasoning that is logically sound and independent of
option positioning.

where α1, α2, α3 control the strength of positive reinforcement for answer-consistent reasoning and
the penalty for misalignment, respectively. The final per-trajectory reward is

Ri = ri + rc. (4)

This shaping grants a high bonus only when the reasoning trace yields stable and correct answers
under query rephrasing, while discouraging reliance on spurious patterns such as option-order biases
or reasoning–answer drift.

Group-normalized advantages and policy update. As in GRPO, we draw G trajectories {oi}Gi=1
per prompt, compute rewards {Ri} using equation 4, and normalize within the group:

Ai =
Ri −mean({Rj}Gj=1)

std({Rj}Gj=1) + ε
. (5)

The training objective augments GRPO with the consistency-shaped advantages:

JACRE(θ) = Ex,q,{oi}

[
1

G

G∑
i=1

(
min

( πθ(oi | x, q)
πθold(oi | x, q)

Ai, clip
( πθ(oi | x, q)
πθold(oi | x, q)

, 1− ϵ, 1 + ϵ
)
Ai

)
− β DKL(πθ ∥πref)

)]
,

(6)

where ϵ is the PPO clipping parameter, β scales the KL regularization to the reference model πref ,
and ε is a small constant for numerical stability.

5 EXPERIMENTS

5.1 SETUP

Dataset Construction. For the RL training dataset, we mix the Video-QA and Image-QA datasets.
Specifically, we use Open-R1-Video-4.6k (Wang & Peng, 2025) for Video-QA. For Image-QA,
we sample a 4.6k subset from the multiple-choice image QA data, including Math, Chart, OCR,
Knowledge, and Spatial from Video-R1-260k (Feng et al., 2025). Together, we form a dataset of
size 9.2k, which is named ACRE-9.2k.

Implementation details.We adopt Qwen2.5-VL-7B (Bai et al., 2025) as the base MLLMs. Similar
to DeepSeekR1, the training process is conducted in two stages: SFT cold start followed by RL
training. We directly use the SFT model provided by Video-R1(Feng et al., 2025) due to computa-
tional resource constraints. It is trained on the Video-R1-CoT-165k dataset, which contains chain-
of-thought annotated samples derived from both image and video inputs. We denote this model

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 3: Detailed Results Comparison

Model Train-data Video Reasoning Math
VideoMME MMVU TempCompass Avg. MathVerse MathVista Avg.

Qwen2.5-VL-7B-Instruct - 0.503 0.598 0.708 0.603 0.421 0.685 0.553
Qwen2.5-VL-7B-CoT-SFT ACRE-9.2k 0.528 0.613 0.692 0.611 0.456 0.680 0.568
Qwen2.5-VL-7B-CoT-SFT-GRPO ACRE-9.2k 0.542 0.608 0.695 0.615 0.461 0.704 0.583

Video-R1-7B Video-R1-260k 0.558 0.629 0.713 0.633 0.477 0.687 0.582
ACRE ACRE-9.2k 0.545 0.656 0.710 0.637 0.481 0.715 0.598

as Qwen2.5-VL-7B-CoT-SFT. In the second stage, we further train the Qwen2.5-VL-7B-CoT-SFT
model on ACRE-9.2k using GRPO, the resulting model is named as Qwen2.5-VL-7B-CoT-SFT-
GRPO. We also adopt the length-based reward to regulate the length of the model’s output, intro-
duced in Video-R1. Specifically, this mechanism aims to strike a balance between encouraging
deeper reasoning and preventing overthinking. For each reasoning path oi, if the predicted answer
is correct and the response length falls within a predefined interval [lmin, lmax], the model receives
an additional reward rl = ω. Formally:

Ri =

{
Ri + ω, if oi is correct and lmin ≤ len(oi) ≤ lmax

Ri, otherwise
(7)

The hyper-parameter is set to be ω = 0.2, lmin = 320 and lmax = 512.

For the CoT Answer Consistency Test, we adopt GPT-4o-mini as fjudge. For the Option Shuffling
Consistency Test, we implement the query rephrase function as option shuffling function S. That is,
for a multiple-choice query q, let q = qt + qo, where qt is the text query and qo is the option set.
Then S(q) = This query rephrase function can be easily replaced with other functions if necessary.

Evaluation Datasets We evaluate our model on three video benchmarks and two multi-modal math
benchmarks: VideoMME (Fu et al., 2025), MMVU (Zhao et al., 2025), TempCompass (Liu et al.,
2024), MathVerse (Zhang et al., 2024), and MathVista (Lu et al., 2023a). For MathVerse and Math-
Vista, evaluations are performed on their corresponding multiple-choice QA subset. For all evalu-
ations, we follow the decoding configuration used in the official Qwen2.5-VL demo, with top p =
0.001 and temperature = 0.01.

5.2 MAIN RESULTS

Overall Performance. As shown in Table 3, our experimental results across five benchmarks val-
idate the effectiveness and data efficiency of ACRE for both video reasoning and multimodal math
reasoning. Starting from the same CoT-SFT initialization, replacing vanilla GRPO with ACRE
yields a +2.2 point improvement on the Video Reasoning Avg. (0.615 → 0.637) and a +1.5 point
improvement on the Math Avg. (0.583 → 0.598). These averaged gains indicate that enforcing
reasoning-answer agreement during training improves not only outcome accuracy but also the ro-
bustness of the decision stage after a chain-of-thought is produced. We further compare ACRE with
the GRPO baseline to assess generalization ability. Concretely, both methods are RL-finetuned only
on video QA data, i.e., OpenR1-Video-4.6k, with no math QA exposure during the RL stage. We
then evaluate the performance on two math reasoning benchmarks. Results in Table 4 show that
ACRE surpasses GRPO on both MathVista (68.8 vs. 67.3) and MathVerse (45.7 vs. 44.5), yielding
absolute gains of +1.5 and +1.2 points, respectively. Compared with Video-R1-7B, which is trained
on a much larger dataset, the performance is still competitive. ( +0.4 on Video Reasoning and +1.6
on Math Reasoning)

ACRE outperform GRPO in terms of CACR and OSCR. As shown in Table.1 and Table.2,
ACRE surpasses CoT-SFT baseline, achieving a much higher consistency between CoT and final
answer. MathVista: 87.5 ( +2.3 vs. CoT-SFT, +6.2 vs. GRPO, +10.3 vs. Instruct); MMVU: 82.8
( +0.5 vs. CoT-SFT / +3.1 vs. GRPO / +4.3 vs. Instruct). indicating little headroom under this cleaner
split. Overall, ACRE attains the strongest or tied-strongest SCRs while retaining RL’s accuracy
benefits (Sec. 3).

Attention Visualization Fig. 3 contrasts how attention is allocated across token groups for ACRE
(top) and GRPO (bottom) when generating the final answer token, for a given Video QA whose
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(a) Attention Visualization of ACRE

(b) Attention Visualization of GRPO

Figure 3: Attention Visualization Comparison between GRPO and ACRE
Table 4: Generalization Performance (%) and Training GPU hours

Model Train data MathVista MathVerse Training GPU hours
Qwen2.5-VL-CoT-SFT-GRPO OpenR1-Video-4.6k 0.673 0.445 4.5
ACRE OpenR1-Video-4.6k 0.688 0.457 5.6

answer is A. For the output reasoning tokens, we treat n = 50 tokens as a group and compute the
average attention. Under GRPO, a dominant share of attention collapses onto the system prompt to-
kens (leftmost purple bar, ≈0.02), while content-bearing regions—the question prompt, text query,
and especially the options—receive comparatively weak weights. Unfortunately, although option
A receives the most average attention across option sets, the GRPO model predicts it wrongly as
C. This pattern is symptomatic of index/format shortcuts: the model keys on instruction or posi-
tional priors and then commits early to an option index, which explains its low robustness to option
shuffling. In contrast, ACRE redistributes attention away from the system prompt and toward the
options (multiple orange bars), and the output tokens (red), with a smoother spread across option
spans and a pronounced rise near the final output groups. The resulting profile indicates that the
model is attending to the content of alternatives while forming the final choice, rather than relying
on spurious index cues—a behavior consistent with our higher CACR and improved OSCR.

5.3 ABLATIONS

Training Time Since we need to forward twice to compute the consistency reward, this inevitably
brings extra computational overhead. In Table 4, we compare the total training GPU hours of GRPO
and ACRE on OpenR1-Video-4.6k training data. The training GPU hours show a slight increase
from 4.5 to 5.6 (+24%). This is considered acceptable since in the second forward pass, we only
need to generate the final answer token, and we do not re-decode the full CoT. Besides, it can be
further optimized since. In our current implementation, we didn’t reuse the KV cache in the first
pass.
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Question:
Assume that 2.24 liters of gas fully participates in the reaction shown in the video under the standard temperature and pressure
condition, how many grams of precipitate are produced approximately? A. 10.0, B. 5.0, C. 12.0, D. 15.0, E. 20.0

ACRE:
Let me think about this problem carefully. The question involves a chemical reaction where 2.24 liters of gas fully participate
under standard temperature and pressure (STP). The goal is to determine the amount of precipitate produced, which requires
knowing the stoichiometry of the reaction and the molar mass of the precipitate. First, let's consider the volume of gas ......Now,
let's assume the reaction. is a typical acid-base reaction where the gas is carbon dioxide...Next, we need to find the molar mass
of CaCO3......So, the mass of 0.1 moles of CaCO3 is 0.1 moles * 100.09 g/mol = 10.01 g. Rounding to the nearest whole
number, the mass of the precipitate is approximately 10.0 grams. Now, let's look at the options. The closest option to 10.0
grams is A. Oh, I see. The correct answer is A.

GRPO:
Let me think about this problem carefully. The video shows a person holding a flask with a liquid inside, but there's no direct
indication of a chemical reaction or the production of a precipitate. However, the question seems to be hypothetical and based
on a chemical reaction involving a gas. First, let's break down the information given......Now, let's consider the possible
reaction...The molar mass of Ca(OH)2 is approximately 74 g/mol. If 0.1 moles of Ca(OH)2 are produced, the mas of the
precipitate would be 0.1 moles * 74g/mol = 7.4 g. However, the options provided are 5.0, 10.0, 12.0, 15.0, and 20.0. Given the
options, the closest value to 7.4g is 10.0g. Oh, I see. The closest option to the calculated mass is 10.0 grams. Let's verify: 10.0
grams is indeed the closest value among the given options. Therefore, the correct answer is B.

Figure 4: Visualizations of GRPO and ACRE

Hyperparameters We ablate the consistency-shaping coefficients α1, α2, α3 (Sec. 4). Fixing
α1 = 1, we first vary α2 ∈ {1.0, 0.9, 0.8, 0.7} with α3 = 0.3. The corresponding perfor-
mance on MMVU are 0.645, 0.656, 0.637, 0.638. This suggests that cases where the model’s
two-pass answers disagree but exactly one is correct should receive a reward close to α1 yet strictly
smaller: α2 = 0.9 strikes the best balance, whereas over-rewarding (α2 = 1.0) or under-rewarding
(α2 ≤ 0.8) both degrade performance. Next, fixing α2 = 0.9, we vary α3 ∈ {0.0, 0.3, 0.5},
obtaining 0.643, 0.656, 0.629. A moderate positive α3 = 0.3 (reward for agreement when both
answers are incorrect) helps stabilize learning—likely by encouraging internally consistent traces
while other signals steer correctness—whereas either no shaping (α3 = 0.0) or too much shaping
(α3 = 0.5) harms results. Overall, the best setting is (α1, α2, α3) = (1, 0.9, 0.3), indicating that
mild encouragement of agreement and near-top reward for “one-correct” disagreement yield the
strongest trade-off between robustness and accuracy.

6 CONCLUSION AND FUTURE WORK

Conclusion This paper studied the reasoning–answer inconsistency that emerges when outcome-
only reinforcement learning is applied to multimodal, multiple-choice reasoning. We first diag-
nosed the problem using two complementary tests—the CoT and Answer Consistency Rate (CACR)
and the Option Shuffling Consistency Rate (OSCR)—and showed that vanilla GRPO improves an-
swer accuracy yet erodes consistency between the generated chain-of-thought (CoT) and the final
answer. To address this, we introduced Answer-Consistent REinforcement Learning (ACRE), a
GRPO-compatible reward shaping scheme that enforces shuffle-invariant agreement conditioned on
correctness. Concretely, ACRE reuses the model’s own reasoning trace while perturbing option or-
der, and it allocates reward according to a four-way consistency signal. Across five benchmarks
spanning video and multimodal math reasoning, ACRE yields consistent gains over GRPO (e.g.,
+2.2 points on the Video Reasoning Avg. and +1.5 points on the Math Reasoning Avg.) while restor-
ing or surpassing CoT alignment as reflected by CACR and improving robustness as reflected by
OSCR. These results indicate that coupling outcome optimization with explicit consistency verifica-
tion produces models that both reason more faithfully and decide more robustly.

Future Work We presently implement query rephrasing via option shuffling, which explicitly pro-
motes robustness and consistency in the model’s reasoning. The framework is agnostic to the specific
perturbation and can readily incorporate alternative rephrasing strategies—for example, prompting
an LLM to produce semantically equivalent paraphrases in varied forms.
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A APPENDIX

A.1 LLM USAGE STATEMENT

We clarify that the use of LLMs in this study is restricted to writing assistance, specifically for gram-
mar correction and enhancing readability. No LLM was involved in the research design, experimen-
tal execution, or data analysis. The authors take full responsibility for the content of the manuscript,
including any text generated or polished by the LLM. We have ensured that the LLM-generated text
adheres to ethical guidelines and does not contribute to plagiarism or scientific misconduct.

A.2 PROMPTS USED IN SEC.3

The prompts are included in the supplementary.zip file as the judge prompt.md

A.3 CODES

Codes are provided in the supplementary.zip file as ACRE code.zip
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