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ABSTRACT

The objective of machine unlearning (MU) is to eliminate previously learned data
from a model. However, it is challenging to strike a balance between computation
cost and performance when using existing MU techniques. Taking inspiration
from the influence of label smoothing on model confidence, we consider MU as
decreasing confidence in the forgotten data and increasing it in the remaining.
This observation suggests a simple gradient-based MU approach that uses an
inverse process of label smoothing. This work introduces UGradSL, a simple,
plug-and-play MU approach that uses smoothed labels. We provide theoretical
analyses demonstrating why properly introducing label smoothing improves MU
performance. We conducted extensive experiments on six datasets of various sizes
and different modalities, demonstrating the effectiveness and robustness of our
proposed method. The consistent improvement in MU performance is only at a
marginal cost of additional computations. For instance, UGradSL improves over
the gradient ascent MU baseline by 66% unlearning accuracy without sacrificing
unlearning efficiency. This work also introduces a more practical MU paradigm,
known as group-forgetting, which involves forgetting a subgroup of a superclass.

1 INTRODUCTION

Building a reliable ML model has become an important topic in this community. Machine unlearning
(MU) is a task requiring to remove the learned data points from the model. The concept and the
technology of MU enable researchers to delete sensitive or improper data in the training set to improve
fairness, robustness, and privacy and get a better ML model for product usage (Chen et al., 2021;
Sekhari et al., 2021). Retraining from scratch (Retrain) is a straightforward method when we want to
remove the data from the model; yet it incurs prohibitive computation costs for large models due to
computing resource constraints. Therefore, an efficient and effective MU method is desired.

Existing MU approaches can be generally categorized into two main categories. The first category
is exact unlearning, which is based on retraining techniques (Bourtoule et al., 2021; Kim & Woo,
2022) and/or incorporates the principles of differential privacy (DP) (Dwork et al., 2006; Ginart
et al., 2019; Guo et al., 2019; Neel et al., 2021; Ullah et al., 2021; Sekhari et al., 2021). Exact
unlearning methods offer strong theoretical guarantees but are computationally intensive like Retrain.
The second category is approximate unlearning (Koh & Liang, 2017; Golatkar et al., 2020; Warnecke
et al., 2021; Graves et al., 2021; Thudi et al., 2021; Izzo et al., 2021; Becker & Liebig, 2022; Jia et al.,
2023), which focuses on practical effectiveness and computational efficiency rather than providing
provable guarantees. Approximate unlearning methods aim to achieve a balance between unlearning
efficacy and computational complexity, making them more suitable for real-world applications.

We desire an approach that enjoys both high performance and fast speed. Since MU can be viewed
as the inverse process of ML, we are motivated to think it would be a natural and efficient way to
develop an unlearning process that imitates the reverse of gradient descent. Indeed, gradient ascent
(GA) Thudi et al. (2021) is one of the MU methods but unfortunately, it does not fully achieve the
potential of this idea. One of the primary reasons is that once the model completes training, the
gradient of well-memorized data that was learned during the process is diminishing (close to 0 loss)
and therefore the effect of GA is rather limited.

Our approach is inspired by the celebrated idea of label smoothing Szegedy et al. (2016). In the
forward problem (gradient descent), the smoothed label proves to be able to improve the model’s
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Figure 1: Summary of the proposed method and baselines (SVHN, random forgetting across all
classes) in terms of the performance in forgetting dataset Df (membership inference attack), the
testing dataset Dr (testing accuracy) and speed. The upper left corner indicates better performance
in both speed and performance. The black circle represents retrain while the circles in other colors
represent the other baselines. The stars represents our methods, UGradSL (purple, ★) and UGradSL+
(red, ★). Our methods are faster in speed and better in MU performance with little drop in the
original accuracy.

generalization power. In our setting, we show that incorporating the smoothed label in the unlearning
process encourages the model to output answers with high randomness. Specifically, we show
that Gradient Ascent with a “negative" label smoothing process can quickly reduce the model’s
confidence in the forgetting dataset, which is exactly the goal of MU. We name our approach
UGradSL, unlearning using gradient-based smoothed labels.

One of the main highlights of our approach is that it is a plug-and-play method that can improve the
gradient-based MU performance consistently and does not hurt the performance of the remaining
dataset and the testing dataset in a gradient-mixed way. The framework of our method is given in
Section 4.3. At the same time, we provide a theoretical analysis of the benefits of our approach for
the MU task. The core contributions of this paper summarize as follows:

● We propose a lightweight tool to improve MU by joining the label smoothing and gradient ascent.
● We theoretically analyze the role of gradient ascent in MU and how negative label smoothing is

able to boost the MU performance.
● Extensive experiments in six datasets in different modalities and several unlearning diagrams show

the robustness and generalization of our method.
● We propose a more realistic unlearning paradigm called group forgetting, which can be seen as a

special case of random forgetting. We conduct experiments in both benchmark and real datasets.

2 RELATED WORK

Machine Unlearning MU was developed to address information leakage concerns related to private
data after the completion of model training (Cao & Yang, 2015; Bourtoule et al., 2021; Nguyen
et al., 2022), gained prominence with the advent of privacy-focused legislation (Hoofnagle et al.,
2019; Pardau, 2018). One direct unlearning method involves retraining the model from scratch
after removing the forgetting data from the original training set. It is computationally inefficient,
prompting researchers to focus on developing approximate but much faster unlearning techniques
(Becker & Liebig, 2022; Golatkar et al., 2020; Warnecke et al., 2021; Graves et al., 2021; Thudi
et al., 2021; Izzo et al., 2021; Jia et al., 2023). Beyond unlearning methods, other research efforts
aim to create probabilistic unlearning concepts (Ginart et al., 2019; Guo et al., 2019; Neel et al.,
2021; Ullah et al., 2021; Sekhari et al., 2021) and facilitate unlearning with provable error guarantees,
particularly in the context of differential privacy (DP) (Dwork et al., 2006; Ji et al., 2014; Hall et al.,
2012). However, it typically necessitates stringent model and algorithmic assumptions, potentially
compromising effectiveness against practical adversaries, such as membership inference attacks
(Graves et al., 2021; Thudi et al., 2021). Additionally, the interest in MU has expanded to encompass

2



Under review as a conference paper at ICLR 2024

various learning tasks and paradigms (Wang et al., 2022b; Liu et al., 2022b; Chen et al., 2022; Chien
et al., 2022; Marchant et al., 2022; Di et al., 2022). These diverse applications demonstrate the
growing importance of MU techniques in safeguarding privacy.

Label Smoothing Label smoothing (LS) or positive label smoothing (PLS) (Szegedy et al., 2016)
is a commonly used regularization method to improve the model performance. Standard training with
one-hot labels will lead to overfitting easily. Empirical studies have shown the effectiveness of LS
in noisy label (Szegedy et al., 2016; Pereyra et al., 2017; Vaswani et al., 2017; Chorowski & Jaitly,
2016). In addition, LS shows its capability to reduce overfitting, improve generalization, etc. LS can
also improve the model calibration (Müller et al., 2019). However, most of the work about LS is PLS.
(Wei et al., 2021) first proposes the concept of negative label smoothing and shows there is a wider
feasible domain for the smoothing rate when the rate is negative, expanding the usage of LS.

Influence Function Influence function is a classic statistical method to track the impact of one
training sample. (Koh & Liang, 2017) uses a second-order optimization approximation to evaluate
the impact of the training sample. In addition to the single training sample, it can also be used to
identify the importance of the training groups (Basu et al., 2020; Koh et al., 2019). Influence function
is widely used in many machine-learning tasks. such as data bias solution (Brunet et al., 2019; Kong
et al., 2021), fairness (Sattigeri et al., 2022; Wang et al., 2022a), security (Liu et al., 2022a), transfer
learning (Jain et al., 2022), out-of-distribution generalization (Ye et al., 2021), etc. The approach also
plays an important role as the algorithm backbone in the machine unlearning tasks (Jia et al., 2023;
Warnecke et al., 2021; Izzo et al., 2021).

3 PROBLEM FORMULATION

Machine Unlearning Consider a K-class classification problem on the training data distribution
Dtr = (X × Y), where X and Y are feature and label space, respectively. Due to some privacy
regulations, there exists a forgetting data distribution Df that the model needs to unlearn. The MU
task is to unlearn the knowledge that the model learned from the forgetting data distribution Df .
Denote by Dr ∶= Dtr/Df the retain data distribution and Θr the distribution of models learned on the
retain distribution Dr. Denote byM a learning mechanism that unlearns Df from the model that
learned Dtr. Following (Bourtoule et al., 2021), we define the optimal solution, i.e., exact MU, as
follows.

Definition 1 (Exact MU) The learning mechanismM achieves exact machine unlearning if ΘM =
Θr, where ΘM is the distribution of models learned using mechanismM.

Due to the iterative training and the sensitivity to the hyper-parameters, the current deep learning
methods cannot be defined as the exact MU. The MU performance of retrain using iterative training
is sensitive to different hyper-parameters and the distribution of the prediction on Df is not random
enough as given in Section 5, showing that retrain is effectively an approximation of exact MU.
Ideally and intuitively, the exact MU should behave as the model does not access Df at all so that the
prediction on Df should be as random as possible.

Label Smoothing In a K-class classification task, let yi denote the one-hot encoded vector form
of yi ∈ Y . Similar to Wei et al. (2021), we unify positive label smoothing (LS) and negative
label smoothing (NLS) into generalized label smoothing (GLS). The random variable of smoothed
label yGLS,α

i with smooth rate α ∈ (−∞,1] is yGLS,α
i = (1 − α) ⋅ yi +

α
K
⋅ 1 = [ α

K
,⋯, α

K
, (1 +

1−K
K

α), α
K
,⋯, α

K
], where (1 + 1−K

K
α) is the yith element in the encoded label vector. When α < 0,

GLS becomes NLS.

Basics of Influence Function Given a dataset D = {zi ∶ (xi, yi)}
n
i=1 and a function h parameterized

by θ which maps from the input feature space X to the output space Y . The standard empirical risk
minimization writes as:

θ∗ = argmin
θ

1

n
∑
z∈D

ℓ (hθ, z) . (1)

To find the impact of a training point ẑ, we up-weight its weight by an infinitesimal amount ϵ. The
new model parameter θϵ

{ẑ} can be obtained from θϵ
{z} = argminθ

1
n ∑z∈D ℓ (hθ, z) + ϵ ⋅ ℓ (hθ, ẑ) .
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When ϵ = − 1
n

, it is indicating removing ẑ. According to (Koh & Liang, 2017), θϵ
{ẑ} can be approxi-

mated by using the first-order Taylor series expansion as

θϵ
{ẑ} ≈ θ

∗
− ϵ ⋅H−1θ∗ ⋅ ∇θℓ (hθ∗ , ẑ) , (2)

where Hθ∗ is the Hessian with respect to (w.r.t.) θ∗. The change of θ due to changing the weight can
be given using the influence function I(ẑ) as

∆θ = θϵ
{ẑ} − θ

∗
= I(ẑ) =

dθϵ
{ẑ}
dϵ
∣
ϵ=0
= −H−1θ∗ ⋅ ∇θℓ (hθ∗ , ẑ) . (3)

4 NEGATIVE LABEL SMOOTHING ENABLES FAST AND EFFECTIVE
UNLEARNING

This section sets up the analysis and shows that properly performing negative label smoothing enables
fast and effective unlearning. The key ingredients of our approach are gradient ascent (GA) and label
smoothing (LS). We start with understanding how GA helps with unlearning and then move on to
show the power of LS. At the end of the section, we formally present our algorithm.

4.1 GRADIENT ASCENT CAN HELP GRADIENT-BASED MACHINE UNLEARNING

We discuss three sets of model parameters in the MU problem: 1) θ∗tr, the optimal parameters trained
from Dtr ∼ Dtr , 2) θ∗r , the optimal parameters trained from Dr ∼ Dr, and 3) θ∗f , the optimal
parameters unlearned using gradient ascent (GA). Note θ∗r can be viewed as the exact MU model.
The definitions of θ∗tr and θ∗r are similar to Equation 1 and by using the influence function, θ∗f is

θ∗f = argmin
θ

Rf(θ) = argmin
θ
{Rtr(θ) + ϵ ∑

zf ∈Df

ℓ(hθ, z
f
)} (4)

where Rtr(θ) = ∑ztr∈Dtr
ℓ(hθ, z

tr) is the empirical risk on Dtr. ϵ is the weight of Df compared
with Dtr. The optimal parameter can be found when the gradient is 0:

∇θRf(θ
∗
f) = ∇θRtr(θ

∗
f) + ϵ ∑

zf ∈Df

∇θℓ(hθ∗
f
, zf) = 0. (5)

Expanding Equation 5 at θ = θ∗tr using the Taylor series, we have

θ∗f − θ
∗
tr ≈ −

⎡
⎢
⎢
⎢
⎢
⎣

∑
ztr∈Dtr

∇
2
θℓ(hθ∗tr

, ztr) + ϵ ∑
zf ∈Df

∇
2
θℓ(hθ∗tr

, zf)

⎤
⎥
⎥
⎥
⎥
⎦

−1
⎛

⎝
ϵ ∑
zf ∈Df

∇θℓ(hθ∗tr
, zf)
⎞

⎠
. (6)

Similarly, we can expand Rtr(θ
∗
tr) at θ = θ∗r and derive θ∗r − θ

∗
tr as

θ∗r − θ
∗
tr ≈
⎛

⎝
∑

ztr∈Dtr

∇
2
θℓ(hθ∗r , z

tr
)
⎞

⎠

−1
⎛

⎝
∑

ztr∈Dtr

∇θℓ(hθ∗r , z
tr
)
⎞

⎠
(7)

We ignore the average operation in the original definition of the influence function for computation
convenience because the size of Dtr or Df are fixed. For GA, let ϵ = −1 in Equation 6 and we have

θ∗r − θ
∗
f ≈ θ

∗
r − θ

∗
tr − (θ

∗
f − θ

∗
tr) = a⃗ − b⃗, where, (8)

a⃗ ∶= ( ∑
ztr∈Dtr

∇2
θℓ(hθ∗r

, ztr))−1 ∑
ztr∈Dtr

∇θℓ(hθ∗r
, ztr), b⃗ ∶= ( ∑

zr∈Dr

∇2
θℓ(hθ∗tr

, zr))−1 ∑
zf ∈Df

∇θℓ(hθ∗tr
, zf)

are the true learning phase and the backtracked unlearning phase, respectively. In the ideal case
where the inner products of first- (gradient) and second-order (Hessian) variables of a⃗ and b⃗ are the
same, GA achieves exact machine unlearning since θ∗r = θ

∗
f . Vector (−a⃗) is the Newton direction

of learning Df (forget data) starting from θ∗r . Vector b⃗ is the Newton direction of unlearning Df

starting from θ∗tr. However, in practice, due to the inconsistency between θ∗tr and θ∗r , ∥θ∗r − θ
∗
f∥

cannot be naively treated as 0, i.e., GA cannot always help MU. We summarize it in Theorem 1.
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Theorem 1 Given the approximation in Equation 8, GA achieve exact MU if and only if

∑
zf ∈Df

∇θℓ(hθ∗r
, zf) = −H(θ∗r ,θ

∗
tr) ⋅ ∑

zf ∈Df

∇θℓ(hθ∗tr
, zf),

where H(θ∗r ,θ
∗
tr) = (∑ztr∈Dtr

∇2
θℓ(hθ∗r , z

tr)) (∑zr∈Dr
∇2

θℓ(hθ∗tr
, zr))

−1
. Otherwise, there exist

θ∗r ,θ
∗
tr such that GA can not help MU, i.e., ∥θ∗r − θ

∗
f∥ > ∥θ

∗
r − θ

∗
tr∥.

4.2 NEGATIVE LABEL SMOOTHING IMPROVES MU

In practice, we cannot guarantee that GA always helps MU as shown in Theorem 1. To alleviate the
possible undesired effect of GA, we propose to use label smoothing as a plug-in module. Consider
the cross-entropy loss as an example. For GLS, the loss is calculated as

ℓ(hθ, z
GLS,α

) = (1 +
1 −K

K
α) ⋅ ℓ(hθ, (x, y)) +

α

K
∑

y′∈Y/y
ℓ(hθ, (x, y

′
)), (9)

where we use notations ℓ(hθ, (x, y)) ∶= ℓ(hθ, z) to specify the loss of an example z = (x, y) in the
dataset and ℓ(hθ, (x, y)) to denote the loss of an example when its label is replaced with y′.

Theorem 2 Given the approximation in Equation 8 and ⟨a⃗ − b⃗, c⃗ − b⃗⟩ ≤ 0, there exists an α < 0 such
that NLS helps GA, i.e.,

if ⟨a⃗ − b⃗, c⃗ − b⃗⟩ ≤ 0 ∶ ∃α < 0, ∥θ∗r − θ
∗
f,GLS∥ < ∥θ

∗
r − θ

∗
f∥, where,

● c⃗ ∶= 1
K−1 (∑zr∈Dr

∇2
θℓ(hθ∗tr

, zr))
−1
∑zf ∈Df

∇θ∑y′∈Y/yf ℓ(hθ∗tr
, (xf , y′)), capturing the gradi-

ent influence of the smoothed non-target label on the weight.

● (−a⃗) + b⃗ is the resultant of Newton direction of learning and unlearning.

● (−c⃗) + b⃗ is resultant of Newton direction of learning non-target labels and unlearning the target
label.

How the smoothed term works Intuitively, Term ∑y′∈Y/y ℓ(hθ, (x, y
′)) leads to a state where

the model makes wrong predictions on data in the forgetting dataset with equally low confidence
(Wei et al., 2021; Lukasik et al., 2020). If the exact MU state does not overfit any points in the
forgetting dataset and takes random guesses, then Term ∑y′∈Y/y ℓ(hθ, (x, y

′)) directs the model to
be closer to the exact MU. On the other hand, Term (−∑y′∈Y/y ℓ(hθ, (x, y

′)) leads to a state where
the model randomly picks one wrong prediction for each data point in the forgetting dataset with
high confidence (Cheng et al., 2021; Liu & Guo, 2020). If the exact MU state overfits the forgetting
dataset with wrong labels, then Term (−c⃗) directs the model to be closer to the exact MU. Denote
by θ∗f,GLS the optimal parameters unlearned using GA and NLS, and ⟨⋅, ⋅⟩ the inner product of two
vectors. We show the effect of NLS in Theorem 2.

Now we briefly discuss when the condition ⟨a⃗ − b⃗, c⃗ − b⃗⟩ ≤ 0 holds. c⃗ − b⃗ roughly speaking captures
the effects of the smoothing term in the unlearning process. If we assume that the exact MU model is
able to fully unlearn the example and outputs random predictions, vector c⃗ contributes a direction
that pushes the model closer to the exact MU state, therefore reducing ∣∣a⃗ − b⃗∣∣ - this will correspond
to a negative inner product between the two terms.

4.3 UGRADSL: A PLUG-AND-PLAY AND GRADIENT-MIXED MU METHOD

Compared with Retrain, Fine-Tune (FT) and GA are much more efficient as illustrated in the
Experiment part in Section 5 with comparable or better MU performance. FT and GA focus on
different perspectives of MU. FT is to transfer the knowledge of the model from Dtr to Dr using
gradient descent (GD) while GA is to remove the knowledge of Df from the model. As a plug-
and-play algorithm, our method is suitable for the gradient-based methods including FT and GA.
UGradSL is based on GA while UGradSL+ is on FT. Compared with UGradSL, UGradSL+ will lead
to a more comprehensive result but with a larger computation cost.

We present UGradSL and UGradSL+ in Algorithm 1. For UGradSL+, we first sample a batch Br =

{zri ∶ (x
r
i , y

r
i )}

nBr

i=1 from Dr (Line 3-4). Additionally, we sample a batch Bf = {z
f
i ∶ (x

f
i , y

f
i )}

nBf

i=1

5



Under review as a conference paper at ICLR 2024

from Df where nBr = nBf
(Line 5). It is very likely that Df will be iterated several times when

Dr is fully iterated once because nr > nf in general. Then we apply NLS on Bf leading to
BNLS,α

f = {zf,NLS,α
i ∶ (xf

i , y
f,NLS,α
i )}. We calculate the loss using a gradient-mixed method as:

L(hθ,B
NLS,α
f ,Br, p) = p ⋅ ∑

zr∈Br

ℓ(hθ, z
r
) − (1 − p) ⋅ ∑

zf,NLS,α∈BNLS,α
f

ℓ(hθ, z
f,NLS,α

), (10)

where p ∈ [0,1] is used to balance GD and GA and the minus sign stands for the GA. hθ is updated
according to L (Line 6). UGradSL is similar to UGradSL+ and the dataset used is given in bracket
in Algorithm 1. The difference between UGradSL and UGradSL+ is the convergence standard.
UGradSL is based on the convergence of Df while UGradSL+ is based on Dr. It should be noted
that the Hessian matrix in Theorem 1 is only used in the theoretical proof. In the practical calculation,
there is no need to calculate the Hessian matrix. Thus, our method does not incur substantially
more computation but improves the MU performance on a large scale. We present empirical evidence
in Section 5.

Algorithm 1 UGradSL+: A plug-and-play, efficient, gradient-based MU method using NLS. UGradSL
can be specified by imposing the dataset replacement in the bracket.

Require: A almost-converged model hθ̂tr
trained with Dtr. The retained dataset Dr. The forgetting

dataset Df . The smoothing rate α. Unlearning epochs E. GA ratio p.
Ensure: The unlearned model hθf

.
1: Set the current epoch index as tc ← 1
2: while tc < E do
3: while Dr(Df) is not fully iterated do
4: Sample a batch Br in Dr

5: Sample a batch Bf from Df where the size of Bf is the same as that of Br

6: Update the model using Br, Bf , p and α according to Equation 10
7: end while
8: tc ← tc + 1
9: end while

5 EXPERIMENTS AND RESULTS

5.1 EXPERIMENT SETUP

Dataset and Model Selection We validate our method using various datasets in different scales and
modality, including CIFAR-10 (Krizhevsky et al., 2009), CIFAR-100 (Krizhevsky et al., 2009), SVHN
(Netzer et al., 2011), CelebA (Liu et al., 2015), ImageNet (Deng et al., 2009) and 20 Newsgroup
(Caldas et al., 2018) datasets. For the vision and language dataset, we use ResNet-18 (He et al., 2016)
and Bert (Devlin et al., 2018) as the backbone model, respectively. Due to the page limit, the details
of the training parameter and the additional results of different models including VGG-16 and vision
transformer (ViT) are given in the Appendix.

Baseline Methods We compare UGradSL and UGradSL+ with a series of baseline methods,
including retrain, fine-tuning (FT) (Warnecke et al., 2021; Golatkar et al., 2020), gradient ascent (GA)
(Graves et al., 2021; Thudi et al., 2021), fisher forgetting (FF) (Becker & Liebig, 2022; Golatkar
et al., 2020), unlearning based on the influence function (IU) (Izzo et al., 2021; Koh & Liang, 2017)
and boundary unlearning (BU) (Chen et al., 2023). Besides, there is also an unlearning paradigm
called instance unlearning (Cha et al., 2023), which is not the scope in this paper.

Evaluation Metrics There are three groups of evaluation metrics. The first group of evaluation
metrics follows (Jia et al., 2023), where we jointly consider unlearning accuracy (UA), membership
inference attack (MIA), remaining accuracy (RA), testing accuracy (TA), and run-time efficiency
(RTE). UA is the ratio of incorrect prediction on Df , showing the MU performance. The higher UA
is, the better the MU performance is. MIA is to evaluate the ratio of data points in Df belonging to
the training set of the unlearned model θu. The higher MIA is, the less information of Df is included
in θu. RA is the accuracy on Dr. TA is the accuracy used to evaluate the performance on the whole
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testing set, except for the class-wise forgetting because the task is to forget the specific class. Note a
tradeoff between RA/TA and UA/MIA exists, i.e., the higher UA/MIA usually implies lower RA/TA
in practice. In our experiments, we expect RA and TA will not decrease too much (e.g., 5%) while
MA and MIA can improve consistently and more significantly.

The second evaluation metric relies on information entropy (Shannon, 2001). As mentioned in
Section 3, the prediction on Df from a good MU model should be as random as possible, implying
little enough information about Df . Therefore, we introduce H by first calculating the sample-wise
entropy of model-predicted probabilities on each data point in Df , then taking an average, which is
the higher the better. The other evaluation metric is RTE, which measures the time of MU. We expect
a smaller RTE if the other two groups of metrics are similar. All results are averaged by running 3
experiments with different random seeds. The selection of Df is the same for the same seed in the
corresponding dataset.

Unlearning Diagram We mainly consider three unlearning diagrams, including class-wise forget-
ting, random forgetting across all classes, and group forgetting. Class-wise forgetting is to unlearn
the whole specific class where we remove one class in Dr and the corresponding class in the testing
dataset completely. Random forgetting across all classes is to unlearn data points belonging to all
classes. In addition to random forgetting across all classes, random forgetting within one class is
discussed in (Jia et al., 2023; Golatkar et al., 2020; Graves et al., 2021). The results of random
forgetting within one class are given in Appendix due to the page limit. As a special case of random
forgetting, we propose a new setting called group forgetting, meaning that the model is trained to
unlearn the group or sub-class of the corresponding super-classes. There are many practical cases
of this setting. For example, due to the copyright or privacy issue, we need to unlearn the specific
identities from a model classifying the facial attributes. We believe this setting has a more practical
meaning which will broaden the usage of MU.

5.2 CLASS-WISE FORGETTING

We select the class randomly and run class-wise forgetting on four datasets. We report the results
of CIFAR-10, ImageNet and 20 Newsgroup in Table 1 due to the page limit. The results of CIFAR-
100 and SVHN are given in Appendix. As we can see, UGradSL and UGradSL+ can boost the
performance of GA and FT, respectively without an increment in RTE or drop in TA and RA, leading
to comprehensive satisfaction in the main metrics, even in the randomness on Df , showing the
robustness and flexibility of our methods in MU.

5.3 RANDOM FORGETTING ACROSS ALL CLASSES

We select data randomly from every class as Df , making sure all the classes are selected and the
size of Df is 10% of the Dtr. We report the results of CIFAR-100 and 20 Newsgroup in Table
2. Compared with class-wise forgetting, it is harder to improve the MU performance without a
significant drop in the remaining accuracy in random forgetting across all dataset. Our methods are
much better in UA and MIA than the baseline methods, even retrain. Compared with FT and GA,
UGradSL+ can improve the UA or MIA by more than 50% with a drop in RA or TA by 15% at most.
We also run the experiments of CIFAR-10, SVHN and ImageNet which are given in Appendix.

5.4 GROUP FORGETTING

Although group forgetting can be seen as part of random forgetting within one class or across all
classes, we want to highlight its use case here due to its practical impacts on e.g., facial attributes
classification. The identities can be regarded as the subgroup in the attributes.

5.4.1 GROUP FORGETTING WITHIN ONE CLASS ON CIFAR-100

CIFAR-10 and CIFAR-100 share the same image dataset while CIFAR-100 is labeled with 100 sub-
classes and 20 super-classes (Krizhevsky et al., 2009). We train a model to classify 20 super-classes
using CIFAR-100 training set. The setting of the group forgetting within one super-class is to remove
one sub-class from one super-class in CIFAR-100 datasets. For example, there are five fine-grained
fishes in the Fish super-class and we want to remove one fine-grained fish from the model. Different
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Table 1: Results of class-wise forgetting in CIFAR-10, 20 Newsgroup and ImageNet.

CIFAR-10 UA (↑) MIA (↑) RA (↑) TA (↑) H (↑) RTE (↓, min)

Retrain 100.00±0.00 100.00±0.00 98.19±3.14 94.50±0.34 0.27 24.62

FT 22.71±5.31 79.21±8.60 99.82±0.09 94.13±0.14 0.79 2.02
GA 25.19±11.38 73.48±9.68 96.84±0.58 73.10±1.62 0.27 0.08
IU 83.92±1.16 92.59±1.41 98.77±0.12 92.64±0.23 0.30 1.18
FF 5.28±2.22 12.90±5.51 92.83±2.68 92.64±2.68 1.14 6.75
BU 78.33±3.47 92.63±2.19 97.28±0.99 90.93±0.81 0.78 1.42

UGradSL 91.33±7.52 91.87±7.06 85.97±5.98 81.30±4.99 1.43 0.22
UGradSL+ 88.24±2.87 99.63±1.69 98.88±0.33 92.46±0.47 0.88 3.07

20 Newsgroup UA (↑) MIA (↑) RA (↑) TA (↑) H (↑) RTE (↓, min)

Retrain 100.00±0.00 100.00±0.00 98.31±2.56 81.95±1.69 0.52 26.246

FT 4.14±2.11 9.23±3.40 98.83±0.86 82.63±0.73 0.13 1.77
GA 17.12±9.48 62.03±5.84 99.99±0.01 85.41±0.37 0.17 0.37
IU 0.00±0.00 0.25±0.12 100.00±0.00 85.58±0.20 0.003 1.52
FF 5.08±1.72 15.34±7.78 96.98±1.23 79.08±0.88 0.31 13.35

UGradSL 100.00±0.00 100.00±0.00 96.31±4.02 78.54±5.10 0.78 0.39
UGradSL+ 100.00±0.00 100.00±0.00 99.76±0.23 84.21±0.41 0.01 2.13

ImageNet UA (↑) MIA (↑) RA (↑) TA (↑) H (↑) RTE (↓, hr)

Retrain 100.00±0.00 100.00±0.00 71.62±0.12 69.57±0.07 1.20 26.18

FT 52.42±15.81 55.87±18.02 70.66±2.54 69.25±0.78 2.20 2.87
GA 81.23±0.69 83.52±2.08 66.00±0.03 64.72±0.02 2.02 0.01
IU 33.54±19.46 49.83±21.57 66.25±1.99 66.28±1.19 0.25 1.51
FF - - - - - 145

UGradSL 100.00±0.00 100.00±0.00 76.91±1.82 65.94±1.35 3.03 0.01
UGradSL+ 100.00±0.00 100.00±0.00 78.16±0.07 66.84±0.06 3.49 4.19

Table 2: Results of random forgetting across all classes in CIFAR-100 and 20 Newsgroup.

CIFAR-100 UA (↑) MIA (↑) RA (↑) TA (↑) H (↑) RTE (↓, min)

Retrain 29.47±1.59 53.50±1.19 99.98±0.01 70.51±1.17 0.76 25.01

FT 2.55±0.03 10.59±0.27 99.95±0.01 75.95±0.05 0.18 1.95
GA 2.58±0.06 5.95±0.17 97.45±0.02 76.09±0.01 0.12 0.29
IU 15.71±5.19 18.69±4.12 84.65±5.29 62.20±4.17 0.25 1.20
FF 5.55±4.94 11.04±6.68 93.52±5.60 70.58±6.33 0.32 42.75
BU 2.38±0.14 5.95±0.09 97.43±0.03 76.17±0.01 0.12 2.4

UGradSL 15.10±2.76 34.67±0.63 86.69±2.41 59.25±2.35 1.67 0.55
UGradSL+ 63.89±0.75 71.51±1.31 92.25±0.11 61.09±0.10 1.11 3.52

20 Newsgroup UA (↑) MIA (↑) RA (↑) TA (↑) H (↑) RTE (↓, min)

Retrain 7.37±0.14 9.33±0.98 100±0.01 85.24±0.09 0.03 75.12

FT 2.26±1.53 2.70±1.60 98.60±0.18 82.20±1.12 0.02 1.06
GA 0.74±0.97 2.65±0.98 99.69±0.14 83.63±0.12 0.01 0.77
IU 0.03±0.06 0.33±0.11 100.00±0.00 85.72±0.12 0.004 1.53
FF 1.57±1.07 5.68±2.34 98.17±0.74 80.32±1.46 0.14 16.88

UGradSL 13.00±1.17 44.3±1.36 93.46±1.01 73.17±0.42 2.54 1.50
UGradSL+ 35.53±1.53 46.42±0.49 97.15±0.88 78.95±1.98 0.83 4.73

from class-wise forgetting, we do not modify the testing set. We report the group forgetting within
one super-class in Table 3. The details and results of the group forgetting across all super-classes are
given in Appendix.

5.4.2 GROUP FORGETTING ON CELEBA

We select CelebA dataset as another real-world case and show the results in Table 4. We train a binary
classification model to classify whether the person is smile or not. There are 8192 identities in the
training set and we select 1% of the identities (82 identies) as Df . Both smiling and non-smiling
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Table 3: The experiment results of group forgetting within one class using the CIFAR-100 dataset.
The model is classify 20 super-classes and Df is one of five subclasses in one super-class.

UA (↑) MIA (↑) RA (↑) TA (↑) H (↑) Time (↓, min)

Retrain 74.22±1.39 88.07±2.94 99.93±0.44 82.57±1.19 0.75 27.35

FT 6.00±0.61 24.96±2.90 99.55±0.30 82.94±0.55 0.42 7.47
GA 87.19±0.55 93.85±2.28 91.04±2.70 74.64±1.78 0.95 0.11
IU 18.00±15.09 51.67±20.58 98.19±0.24 82.72±0.94 0.82 1.10
FF 4.00±5.21 13.41±12.29 97.14±1.07 81.24±1.32 0.45 3.81
BU 78.37±0.46 81.33±2.91 23.14±0.10 22.57±0.02 2.34 0.29

UGradSL 88.00±1.06 93.63±1.46 95.06±1.19 78.58±1.17 1.46 0.13
UGradSL+ 81.11±0.74 86.96±1.89 95.69±0.82 78.02±1.02 1.37 8.12

Table 4: The experiment results of group forgetting in CelebA. The model is to classify whether the
person is smile or not and Df is selected according to the identities.

UA (↑) MIA (↑) RA (↑) TA (↑) H (↑) Time (↓, min)

Retrain 6.74±0.26 9.77±1.49 94.38±0.49 91.78±0.33 0.14 258.69

FT 5.36±0.17 5.87±0.11 93.91±0.04 93.18±0.03 0.15 25.94
GA 6.00±0.16 5.76±0.14 92.86±0.13 92.52±0.08 0.17 1.20
IU 5.90±0.11 4.91±0.30 93.05±0.01 92.62±0.01 0.19 219.77
FF 5.79±0.03 5.08±0.07 93.05±0.01 92.60±0.02 0.19 217.02

UGradSL 11.33±4.17 23.08±11.53 87.86±3.85 87.68±3.81 0.46 2.17
UGradSL+ 15.63±8.01 26.95±25.80 89.17±5.86 88.29±5.75 0.23 51.41

images are in Df . This experiment has significant practical meaning, since the bio-metric, such as
identity and fingerprint, needs more privacy protection (Minaee et al., 2023). Compared with baseline
methods, our method can forget the identity information better without forgetting too much remaining
information in the dataset. This paradigm provides a practical usage of MU and our methods provide
a faster and more reliable way to improve the MU performance.

5.5 THE DISCUSSION OF THE PERFORMANCE TRADEOFF

As shown in Table 1, while we achieve strong unlearning performance there is no apparent drop of
the remaining performance (RA, TA) for the class-wise forgetting compared with other baselines.
For random forgetting and group forgetting, the boost of the forgetting performance (UA, MIA)
inevitably leads to drops in the remaining performance as shown in Table 2, 3, 4. This is a commonly
observed trade-off in the MU literature (Jia et al., 2023; Warnecke et al., 2021; Graves et al., 2021).
Yet we would like to note that at the mild cost of the drops, we observe significant improvement in
unlearning performance. For example, in Table 2, the remaining performance drop in CIFAR-100 are
7.73 (TA) and 9.42 (RA), respectively compared with retrain. However, our unlearning performance
boosts are 48.18 (UA) and 52.82 (MIA), respectively compared with the best baseline methods.

Note the proposed method also works well when Dr is not used in the algorithm. See Appendix ??
for the ablation study. We also show more experiments to Appendix D.1

6 CONCLUSIONS

We have proposed UGradSL, a plug-and-play, efficient, gradient-based MU method using smoothed
labels. Theoretical proofs and extensive numerical experiments have demonstrated the effectiveness
of the proposed method. We have also proposed a new unlearning paradigm called group forgetting
which has more practical meaning. Our work has limitations. For example, we desire an efficient
way to find the exact MU state in experiments and further explore the applications of MU to promote
privacy and fairness. Our method can be further validated and tested in other tasks, such as unlearning
recommendation systems, etc.
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Table 5: Notation used in this paper

Notations Description

K The number of class in the dataset
D,X ,Y The general dataset distribution, the feature space and the label space
D The dataset D ∈ D
Dtr,Dr,Df The training set, remaining set and forgetting set
ΘM The distribution of models learned using mechanismM
θ The model weight
θ∗ The optimal model weight
θ∗f,LS The optimal model weight trained with Df whose label is smoothed
∣∣θ∣∣ The 2-norm of the model weight
n The size of dataset
ϵ The up-weighted weight of datapoint z in influence function
I(z) Influence function of data point z
hθ A function h parameterized by θ
ℓ(hθ, zi) Loss of hθ(xi) and yi
Rtr(θ) The empirical risk of training set when the model weight is θ
Rf(θ) The empirical risk of forgetting set when the model weight is θ
Rr(θ) The empirical risk of remaining set when the model weight is θ
Hθ The Hessian matrix w.r.t. θ
∇θ The gradient w.r.t. θ
B Data batch
BLS,α The smoothed batch using α
zi = (xi, yi) A data point zi whose feature is xi and label is yi
yi The one-hot encoded vector form of yi
yGLS,α
i The smoothed one-hot encoded vector form of yi where the smooth rate is α

α Smooth rate in general label smoothing

Roadmap The appendix is composed as follows. Section A presents all the notations and their
meaning we use in this paper. Section B shows the pipeline of our methods. Section C gives the proof
of our theoretical analysis. Section D shows the additional experiment results with more details that
are not given in the main paper due to the page limit.

A NOTATION TABLE

The notations we use in the paper is summaried in the Table 5.

B THE FRAMEWORK OF OUR METHOD

Our framework is shown in given 2. We only apply NLS on the forgetting dataset Df . In back-
propagation process, we apply gradient descent on the data zri ∈Dr and gradient ascent on the data
smoothed Df , which is the mix-gradient way.

C PROOFS

C.1 PROOF FOR THEOREM 1

For p(x), the Taylor expansion at x = a is

p(x) = p(a) +
p′(a)
1
(x − a) + o (11)
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Figure 2: The framework of UGradLS. When there is a unlearning request, we can split the Dtr

into Df and Dr. We first apply NLS on zfi = {x, y} ∈ Df to get zNLS,α
i = {x, yNLS,α}. In back-

propagation process, we apply gradient descent on the data zri ∈Dr and gradient ascent on the data
smoothed Df , which is the mix-gradient way.

Here p(θ) = ∇Rtr(θ) + ϵ∑Df
∇ℓ(hθ, z

f
i ) so we have

p(θ) = ∇Rtr(a) + ϵ ∑
zf ∈Df

∇ℓ(ha, z
f
) + (∇

2Rtr(a) + ϵ ∑
zf ∈Df

∇
2ℓ(ha, z

f
)(θ − a) + o (12)

For Equation 5, we expand f(θf) at θ = θ∗tr as

p(θ∗f) = ∇Rtr(θ
∗
tr) + ϵ ∑

zf ∈Df

∇ℓ(hθ∗tr
, zf) +

⎡
⎢
⎢
⎢
⎢
⎣

∇
2Rtr(θ

∗
tr) + ϵ ∑

zf ∈Df

∇
2ℓ(hθ∗tr

, zf)

⎤
⎥
⎥
⎥
⎥
⎦

(θ∗f − θ
∗
tr) + o = 0

∇Rtr(θ
∗
tr) + ϵ ∑

zf ∈Df

∇ℓ(hθ∗tr
, zf) +

⎡
⎢
⎢
⎢
⎢
⎣

∇
2Rtr(θ

∗
tr) + ϵ ∑

zf ∈Df

∇
2ℓ(hθ∗tr

, zf)

⎤
⎥
⎥
⎥
⎥
⎦

(θ∗f − θ
∗
tr) ≈ 0

−

⎡
⎢
⎢
⎢
⎢
⎣

∇
2Rtr(θ

∗
tr) + ϵ ∑

zf ∈Df

∇
2ℓ(hθ∗tr

, zf)

⎤
⎥
⎥
⎥
⎥
⎦

−1 ⎡
⎢
⎢
⎢
⎢
⎣

∇Rtr(θ
∗
tr) + ϵ ∑

zf ∈Df

∇ℓ(hθ∗tr
, zf)

⎤
⎥
⎥
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(13)

We have ∇Rtr(θ
∗
tr) = 0 and

θ∗f − θ
∗
tr = −

⎡
⎢
⎢
⎢
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⎣
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⎥
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⎦
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⎡
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⎢
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⎢
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⎥
⎥
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∇ℓ(hθ∗tr
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(14)

We expand q(θ∗tr) at θ = θ∗r as

q(θ∗tr) = ∑
ztr∈Dtr

∇ℓ(hθ∗r , z
tr
) + ( ∑

ztr∈Dtr

∇
2ℓ(hθ∗r , z

tr
)(θ∗tr − θ

∗
r ) ≈ 0

θ∗r − θ
∗
tr =
⎛

⎝
∑

ztr∈Dtr

∇
2ℓ(hθ∗r , z

tr
)
⎞

⎠

−1

∑
ztr∈Dtr

∇ℓ(hθ∗r , z
tr
)

(15)
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Because of gradient ascent, ϵ = −1 and we have

θ∗r − θ
∗
f = θ

∗
r − θ

∗
tr − (θ

∗
tr − θ

∗
f) =

⎛

⎝
∑

ztr∈Dtr
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−
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)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
a⃗

−
⎛

⎝
∑

zr∈Dr

∇
2ℓ(θ∗tr, z

r
)
⎞

⎠

−1

∑
zf ∈Df

∇ℓ(θ∗tr, z
f
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
b⃗

(16)

Thus, ∣∣θ∗r − θ
∗
f ∣∣ = 0 if and only if

∑
zf ∈Df

∇θℓ(hθ∗r , z
f
) = −

⎛

⎝
∑
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∇
2
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⎠

⎛
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∑
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∇
2
θℓ(hθ∗tr
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⎞

⎠
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∑
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, zf)

(17)

C.2 PROOF FOR THEOREM 2

Recall the loss calculation in label smoothing and we have

ℓ(hθ, z
GLS,α

) = (1 +
1 −K

K
α)ℓ(hθ, (x, y)) +

α

K
∑

y′∈Y/y
ℓ(hθ, (x, y

′
))), (18)

where we use notations ℓ(hθ, (x, y)) ∶= ℓ(hθ, z) to specify the loss of an example z = {x, y} existing
in the dataset and ℓ(hθ, (x, y

′)) to denote the loss of an example when its label is replaced with y′.
∇θℓ(hθ, (x, y)) is the gradient of the target label and ∑y′∈Y/y∇θℓ(hθ, (x, y

′)) is the sum of the
gradient of non-target labels.

With label smoothing in Equation 18, Equation 16 becomes
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∗
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K
α) ⋅ (−b⃗)
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K
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2
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where

a⃗ ∶= ( ∑
ztr∈Dtr

∇2
θℓ(hθ∗r

, ztr))−1 ∑
ztr∈Dtr

∇θℓ(hθ∗r
, ztr), b⃗ ∶= ( ∑

zr∈Dr

∇2
θℓ(hθ∗tr

, zr))−1 ∑
zf ∈Df

∇θℓ(hθ∗tr
, zf)

as given in Equation 16.

So we have

θ∗r − θ
∗
f,LS ≈ a⃗ − b⃗ +

1 −K

K
α ⋅ (c⃗ − b⃗) (20)
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where c⃗ ∶= 1
K−1 (∑zr∈Dr

∇2
θℓ(hθ∗tr

, zr))
−1
∑zf ∈Df

∇θ∑y′∈Y/yf ℓ(hθ∗tr
, (xf , y′)). When

⟨a⃗ − b⃗, c⃗ − b⃗⟩ ≤ 0, (21)

α < 0 can help with MU, making

∣∣θ∗r − θ
∗
f,NLS∣∣ ≤ ∣∣θ

∗
r − θ

∗
f ∣∣ (22)

D EXPERIMENTS

D.1 ABLATION STUDY

Gradient-mixed and NLS are the main contribution to the MU improvement. We study the influence
of gradient-mixed and NLS on UGradSL and UGradSL+ using random forgetting across all classes
in CIFAR-10, respectively. Compared with NLS, PLS is a commonly-used method in GLS. We also
study the difference between PLS and NLS by replacing NLS with PLS in our methods. The results
are shown in Table 6. We can find that gradient-mixed can improve the GA or FT while NLS can
improve the methods further.

Table 6: Ablation study of gradient-mixed and NLS using random forgetting across all classes in
CIFAR-10. UGradSL can still work without Dr, showing the effectiveness of NLS on MU. Gradient-
Mixed cannot be removed from UGradSL+ because UGradSL+ without Df is the same as FT.

Gradient-Mixed NLS PLS UA (↑) MIA (↑) RA (↑) TA (↑) H (↑) RTE (↓, min)

GA 0.56±0.01 1.19±0.05 99.48±0.02 94.55±0.05 0.02 0.31

✓ 25.20±1.67 33.66±2.11 76.41±1.59 70.15±1.31 0.43 0.36
✓ 0.58±0.00 1.18±0.06 99.48±0.02 94.61±0.05 0.02 0.46

UGradSL ✓ ✓ 20.77±0.75 35.45±2.85 79.83±0.75 73.94±0.75 0.58 0.45
✓ ✓ 2.02±0.28 18.66±0.03 98.03±0.37 92.15±0.40 0.29 0.46

Fine-Tune 1.10±0.19 4.06±0.41 99.83±0.03 93.70±0.10 0.05 1.58

✓ 14.12±0.27 18.31±0.07 97.31±0.19 90.17±10.17 0.10 3.07
UGradSL+ ✓ ✓ 25.13±0.49 37.19±2.23 90.77±0.20 84.78±0.69 1.84 3.07

✓ ✓ 10.81±3.76 22.29±0.81 93.98±3.10 87.96±2.68 1.20 3.01

D.2 BASELINE METHODS

Retrain is to train the model using Dr from scratch. The hyper-parameters are the same as the original
training. FT is to fine-tune the original model θo trained from Dtr using Dr. The differences between
FT and retrain are the model initialization θo and much smaller training epochs. FF is to perturb the
θo by adding the Gaussian noise, which with a zero mean and a covariance corresponds to the 4th
root of the Fisher Information Matrix with respect to (w.r.t.) θo on Dr (Golatkar et al., 2020). IU
uses influence function (Koh & Liang, 2017) to estimate the change from θo to θu when one training
sample is removed. BU unlearns the data by assigning pseudo label and manipulating the decision
boundary.

D.3 IMPLEMENTATION DETAILS

We run all the experiments using PyTorch 1.12 on NVIDIA A5000 GPUs and AMD EPYC 7513
32-Core Processor. For CIFAR-10, CIFAR-100 and SVHN, the training epochs learning rate are 160
and 0.01, respectively. For ImageNet, the training epochs are 90. For 20 Newsgroup, the training
epochs are 60. The batch size is 256 for all the dataset. Retrain follows the same settings of training.
For fine-tune (FT), the training epochs and learning rate are 10 and 0.01, respectively. For gradient
ascent (GA), the training epochs and learning rate are 10 and 0.0001, respectively.

D.4 CLASS-WISE FORGETTING

We present the performance of class-wise forgetting in CIFAR-100 and SVHN dataset in Table 7.
The observation is similar in CIFAR-10, 20 Newsgroup and ImageNet given in Table 1. UGradSL
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Table 7: The experiment results of class-wise forgetting in CIFAR-100 and SVHN.

CIFAR-100 UA (↑) MIA (↑) RA (↑) TA (↑) H (↑) RTE (↓, min)

Retrain 100.00±0.00 100.00±0.00 99.96±0.01 74.86±0.19 1.85 26.95

FT 19.22±8.02 75.36±13.78 99.80±0.01 75.01±0.37 1.84 1.74
GA 65.26±0.68 90.81±5.09 95.31±1.41 70.19±1.78 2.50 0.06
IU 72.42±19.63 93.42±3.75 95.64±1.69 71.18±2.40 0.15 1.24
FF 19.22±3.37 75.36±2.62 99.80±3.61 75.01±2.52 0.41 39.90
BU 62.74±0.51 90.44±5.09 95.41±1.28 70.27±1.70 2.41 0.55

UGradSL 66.59±0.90 90.96±5.05 95.45±1.42 70.34±1.78 2.55 0.07
UGradSL+ 89.08±3.95 98.93±1.45 97.88±1.23 70.82±1.71 2.58 3.37

SVHN UA (↑) MIA (↑) RA (↑) TA (↑) H (↑) RTE (↓, min)

Retrain 100.00±0.00 100.00±0.00 100.00±0.01 95.94±0.11 0.80 37.05

FT 6.49±1.49 99.98±0.04 100.00±0.01 96.08±0.01 1.22 2.42
GA 87.49±1.94 99.85±0.09 99.52±0.03 95.27±0.21 1.12 0.15
IU 93.55±2.78 100.00±0.00 99.54±0.03 95.64±0.31 0.03 0.23
FF 72.45±44.51 77.98±23.99 39.36±41.12 37.16±39.36 0.03 5.88
BU 85.56±3.07 99.98±0.02 99.55±0.01 95.53±0.07 1.42 3.17

UGradSL 90.71±4.08 99.90±0.16 99.54±0.04 95.64±0.25 1.46 0.23
UGradSL+ 90.71±1.96 100.00±0.00 100.00±0.01 95.93±0.03 1.38 4.56

Table 8: The experiment results of group forgetting across all the classes in CIFAR-10, ImageNet and
SVHN.

CIFAR-10 UA (↑) MIA (↑) RA (↑) TA (↑) H (↑) RTE (↓, min)

Retrain 8.07±0.47 17.41±0.69 100.00±0.01 91.61±0.24 0.08 24.66

FT 1.10±0.19 4.06±0.41 99.83±0.03 93.70±0.10 0.04 1.58
GA 0.56±0.01 1.19±0.05 99.48±0.02 94.55±0.05 0.02 0.31
IU 17.51±2.19 21.39±1.70 83.28±2.44 78.13±2.85 0.01 1.18
FF 2.27±2.83 6.58±6.25 98.28±0.67 91.95±0.71 0.18 3.15
BU 0.48±0.07 1.16±0.04 99.47±0.01 94.58±0.03 0.02 1.41

UGradSL 20.77±0.75 35.45±2.85 79.83±0.75 73.94±0.75 0.58 0.45
UGradSL+ 25.13±0.49 37.19±2.23 90.77±0.20 84.78±0.69 1.84 3.07

ImageNet UA (↑) MIA (↑) RA (↑) TA (↑) H (↑) RTE (↓, hr)

GA 17.00±0.15 32.80±0.10 83.07±0.03 70.82±0.02 0.83 0.03

UGradSL 28.88±0.72 39.36±0.65 71.17±0.82 60.08±0.57 1.67 0.06

SVHN UA (↑) MIA (↑) RA (↑) TA (↑) H (↑) RTE (↓, min)

Retrain 4.95±0.03 15.59±0.93 99.99±0.01 95.61±0.22 0.09 35.65

FT 0.45±0.14 2.30±0.04 99.99±0.00 95.78±0.01 0.02 2.76
GA 0.58±0.04 1.13±0.02 99.56±0.01 95.62±0.01 0.02 0.31
IU 2.11±1.10 6.35±1.42 98.21±0.90 92.35±1.23 0.02 1.52
FF 0.45±0.09 1.30±0.12 99.55±0.01 95.49±0.03 0.03 6.02
BU 0.45±0.14 1.13±0.05 99.57±0.03 95.66±0.01 0.02 4.24

UGradSL 6.16±0.49 26.35±0.40 94.24±0.33 90.55±0.27 0.32 0.57
UGradSL+ 25.05±4.29 35.42±2.13 92.43±5.93 85.36±4.80 0.26 4.44

and UGradSL+ can improve the MU performance with acceptable time increment and performance
drop in Dr. In addition, UGradSL and UGradSL+ can improve the randomness of the prediction in
Df .

D.5 RANDOM FORGETTING ACROSS ALL CLASSES

We present the performance of class-wise forgetting in CIFAR-10, ImageNet and SVHN dataset in
Table 8. The observation is similar in CIFAR-100 and 20 Newsgroup given in Table 2.
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Table 9: The experiment results of group forgetting across all the classes in CIFAR-100

UA (↑) MIA (↑) RA (↑) TA (↑) H (↑) RTE (↓, min)

Retrain 55.42±1.56 78.01±0.19 100.00±0.01 76.74±0.32 0.64 22.03

FT 3.29±1.03 15.54±3.35 99.96±0.03 83.57±0.18 0.13 1.59
GA 2.54±0.36 8.11±1.19 98.43±0.05 82.35±0.26 0.08 0.46
IU 25.49±10.29 29.45±7.74 82.75±5.64 67.30±4.28 0.42 1.17
FF 1.93±0.18 7.54±0.96 98.42±0.20 83.08±0.11 0.23 2.89
BU 2.38±0.14 5.95±0.09 97.43±0.03 76.17±0.01 0.12 1.40

UGradSL 54.91±3.94 68.28±1.84 84.53±1.19 61.38±1.34 1.20 0.74
UGradSL+ 50.65±0.65 69.18±1.94 99.21±0.40 73.60±1.00 0.47 2.83

Table 10: The experiment results of random forgetting within the single class in CIFAR-10

UA (↑) MIA (↑) RA (↑) TA (↑) H (↑) RTE (↓, min)

Retrain 45.03±5.38 50.11±4.91 75.00±0.00 67.63±0.80 0.40 18.14

FT 1.49±0.19 6.92±0.28 74.98±0.01 70.68±0.09 0.07 1.15
GA 79.56±3.85 68.88±1.77 72.47±1.33 62.66±1.59 0.81 0.10
IU 0.31±0.03 0.44±0.01 74.59±0.01 70.91±0.00 0.01 0.53
BU 78.33±3.33 92.90±2.76 97.12±0.99 84.09±1.28 0.82 1.36

UGradSL 88.72±9.79 66.16±10.21 65.74±5.87 56.71±3.61 1.44 0.17
UGradSL+ 87.32±4.40 67.64±2.98 73.54±0.78 62.99±1.15 0.32 2.96

D.6 GROUP FORGETTING ACROSS ALL CLASSES

We present the performance of group forgetting across all classes in Table 9. The observation is
similar in the class-wise group forgetting in Table 3.

D.7 RANDOM FORGETTING WITHIN THE SINGLE CLASS

Random forgetting within the single class is another unlearning paradigm. We present the results
of this unlearning paradigm in CIFAR-10 in Table 10. Although BU is better than UGradSL and
UGradSL+, BU is not comprehensive among the other forgetting paradigms.

D.8 MU WITH THE OTHER CLASSIFIER

To validate the generalization of the proposed method, we also try the other classification model. We
test VGG-16 and vision transformer (ViT) on the task of random forgetting across all classes and
class-wise forgetting using CIFAR-10, respectively. The results are given in Table 11 and 12. The
observation is similar in Table 2 and 1, repsectively.

D.9 THE EFFECT OF THE SMOOTH RATE

We also investigate the relationship between the performance and the smooth rate α. We select
UGradSL+ using the random forgetting across all classes in CIFAR-10. The results are given in
Figure 3. It should be noted that the hyper-parameter tuning is acceptable using UGradSL and
UGradSL+ because the most important metrics are from Df ∈ Dtr. We do not use any extra
information from the testing dataset. Our method can improve the unlearning accuracy (UA) without
significant drop of testing accuracy (TA).

D.10 STREISAND EFFECT

From the perspective of security, it is important to make the predicted distributions are almost the same
from the forgetting set Df and the testing set Dte, which is called Streisand effect. We investigate
this effect in the random forgetting among all the classes on CIFAR-10 by plotting confusion matrix
as shown in Figure 4. It can be found that our method will not lead to the extra hint of Df .
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Table 11: The experiment results of random forgetting across all the classes in CIFAR-10 using
VGG-16

UA (↑) MIA (↑) RA (↑) TA (↑) H (↑) RTE (↓, min)

Retrain 11.41±0.41 11.97±0.50 74.65±0.23 66.13±0.16 0.10 9.48

FT 1.32±0.13 3.48±0.13 74.24±0.04 67.04±0.10 0.06 0.60
GA 1.35±0.08 2.18±0.66 73.95±0.01 66.88±0.01 0.03 0.14
IU 1.74±0.09 2.16±0.61 73.96±0.01 68.88±0.00 0.03 0.24
FF 1.35±0.09 2.21±0.58 73.95±0.02 66.87±0.04 0.03 1.02

UGradSL 13.45±0.63 11.77±0.54 65.05±0.48 58.52±0.38 0.36 0.19
UGradSL+ 12.41±0.32 14.96±0.52 65.90±0.52 58.58±0.35 1.27 1.08

Table 12: The experiment results of class-wise forgetting in CIFAR-10 using ViT.

CIFAR-10 UA (↑) MIA (↑) RA (↑) TA (↑) H (↑) RTE (↓, min)

Retrain 100.00±0.00 100.00±0.00 61.41±0.81 58.94±1.09 - 189.08

FT 3.97±0.87 7.60±1.76 98.29±0.05 80.44±0.22 0.04 2.99
GA 33.77±6.36 40.47±6.63 89.47±4.21 71.65±2.79 0.16 0.32

UGradSL 68.11±11.03 73.84±9.58 84.11±2.70 68.33±1.69 0.24 0.22
UGradSL+ 99.99±0.01 99.99±0.02 94.46±1.06 77.26±1.19 0.01 5.86

D.11 GRADIENT ANALYSIS

As mentioned in Section 4.2, ⟨a⃗ − b⃗, c⃗ − b⃗⟩ ≤ 0 always holds practically. We practically check the
results on CelebA dataset. The distribution of ⟨a⃗ − b⃗, c⃗ − b⃗⟩ is shown in Figure 5, which is with our
assumption.
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Figure 3: The relationship between the performance and smooth rate in random forgetting across all
classes using CIFAR-10. The gray dash line stands for the performance of retrain. Our methods can
improve the unlearning accuracy (UA) without significant drop of testing accuracy (TA).

Figure 4: The confusion matrix of testing set and
forgetting set Df using our method on CIFAR-
10 with random forgetting across all the classes.
There is no big difference between the prediction
distribution. Our method will not make Df more
distinguishable.

Figure 5: The distribution of ⟨a⃗ − b⃗, c⃗ − b⃗⟩ on
CelebA dataset.
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