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Abstract—This paper delves into the challenge of ensuring
connectivity and steering clear of obstacles for multiple un-
certain nonholonomic mobile robots that face limitations in
communication and sensing distances under the influence of
unknown actuator defects. It operates under the assumption
that the nonlinear dynamics of these robots are completely
unknown. The necessary relative angles to sustain connectivity
and simultaneously avoid obstacles are derived. Furthermore, an
innovative strategy for obstacle avoidance that also maintains
connectivity is introduced. Then, using these desired relative
angles and performance functions that maintain connectivity and
avoid collisions, a leader-follower formation tracker is designed
to achieve connectivity maintenance, collision avoidance, and
obstacle avoidance among robots. Simultaneously, to compensate
for the effects of intermittent unknown actuator faults and
enable the robots to continue interacting with their leader and
uninterruptedly track the leader’s time-varying reference trajec-
tory during actuator failures, an adaptive law with unknown
parameters is further proposed for time-varying formations,
ensuring that all signals are semi-globally uniformly ultimately
bounded. Finally, the stability analysis is performed using the
Lyapunov equation.

Index Terms—Uncertain multiple nonholonomic mobile robots,
fault tolerant control, adaptive control,connectivity-maintaining
obstacle avoidance, leader-follower formation

I. INTRODUCTION

Mobile robots have a wide range of practical applica-
tions in rescue, agricultural and civil tasks, especially in
potential applications such as intelligent storage, automated
logistics, monitoring and intelligent transportation. [1] delves
into the formation control problem of multiple mobile robots
with incomplete constraints.In the actual control environment,
network connectivity between multiple robots and collision
avoidance problems are of great significance for completing
tasks related to formation control [2].

Formation control methods can be mainly divided into
the following categories, virtual structure method, behavior-
based method, graph theory-based method, artificial potential
field method, leader-follow method [3] [4] [5],The virtual
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structure method is simple to implement, but it is difficult
to use in scenarios where the shape of the formation needs
to be changed frequently. In addition, due to the need for a
centralized structure, the communication load of computing
nodes is large, and single-point hardware problems are prone
to occur [6]. Compared with the virtual structure method,
the behavior-based method adopts a distributed architecture,
so it has lower communication requirements. However, due
to the stability and robustness analysis, how to ensure the
convergence of the formation shape still needs to be studied. In
addition, behavior-based approaches are difficult to guarantee
stability due to the difficulty of deriving mathematical mod-
els.Compared with other methods, the graph theory method is
more suitable for scenarios where the communication topology
changes dynamically, but the agent can only communicate
with nearby agents.The potential field method is easy to deal
with obstacle avoidance problems and is applied in real time.
However, it is difficult to design a suitable potential field
function, and the results given by the potential field method are
often locally optimal. This article does not use any potential
field function, but only changes the angle to deal with the
obstacle avoidance problem.The approach of leader-follower
is mathematically comprehensible and diminishes both the
communication load and computational strain, thanks to its
decentralized architecture. This method is widely used in
the formation control problem of multiple mobile robots. In
early research on formation control of non-complete mobile
robots, only the kinematics of the robots were considered,
and these jobs required perfect velocity tracking assumptions
[7], and the uncertainties inherent in the dynamics of mobile
robots were not considered.In order to solve these problems,
researchers have proposed control methods, such as synovial
control, adaptive control, and intelligent control. However,
these methods cannot be applied to connectivity maintenance
and collision avoidance issues.

In order to carry out the master-slave control design of
multiple nonholonomic mobile robots more practically, many
methods are studied to solve the problems of connectivity
maintenance and collision avoidance.For example, a vision



sensor-based approach that considers visible constraints [8],
uses potential-like functions to maintain connections between
robots and avoid collisions [9] [10] [11]. Since the poten-
tial function may fall into a local minima, [12] proposes
a decentralized control method using the dipole navigation
function. [13] proposes a method based on the rotation matrix
and [14] proposing a unified error transformation method that
can achieve connectivity preservation and collision avoidance
without using the potential function.

In addition, as the robot components age, the actuator
may fail. A single robot failure can affect the entire system,
making the system unstable, which in turn makes each robot
uncontrollable, not only unable to maintain a normal formation
structure, but also causing robots to collide and unable to
maintain normal connectivity. In the previous literature, there
is not much consideration of unknown and different fault
handling, and an adaptive compensation control method is
designed to effectively solve the problem of unknown faults
in actuators.In [15], an adaptive fuzzy fault-tolerant control
method based on directed switching graph theory is proposed
for formation tracking of uncertain nonlinear multi-agent sys-
tems, which can simultaneously respond to the influence of
sensor faults on unknown nonlinearity.In order to adapt to
an infinite number of uncertain faults in a finite time, a new
adaptive method for uncertain nonlinear systems is proposed
for the first time in [16], which combines finite time theory
with command filtering technology to achieve rapid adaptation
to infinite uncertain faults. But it doesn’t apply to real-world
engineering systems.

In contrast to previous studies in the field, this paper’s
primary contributions are outlined below.

• In comparison to other studies, the issue of localIn
comparison to other studies, the issue of local crafting a
controller that lack the issue of local minima is addressed
by crafting a controller that lacks a potential function.
Additionally, an adaptive law for parameters has been
developed to tackle unknown actuator failures in the
dynamic behavior of mobile robots.

• Different from other papers,by deriving the nonlinear
performance functions of maintaining connectivity and
avoiding collisions, the tracking performance of the for-
mation in the transition and steady state can be adjusted,
and the obstacle avoidance strategy is proposed under
the premise of ensuring the tracking performance of the
formation.

This manuscript is structured in the following manner: Section
2 delineates the problem statement. In Section 3, a forma-
tion tracking control design that incorporates connectivity-
maintaining obstacle avoidance is developed, and an analysis
of the stability of the proposed control system is conducted.
The paper’s conclusions are detailed in Section 4.

II. PROBLEM STATEMENT

A. Model of multiple nonholonomic mobile robots
Envision a scenario involving multiple nonholonomic mo-

bile robots that are subject to both communication and sensing

range limitations. Within the context of this study, the leader
and follower roles are distinguished using the subscripts ”i”
and ”j”, respectively. The configuration of the follower, des-
ignated as j, is delineated in further detail below:

ẋj = νj cosφj − ωjaj sinφj

ẏj = νj sinφj + ωjaj cosφj

φ̇j = ωj

(1)

Hj η̇j = −Cj(ηj)ηj −Djηj + τj,d +Bjτ
f
j (2)

In (1), [xj , yj , θj ]⊤ is the posture vector denoting the position
(xj , yj) and the orientation θj at the center of mass of the
robot, [νj , ωj ]

⊤; νj and ωj denote the linear and angular
velocity, respectively, τj,d = [τj,d1, τj,d2]

⊤ is the unknown
disturbance, and τfj = [τfj,r, τ

f
j,l]

T is the robot control torque
of the follower j with an unknown fault. According to the
literature [18], intermittent actuator failures can be expressed
as:

τfj,r(t) = ρjνk(t)τj,r(t) + ζjνk(t), t ∈ [tjνk,s, tjνk,e) (3)

τfj,l(t) = ρjωk(t)τj,l(t) + ζjωk(t), t ∈ [tjωk,s, tjωk,e) (4)

where, ρjνk(t) ∈ [0, 1] , ρjωk(t) ∈ [0, 1] indicate the
unknown failure rate of the follower j actuator, k =
1, 2, 3, ... represents the k-th failure model. tjνk,s , tjωk,s

and tjνk,e , tjωk,e are the time when the fault occurs and
ends, respectively. In (2), the matrices are given as follows:

Hj =

[
hj,1 0

0 hj,2

]
, Cj(ηj) =

 0 −bjcjωj

cj
bj
ωj 0

 , Dj =

1
2

[
dj,1 dj,2

dj,3 dj,4

]
, Bj =

rj
2bj

[
bj bj

1 −1

]
,with

hj,1 =
1

2
r2jmj + Ij,w, hj,2 =

1

2
r2jmj +

r2j
2b2j

Ij + Ij,w,

mj = mj,c + 2mj,w, cj =
1

2bj
r2jmj,caj ,

Ij = mj,ca
2
j + 2mj,wb

2
j + Ij,c + 2Ij,m,

dj,1 =
1

2
(dj,11 + dj,22) , dj,2 =

bj
2
(dj,11 − dj,22) ,

dj,3 =
1

2bj

(
dj,11 − dj,22

)
, dj,4 =

1

2

(
dj,11 + dj,22

)
in this context, Hj represents a symmetric, positive-definite
inertia matrix. The variable aj specifies the distance from the
follower j’s rear axle to its center of mass. The term rj is the
radius of the driving wheels, while bj delineates the separation
between the driving wheels and the axis of symmetry. The
masses mj,c and mj,w correspond to the body and the wheel
incorporating a motor, respectively. The moments of inertia are
denoted as Ij,c for the body around the vertical axis passing
through its center of mass, Ij,w for the wheel around its own
axis, and Ij,m for the wheel about its diameter. Additionally,
dj,11 and dj,22 are the associated damping coefficients.In
addition, the matrices Hj , Cj , Dj , and Bj are unknown.The
external interference τj,d is also unknown.



B. Leader-follower model

We consider that the trajectory of Leader i satisfies the
kinematics of a nonholonomic mobile robot, i.e., the trajectory
is generated by the following kinetic equations:

ẋi = νi cosφi − ωiai sinφi

ẏi = νi sinφi + ωiai cosφi

φ̇i = ωi

Fig. 1. Leader-follower model

The leader-follower is described by the relative distance

dij =
√
(xi − xj)

2
+ (yi − yj)

2 and angle ψij = θi −
arctan((yi − yj)/(xi − xj)) between the leader i and the
follower j where xi = xi−aicosθi and yi = yi−aisinθi (see
Fig.1).The dynamics of the leader-follower model is obtained
as

ḋij = −νjcosφij + ajωjsinφij + νicosψij

ψ̇ij =
1

dij
(νjsinφij + ajωjcosφij − νisinψij) + ωi

(5)

where φij = ψij − θij and θij = θi − θj . In Fig.1,In
the process of information transmission of the mobile robot,
the follower j can obtain the position and orientation of the
leader i through its own sensor, or the directed graph can
represent the communication topology between leader i and
follower j. Moreover, follower j has the potential to become
the leader for other nonholonomic mobile robots. In this case,
a directed graph is also used to depict the communication
between follower j and other nonholonomic mobile robots.As
a result,the leader-follower paradigm can be seamlessly ex-
tended to encompass multiple autonomous mobile robots. In
this configuration, the comprehensive communication network
forms a directed spanning tree, with the leading robot ’i’
serving as the foundational root node. This characteristic of the
leader-follower approach highlights its significant scalability
[17] (Fig.2).Therefore, this study focuses on the interplay
between the lead robot, designated as i, and the follower robot,

labeled as j, in addition to the development of the formation
control mechanism for the follower robot j.

Fig. 2. Initial connectivity of multiple mobile robots.

Assumption 1. The liner velocity νi and angular velocity
ωi of the leader i are bounded.

C. Obstacle avoidance strategy

Fig. 3. Obstacle avoidance strategy

In Fig.3, the angle ψij,d is a predetermined value intended to
implement an obstacle avoidance strategy that sustains connec-
tivity. By applying the principles of trigonometry, specifically
the cosine rule, ψij,d can be expressed as follows:

ψij,d =

{
ψij,d + ϑijtanh (Rj,a − dj,b) , dj,b ⩽ Rj,a

ψij,d, dj,b > Rj,a
(6)

where

ϑij = ϖi + βijtanh

(
ϖi

γj,2

)
− ψij,d,

ϖi = θi − θi,b,

βij = βij,1 + βij,2 − π,

βij,1 = arccos

(
d2ij,d +R2

j,a − d2i,b
2dij,dRj,a

)
,

βij,2 = arccos

(
d2i,b +R2

j,a − d2ij,d
2di,bRj,a

)



In this scenario, Rj,a is defined as an avoidance initiation
range that will be determined later, while γj,2 is a positive con-
stant. The symbols dj,b and di,b represent the distances from
the follower j and the leader i to the obstacle, respectively.
The variable θi,b stands for the relative angle of leader i with
respect to the obstacle. When di,b exceeds Di and dj,b is less
than or equal to Rj,a, where Di is the leader i’s sensing range,
it implies that the follower j might collide with the obstacle,
as the follower cannot access the distance information di,b
described in equation (6). To avoid this issue, the values of di,b
and θi,b can be determined utilizing the relative data between
follower j and leader i as follows:

di,b =
√
g2ij,1 + g2ij,2

θi,b = arctan(gij,1/gij,2)
(7)

where gij,1 = dijsinϖij − dj,bsinθj,b , gij,2 = dijcosϖij −
dj,bcosθj,b ,and θj,b is the relative angle of the obstacle from
the follower j. Here, ϖij is measured using the local sensors
of the follower j.

The current obstacle avoidance strategies [18] [19], which
adjust the desired distance and angle, are not applicable for
this paper.The reason for this is that the network of robots,
which are constrained by their limited communication and
sensory capabilities, will become disconnected if follower j
navigates beyond the communication range of leader i during
obstacle evasion. Therefore, we introduce a novel strategy
for maintaining connectivity while avoiding obstacles (6), as
depicted in Fig. 3.

D. Formation control objective

The main purpose of this paper is to design the control
matrices τj,r and τj,l so that the follower j can avoid collisions
with obstacles while ensuring connectivity with the leader i,
and at the same time, achieve control objectives,i.e.,

(1) Connectivity preservation and collision avoidance:
Rj,m < dij(t) < Dj ,∀t ⩾ 0.

(2) Desired formation : limt→∞ |dij(t)− dij,d| < ϵj,1,
limt→∞ |ψij(t)− ψij,d| < ϵj,2.

(3) Obstacle avoidance : di,b(t) > Ri,m,∀t ⩾ 0.

In this context, Rj,m symbolizes the minimal evasion radius
for the follower designated as j. Concurrently, Dj epitomizes
the smallest extent of communication and sensory perception
pertaining to the same follower j. Furthermore, the notations
dij,d and θij,d are indicative of the optimal distance and angle
that should exist between the leader i and the follower j to
ensure the realization of the intended formation. Moreover, ϵj,1
and ϵj,2 represent pre-established positive constants. Lastly,
dj,b signifies the measurement of the gap between the follower
j and the impediment.

Assumption 2. The desired distance dij,d and angle ψij,d

satisfy Rj,m < dij,d < Dj and −π/2⩽ψii,d⩽π/2, respec-
tively.

III. ADAPTIVE ASYMPTOTIC TRACKING FORMATION
CONTROL DESIGN

In this section, we design a leader formation controller
based on specified performance, and design an adaptive law to
solve the problem of unknown failures in the actuator, which is
able to avoid obstacles while maintaining connectivity, which
is suitable for uncertain nonholonomic mobile robots with
limited communication and sensing distance.

Let us define the errors as

ej,1 = dij − dij,d,

ej,2 = ψij − ψij,f ,

ej,3 = θj,a − θj ,

ej,4 = vj − vj,ν ,

ej,5 = ωj − ωj,ν

(8)

in the given paragraph, νj,ν and ωj,ν represent the virtual
control signals for follower j. The term θj,a is a virtual heading
angle employed to address the kinematics’ underactuated
issue. Additionally, ψij,f signifies the filtered signal derived
from the equation γj,1ψ̇ij,f + ψij,f = ψij,d, where γj,1 is a
small constant greater than zero. The desired relative angle,
denoted as ψij,d, is illustrated in Fig. 3.

Remark 1. If ej,2 is characterized as ej,2 = ψij − ψij,d,
then the derivative of ej,2 over time encompasses the velocity
data of follower j, which is associated with the virtual control
directives vj,v and ωj,v . This adds complexity to the design
of the virtual controllers. To mitigate this complexity, ej,2
in equation (8) is redefined as ej,2 = ψij − ψij,f , utilizing
the signal ψij,f derived from the first-order low-pass filter
γj,1ψ̇ij,f +ψij,f = ψij,d. Consequently, the derivative of ψij,f

over time can be determined by ψ̇ij,f = (ψij,d − ψij,f )/γj,1,
excluding the velocity information of follower j.

Remark 2. Given the inherent underactuated characteristics
of mobile robots, synchronizing the orientation of all robots
becomes unachievable when navigating curved paths. To coun-
teract this limitation, ej,3 from equation (8) is redefined as
ej,3 = θj,a − θj , where a new term, θj,a, represents a virtual
heading angle rather than θi. This novel angle, θj,a, will be
formulated through a differential equation that serves as a
virtual control law.

In the context of predefined performance-based leader-
follower formation control, we introduce connectivity-
maintaining and collision-avoiding performance functions to
address the challenges of maintaining connectivity and avoid-
ing collisions among robots, in line with the prescribed per-
formance concept as described in reference [20].

The error surfaces, which are normalized through the
connectivity-maintaining and collision-avoiding performance
functions, are presented in (8).

zj,1 =
2ej,1 + ρLj,1 − ρUj,1

ρLj,1 + ρUj,1
, zj,n =

ej,n
ρj,n

, n = 2, ..., 5 (9)



where

ρUj,1 (t) =
(
ρUj,1 (0)− ρUj,1 (∞)

)
e−λj,1t + ρUj,1 (∞)

ρLj,1 (t) =
(
ρLj,1 (0)− ρLj,1 (∞)

)
e−λj,1t + ρLj,1 (∞)

ρj,n(t) = (ρj,n(0)− ρj,n(∞))e−λj,nt + ρj,n(∞)

(10)

with λj,1 > 0 and λj,n > 0. In (10), the constants ρUj,1(0) ,
ρLj,1(0) , ρUj,1(∞) , ρLj,1(∞) , ρj,n(0) , and ρj,n(∞) are selected
to satisfy the following conditions :(
i
)
0 < ρUj,1

(
∞
)
< ρUj,1

(
0
)
⩽ Dj − dij,d(

ii
)
− ρLj,1

(
0
)
< ej,1

(
0
)
< ρUj,1

(
0
)

(iii) 0 < ρLj,1 (∞) < ρLj,1 (0) ⩽ dij,d −Rj,m(
iν
) ∣∣ej,2(0)∣∣ < ρj,2(0) = π, 0 < ρj,2(∞) < ρj,2(0)(

ν
) ∣∣ej,p(0)∣∣ < ρj,p(0), 0 < ρj,p(∞) < ρj,p(0)

(11)

where p = 3, 4, 5. It is important to note that the exponentially
decaying performance functions in equation (8) and their
time derivatives are inherently bounded. Consequently, the
error surfaces εj,n used for control design are defined as
εj,n = ln((1 + zj,n)/(1 − zj,n)), following the prescribed
performance design as outlined by [20], with n = 1, . . . , 5.

Remark 3. The boundedness of εj,n ensures that the
absolute value of zj,n remains less than 1 for all times t greater
than or equal to 0, with n ranging from 1 to 5. When equation
(9) meets the condition (11), the aforementioned inequality
for zj,n implies that the error ej,1 is confined between the
negative lower limit of ρj,1 and the upper limit of ρj,1, while
the magnitude of ej,p is maintained below ρj,p, p = 1, . . . , 5.
Consequently, by employing the predefined functions, the
control objectives (1) and (2) can be successfully achieved.
Therefore, our goal in formation tracking is to construct a
tracker such that the boundedness of εj,n is guaranteed through
the principles of Lyapunov stability theory.

Design the virtual controller vj,ν , ωj,ν , θ̇j,a, αjω, αjω as
follows:

vj,ν = kj,1εj,1cosφij − kj,2εj,2sinφij (12)

ωj,ν = −kj,1εj,1
aj

sinφij −
kj,2εj,2
aj

cosφij (13)

θ̇j,a = −kj,3εj,3 + ωj,ν (14)

αjν =
1

2
kj,4εj,4 +

1

2
kj,5εj,5 + ζ̂jνk

+
σ1
(
1− z2j,4

)
ρj,4

4εj,4
ρ̂jνk +

σ2
(
1− z2j,5

)
ρj,5

4εj,5
ρ̂jνk

(15)

αjω =
1

2
kj,4εj,4 −

1

2
kj,5εj,5 + ζ̂jωk

+
σ1
(
1− z2j,4

)
ρj,4

4εj,4
ρ̂jνk −

σ2
(
1− z2j,5

)
ρj,5

4εj,5
ρ̂jωk

(16)

where kj,n > 0, σ1 > 0, σ2 > 0 are positive constants, n =
1, . . . , 5.

The adaptive laws of the design parameters ˙̂
ζjνk, ˙̂

ζjωk, ˙̂ρjνk,
and ˙̂ρjωk are as follows:

˙̂
ζjνk =

2εj,4(
1− z2j,4

)
ρj,4

+
2εj,5(

1− z2j,5
)
ρj,5

− λ1ζ̂jνk (17)

˙̂
ζjωk =

2εj,4(
1− z2j,4

)
ρj,4

− 2εj,5(
1− z2j,5

)
ρj,5

− λ2ζ̂jωk (18)

˙̂ρjνk =σ1 −
1

ˆρjνk
[

2εj,4(
1− z2j,4

)
ρj,4

+
2εj,5(

1− z2j,5
)
ρj,5

]αjν

− σ1ρ̂jνk
(19)

˙̂ρjωk =σ2 −
1

ˆρjωk
[

2εj,4(
1− z2j,4

)
ρj,4

+
2εj,5(

1− z2j,5
)
ρj,5

]αjω

− σ2ρ̂jωk

(20)

where λ1 > 0, λ2 > 0 are positive constants, ζ̂jmk = ζjmk −
ζ̃jmk is an estimate of ζjmk, ρ̂jmk = ρjmk − ρ̃jmk is an
estimate of ρjmk, k = ν, ω.

Design controllers τj,r and τj,l as follows:

τj,r = −
[

2εj,4

(1−z2
j,4)ρj,4

+
2εj,5

(1−z2
j,5)ρj,5

]ĝ21α
2
jν√

[
2εj,4

(1−z2
j,4)ρj,4

+
2εj,5

(1−z2
j,5)ρj,5

]2ĝ21α
2
jν + σ2

1

(21)

τj,l = −
[

2εj,4

(1−z2
j,4)ρj,4

− 2εj,5

(1−z2
j,5)ρj,5

]ĝ22α
2
jω√

[
2εj,4

(1−z2
j,4)ρj,4

− 2εj,5

(1−z2
j,5)ρj,5

]2ĝ22α
2
jω + σ2

2

(22)

where σ1 > 0, σ2 > 0 are positive constants, ĝ1 = 1
ρ̂jνk

,
ĝ2 = 1

ρ̂jωk
.

The primary finding of this study is encapsulated in the
subsequent theorem: Examine nonholonomic mobile robotic
systems represented by equations (1) and (2), which incorpo-
rate uncertainties. Given Assumptions 1 and 2, the formation
regulations delineated in expressions (12)-(22), coupled with
the connectivity-preserving obstacle circumvention strategy
denoted by equation (6), where Rj,a = dj,a + Rj,m as
referenced in [21], successfully fulfill the designated control
objectives.,where

dj,a =

√
d2ij,d +

(
dij,d + ρUj,1

)2 − 2dij,d
(
dij,d − ρLj,1

)
cos(ρj,2)

+ γj,b
(23)

Proof. Substituting (1),(2), and (8), we have

żj,1 =
2

ρLj,1 + ρUj,1
(−νj,νcosφij + ajωj,νsinφij + fj,1) (24)

żj,2 =
1

ρj,2dij

(
vj,νsinφij + ajωj,νcosφij + fj,2

)
(25)

żj,3 =
1

ρj,3

(
θ̇j,a − ωj,ν + fj,3

)
(26)



żj,4 =
1

ρj,4

(
σj,1

(
τfj,r + τfj,l

)
+ fj,4

)
(27)

żj,5 =
1

ρj,5

(
σj,1

(
τfj,r − τfj,l

)
+ fj,5

)
(28)

where

fj,1 = νicosψij − zj,4ρj,4cosφij + ajzj,5ρj,5sinφij

+
1

2

(
ρ̇Lj,1 − ρ̇Uj,1 − zj,1

(
ρ̇Lj,1 + ρ̇Uj,1

))
fj,2 = zj,4ρj,4sinφij + ajzj,5ρj,5cosφij − νisinψij

+

(
1

2

((
ρLj,1 + ρUj,1

)
zj,1 − ρLj,1 + ρUj,1

)
+ dij,d

)
×

(
ωi −

ψij,d − ψij,f

γj,1
− zj,2ρ̇j,2

)
fj,3 = −zj,5ρj,5 − zj,3ρ̇j,3[

fj,4
fj,5

]
= H−1

j

[
−
(
Cj

(
ηj

)
+Dj

)
ηj + τj,d

]
−
[
v̇j,ν ω̇j,ν

]
−
[
zj,4ρ̇j,4zj,5ρ̇j,5

]
ηj =

[
zj,4ρj,4 + νj,ν
zj,5ρj,5 + ωj,ν

]
, σj,1 =

rj
2mj,1

, σj,2 =
rj

2bjmj,2
.

Note that σj,1 and σj,2 are positive constants.
Let us define the open set Ωz = Ωz1 × · · · × Ωz5 , where

Ωzn ∈ (−1, 1) for n = 1, . . . , 5. Given that the performance
functions are chosen to meet the initial conditions (ii), (iv),
and (v) specified in (11), we have zj,n(0) ∈ Ωzn . The control
laws (12)–(22) are smooth over Ωz . Under Assumptions 1
to 2, and the external interference τj,d is also unknown. The
nonlinear functions fj,n for n = 1, . . . , 5 are continuously dif-
ferentiable over Ωz . Consequently, żj,n in equations (24)–(28)
are continuously differentiable with respect to t and are locally
Lipschitz in zj,n over Ωz . Therefore, according to Theorem
3.1 in [22], there exist unique and maximal solutions zj,n(t)
for all t ∈ [0,∞) to the differential equations (24)–(28). This
implies that zj,n(t) ∈ (−1, 1) for all t ∈ [0,∞), and thus εj,n
are well-defined for all t ∈ [0,∞) where n = 1, . . . , 5.

Then, the control laws (12)-(22) was demonstrated step by
step ensure the boundedness of εj,n for all t ∈ [0,∞).

step 1: Consider the following Lyapunov function

V1 (t) =
1

2
ε2j,1 (t) +

1

2
ε2j,2 (t) +

1

2
ε2j,3 (t) , t ∈ [0,∞) (29)

Using (12)-(14) and (24)-(26), the time derivative of (29) is

V̇1 =
4εj,1(

1− z2j,1
) (
ρLj,1 + ρUj,1

) (−kj,1εj,1 + fj,1)

+
2εj,2(

1− z2j,2
)
dijρj,2

(−kj,2εj,2 + fj,2)

+
2εj,3(

1− z2j,3
)
ρj,3

(−kj,3εj,3 + fj,3)

(30)

Due to the fact that zj,n(t) belongs to the interval (-1, 1) for
all time instances within [0,∞), and considering Assumptions

1 and 2, as well as the constrained nature of the perfor-
mance functions and their respective time derivatives—namely
fj,1, fj,2, and fj,3—it is evident that these functions remain
bounded across the domain Ωz . Consequently, there exist
unspecified positive constants, denoted as f j,1, f j,2, and f j,3,
which ensure that

|fj,1 (t) | ⩽ f j,1, |fj,2 (t) | ⩽ f j,2, |fj,3 (t) | ⩽ f j,3. (31)

According to (31), (30) can be rewritten as

V̇1 ⩽
4(

1− z2j,1
) (
ρLj,1 + ρUj,1

) (−kj,1 |εj,1|2 + f j,1 |εj,1|
)

+
2(

1− z2j,2
)
dijρj,2

(
−kj,2 |εj,2|2 + f j,2 |εj,2|

)
+

2(
1− z2j,3

)
ρj,3

(
− kj,3

∣∣∣∣∣εj,3
∣∣∣∣∣
2

+ f j,3

∣∣∣∣∣εj,3
∣∣∣∣∣
)

(32)

Owing to zj,n(t) ∈ (−1, 1) with n = 1, 2, 3, ∀t ∈ [0,∞),
it holds that 4/((1 − z2j,1)(ρ

L
j,1 + ρUj,1)) > 0, 2/((1 −

z2j,2)dijρj,2) > 0, and 2/((1 − z2j,3)ρj,3) > 0. Thus, εj,1(t),
εj,2(t) and εj,3(t) are bounded for all t ∈ [0,∞) such that

|εj,1 (t)| ⩽ εj,1 = max

{
|εj,1 (0)| ,

f j,1
kj,1

}

|εj,2 (t)| ⩽ εj,2 = max

{
|εj,2 (0)| ,

f j,2
kj,2

}

|εj,3 (t)| ⩽ εj,3 = max

{
|εj,3 (0)| ,

f j,3
kj,3

}
.

(33)

From (12)-(14) and (33), it can deduce the boundedness of
νj,ν(t), ωj,ν(t), ν̇j,ν(t) and ω̇j,ν(t) for all t ∈ [0,∞).

step 2:Consider the following Lyapunov function for all t ∈
[0,∞).

V2 (t) =
1

2

(
1

σj,1
ε2j,4 (t) +

1

σj,2
ε2j,5 (t)

)
+

1

2
ρ̃2jνk +

1

2
ρ̃2jωk +

1

2
ζ̃2jνk +

1

2
ζ̃2jωk

(34)

The time derivation of (34) is

V̇2 =
2εj,4(

1− z2j,4
)
σj,4

żj,4 +
2εj,5(

1− z2j,5
)
σj,5

żj,5

+ ρ̃jνk ˙̃ρjνk + ρ̃jωk
˙̃ρjωk + ζ̃jνk

˙̃
ζjνk + ζ̃jωk

˙̃
ζjωk

(35)

Substituting (27) and (28) into (35) yields

V̇2 =
2εj,4(

1− z2j,4
)
ρj,4

[
(
τfj,r + τfj,l

)
+
fj,4
σj,1

]

+
2εj,5(

1− z2j,5
)
ρj,5

[
(
τfj,r − τfj,l

)
+
fj,5
σj,2

]

+ ρ̃jνk ˙̃ρjνk + ρ̃jωk
˙̃ρjωk + ζ̃jνk

˙̃
ζjνk + ζ̃jωk

˙̃
ζjωk

(36)



Substituting (3) and (4) into (36) yields

V̇2 =
2εj,4(

1− z2j,4
)
ρj,4

[(ρjνk(t)τj,r(t) + ζjνk(t))

+ (ρjωk(t)τj,l(t) + ζjωk(t)) + (αjν + αjω)

− (αjν + αjω) +
fj,4
σj,1

]

+
2εj,5(

1− z2j,5
)
ρj,5

[(ρjνk(t)τj,r(t) + ζjνk(t))

− (ρjωk(t)τj,l(t) + ζjωk(t)) + (αjν − αjω)

− (αjν − αjω) +
fj,5
σj,2

]

+ ρ̃jνk ˙̃ρiνk + ρ̃jωk
˙̃ρjωk + ζ̃jνk

˙̃
ζjνk + ζ̃jωk

˙̃
ζjωk

(37)

According to (21) and (22), there are the following inequalities

[
2εj,4(

1− z2j,4
)
ρj,4

+
2εj,5(

1− z2j,5
)
ρj,5

]ρjνkτj,r

≤ −[
2εj,4(

1− z2j,4
)
ρj,4

+
2εj,5(

1− z2j,5
)
ρj,5

]ρjνk

[
2εj,4

(1−z2
j,4)ρj,4

+
2εj,5

(1−z2
j,5)ρj,5

]ĝ21α
2
jν√

[
2εj,4

(1−z2
j,4)ρj,4

+
2εj,5

(1−z2
j,5)ρj,5

]2ĝ21α
2
jν + σ2

1

≤ −ρjνk
[

2εj,4

(1−z2
j,4)ρj,4

+
2εj,5

(1−z2
j,5)ρj,5

]2ĝ21α
2
jν√

[
2εj,4

(1−z2
j,4)ρj,4

+
2εj,5

(1−z2
j,5)ρj,5

]2ĝ21α
2
jν + σ2

1

≤ σ1ρjνk − ρjνk[
2εj,4(

1− z2j,4
)
ρj,4

+
2εj,5(

1− z2j,5
)
ρj,5

]ĝ1αjν

(38)

[
2εj,4(

1− z2j,4
)
ρj,4

− 2εj,5(
1− z2j,5

)
ρj,5

]ρjωkτj,l

≤ −[
2εj,4(

1− z2j,4
)
ρj,4

− 2εj,5(
1− z2j,5

)
ρj,5

]ρjωk

[
2εj,4

(1−z2
j,4)ρj,4

− 2εj,5

(1−z2
j,5)ρj,5

]ĝ22α
2
jν√

[
2εj,4

(1−z2
j,4)ρj,4

− 2εj,5

(1−z2
j,5)ρj,5

]2ĝ22α
2
jν + σ2

1

≤ −ρjωk

[
2εj,4

(1−z2
j,4)ρj,4

− 2εj,5

(1−z2
j,5)ρj,5

]2ĝ22α
2
jω√

[
2εj,4

(1−z2
j,4)ρj,4

− 2εj,5

(1−z2
j,5)ρj,5

]2ĝ22α
2
jω + σ2

1

≤ σ2ρjωk − ρjωk[
2εj,4(

1− z2j,4
)
ρj,4

− 2εj,5(
1− z2j,5

)
ρj,5

]ĝ2αjω

(39)

where σ1 > 0, σ2 > 0 are positive constants, ĝ1 = 1
ρ̂jνk

,
ĝ2 = 1

ρ̂jωk
.

Substituting (15)-(20) and (38)-(39) into (37) yields

V̇2 ≤ − 2kj,4

ρj,4
(
1− z2j,4

)ε2j,4 − 2kj,5

ρj,5
(
1− z2j,5

)ε2j,5
+ λ1ζ̃jνk ζ̂jνk + λ2ζ̃jωk ζ̂jωk + σ1ρ̃jνkρ̂jνk

+ σ2ρ̃jωkρ̂jωk +
2kj,4

ρj,4
(
1− z2j,4

) fj,4
σj,1

+
2kj,5

ρj,5
(
1− z2j,5

) fj,5
σj,2

(40)

The following inequalities hold

λ1ζ̃jνk ζ̂jνk ≤ −λ1
2
ζ̃2jνk +

λ1
2
ζ2jνk (41)

λ2ζ̃jωk ζ̂jωk ≤ −λ2
2
ζ̃2jωk +

λ2
2
ζ2jωk (42)

σ1ρ̃jνkρ̂jνk ≤ −σ1
2
ρ̃2jνk +

σ1
2
ρ2jνk (43)

σ2ρ̃jωkρ̂jωk ≤ −σ2
2
ρ̃2jωk +

σ2
2
ρ2jωk (44)

Substituting (41)-(44) into (40) yields

V̇2 ≤ − 2kj,4

ρj,4
(
1− z2j,4

)ε2j,4 − 2kj,5

ρj,5
(
1− z2j,5

)ε2j,5
− λ1

2
ζ̃2jνk − λ2

2
ζ̃2jωk +

λ1
2
ζ2jνk +

λ2
2
ζ2jωk

− σ1
2
ρ̃2jνk − σ2

2
ρ̃2jωk +

σ1
2
ρ2jνk +

σ2
2
ρ2jωk

+
2kj,4

ρj,4
(
1− z2j,4

) fj,4
σj,1

+
2kj,5

ρj,5
(
1− z2j,5

) fj,5
σj,2

(45)

Owing to zj,n(t) ∈ (−1, 1), ∀t ∈ [0,∞), and the boundedness
of νj,ν(t), ωj,ν(t), ν̇j,ν(t) and ω̇j,ν(t) for all t ∈ [0,∞).
fj,5 and fj,4, are bounded over Ωz. Thus,there are unknown
constants f j,4 > 0 and f j,5 > 0 for all t ∈ [0,∞) satisfying

|fj,4
(
t
)/

σj,1| ⩽ f j,4,

|fj,5
(
t
)/

σj,2| ⩽ f j,5, ∀t ∈
[
0,∞

)
.

(46)

Substituting (46) into (45) yields

V̇2 ≤ − 2kj,4

ρj,4
(
1− z2j,4

)ε2j,4 − 2kj,5

ρj,5
(
1− z2j,5

)ε2j,5
− λ1

2
ζ̃2jνk − λ2

2
ζ̃2jωk +

λ1
2
ζ2jνk +

λ2
2
ζ2jωk

− σ1
2
ρ̃2jνk − σ2

2
ρ̃2jωk +

σ1
2
ρ2jνk +

σ2
2
ρ2jωk

+
2kj,4

ρj,4
(
1− z2j,4

)f j,4 + 2kj,5

ρj,5
(
1− z2j,5

)f j,5
(47)

According to the definition of V2 and (47), the final form of
V̇2 is

V̇2 ≤ −CjV2 +Dj (48)

where,

Cj = min{ 2kj,4

ρj,4
(
1− z2j,4

) , 2kj,4

ρj,4
(
1− z2j,4

) , λ1
2
,
λ2
2
,
σ1
2
,
σ2
2
}



Dj =
λ1
2
ζ2jνk +

λ2
2
ζ2jωk +

σ1
2
ρ2jνk +

σ2
2
ρ2jωk

+
2kj,4

ρj,4
(
1− z2j,4

)f j,4 + 2kj,5

ρj,5
(
1− z2j,5

)f j,5
According to (48), [23] can be concluded that the controlled
multi-incomplete mobile robot system is stable and all signals
are bounded. The boundedness of εj,n, n = 1, . . . , 5 gives

−1 <
e−εj,n − 1

e−εj,n + 1
= zj,n ⩽ zj,n (t) ⩽ zj,n =

eεj,n − 1

eεj,n + 1
< 1

(49)
From the boundedness of εj,1 and (9), we obtain

−ρLj,1 (t) < ej,1 (t) < ρUj,1 (t) , ∀t⩾0. (50)

By applying the conditions (i) and (iii) in (11),it holds that

Rj,m < dij
(
t
)
< Dj , ∀t ⩾ 0 (51)

Hence, the formation control objective (1) is ensured for all
t ⩾ 0. Furthermore, in the absence of any collisions with
obstacles, applying equation (49) results in:

lim
t→∞

|dij (t)− dij,d| < ϵj,1

lim
t→∞

|ψij (t)− ψij,d| < ϵj,2
(52)

where ϵj,1 = max{ρLj,1(∞), ρUj,1(∞)} and ϵj,2 =
max{ρj,2(∞), ρj,2(∞)}. Hence, the formation control objec-
tive (2) is achieved.

Since ψij,d = ψij,d when dj,b > Rj,a and |ψij,d − ψij | <
ρj,2(0) = π ,it holds form Fig.3 that

dj,b = Rj,a −
√
d2ij,d + d2ij − 2dij,ddijcos(ψij,d − ψij)

> Rj,a − dj,a
(53)

Substituting Rj,a = dj,a + Rj,m into (53), we have dj,b >
Rj,m. Therefore, the formation control objective (3) is guar-
anteed for all t ⩾ 0.

Remark 4. As shown in the reference [17], the stability of
formation for a group consisting of N +1 robots, where there
is one leader labeled as i and N followers, can be validated
through the aggregate sum of Lyapunov functions for each
individual j. This is expressed as V =

∑N
j=1 V1 + V2.

IV. CONCLUSIONS

Aiming at the uncertain nonholonomic mobile robot with
limited communication and perception, the connectivity and
obstacle avoidance problem of master-slave formation track-
ing based on specified performance under the presence of
unknown actuator failure is studied. Compared to relevant
literature, this paper’s main contributions include: (1) deriv-
ing nonlinear error surfaces using connectivity-maintaining
and collision-avoiding performance functions for prescribed-
performance-based formation control tracking, without relying
on potential-like functions; and (2) proposing an obstacle
avoidance strategy that maintains connectivity between the
leader and follower while avoiding obstacles in cases of
unknown actuator failure. The corresponding controller and
parameter adaptive law are designed.The theoretical analysis
has been presented for the Lyapunov stability.
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