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Figure 1: We propose a scene agent to synthesize virtual scenes by observing the situated physical environment and the user’s
demand represented by language. The synthesized scenes maintain the affordance of physical objects and maintain the style
described by the user, enhancing users’ sense of security and interactive experience in VR. This technique contributes to
building ubiquitous embodied interfaces for users to conveniently enter the virtual world.

ABSTRACT
Virtual reality (VR) provides an interface to access virtual envi-
ronments anytime and anywhere, allowing us to experience and
interact with an immersive virtual world. It has been widely used in
various fields, such as entertainment, training, and education. How-
ever, the user’s body cannot be separated from the physical world.
When users are immersed in virtual scenes, they encounter safety
and immersion issues caused by physical objects in the surrounding
environment. Although virtual scene synthesis has attracted wide-
spread attention, many popular methods are limited to generating
purely virtual scenes independent of the physical environment or
simply mapping all physical objects as obstacles. To this end, we
propose a scene agent that synthesizes situated 3D virtual scenes
as a kind of ubiquitous embodied interface in VR for users. The
scene agent synthesizes scenes by perceiving the user’s physical
environment as well as inferring the user’s demands. The synthe-
sized scenes maintain the affordances of the physical environment,
enabling immersive users to interact with the physical environ-
ment and improving the user’s sense of security. Meanwhile, the
synthesized scenes maintain the style described by the user, im-
proving the user’s immersion. The comparison results show that
the proposed scene agent can synthesize virtual scenes with better
affordance maintenance, scene diversity, style maintenance, and 3D
intersection over union (3D IoU) compared to state-of-the-art base-
line methods. To the best of our knowledge, this is the first work
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that achieves in situ scene synthesis with virtual-real affordance
consistency and user demand.

CCS CONCEPTS
• Human-centered computing→Mixed / augmented reality;
Virtual reality.

KEYWORDS
Scene synthesis, affordance, user demand, large language model.

1 INTRODUCTION
VR has the potential to enhance the physical environment, extend-
ing the boundaries of the physical world [22] and providing a highly
interactive and immersive environment for users in a variety of
applications (e.g., games, training, and education). This enables
users to experience a variety of environments from a single physi-
cal location, thereby alleviating the need to travel, reducing carbon
emissions, enhancing productivity, and potentially augmenting
overall life satisfaction [32, 53]. For example, many works have
provided virtual offices for knowledge workers [3, 23] to improve
their working experience. Most of the current virtual scenes are set
manually by professionals. Fortunately, recent progress in scene
synthesis makes it possible to acquire low-cost and high-quality
virtual scenes. The 3D models-based method is an efficient way to
synthesize scenes [35, 61] which has a wide range of applications,
from indoor design and games to simulators for embodied artificial
intelligence (AI). However, since human users are always located
in physical environments, an important problem arises in imple-
menting virtual applications: How to acquire virtual scenes that
are consistent with the constraints of physical space?

On the one hand, most VR applications are used in indoor rooms
without enough space. A common risk is that users might hit ob-
jects around them when using VR devices [12, 30]. On the other
hand, physical objects can offer VR users affordances [31, 40, 55]

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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and passive feedback [19, 20, 28, 57] that enhance their experi-
ence and even enhance the interactivity of the virtual environment.
Leveraging the affordances of physical objects could improve user
experience and task performance in VR applications [10, 11, 26, 28].
Therefore, some works synthesize virtual scenes based on physical
environments [9, 56, 59, 65]. However, these works usually adopt
3D models that are consistent with physical objects [56] (e.g., vir-
tual tables for physical tables), reducing the diversity of virtual
scenes. Alternatively, these works may only consider walking ar-
eas [9, 59, 65] while neglecting other interactions between users
and environments.

In the context of situated scene synthesis, the main goal is to
synthesize interactive scenes based on their situated physical envi-
ronments, considering the affordance of the physical objects. When
the user is immersed in the virtual scene, they can also perceive
and utilize the affordance of physical objects, which guarantees a
highly immersive experience for users. At the same time, it is also
necessary to synthesize the virtual scenes that can satisfy users’
demands. Generally, users can be immersed in any virtual scene
they want if the synthesized scenes are unlimited, so understanding
the user’s demand is important for meeting personalized require-
ments. Due to the uncertainty of physical environments and the
various personalized needs of users, a well-situated scene synthesis
solution should not only exploit the physical objects as building
blocks for better physical-virtual consistency but also understand
human users’ demands via efficient interactions, such as natural
language [39, 58].

Therefore, we propose a scene agent, which leverages the large
language model’s ability of information extraction [33] and its prior
knowledge related to scenes [16], that can observe both user de-
mands and the situated physical environments to synthesize virtual
scenes with interactivity, as shown in figure 1. For each physical
object, the scene agent infers the corresponding virtual object by
considering two aspects. One is the affordance similarity between
physical objects and virtual objects. Another is the style similarity
(including place, season, and object) between user demands and vir-
tual objects. Afterward, according to the physical information, the
scene agent synthesizes scenes by translating, rotating, and scaling
virtual objects. The synthesized scene can not only maintain the
same affordances of physical objects but also maintain the scene
style that the user wants.

To the best of our knowledge, this is the first work that synthe-
sizes arbitrary virtual scenes with physical interactivity considering
both the physical environment and the user’s demand. Overall, our
contributions are threefold:

(1) We propose a language model-based 3D scene synthesis
method to extract information of the physical environment,
virtual objects, and the user input text, generating their se-
mantic relations for building the interactive agent system.

(2) We develop a scene agent based on the above method to
perceive the physical affordance and user demand, which can
synthesize interactive virtual scenes for handling physical
constraints and satisfying the user’s personalized demands.

(3) We conduct comparison studies between our method and
three baselines, followed by a perceptual study, to demon-
strate that the proposed scene agent could synthesize better
scenes with affordance maintenance and style maintenance.

2 RELATEDWORK
2.1 3D Scene synthesis
Generative models have contributed to the synthesis of outdoor
3D scenes [63]. However, these generated scenes do not support
human-object interaction. Researchers synthesize indoor 3D scenes
by selecting objects from object datasets and generating layouts
based on procedural modelingwith grammars [34, 47, 50], graph [35,
38, 61, 68], auto-regressive neural networks [52], transformer [46],
and diffusion models [15]. Some methods consider the interaction
between humans and environments, such as human motions[51]
with human-object contact [66] and poses [67]. Affordance could
serve as a bridge to characterize the human-object relations[51].
The aforementioned human-centric scene synthesis methods all
took advantage of the object affordance for human-object interac-
tion. However, these works are based on existing human interaction
actions. In this work, we will synthesize virtual scenes considering
object affordances without human action priors.

2.2 Language-driven 3D Scene synthesis
Language, as an important medium for human-computer inter-
action, has been used for 3D scene synthesis.RoomDreamer [58]
aligned the geometry and texture to the input scene structure and
prompt simultaneously. GAUDI [2] was a generative model that
enabled both unconditional and conditional synthesis including im-
age, text, category, etc. SceneDreamer [8] synthesized unbounded
in-the-wild 3D scenes from 2D images based on the GAN network.
CTRL-ROOM [15] controlled the scene synthesis with a diffusion
model, enabling the change of scenes. However, those synthesized
scenes cannot support immersive interaction in VR. PiGraphs [54]
synthesized human pose priors-based scenes that only included
human action-related objects mentioned in the language specifica-
tions. Chang et al. [4–7] and Ma et al. [39] parsed the input text into
a knowledge tree or graph for synthesis, where the initial scene
could be changed by language. These methods aim at indoor scene
synthesis, and the input texts need explicit instructions and can
only directly specify virtual objects in the database. In this work, we
plan to synthesize both indoor and outdoor virtual scenes without
explicit instructions.

2.3 Situation-aware scene synthesis
Some works synthesize scenes based on the user-situated physical
world. Human-in-loop paradigm-based methods require users to
manually place virtual objects in the positions of corresponding
physical objects [14, 29]. Other methods adopt the auto-generation
paradigm. DreamWalker [65] detected walkable paths and obsta-
cles. The paths are mapped as resembling paths in the virtual scene
and the obstacles as default virtual objects. VRoamer [9] and Sra et
al. [59, 60] extracted walkable areas and physical obstacles accord-
ing to the scanned physical environment. VRoamer generated cor-
ridors and doors for walkable areas while bricks or spikes for obsta-
cles. Sra et al. [59, 60] generated boundary elements in the boundary
of the walkable areas, where several special objects (e.g.chairs) were
mapped as virtual counterparts to leverage the affordance of the
physical objects.
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Those methods only consider the walkable areas and several
special objects, leading to a lack of interactivity in the synthesized
3D scene. Shapira [55] proposed a method that first placed spe-
cialized 3D object models in the scene and then optimized their
arrangement based on planar areas without considering the inter-
activity. Our goal is to generate arbitrary scenes which have the
same interactivity as the physical world.

3 PRELIMINARY
In this section, we introduce the concepts and symbols adopted.
Scene presentation. A physical environment S𝑝ℎ𝑦 including all 𝑁

physical object information
{
𝑜
𝑝ℎ𝑦
𝑛

}𝑁
𝑛=1
∈ O𝑝ℎ𝑦 , where each tuple

𝑜
𝑝ℎ𝑦
𝑛 denotes the information of a physical object. A synthesized
virtual scene S𝑣𝑖𝑟 including a basic scene background 𝑏𝑣𝑖𝑟𝑖 and all
𝑀 virtual object information

{
𝑜𝑣𝑖𝑟𝑚

}𝑀
𝑚=1 ∈ O

𝑣𝑖𝑟 , where each tuple

𝑜𝑣𝑖𝑟𝑚 denotes the information of a virtual object. B =

{
𝑏𝑣𝑖𝑟
ℎ

}𝐻
ℎ=1

denotes all 𝐻 basic scenes. For a physical object 𝑜𝑝ℎ𝑦
𝑖

or a virtual
object 𝑜𝑣𝑖𝑟

𝑖
, it contains attribute information {𝑐𝑖 , 𝑑𝑖 , 𝑡𝑖 , 𝑟𝑖 , 𝑠𝑖 }: cate-

gory 𝑐𝑖 , description 𝑑𝑖 (can be empty), bounding box location 𝑡𝑖 =
(𝑡𝑥𝑖 , 𝑡𝑦𝑖 , 𝑡𝑧𝑖 ) ∈ R3, bounding box rotation 𝑟𝑖 = (𝑟𝑤𝑖 , 𝑟𝑥𝑖 , 𝑟𝑦𝑖 , 𝑟𝑧𝑖 ) ∈
R4, and bounding box size 𝑠𝑖 = (𝑠𝑥𝑖 , 𝑠𝑦𝑖 , 𝑠𝑧𝑖 ) ∈ R3.

Affordance. Affordance was first introduced by psychologist
Gibson [18], which represents the action possibilities of an object
that are perceivable by an actor [25]. A = {𝑎𝑘 }𝐾𝑘=1 is a tuple of 𝐾
kind of affordances of a object, where each tuple𝑎𝑘 denotes one kind
of affordance. Based on previous works [25, 37], we consider ten
different affordances for the objects, includingwalkable, supportable,
sitable, drinkable, eatable, graspable, breakable, dangerous, moveable,
obstructive.

Virtual place type Theoretically, the types of virtual places can
be unlimited. We ask GPT-4 [45] to summarize P virtual place types
that people want to go to. We find that when P>20, the types are
repeated. Therefore, we select 20 types: Library, Conservatory, Spa,
Lounge, Observatory, Suite, Monastery, Studio, Bookstore, Aquarium,
Beach, Forest, Garden, Vineyard, Yacht, Rooftop, Treehouse, Reef, Peak,
Rainforest. E =

{
𝑒𝑝
}𝑃
𝑝=1 denotes the tuple of 𝑃 kinds of virtual

places, where 𝑒𝑝 denotes the 𝑝-th virtual place.
Season Some objects have obvious seasonality, such as a bench

covered by snow. We consider the probability that each object can
appear in each reason including spring, summer, autumn, winter.
T =

{
𝑡 𝑗
} 𝐽
𝑗=1 denotes the tuple of 𝐽 kinds of seasons, where 𝑡 𝑗

denotes the 𝑗-th season.
User demand Users could express what kind of scene they want

to go by a sentence 𝑢. Speech is also compatible as it can be con-
verted to texts by speech-to-text techniques. In this paper, we ex-
tract season 𝑡𝑢𝑠𝑒𝑟 , place type 𝑒𝑢𝑠𝑒𝑟 , and possible objects informa-

tion from user demand. O𝑢𝑠𝑒𝑟 =

{
𝑜𝑢𝑠𝑒𝑟𝑞

}𝑄
𝑞=1

denotes a tuple of 𝑄

kinds of objects mentioned. 𝑜𝑢𝑠𝑒𝑟𝑞 only includes the category 𝑐 .

4 SYNTHESIS METHOD
Our proposed scene agent synthesizes scenes by observing the
situated physical environment and the user’s demand. The physical

environment information could be obtained via volumetric instance-
aware semantics mapping methods from RGB-D information[21,
24]. Our goal is to synthesize user-expected virtual scenes. These
scenes maintain the affordances of the physical environment and
maintain the style that the user demands. Formally, guided by a
physical environment S𝑝ℎ𝑦 and a user demand 𝑢, the proposed
scene agent synthesizes scenes S𝑣𝑖𝑟 ∼ P(S𝑣𝑖𝑟 |S𝑝ℎ𝑦, 𝑢).

Synthesizing a virtual scene with one sentence is a hefty task.
Therefore, apart from plain text from the user, we also consider
information about the physical environment and virtual objects to
solve this problem. The first step is to understand the user’s demand.
At the same time, we infer the affordance of the situated physical
environment. In addition, we infer the features of all virtual objects.
Finally, we synthesize the whole virtual scene based on all the
results of the first three steps. The whole scene synthesis pipeline
is shown in figure 2 and the algorithm is outlined in Algorithm 1.

Algorithm 1 In situ scene synthesis
Input: 𝑢: user’s input; A: all affordances; E: all virtual places;
T : all seasons; O𝑣𝑖𝑟 : all virtual objects, 𝑜𝑣𝑖𝑟𝑚 ∈ O𝑣𝑖𝑟 ; O𝑝ℎ𝑦 :
all physical objects, 𝑜𝑝ℎ𝑦𝑛 ∈ O𝑝ℎ𝑦 ; 𝐸𝑢𝑠𝑒𝑟 (𝑒𝑢𝑠𝑒𝑟 , 𝑡𝑢𝑠𝑒𝑟 ,O𝑢𝑠𝑒𝑟 |𝑢):
text extractor; 𝐿(·, ·): language similarity; 𝐴(𝑉A |A,O): affor-
dance predictor; 𝐸 (𝑉E |O): place predictor; 𝑇 (𝑉T |O): season
predictor.

Output: S𝑣𝑖𝑟 : the synthesized virtual scene corresponding with
the physical environment S𝑝ℎ𝑦 .
//* User demand inference.*//

1: {𝑒𝑢𝑠𝑒𝑟 , 𝑡𝑢𝑠𝑒𝑟 ,O𝑢𝑠𝑒𝑟 } ∼ 𝐸𝑢𝑠𝑒𝑟 (·|𝑢)
2: 𝑉B𝑢𝑠𝑒𝑟 ← 𝐿(𝑒𝑢𝑠𝑒𝑟 ,B), 𝑉B𝑢𝑠𝑒𝑟 ∈ R𝐻
3: 𝑉E𝑢𝑠𝑒𝑟 ← 𝐿(𝑒𝑢𝑠𝑒𝑟 , E), 𝑉E𝑢𝑠𝑒𝑟 ∈ R𝑃
4: 𝑉T𝑢𝑠𝑒𝑟 ← 𝐿(𝑡𝑢𝑠𝑒𝑟 ,T) , 𝑉T𝑢𝑠𝑒𝑟 ∈ R𝐽
5: for 𝑞 = 1 : 𝑄 do
6: 𝑉𝑜𝑢𝑠𝑒𝑟𝑞

← 𝐿(𝑜𝑢𝑠𝑒𝑟𝑞 ,O𝑣𝑖𝑟 ), 𝑜𝑢𝑠𝑒𝑟𝑞 ∈ O𝑢𝑠𝑒𝑟 , 𝑉𝑜𝑢𝑠𝑒𝑟𝑞
∈ R𝑀

7: end for
8: 𝑉𝑂𝑢𝑠𝑒𝑟

𝑄
= [𝑉𝑜𝑢𝑠𝑒𝑟1

,𝑉𝑜𝑢𝑠𝑒𝑟1
, ...,𝑉𝑜𝑢𝑠𝑒𝑟𝑞

], 𝑉𝑂𝑢𝑠𝑒𝑟
𝑄
∈ R𝑄×𝑀

9: 𝑉O𝑢𝑠𝑒𝑟 = max𝑖 𝑉𝑂𝑢𝑠𝑒𝑟
𝑄
[𝑖, 𝑗], 𝑉O𝑢𝑠𝑒𝑟 ∈ R𝑀

//* Physical affordance inference.*//
10: for 𝑛 = 1 : 𝑁 do
11: 𝑉A𝑝ℎ𝑦

𝑛
∼ 𝐴(·|A, 𝑐𝑛, 𝑠𝑛), {𝑐𝑛, 𝑠𝑛} ∈ 𝑜𝑝ℎ𝑦𝑛 , 𝑉A𝑝ℎ𝑦

𝑛
∈ R𝐾

12: end for
//* Virtual object-based inference.*//

13: for𝑚 = 1 : 𝑀 do
14: 𝑉A𝑣𝑖𝑟

𝑚
∼ 𝐴(·|A, 𝑐𝑚, 𝑠𝑚), {𝑐𝑚, 𝑠𝑚} ∈ 𝑜𝑣𝑖𝑟𝑚 , 𝑉A𝑣𝑖𝑟

𝑚
∈ R𝐾

15: 𝑉E𝑣𝑖𝑟𝑚
∼ 𝐸 (·|E, 𝑐𝑚, 𝑑𝑚), {𝑐𝑚, 𝑑𝑚} ∈ 𝑜𝑣𝑖𝑟𝑚 , 𝑉E𝑣𝑖𝑟𝑚

∈ R𝑃

16: 𝑉T𝑣𝑖𝑟
𝑚
∼ 𝑇 (·|T , 𝑐𝑚, 𝑑𝑚), {𝑐𝑚, 𝑑𝑚} ∈ 𝑜𝑣𝑖𝑟𝑚 , 𝑉T𝑣𝑖𝑟

𝑚
∈ R𝐽

17: end for
//* Whole scene synthesis.*//

18: 𝑏𝑣𝑖𝑟
𝑖
← argmax𝑉B𝑢𝑠𝑒𝑟

19: for 𝑛 = 1 : 𝑁 do
20: 𝑜𝑣𝑖𝑟𝑛 ← argmax𝑜𝑣𝑖𝑟𝑚 ∈O𝑣𝑖𝑟 (𝐶 (𝑉A𝑝ℎ𝑦

𝑛
,𝑉A𝑣𝑖𝑟

𝑚
) ∗

𝐶 (𝑉E𝑢𝑠𝑒𝑟 ,𝑉E𝑣𝑖𝑟𝑚
) ∗ 𝐶 (𝑉T𝑢𝑠𝑒𝑟 ,𝑉T𝑣𝑖𝑟

𝑚
) ∗ 𝑆 (𝑜𝑝ℎ𝑦𝑛 , 𝑜𝑣𝑖𝑟𝑚 ) ∗

(𝑉O𝑢𝑠𝑒𝑟 [𝑚]))
21: {𝑡𝑛, 𝑟𝑛, 𝑠𝑛} of 𝑜𝑣𝑖𝑟𝑛 ← 𝐼𝑜𝑈 (𝑜𝑣𝑖𝑟𝑛 |𝑜

𝑝ℎ𝑦
𝑛 )

22: end for
23: S𝑣𝑖𝑟 ← Load 𝑏𝑣𝑖𝑟

𝑖
and all

{
𝑜𝑣𝑖𝑟𝑛

}𝑁
𝑛=1
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Figure 2: The synthesis algorithm. First, the LLM extracts the place, season, and objects mentioned by the user, which are used
to predict the similarity with all places, seasons, and virtual objects via a language similarity module. Moreover, the affordance
confidence of each physical object as well as the attribute likelihoods of virtual objects are predicted by the LLM. Next, a cosine
similarity module is used to calculate the three similarities: the affordance similarity between each physical object and all
virtual objects; the place and season similarities between the virtual objects and the user demand. A size similarity module
calculates the size similarity between each physical object and all virtual objects. Finally, the corresponding virtual objects with
the highest likelihood for each physical object and the basic scene with the highest likelihood are used for scene synthesis. ⊗
means the element-wise multiplication of the vectors of the likelihoods.

4.1 User demand inference
We propose a user text extractor 𝐸𝑢𝑠𝑒𝑟 (𝑒𝑢𝑠𝑒𝑟 , 𝑡𝑢𝑠𝑒𝑟 ,O𝑢𝑠𝑒𝑟 |𝑢) based
on a large language model (LLM) model which infer the place 𝑒𝑢𝑠𝑒𝑟 ,
season 𝑡𝑢𝑠𝑒𝑟 , and possible objects information O𝑢𝑠𝑒𝑟 according to
the prompt with the user demand 𝑢. 𝑒𝑢𝑠𝑒𝑟 , 𝑡𝑢𝑠𝑒𝑟 and O𝑢𝑠𝑒𝑟 can be
empty. More details about 𝐸𝑢𝑠𝑒𝑟 (𝑒𝑢𝑠𝑒𝑟 , 𝑡𝑢𝑠𝑒𝑟 ,O𝑢𝑠𝑒𝑟 |𝑢) can be found
in the Appendix.

We adopt the similarity predictor 𝐿(·, ·) [17] to infer: the scene
background similarity 𝑉B𝑢𝑠𝑒𝑟 ∈ R𝐻 between user mentioned place
𝑒𝑢𝑠𝑒𝑟 and each basic scene 𝑏𝑣𝑖𝑟

𝑖
in B by 𝐿(𝑒𝑢𝑠𝑒𝑟 ,B); the similarity

𝑉E𝑢𝑠𝑒𝑟 ∈ R𝑃 between user mentioned place 𝑒𝑢𝑠𝑒𝑟 and each place
𝑒𝑘 in E by 𝐿(𝑒𝑢𝑠𝑒𝑟 , E); the similarity 𝑉T𝑢𝑠𝑒𝑟 ∈ R𝐽 between user
mentioned season 𝑡𝑢𝑠𝑒𝑟 and each season 𝑡𝑘 in E by 𝐿(𝑡𝑢𝑠𝑒𝑟 ,T);
the similarity 𝑉O𝑢𝑠𝑒𝑟 ∈ R𝑀 between all virtual objects O𝑣𝑖𝑟 and
user mentioned objects O𝑢𝑠𝑒𝑟 . 𝑉O𝑢𝑠𝑒𝑟 represents the maximum
value of similarity between each virtual object and all objects
mentioned by the user. 𝑉O𝑢𝑠𝑒𝑟 = max𝑖 𝑉𝑂𝑢𝑠𝑒𝑟

𝑄
[𝑖, 𝑗] and 𝑉𝑂𝑢𝑠𝑒𝑟

𝑄
=

[𝑉𝑜𝑢𝑠𝑒𝑟1
,𝑉𝑜𝑢𝑠𝑒𝑟2

, ...,𝑉𝑜𝑢𝑠𝑒𝑟𝑞
], 𝑉𝑂𝑢𝑠𝑒𝑟

𝑄
∈ R𝑄×𝑀 and 𝑉𝑂𝑢𝑠𝑒𝑟

𝑄
is the sim-

ilarity matrix of all virtual objects and all objects mentioned in
user text 𝑢. Specially, if 𝑒𝑢𝑠𝑒𝑟 , 𝑡𝑢𝑠𝑒𝑟 or O𝑢𝑠𝑒𝑟 is empty, all values of
corresponding similarity in 𝑉B𝑢𝑠𝑒𝑟 , 𝑉E𝑢𝑠𝑒𝑟 , 𝑉T𝑢𝑠𝑒𝑟 or 𝑉O𝑢𝑠𝑒𝑟 are 1.

4.2 Physics-based inference
For synthesizing scenes where users could take advantage of phys-
ical objects’ affordance, the affordance of the virtual object should

be aligned with that of the corresponding physical object. There-
fore, we propose an affordance LLM-based predictor 𝐴(𝑉A |A,O)
to infer the confidence of each affordance of an object. For the
𝑛-th physical object, the affordance confidence𝑉A𝑝ℎ𝑦

𝑛
can be got by

𝐴(·|A, 𝑐𝑛, 𝑠𝑛), {𝑐𝑛, 𝑠𝑛} ∈ 𝑜𝑝ℎ𝑦𝑛 according to the prompt with the cat-
egory 𝑐𝑛 and size 𝑠𝑛 of the 𝑛-th physical object and the affordance
listA. All confidences are represented by a one-dimensional vector.
More details about 𝐴(𝑉A |A,O) can be found in the Appendix.

4.3 Virtual object-based inference
Weuse the affordance predictor𝐴(𝑉A |A,O) to infer the confidence
of each affordance of a virtual object. For the𝑚-th virtual object, the
affordance confidence𝑉A𝑣𝑖𝑟

𝑚
can be got by𝐴(·|A, 𝑐𝑚, 𝑠𝑚), {𝑐𝑚, 𝑠𝑚} ∈

𝑜𝑣𝑖𝑟𝑚 according to the prompt with its category 𝑐𝑚 , its size 𝑠𝑚 and
the affordance list A. Additionally, we propose a place predictor
𝐸 (𝑉E |E,O) based on the LLM to infer the likelihood of a virtual
object appearing in each virtual place. For the𝑚-th virtual object,
its likelihood of appearing in each place 𝐸 (𝑉E |E,O) can be got by
𝐸 (·|E, 𝑐𝑚, 𝑠𝑚, 𝑑𝑚), {𝑐𝑚, 𝑑𝑚} ∈ 𝑜𝑣𝑖𝑟𝑚 according to the prompt with
its category 𝑐𝑚 and description 𝑑𝑚 . Moreover, we propose a season
predictor 𝑇 (𝑉T |T ,O) based on the LLM to infer the likelihood of
a virtual object appearing in each season. For𝑚-th virtual object,
the likelihood of it appearing in each season 𝑉T𝑣𝑖𝑟

𝑚
can be got by

𝑇 (·|T , 𝑐𝑚, 𝑠𝑚), {𝑐𝑚, 𝑠𝑚} ∈ 𝑜𝑣𝑖𝑟𝑚 according to the prompt with its
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category 𝑐𝑚 and description 𝑑𝑚 . Similarities, confidences, and like-
lihoods are represented by one-dimensional vectors. More details
can be found in the Appendix.

4.4 Scene synthesis
As shown in Algorithm 1, after getting the results of Section 4.1, 4.2
and 4.3, the whole virtual scene can be synthesized. First, we get
the basic scene 𝑏𝑣𝑖𝑟

𝑖
corresponding to the maximum value in the

basic scene likelihood𝑉B𝑢𝑠𝑒𝑟 . We then get the corresponding virtual
object 𝑜𝑣𝑖𝑟𝑛 for each physical object through the maximum value
considering two aspects. One is the affordance and size similarities
between virtual objects and physical objects. Another is the place,
season, and object similarities between virtual objects and the user
demand. We propose a module 𝐶 (𝑉𝑖 ,𝑉𝑗 ) to calculate the cosine
similarity of two vectors and a module 𝑆 (𝑜𝑖 , 𝑜 𝑗 ) to calculate the
size similarity of virtual objects and physical objects. More details
about the 𝑆 (𝑜𝑖 , 𝑜 𝑗 ) can be found in the Appendix. Additionally, we
propose an adjusted module 𝐼𝑜𝑈 (𝑜𝑣𝑖𝑟 |𝑜𝑝ℎ𝑦) to get the position,
rotation, and size {𝑡𝑛, 𝑟𝑛, 𝑠𝑛} of each virtual object corresponding
to the physical object. 𝐼𝑜𝑈 (𝑜𝑣𝑖𝑟 |𝑜𝑝ℎ𝑦) minimizes the value of 3D
Intersection over Union (IoU) between the virtual object 𝑜𝑣𝑖𝑟𝑛 and
the physical object 𝑜𝑝ℎ𝑦𝑛 by adjusting the position, rotation, and
size of the virtual object. Finally, we load the selected basic scene
𝑏𝑣𝑖𝑟
𝑖

and all selected virtual objects
{
𝑜𝑣𝑖𝑟𝑛

}𝑁
𝑛=1 to get the synthesized

scene S𝑣𝑖𝑟 . More details can be found in the Appendix.

5 EXPERIMENT SETUP
5.1 Dataset and Implementation Details
To evaluate the synthesis performance of the proposed method,
we use 12 indoor scenes from [13] and 18 scenes from [27] as the
physical room input. For each physical room, 12 sentences of user
demand are used for scene synthesis. In total, (12 + 18) ∗ 12 =

360 synthesized scenes are used for evaluation in the experiments.
In addition, a total of 350 virtual objects from three packages in
the unity asset store [1, 42, 43] are organized for scene synthesis.
Figure 3 demonstrates several synthesized scenes.

5.2 Baselines
We compare the proposed method with three typical baselines:
LLM, Semantics, and VRoamer-based methods. Similar to Feng’s
work [16], the LLM-based method predicts the corresponding vir-
tual object for each physical object using its information as the
prompt. Similar to the methods built-in commercial head-mounted
displays [41, 49] which deploy the virtual objects with the same
category of physical objects, the Semantics-based method predicts
the corresponding virtual object for each physical object based on
the language similarity between the virtual and physical objects.
VRoamer-based method [9] synthesizes the scene by using virtual
objects with obstructive affordance. In our VRoamer-based baseline,
the virtual objects with a 1.0 confidence of obstructive affordance
are randomly used to synthesize the scene. In addition, LLM-based,
Semantics-based, and VRoamer-based without (w/o) size (LLMw/o
size, Semantics w/o size, VRoamer w/o size) or with size (LLM
with size, Semantics with size, VRoamer with size) constraints

respectively are compared. Figure 4 demonstrates examples syn-
thesized by different methods. Please find more details about the
baselines in the Appendix.

Table 1: Results of quantitative comparison on SceneNN
dataset.

Methods KL Div.(↓)SD (↑)Sty. Sim.(↑) 3D IoU (↑)
w/ scalew/o scale

LLM w/o size 0.198 0.134 0.550 0.362 0.114
LLM with size 0.748 0.218 0.554 0.705 0.348

Semantics w/o size 0.149 0.319 0.500 0.486 0.173
Semantics with size 0.217 0.361 0.512 0.743 0.356
VRoamer w/o size 0.455 0.134 0.571 0.349 0.109
VRoamer with size 0.327 0.184 0.568 0.660 0.322

Ours 0.027 0.386 0.763 0.858 0.427

Table 2: Results of quantitative comparison on ProcTHOR
dataset.

Methods KL Div. (↓)SD (↑)Sty. Sim.(↑) 3D IoU (↑)
w/ scalew/o scale

LLM w/o size 1.057 0.168 0.533 0.208 0.057
LLM with size 0.364 0.311 0.542 0.620 0.302

Semantics w/o size 0.206 0.493 0.513 0.409 0.148
Semantics with size 0.033 0.545 0.521 0.684 0.338
VRoamer w/o size 1.196 0.207 0.578 0.183 0.051
VRoamer with size 0.854 0.246 0.570 0.381 0.180

Ours 0.042 0.618 0.749 0.729 0.368

5.3 Quantitative evaluation
For indoor scene synthesis, Kullback-Leibler (KL) Divergence be-
tween the category distribution of predicted and ground truth
scenes and the FID scores of specific projection [16, 48, 52] are
usually adopted as evaluation metrics. Our approach synthesizes
different scenes without ground truth rather than indoor scenes,
leading to the above two metrics are not suitable for evaluating our
approach. One of our goals is to synthesize scenes with the same
affordance as physical environments. Furthermore, our approach is
expected to synthesize scenes containing different types of virtual
objects as in physical environments. Therefore, we measure the
affordance maintenance and scene diversity of the synthesized
scenes. In addition, we measure style similarity between the vir-
tual objects in the synthesized scenes and the user demand and the
3D intersection over union (IoU) between the physical objects
and the corresponding virtual objects. Table 1 and Table 2 show
the comparison results compared with six baselines on SceneNN
dataset [27] and ProcTHOR dataset [13].

5.3.1 Affordance maintenance. We measure the affordance mainte-
nance via KL Divergence between the affordance class distribution
of the virtual objects and the affordance class distribution of the
physical objects. The results show that the objects in the scene
synthesized by our method have more consistent affordances with
physical objects than the baselines.

5.3.2 Scene diversity. We measure the scene diversity (SD) via the
number of object type distances between the types of objects in
synthesized scenes and in physical environments.

𝑆𝐷 = 1 −
��𝑁𝑠𝑦𝑛 − 𝑁𝑝ℎ𝑦 ��

𝑁𝑝ℎ𝑦
(1)
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Figure 3: The examples of the synthesized scenes of our method.
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Figure 4: The examples of the synthesized scenes of four methods.

where𝑁𝑠𝑦𝑛 means the number of types of objects in the synthesized
scenes and 𝑁𝑝ℎ𝑦 means that in the physical environments. The
bigger value of SD means that synthesized scenes and physical
environments have a similar number of object types. The results
show that the scenes synthesized by ourmethod have amore similar
number of object types to the physical environments compared
with the baselines. That means scenes synthesized by our method
have a more realistic scene diversity.

5.3.3 Style similarity. We hope the style of virtual objects can meet
the user’s demands. Therefore, we measure the style similarity (Sty.
Sim.) between virtual objects in synthesized scenes and user input.

𝑆𝑡𝑦. 𝑆𝑖𝑚. = 𝑤1 ∗𝐴𝑣𝑒𝑟𝑎𝑔𝑒 (
𝑁∑︁
𝑛=1
(𝑉𝐵𝑢𝑠𝑒𝑟 [𝑖𝑛𝑑_𝑚] ∗𝑉𝐸𝑣𝑖𝑟𝑛

[𝑖𝑛𝑑_𝑚]))︸                                                        ︷︷                                                        ︸
𝑠𝑐𝑒𝑛𝑒 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦

+𝑤2 ∗𝐴𝑣𝑒𝑟𝑎𝑔𝑒 (
𝑁∑︁
𝑛=1

𝐶 (𝑉T𝑢𝑠𝑒𝑟 ,𝑉𝑇 𝑣𝑖𝑟
𝑖𝑛𝑑_𝑛
)︸                                   ︷︷                                   ︸

𝑠𝑒𝑎𝑠𝑜𝑛 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦

) +𝑤3 ∗𝐴𝑣𝑒𝑟𝑎𝑔𝑒 (
𝑁∑︁
𝑛=1

𝑉O𝑢𝑠𝑒𝑟
𝑖𝑛𝑑_𝑛
)︸                      ︷︷                      ︸

𝑜𝑏 𝑗𝑒𝑐𝑡 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦

)

(2)
where𝑤1 =

1
3 ,𝑤2 =

1
3 , and𝑤3 =

1
3 are the weights of the scene sim-

ilarity, season similarity, and object similarity. 𝑖𝑛𝑑_𝑚 is the index
satisfying𝑉𝐵𝑢𝑠𝑒𝑟 [𝑖𝑛𝑑_𝑚] = argmax(𝑉𝐵𝑢𝑠𝑒𝑟 ).𝑉𝐵𝑢𝑠𝑒𝑟 [𝑖𝑛𝑑_𝑚] means
the 𝑖𝑛𝑑_𝑚-th scene background that best matches user demand.
𝑉𝐸𝑣𝑖𝑟𝑛

[𝑖𝑛𝑑_𝑚] means the likelihood of the 𝑛-th object appearing
in the 𝑖𝑛𝑑_𝑚-th scene. 𝑖𝑛𝑑_𝑛 is the index of virtual objects corre-
sponding to the 𝑛-th physical objects.𝐶 (𝑉T𝑢𝑠𝑒𝑟 ,𝑉𝑇 𝑣𝑖𝑟

𝑖𝑛𝑑_𝑛
) means the

similarity between the season likelihood of 𝑖𝑛𝑑_𝑛-th virtual object
matching the seasons mentioned by the users in their demand 𝑢.
𝑉O𝑢𝑠𝑒𝑟

𝑖𝑛𝑑_𝑛
means the likelihood of the 𝑖𝑛𝑑_𝑛-th virtual objects match-

ing the objects mentioned in the user demand 𝑢. The results show
that the scenes synthesized by our method can better maintain the
style of the scene that the user demands compared to the baselines.

5.3.4 3D IoU. We measure the 3D intersection over union (IoU)
to evaluate the degree of overlap between virtual objects of syn-
thesized scenes and physical objects in physical environments. We
compare all methods in two situations: with (w/) scale and without
(w/o) scale. with (w/) scale means the virtual objects are scaled ac-
cording to the size of the physical objects, while without (w/o) scale
means the virtual objects keep the size of themselves. The scaling

factor is limited to the range from 0.5 to 2 to avoid deforming ob-
jects too much. The results show that the scenes synthesized by
our method have better 3D IoU.

5.4 Qualitative experiment

Figure 5: The result of the perceptual study. (a) The scores
that the synthesized scene matches the user’s description; (b)
Affordance and style maintenance of the synthesized scenes.
(*** means 𝑝 < 0.001.)

We conduct a perceptual study to evaluate the quality of the syn-
thesized scenes as [46]. To this end, we randomly sampled 6 scenes
for evaluation. 10 subjects participated in the study. The results
of LLM-based without size and semantics-based without size have
huge errors. VRoamer-based methods adopt random obstacles to
synthesize scenes, which has poor results. Therefore, we compared
our methods with LLM with size and Semantics with size in this
perceptual study. Participants filled out scores of the following two
questions on a 5-point Likert scale (1 is the least consistent and 5 is
the most consistent) for each scene. A total of 60 sets of data are
collected. Q1: The synthesized scene matches the user’s demands.
Q2: The objects in the synthesized scene maintain affordances to
the objects in the physical room and maintain style consistency.

Figure 5 shows the results of the two questions. General repeated
measures ANOVA tests and paired T-tests with correction, if needed,
are used to analyze the data. There is a significant difference among
the three groups (Q1: 𝐹2,46.439 = 101.876, 𝑝 < 0.001; Q2: 𝐹2,39.627 =
100.338, 𝑝 < 0.001). The scenes synthesized by our method are
significantly better than LLM with size (Q1: 𝑡59 = 12.672, 𝑝 <

0.001, Q2: 𝑡59 = 13.105, 𝑝 < 0.001 ) and Semantics with size (Q1:
𝑡59 = 13.233, 𝑝 < 0.001, Q2: 𝑡59 = 12.624, 𝑝 < 0.001). There is no
significant difference between LLMwith size and Semantics with
size (Q1: 𝑡59 = 1.841, 𝑝 = 0.071, Q2: 𝑡59 = 0.134, 𝑝 = 0.894).



813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

ACM MM, 2024, Melbourne, Australia Anonymous Authors

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Table 3: Ablation results of SceneNN dataset.

affordance place season size object KL Div. (↓) SD (↑) Sty. Sim. (↑) 3D IoU (↑)
w/ scale w/o scale

ours ✓ ✓ ✓ ✓ ✓ 0.027 0.386 0.763 0.858 0.427
w/o affordance ✓ ✓ ✓ ✓ 0.160 0.453 0.803 0.886 0.452

w/o place ✓ ✓ ✓ ✓ 0.110 0.369 0.681 0.892 0.453
w/o season ✓ ✓ ✓ ✓ 0.025 0.386 0.749 0.864 0.434
w/o size ✓ ✓ ✓ ✓ 0.015 0.336 0.695 0.588 0.204
w/o object ✓ ✓ ✓ ✓ 0.024 0.387 0.709 0.859 0.432

Table 4: Ablation results of ProcTHOR dataset.

affordance place season size object KL Div. (↓) SD (↑) Sty. Sim. (↑) 3D IoU (↑)
w/ scale w/o scale

ours ✓ ✓ ✓ ✓ ✓ 0.042 0.618 0.749 0.729 0.368
w/o affordance ✓ ✓ ✓ ✓ 0.159 0.684 0.778 0.759 0.387

w/o place ✓ ✓ ✓ ✓ 0.011 0.526 0.666 0.768 0.409
w/o season ✓ ✓ ✓ ✓ 0.041 0.592 0.736 0.738 0.375
w/o size ✓ ✓ ✓ ✓ 0.049 0.447 0.807 0.437 0.152
w/o object ✓ ✓ ✓ ✓ 0.036 0.618 0.698 0.738 0.376

5.5 Ablation study
We conducted an ablation study to evaluate the effect of each factor.
Table 3 and table 4 show the results of the ablation study. The
results show that without considering affordances, although the
synthesized scenes perform well in terms of scene diversity and
style similarity, they do not maintain the affordances of the physical
environmentwell. If place, season, and object are not considered, the
performance of style similarity will be even worse. If the size is not
considered, the 3D IoU would be relatively poor. In our evaluation,
only some user input texts contain season and object information,
but it still had an impact on the performance. Given that we aim to
synthesize scenes that maintain the physical affordances and style
that meets user demands, it is necessary to consider all factors.

6 DISCUSSION
6.1 Unlimited scenes for any physical

environment.
Our method enables unlimited scene synthesis according to user
demands and physical environments. In particular, if there is no
user input, the method still supports the scene synthesis based on
the physical environment. The sentence of user demand can be
unstructured and arbitrary. It may or may not contain a place, a
season, and user-specified objects. In the future, the user demand
could be inferred by LLM from a simple sentence, such as I want
to rest, according to the user’s preference. Our method enables
the scene synthesis for mixed reality in any physical environment
as ubiquitous embodied interfaces, making it possible for future
applications, such as virtual offices [23].

6.2 LLM-based prediction
Our method demonstrates a possibility for scene synthesis using
the LLM for mixed reality that can be extended in the future. Since
our scene agent predicts object properties, including affordances,
location, and season, based on the LLM, the results are affected by
the inference of the LLM. In the future, more accurate models can
improve the performance of our method. In addition, the prompt
in our method is based on text only. In the future, the multimodel
prompt including images (e.g., images of the virtual objects) could
improve the prediction accuracy.

6.3 Diversity of objects
We collect a total of 350 virtual objects in the experiments. A virtual
object dataset with a large scale helps synthesize scenes with more
styles, to better meet user demands. It can also improve the 3D IoU
and the object affordance similarity between synthesized scenes and
physical environments. In addition, the virtual objects are retrieved
from the dataset in our method, which can also be generated by the
example-based [36, 62] or text-based generation methods [44, 64]
in the future.

6.4 Virtual objects for physical walls
Our proposed method synthesizes scenes with virtual objects. Al-
though our method can add virtual obstacle objects for physical
walls when synthesizing scenes, we found that this is not very
reasonable because the user will be surrounded by obstacles in the
virtual scenes. We hope to develop a virtual scene with a broad view
for users when they are situated in a limited space. In the future,
the corresponding virtual objects for physical walls(e.g., [59]) need
more studies.

7 CONCLUSION
In this paper, we propose a scene agent to synthesize virtual scenes
by observing the situated physical environment and demand of
users, which maintains the physical affordance and user-mentioned
style. The comparison results show that our method could synthe-
size better scenes compared with the baselines. Through the scene
agent, we hope to provide users with a ubiquitous embodied inter-
face, allowing users to access the immersive virtual environment
anytime and anywhere, ensuring security while utilizing the affor-
dance of the physical environment. This can be applied to many
areas, such as virtual offices, education, and games. In the future,
with the advancement of technologies such as large language mod-
els and single object generation, as well as the enrichment of virtual
object datasets, our method has the potential to synthesize better
scenes. Since our method can be extended based on the similarity
of each factor, more factors (e.g., user preferences) can be added to
synthesize better scenarios.
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