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Abstract

One of the most widely used strategies for visual object

detection is based on exhaustive spatial hypothesis search.

While methods like sliding windows have been successful

and effective for many years, they are still brute-force, in-

dependent of the image content and the visual category be-

ing searched. In this paper we present principled sequential

models that accumulate evidence collected at a small set of

image locations in order to detect visual objects effectively.

By formulating sequential search as reinforcement learning

of the search policy (including the stopping condition), our

fully trainable model can explicitly balance for each class,

specifically, the conflicting goals of exploration – sampling

more image regions for better accuracy –, and exploita-

tion – stopping the search efficiently when sufficiently con-

fident about the target’s location. The methodology is gen-

eral and applicable to any detector response function. We

report encouraging results in the PASCAL VOC 2012 ob-

ject detection test set showing that the proposed methodol-

ogy achieves almost two orders of magnitude speed-up over

sliding window methods.

1. Introduction

Classically, detection has been formulated as the prob-

lem of maximizing a confidence function over a set of hy-

pothesized target locations, where the confidence can be

learned in a fully supervised[12] or weakly supervised[34]

setup. In the sliding window formulation, the hypothesis set

consists of a large set of rectangular windows, and the maxi-

mization problem is solved by exhaustive search. Since this

process is generally too expensive in practice, many meth-

ods have been proposed to accelerate it, from methodolo-

gies that leverage properties of the confidence function, to

proposal methods or cascade techniques. All these meth-

ods retain the exhaustive search property over the hypothe-

sis space, aiming either to reduce the number of hypotheses

to start with, or search these efficiently.

In contrast, biological systems have a pattern of search

that can be characterized as ‘saccade and fixate’[17], where

a small set of scene locations are investigated sequentially,

in order to accumulate sufficient evidence on the target lo-

cation. Set aside efficiency (only a few regions of an image

are explored) and biological plausibility, it appears still in-

teresting to formally derive mathematical models that could

optimally balance efficiency and accuracy, by integrating

evidence, sequentially, in a principled way. The challenge

is to be able to operate with delayed rewards, which rule

out supervision at each step. At the same time, avoid the

need to completely pre-specify the environment, which for

visual scenes would be impossible – given the complexity

of images and visual object categories, the models should

be effectively trained.

By formulating sequential search as reinforcement learn-

ing of the category and the image-dependent search pol-

icy including the stopping conditions, in this work we de-

velop fully trainable methods that can explicitly balance the

conflicting goals of exploration – sampling more image re-

gions for better accuracy –, and exploitation – stopping the

search efficiently when sufficiently confident in the target’s

location. The methodology is general, applicable to any

detector response function, and can learn search strategies

and stopping conditions that are image and visual category

specific. Two orders of magnitude speed-ups over sliding

window methods are achieved in the challenging PASCAL

VOC 2012 object detection benchmark.

2. Related Work

One class of efficient detectors focuses on the use of

branch-and-bound heuristics[23] to prioritize exploration of

the search space towards promising image regions. Un-

like the present work, such techniques are only applica-

ble to confidence function classes for which strong bounds

are available. Additionally, in the absence of the target in

the image, methods in this class degenerate to exhaustive

search. Motivated by these limitations, other authors have

proposed to use cascades of classifiers[39, 11, 15, 30], to

2894



progressively narrow the search space, where weak but fast

classifiers are applied early to eliminate image regions un-

likely to contain the target, while investing computational

resources to run more complex classifiers on promising re-

gions. Such methods drastically reduce the computation

cost, but classifiers early in the cascade still have to be ap-

plied exhaustively over all image regions. Instead of fo-

cusing on region exploration strategies, other methods have

sought to optimize the evaluation of the confidence func-

tion. This includes sharing computation among neighbor-

ing image regions[40, 35] or among the different classifiers

for multi-class detection problems[20].

Recent trends in object detection focus on a rapid

content-based reduction of the set of candidates – in ear-

lier methods, windows, cropped at different positions, and

of different aspect ratios, in an image – to a smaller set (still

thousands of hypotheses in most methods) which exhibits

the statistical regularities of the objects found in the real

world. Typical methodologies include parametric figure-

ground segmentation with Gestalt, ‘object-like’ filtering[5],

superpixels[38, 32] or edge-based cues[21]. In this work

we will rely on the parametric segmentation method of Car-

reira et al.[5] to generate a set of free-form figure-ground

proposals that capture most objects of interest, although our

method can use any other state of the art proposal genera-

tion method[38, 32, 21].

In contrast to methods based on branch and bound and

cascades of classifiers, sequential search methods like [13]

attempt to sparsely sample the image through a local search

guided by the contextual relations among regions, previ-

ously shown to improve detection accuracy[6, 7, 16, 31].

[13] propose search policies that map contextual windows

to the ground truth target location based on random forests,

whereas [37, 9] learn a mapping from images to bounding

box masks using a cascaded deep learning model.

Palleta et al.[25] and Butko and Movellan[3] developed

remarkable early sequential models based on POMDPs for

recognition and face detection. However, those models are

not fully trainable and require a complete and accurate spec-

ification of the environment, which makes them challeng-

ing to apply in complex multi-class visual detection setups.

More recently, reinforcement learning[36] has been applied

to visual analysis problems like image classification[24, 19,

29], face detection[14], tracking and recognizing objects in

video[2], learning a sequential policy for RGB-D semantic

segmentation[1], or scanpath prediction[27].

In independent work performed in parallel with ours[28],

[4] also focus on object detection using reinforcement Q-

learning. We differ, among others, in using policy search

based on an analytic gradient computation with continu-

ous as opposed to discrete reward (both in a supervised and

weakly-supervised image labeling setup[26]), by operating

on regions instead of deforming bounding boxes, in using

different actions (infinite set via function approximation vs.

9 in [4]), a different state representation (a set of 10 boxes in

[4] vs. our manipulation of disjoint sets), and in the training

procedure based on reinforcement learning with delayed re-

wards as opposed to an additional apprenticeship signal in

[4]. This results in a different model behavior in both train-

ing and testing, as [4] requires the control of actions via

short steps in order to prevent the apprenticeship learning

process to immediately locate the target from any position.

In testing [4] use 10 steps to locate the target, whereas our

model takes 3.1 steps on average.

Relevant to our work is also the one of Karayev et al.[18]

who differently however, focus on object detection in an

anytime recognition framework where a multi-class detec-

tor can be stopped, asynchronously, during its execution.

[18] sequentially schedule multi-class models, optimizing

the order of applying sliding window object detectors (ex-

haustively evaluated at all image locations, in a cascade),

stopping short of running detectors for some classes. In

contrast, we spatially optimize each specific sequential class

detector (stopping short of searching all image locations)

and run the detectors for all classes in the standard way.

Methodologically, there are significant differences: [18] use

Q-learning and regress expected value of (state, action), we

do policy search with analytic gradient to directly optimize

expected reward. We have infinite action spaces (any im-

age location), [18] operate over finite actions (1+#detector-

classes in [18], or 1+#feature-types in [19, 8]); [18] can stop

anytime, whereas we learn a stopping condition for each

class. From a system viewpoint, the methods are comple-

mentary, as one can benefit both from an efficient ordering

of class detectors[18] and from efficient individual class de-

tectors, as we propose, but we will not investigate this here.

3. Problem Formulation

Given an input image, we formulate action detection as

the problem of maximizing a confidence function fc : R→
R over the set of image regions R:

r∗ = argmax
r∈R

fc(r) (1)

The set of image regions R can be defined either at the

coarse level of bounding boxes or at the finer level of free-

form image regions obtained with a state of the art proposal

generation method[5, 38, 32].

Good choices for the confidence function fc that achieve

state-of-the-art performance, are associated with a high

computational price tag. Therefore, solving the optimiza-

tion problem (1) can still be expensive even for the compar-

atively smaller (versus e.g. bounding boxes) set of region

proposals R obtained by a segmentation algorithm. To ad-

dress this issue, in §3.1 we present a model to learn efficient

search strategies, rigorously formulated in a reinforcement
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reward signal (eq. 13)

1

0

See algorithm 1.

See algorithm 2.

Figure 1. Sequential detector based on reinforcement learning. At

each time step, the model may terminate search (dt = 1) based

on the history Ht of observed regions (Algorithm 1) and produce

a detection hypothesis bt with confidence ct, receiving a reward

measuring the detection quality. Otherwise, an evidence region

et is chosen from the set Ht \ Et of unselected regions and used

to predict the next fixation location zt. The set Ot of all regions

in the neighbourhood of zt become observed (Algorithm 2) and

a negative reward is received, reflecting the computational cost of

extracting features for these regions.

learning setup. Our model operates in an integrate, fixate

and evaluate regime, and only explores a few locations be-

fore deciding on the presence of a target.

3.1. Sequential Detection Model

In this section, we present the key components of our op-

timal sequential model for image exploration.1 Our model

is given a set of image regions R indexed by the set B =
{1, . . . , |R|} (with | · | the set cardinality), the confidence

function as introduced in (1), fc(r) = θ⊤
c q(r) with param-

eters θc, and a feature extractor q : R→ R
m of dimension-

ality m. The objective of the model is to locate the target

with a minimal number of evaluations of these two compu-

tationally expensive functions

At each time step t during a detection sequence (except

the last step), our model generates a fixate action Af
t , based

on its internal state St. Each fixation action specifies a lo-

cation in the image that the model decides to explore, and

results in a set of observations Ot, which is a set of im-

age regions in the proximity of this location. The observed

regions are the only regions that are inspected by the algo-

rithm. In particular, they are the only regions on which the

confidence function fc and feature extractor q need to be

evaluated. The observations Ot are then used to update the

1Please see our accompanying report[26] for detailed derivations.

state St, summarizing all past observations and actions.

When enough information has been collected about the

image, the model issues a special done action, indicating

that it has decided on the location of the detection target.

The done action is associated with a detection target bound-

ing box bt and a detection confidence value ct. The model

has a set of trainable parameters θ = (θc,θd,θe,θp,Σp, σc)
controlling, respectively, the detector response confidence,

the stopping criteria, the informativeness of an image region

with respect to the target location, the image location of the

most probable next fixation and its variance, and the vari-

ance of the confidence ct associated to the model output.

Each fixate action Af
t can potentially reduce the uncer-

tainty in localizing the detection target, but is associated

with a computational cost due to the need to integrate the

set of observations Ot into the state. The goal of our model

is to balance the conflicting needs of information gathering

(fixate actions) with the need to correctly locate the target

(done actions).

3.2. Model Structure

We now proceed to describe in detail the actions,

states, observations and the decision process of our model.

The model components are shown in fig. 1, and several

examples of search patterns are illustrated in fig. 2.

States: The state of our model is represented as a tuple

with three elements: the observed region history Ht, the

selected evidence region history Et and the fixation history

Ft. This tuple St = (Ht, Et, Ft) summarizes the history of

observations and actions since the beginning of the search

sequence.

The observed region history Ht: At each time step t, the

model keeps track of a history Ht ⊆ B of image regions

observed so far. The confidence function fc is evaluated on

these regions alone and used to decide when to terminate

the search. The history Ht is also used by the model to

decide on promising locations to fixate during the next step,

as these might provide context to guide the search.

The selected evidence region history Et: The model de-

cides on the next location to fixate based on an evidence

region et ∈ Ht from the observation history. This evidence

region is deemed by the model to provide the necessary

context that is indicative of the target’s location. However,

to encourage diversity during search, each region should

be used as evidence at most once. For this reason, the

model keeps track of the set Et ⊆ Ht of regions selected

so far, and evidence regions are always selected from the

set Ht \ Et.

The fixation history Ft: The set of observed regions at
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Figure 2. Sequences of fixation locations zt (orange circles) generated by our model, together with the corresponding evidence regions et
(green boxes), and the final detected bounding box bt (yellow), for several images. The model may terminate the search early, if the target

is found by the first central fixation (first image in the second row). When the target has not yet been found, regions that do not contain it

are often exploited to guide the search to new promising locations (e.g. the street provides the context for finding the bus). When a small

target lies inside a wider region (e.g. the bird in the tree), the model uses the wider region as a contextual cue to find the target, in a coarse

to fine fashion. Similarly, fine-to-coarse search strategies involving several exploratory fixations are used to provide the foveal coverage

needed to observe large targets (e.g. the airplane). See Table 1 for quantitative results and §4 for discussion.

each time step t depends on the history Ft of past fixation

locations, c.f . (2). We therefore include this history into the

state St.

Actions: Actions in our model are represented as tuples.

There are two kinds of actions, distinguished by their first

element, which can be one of two discrete symbols: fixate

or done.

Fixate actions are represented as a three element tuple

Af
t = (fixate, et, zt), where et ∈ B represents the index of

the evidence region and zt ∈ R
2 is the image coordinate

of the next fixation. Done actions are represented as

Ad
t = (done, bt, ct) where bt ∈ B is the index of the region

representing the detection output and ct ∈ R represents

the detection confidence. To summarize, the action space

of our model consists of the union of all fixate and done

tuples, i.e. A = Af ∪ Ad.

Observations: Following a fixate action, the set Ot of im-

age regions in the neighbourhood of the fixation location zt
become observed.

To define this neighbourhood, we use a circular area of

radius TR around the fixation center zt. We say that a pixel

is fixated at time t if it falls within the area associated with

zt. In order for a region r to become observed at time t, a

sufficiently large fraction h(r) of its pixels must have been

fixated during the current or previous steps:

h(r) =
|{x ∈ r| (∃) z ∈ Ft, ‖z− x‖2 ≤ TR}|

|r|
(2)

Ot = {i ∈ B | h(ri) ≥ TF } (3)

where Ft = {z1, .., zt} is the history of locations fixated by

the model up to time step t, and TF is a threshold that con-

trols the minimum fraction of fixated pixels in an observed

segment.

3.3. Stochastic Policy

The model decides on the next action to take based on

the current state. Its stochastic decision policy πθ(St,At)
proceeds in three phases, each having its own set of learned

parameters. The model evaluates whether to terminate

search (termination decision). If positive, a done action

is performed, else a fixate action follows. We will review

each of these, next.

Termination decision: The model may decide to terminate

search at any given time step, based on the current state St,
and produce a detection result. Rather than using an ad-hoc
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termination policy, e.g. a preset number of fixations (search

locations), our model uses a learnt decision function that

balances detection confidence against computational load:

• Detection confidence: If the model has already ob-

served a region which is deemed to contain the de-

tection target with high confidence, it may decide to

terminate the search early. To capture this aspect, we

compute the maximum confidence over the regions

observed so far, i.e. asmax
(

{fc (ri)}i∈Ht

)

, where

asmax(X) =
∑

x∈X
xeαx

∑
x∈X

eαx for any set X and smooth-

ness meta-parameter α.

• Computational load: The running cost of our detector

has two components: first, the number of confidence

function evaluations performed so far, which is pro-

portional to the ratio |Ht| / |R| of regions observed at

the current time step t; second, the number of search

policy evaluations. Since the policy is evaluated once

per time step, this cost is proportional to the number of

time steps t.

In order to allow the model to balance these termination

criteria, we define a four-element feature vector for the cur-

rent state:

v (St) =

[

asmax
(

{fc (ri)}i∈Ht

)

t
|Ht|

|R|
1

]⊤

(4)

The search termination probability (done action) is given

by a logistic classifier with parameters θd:

pθ(dt = 1|St) = sigm
[

θ⊤
d v (St)

]

(5)

where dt is an binary variable indicating the decision

to terminate the search at the current time step and

sigm(x) = (1 + e−x)
−1

is the sigmoid function.

Done action: Upon termination (dt = 1), the model outputs

a bounding box bt from the set Ht of observed regions, to

represent the detection target location, together with a con-

fidence score ct. We use a soft maximum bounding box

selection criterion, with smoothness meta-parameter α:

pθ(bt = k|dt = 1,St) =
eαfc(rk)

∑

i∈Ht
eαfc(ri)

(6)

The corresponding confidence ct is normally distributed

around the confidence for the selected bounding box:

pθ(ct|dt = 1, bt = k,St) = N(ct|fc(rk), σc) (7)

where σc ∈ R is a model parameter that controls the vari-

ance of the confidence predictions.

Finally, the probability of a done action is given by:

πθ (At = (done, bt, ct) |St) = pθ (dt = 1|St) ·

· pθ(bt|dt = 1,St)pθ(ct|dt = 1, bt,St)
(8)

Fixate action: If the search is not terminated (dt = 0), the

model selects a new evidence region et ∈ (Ht \ Et) from

the set of observed regions, that it deems informative for the

target location.

We define an evidence function fe : B → R, fe (i) =

exp
[

θ⊤
e q(ri)

]

that evaluates the informativeness of image

region i with respect to the target location, where θe are

learned model parameters. We pick the region et from a

multinomial distribution defined by the evidence function

over the set Ht \ Et of image regions not selected during

previous steps:

pθ(et|St) =
fe(et)

∑

i∈Ht\Et
fe(i)

(9)

Once selected, the evidence region et is used to define a

Gaussian probability distribution for the next fixation loca-

tion zt ∈ R
2. For convenience, let us denote by

µ(et) =
x1(et) + x2(et)

2
(10)

the center of the bounding box tightly enclosing the evi-

dence region ret , defined by its top-left and bottom-right

corners x1(et) and x2(et), respectively. Similarly, let

∆(et) = diag

(

x1(et)− x2(et)

2

)

(11)

be the diagonal matrix encoding half the width and height

of this bounding box. Then, the probability for the next

fixation location zt is:

pθ(zt|St, et) = N
(

·|fp(et),∆(et)
⊤Σp∆(et)

)

(12)

where Σp is a learned covariance matrix that controls the

spread of fixations, and the Gaussian center fp(et) is based

on a linear combination of the evidence region features

q(ret) with learned parameters θp:

fp(et) = ∆(et)θ
⊤
p q(et) + µ(et) (13)

We make the position function invariant to the scale

of the image region ri by normalizing with respect to its

bounding box size, defined by the top-left and bottom-right

corners c.f . first term in (13), and relative to the bounding

box center (second term in (13)).

Summarizing, the probability of a fixate action is given by:

πθ (At = (fixate, et, zt) |St) =

= pθ (dt = 0|St) pθ (et|St) pθ (zt|St, et)
(14)
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Algorithm 1 Policy sampling algorithm

1: procedure SAMPLE (St = (Ht, Et, Ft))
2: dt ∼ p(dt|St) using (4), (5)

3: if dt = 1 then

4: bt ∼ p(bt|St, dt) using (6).

5: ct ∼ p(ct|St, dt, bt) using (7)

6: return At = (done, bt, ct)
7: else

8: et ∼ p(et|St, dt) using (9)

9: zt ∼ p(zt|St, dt, et) using (12)

10: return At = (fixate, et, zt)
11: end if

12: end procedure

Algorithm 2 State transition algorithm

1: procedure OBSERVE (St = (Ht, Et, Ft) , At =
(fixate, et, zt))

2: Ot ← {i ∈ B | h(ri) ≥ TF }
3: Ht+1 ← Ht ∪Ot

4: Et+1 ← Et ∪ {et}
5: Ft+1 ← Ft ∪ {zt}
6: return St+1 = (Ht+1, Et+1, Ft+1)
7: end procedure

The model policy is completely specified by equations

(8), (14), which define a probability distribution over all

possible actions At. Notice that out policy is highly

(deeply) non-linear in the features and the parameters. The

stochastic policy is given by a Gaussian distribution on

top of highly non-linear predictions (in contrast notice that

methodologies like [14, 4] are deterministic).

3.4. Inference and Learning

Inference is carried out by repeated sampling of the

policy πθ (At|St), until a done action is achieved (Algo-

rithm 1). At each step the state St is updated according to

the action At (Algorithm 2). When the search is finished,

the region bt and the confidence ct are generated and re-

turned as the detector output.

For learning we are given a set of images, represented as

sets of regions Bj , together with confidence function fc
aimed to be maximal at target locations. For notational sim-

plicity, without loss of generality, we will consider the equa-

tions for one image, containing n (possibly 0) detection tar-

gets, and the corresponding ground truth regions {gi}
n

i=1.

We wish to find the model parameters θ =
(θc,θd,θe,θp,Σp, σc) maximizing the target detection ac-

curacy based on the detected target location bt and confi-

dence ct at the last step (when dt = 1). At the same time,

we aim to minimize the number of region evaluations. To

capture the trade-off, and to avoid explicitly instructing the

model how to achieve it, we formulate the training objective

as a delayed reward, as typical in a reinforcement learn-

ing setup. Our reward function is sensitive to the detection

location and the confidence at the final state, and incurs a

penalty for each region evaluation:

rt (St,At; {gi}
n

i=1) =

=











−β · |Ot \Ht| if dt = 0

sigm (ct) · [maxi=1,n iou (gi, rbt)] if dt = 1 ∧ n > 0

−sigm (ct) if dt = 1 ∧ n = 0

(15)

where iou(·, ·) is the intersection over union function on re-

gions and β is a penalty paid by the model for each con-

fidence function evaluation.We found it straightforward to

estimate the exploitation-exploration trade-off parameters,

for each class detector, based on cross-validation. Typical

values are e.g. β = 10−3 and α = 30.

The first branch associates a negative reward to each fix-

ate action, proportional to the computational cost of evalu-

ating the newly observed region set Ot \ Ht. The last two

branches correspond to the done action, with different re-

wards for images in which the target is present and absent.

In the former case (branch 2), the model receives a reward

that is proportional to its confidence and the ground truth

overlap. In the latter case (branch 3), the location is ignored,

and the model receives a higher reward if its confidence is

smaller. Concluding, the reward function defined in (15)

balances detection accuracy and computational complexity.

During training, we maximize the expected reward func-

tion on the training set, defined as:

F (θ) = Epθ(s)





|s|
∑

t=1

rt



−
λ

2
θ⊤θ (16)

where s = ((S0,A0), . . . , (Sk,Ak), . . .) represents a vari-

able length sequence of states2, sampled by running the

model (Algorithm 1 and 2), starting from an initial state

S0 = (H0, E0, F0) and λ is an L2 regularizer. We set the

initial H0 to the set of segments observed by fixating the

image center, and both E0 and F0 to ∅.
For one image, the gradient of the expected reward can

be approximated as[41, 36]:

∇θF (θ) =
1

M

M
∑

i=1

|si|
∑

t=1

∇θlogπθ(A
i
t|S

i
t)







|si|
∑

t=1

rit






+ λθ

(17)

where si = ((Si0,A
i
0), . . . , (S

i
k,A

i
k), . . .) and rit, repre-

sent sequences of states, actions and corresponding re-

2As the model decides when to terminate search, individually, for each

search path.
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wards, sampled by model simulation (total of M sampled

sequences).

Training our sequential model involves computing the

expected reward and its gradient, c.f . (17),(16). For each

image, this involves simulating the model until the search

is terminated, by generating sequences in the state-action

space. At each time step t, an action At is sampled from

the policy, using Algorithm 1. More precisely, first the dis-

tribution pθ(dt|St) is sampled to decide whether the search

is to be terminated (done action, i.e. dt = 1). If so, then the

output region index bt and the confidence ct are sampled

from pθ(bt|dt = 1,St) and pθ(ct|dt = 1,St), respectively.

Otherwise (not done, i.e. dt = 0), an evidence region is

selected by sampling pθ(et|dt = 0,St), and then the next

fixation location is sampled from pθ(zt|dt = 0, et,St). Fi-

nally, the state of the model is updated, as described in Al-

gorithm 2. Multiple sample sequences are generated in this

way, for each image, and used to estimate the expectations.3

4. Experiments and Results

In this section, we present experiments to validate our

search method on the challenging Pascal VOC 2012 object

detection Benchmark[10], over the withheld test set avail-

able via the evaluation server. In most of our experiments,

the region space R consists of all segments extracted using

a figure-ground region proposal method, and any state of

the art method applies. Without loss of generality, we select

the CPMC algorithm[5] as their segments can be mapped

with reasonable accuracy to detection targets (according to

our studies, the average intersection over union overlap of

the best segment enclosing rectangle with the ground truth

bounding box, is 0.687).

Pipelines: To quantify the performance of different

standard search models, we either solve the maximization

problem (1) exactly, by performing exhaustive sliding win-

dow search (SW), exhaustive search over the CPMC region

proposal set (RP), or by using our sequential reinforcement

learning search model (RL).

Experimental procedure: We now present and discuss the

details of our experiments.

Proposal generation: To obtain our RP hypotheses, we

run the public implementation [5] over the input image.

For the sliding window (SW) baseline, region hypotheses

are windows obtained by iterating over various window

sizes and aspect ratios, and, for each scale and aspect ratio

setting, by sliding the window with a fixed stride over the

image. Our sliding window enumeration strategy results in

25,000 windows per image. For region proposal, we use an

optimized version of CPMC, which operates on a reduced

3For a training set of images, we will naturally aggregate (sum over)

such estimates, for each image.

search space formed by free-form regions.4

Feature extraction: For our feature extractor q, we use the

deep neural network of Krizhevsky et al.[22]. For a region,

we invoke the network over the contents of the bounding

box, and to capture context, on the entire image where

the bounding box has been masked out (filled by its mean

color). For each neural network evaluation, we record the

output of the last fully connected layer. We concatenate

the resulting feature vector with a representation of the

bounding box size and aspect ratio, and obtain a final vector

of 8204 values. Deep neural networks can be refined to

further increase detection accuracy[12, 33]. In this work we

have focused on optimal search models and have therefore

opted to illustrate our model with a simpler linear SVM

model trained using a generic feature extractor[22]. Note

however that our method is sufficiently general to operate

in conjunction with any confidence function.

Training the sequential reinforcement learning detector:

We find the optimal parameter vector θ that maximizes the

expected reward (16) on the training set of the Pascal VOC

2012 Object detection challenge, using a BFGS optimizer.

However, due to the high number of parameters, the model

is prone to overfit the data. Therefore, in practice, we have

chosen to initialize our confidence function parameters

θc by pre-training using a linear SVM where positive

instances are ground truth bounding boxes and negative

instances are sampled from other image locations (from the

region proposal set R).

We initialize θp by performing a regression from image

regions to the centers of ground truth bounding boxes. We

bias θc towards their initial values while the rest of the

parameters i.e. (θd,θe, σc,Σp) are initialized by uniform

random sampling, in the range [0, 1] and optimized using

a 0 mean quadratic penalty c.f . (16). We validate the

observation model parameters TR as in (2) and TF as in

(3) on the Pascal VOC validation set, setting them to 64
pixels and 0.25, respectively. In practice the sensitivity

associated to these parameters is not high: even if the

model runs for several fixations, only a small fraction of the

the total number of regions |R| is observed. Empirically,

we found the model to produce fairly short and effective

search patterns with a number of 3.1 image locations

inspected on average. As our policy is stochastic, multiple

object instances can be found. Moreover, in evaluation, all

visited regions above a threshold (e.g. all attended regions)

are identified (locate and restart strategies are also possible).

Computational efficiency and accuracy: The running

time and accuracy of our method is shown in table 1.

4Notice however that the optimization only applies to the segment gen-

eration step. Therefore, as of recent trends in region proposal-based detec-

tion, we work with larger pools typically having thousands of segments,

and avoid the expensive segment filtering and ranking steps.
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SW detection AP (%) 49.2 46.1 21.8 12.8 6.7 46.8 25.4 50.4 9.4 27.1 21.3 47.9 39.5 47.7 22.4 10.9 26.4 25.1 45.1 41.4 31.2

RP detection AP (%) 44.5 36.3 28.0 14.4 3.6 44.7 27.0 57.6 8.8 26.6 20.2 47.7 39.7 45.1 22.6 8.7 25.6 23.6 42.1 39.2 30.3

RL

detection AP (%) 47.4 31.4 21.0 9.5 2.5 44.7 19.4 50.3 6.1 18.1 21.1 46.8 35.8 40.4 18.7 8.5 17.8 18.6 41.5 38.8 27.0
evaluated regions 102 105 110 109 119 99 115 103 120 98 112 106 113 101 107 111 105 110 103 102 107

running time (s) 37.6 38.8 40.0 39.8 41.9 36.4 40.8 37.1 42.3 36.6 39.9 38.0 40.2 36.5 38.2 39.5 37.6 39.3 36.9 37.0 38.7
speedup (SW) 69.4 69.3 67.3 67.6 64.2 73.3 66.0 72.5 63.6 71.2 67.4 70.9 66.9 73.7 70.3 68.1 71.6 68.4 72.9 72.8 69.6
speedup (RP) 8.3 8.1 7.9 7.8 7.3 8.5 7.5 8.3 7.3 8.6 7.7 8.1 7.6 8.4 8.0 7.8 8.1 7.8 8.2 8.3 8.0

Table 1. Detection accuracy (reported as Average Precision, AP) and running times of different methods in the test set associated to the

PASCAL VOC 2012 object detection benchmark. Shown are results for the proposed sequential detection model (RL) as well as the

classical sliding window (SW) and region proposal (RP) approach. The average running time of our sliding window baseline is 2, 691
seconds, regardless of the class. In the current experiments, we chose to optimize speed-up (two orders of magnitude), but our method can

also be tuned for accuracy c.f . (15). For instance, similar accuracy with exhaustive search methods can be achieved with a 18x speed-up.

The accuracy of our sequential detector is close to that

of the much more expensive sliding window baseline, al-

though it is more than 70 times faster on an Intel Xeon

2.2Ghz CPU. This speedup takes into account the overhead

of the RP algorithm (6.1 seconds) and the small overhead

needed to sample the policy of our sequential detector (32
ms). We explicitly chose to give speed-ups in running times

(as opposed to e.g. number of inspected locations or detec-

tor evaluations) as these also cover the overheads (e.g. in our

case the additional work for the segment proposal genera-

tion step or estimating the next action), for fair comparisons

with sliding windows or region proposal methods.

Besides comparisons with the SW and RP baselines,

presented in table 1, it could be useful to relate to other

efficient search methods like [13]. As code is not available

and there are quite significant methodological, as well as

region and feature representation differences, one can still

consider overall speed-ups reported for similar datasets.

For example, by operating over free-form regions obtained

from selective search[38], [13] achieve a 9x acceleration,

respectively, over sliding-windows methods in the PAS-

CAL VOC Object Detection 2007 dataset. Both us and [13]

could additionally benefit from embedding our accelerated

spatial class detectors into the complementary, effective

multi-class detector scheduling mechanism for anytime

recognition proposed in [18]. This could further produce a

2x speed-up at roughly similar AP loss.

Qualitative analysis: We note that the length of the search

sequence is greatly dependent on the image (see fig. 2). If

the target is close to the image center (e.g. the bicycle in

fig. 2), the method tends to terminate the search after the

first fixation, as it has already confidently located the ob-

ject. If the target is located near the periphery, our model

tends to continue the search over a longer time horizon.

This behavior illustrates the model’s capacity to adapt the

search sequence length to the input image, as opposed to

other fixed-lenght search methods in the literature.

Our visualizations of the results reveal three ways in

which an evidence region (shown in green in fig. 2) may

guide the search: (a) The contextual region may not con-

tain the target, but instead provide cues on its location (e.g.

the ocean for the boat, or the road for the bus). In this case,

the model navigates from the surrounding context to the ob-

ject itself. (b) The contextual region may include the target

(e.g. the tree branches in which the bird is hiding), and in-

form the model to fixate a subregion likely to represent it.

This situation corresponds to a coarse-to-fine search for the

target. (c) Finally, the target may be too big, and fixations

inside its region may initially not foveate it sufficiently for

an observation to be made. In such cases, object sub-parts

are often chosen as evidence regions to guide the search to

other subparts (e.g. the various features of the front of the

railway engine), until the object is included in the observa-

tion set and therefore the confidence function is evaluated

on its entire extent. In this case, the model behavior resem-

bles a perceptual grouping process in which smaller scale

parts are integrated to deduce the extent of a large object.

5. Conclusions

We have presented a reinforcement learning model for

visual object detection. In contrast to methods that oper-

ate exhaustively over a hypothesis space, we have derived a

fully trainable sequential model that can efficiently sample

only a few image locations in order to accumulate evidence

on the target location. Our model is image and category

specific and can explicitly balance the trade-off between ex-

ploration (improving accuracy) and exploitation (efficiently

terminating search when sufficient evidence has been gath-

ered). Our methodology is general and applicable to any de-

tector response function. We report encouraging results in

the PASCAL VOC 2012 object detection dataset, showing

that the proposed methodology achieves almost two orders

of magnitude speed-up over sliding window methods.
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