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Abstract

Spiking Neural Networks (SNNs) with their bio-inspired Leaky Integrate-and-Fire (LIF) neu-
rons inherently capture temporal information. This makes them well-suited for sequential
tasks like processing event-based data from Dynamic Vision Sensors (DVS) and event-based
speech tasks. Harnessing the temporal capabilities of SNNs requires mitigating vanishing
spikes during training, capturing spatio-temporal patterns and enhancing precise spike tim-
ing. To address these challenges, we propose TSkips, augmenting SNN architectures with
forward and backward skip connections that incorporate explicit temporal delays. These
connections capture long-term spatio-temporal dependencies and facilitate better spike flow
over long sequences. The introduction of TSkips creates a vast search space of possible con-
figurations, encompassing skip positions and time delay values. To efficiently navigate this
search space, this work leverages training-free Neural Architecture Search (NAS) to identify
optimal network structures and corresponding delays. We demonstrate the effectiveness of
our approach on four event-based datasets: DSEC-flow for optical flow estimation, DVS128
Gesture for hand gesture recognition and Spiking Heidelberg Digits (SHD) and Spiking
Speech Commands (SSC) for speech recognition. Our method achieves significant improve-
ments across these datasets: up to 18% reduction in Average Endpoint Error (AEE) on
DSEC-flow, 8% increase in classification accuracy on DVS128 Gesture, and up to ∼ 8% and
∼ 16% higher classification accuracy on SHD and SSC, respectively.

1 Introduction

Spiking Neural Networks (SNNs) are a class of bio-physically realistic models with Leaky Integrate-and-
Fire (LIF) (Abbott, 1999) neurons that offer a promising alternative for processing sequential data. By
encoding information in the precise timing of spikes, SNNs capture spatio-temporal dependencies (Rathi &
Roy, 2020; Chowdhury et al., 2021; Wu et al., 2017) through the membrane potential of their LIF neurons.
This intrinsic ability to process temporal information allows SNNs to excel at capturing dynamic patterns,
effectively functioning as specialized RNNs (Rathi & Roy, 2024; Deng et al., 2022) with reduced complexity.
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Figure 1: Model size vs. average endpoint error (AEE) for
fully spiking EV-FlowNet architectures (Kosta & Roy, 2023)
modified with Forward and Backward TSkips on the DSEC-
flow dataset (lower AEE is better). Each tick on the hori-
zontal axis represents a 3× increase in model size. TSkips
achieve an average reduction of 15% in AEE and 40.75% in
inference energy (E) while maintaining comparable AEE to
larger baselines.

The ability of SNNs to leverage the precise tim-
ing of spikes offers a distinct advantage over
traditional Artificial Neural Networks (ANNs)
for sequential tasks. Note, ANNs are “state-
less” in nature (Hagenaars et al., 2021b) and
their reliance on specially curated input en-
coding schemes (Zhu et al., 2018b; Paredes-
Vallés & De Croon, 2021) hinder their ability
to accurately capture precise timing informa-
tion crucial in event streams, as generated by
Dynamic Vision Sensors (DVS) (Lichtsteiner
et al., 2008; Brandli et al., 2014). Standard Re-
current Neural Networks (vRNNs) (Rumelhart
et al., 1986) and Long Short-Term Memory
(LSTM) networks (Hochreiter, 1997; Ponghi-
ran & Roy, 2021; Gehrig et al., 2021b) at-
tempt to address this, but remain difficult to
train (Pascanu et al., 2013) and computation-
ally expensive. Furthermore, transformers and
spiking transformers (Li et al., 2022a; Zhou
et al., 2023; Li et al., 2023) excel at sequential
processing but come at the cost of significantly
larger models and computational overhead.

Deep SNNs offer the appealing combination of rich temporal information processing and computational
efficiency, but training them effectively presents unique challenges (Pfeiffer & Pfeil, 2018; Rathi et al., 2021).
The combination of multiple time steps with Back Propagation through Time (BPTT), non-differentiable
spikes and sparse event data can worsen the vanishing spike problem (Hagenaars et al., 2021a; Neftci et al.,
2019). To circumvent this, previous works have proposed adaptive LIF neurons with trainable threshold and
leak (Fang et al., 2021b; Kosta & Roy, 2023; Wang & Li, 2023) and approximate surrogate gradients (Fang
et al., 2021a; Neftci et al., 2019). Other works (Shrestha & Orchard, 2018; Sun et al., 2023b; Hammouamri
et al., 2023) have considered synaptic delays as an additional parameter alongside weights, thus offering a
richer representation of the spike patterns present in event data.

In contrast, this work introduces explicit temporal delays in forward and backward skip connections, named
temporal skips (TSkips), for SNNs and hybrid ANN-SNN (Kugele et al., 2021; Negi et al., 2024) models.
TSkips offer finer control over spike timing, enhance responsiveness to temporal patterns, mitigate vanishing
spikes, all while capturing long-term spatio-temporal dependencies for event-based data. In addition, our
method utilizes adaptive LIF neurons (Yin et al., 2020; Hagenaars et al., 2021a; Kosta & Roy, 2023) that
have learnable leaks and thresholds that capture local temporal patterns.

The next question to address would be, what are the optimal TSkips configurations within the network
architecture and what are the corresponding temporal delays associated with them? To efficiently identify
optimal TSkips configurations across different architectures and sequence lengths, we leverage training-free
Neural Architecture Search (NAS) tailored for SNNs (Kim et al., 2022). TSkips introduces minimal increase
in model size with very few additional trainable parameters, minimal overhead and improves inference on
event-based tasks. In addition, we have observed that training time is faster for the proposed networks
compared to standard SNNs, RNNs and LSTMs. The contributions of this work can be summarized as
follows:

• We introduce TSkips, a novel mechanism that enhances SNNs and hybrid ANN-SNN architectures
by enabling direct transmission of spike information between non-adjacent layers with temporal
delays, effectively capturing long-term spatio-temporal patterns. (Section 3)

• We analyzed various TSkips configurations, revealing the complexities of the search space, partic-
ularly the interplay between the temporal delay (∆t), TSkips position and network depth. This
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complexity motivated the use of NAS to efficiently identify optimal TSkips architectures. (Sec-
tion 4.2)

• We show that TSkips achieves strong performance across sequential tasks. On the DSEC-flow
dataset, they reduce average endpoint error (AEE) and inference energy, up to 18% and 56%, re-
spectively, as shown in Fig. 1. Furthermore, TSkips achievess significant accuracy improvements
on DVS128 Gesture, SHD and SSC datasets — up to 8.3%, 8.6% and 16.04%, respectively. This
highlights the scalability and effectiveness of our approach across diverse sequential tasks and archi-
tectures. (Section 4)

2 Related Work

This section explores the challenges of training deep SNNs and incorporating delays to capture richer tem-
poral dynamics.

2.1 Training Deep SNNs

Early methods to train SNNs relied on ANN-to-SNN conversion (Cao et al., 2015; Panda et al., 2020).
However, this approach often struggled to match ANN performance on complex sequential tasks (Deng et al.,
2020), particularly with event data. To overcome the challenges associated with ANN-to-SNN conversion,
Kugele et al. (2020) focus on converting existing neural network architectures into spiking neural networks
using streaming rollouts (Fischer et al., 2018). By temporally unfolding the recurrent structures in the
spiking domain the DenseNet skip connections essentially have a single step delay, much like vRNNs.

A key obstacle in training deep SNNs is the non-differentiable nature of spike activations (Fang et al., 2021a),
which prevents the direct application of gradient-based optimization techniques, leading to subpar perfor-
mance. To overcome this, approximate surrogate gradients (Fang et al., 2021a; Neftci et al., 2019; Wu et al.,
2017) have been proposed, that replace non-differentiable spike activations with smooth gradient approxi-
mations, enabling the use of BPTT (Werbos, 1990) to train deep SNNs. However, this approach introduces
other challenges like vanishing gradients, especially with long sequences and sparse event data (Hagenaars
et al., 2021a; Neftci et al., 2019), and reduce accuracy compared to ANNs (due to approximate gradients).
To address these challenges, previous work has investigated two main avenues: adaptive LIF neurons with
learnable thresholds and leaks (Fang et al., 2021b; Kosta & Roy, 2023; Wang & Li, 2023), and skip connec-
tions in SNNs (Benmeziane et al., 2023). While adaptive LIF neurons allow for dynamic adjustment and
better capture of spatio-temporal patterns, skip connections can improve accuracy and efficiency, However,
neither approach fully addresses the challenges of representing and capturing complex temporal patterns. To
achieve this, we propose TSkips, incorporating explicit temporal delays into the network architecture with
forward and backward skip connections.

2.2 Delays in SNNs

The importance of precise timing information in event-based data, such as that from dynamic vision sensors,
has motivated research into effectively capturing temporal dynamics in SNNs (Rathi & Roy, 2020; Chowdhury
et al., 2021). SCTT (Soo et al., 2023) explore temporal skips in recurrent networks and are evalauted on
cognitive tasks that have long-term temporal dependencies. However, SCTT employs an expensive evaluation
strategy to identify optimal delay and temporal skip hyperparameters that involves training several models
across multiple tasks to identify optimal connections. TTFS (Kim et al., 2024) explore adding delays in
skip connections by encoding the latency of the first spike emitted by a neuron. This encoded delay is then
introduced into skip connections in SNNs as learnable parameters that promote local path synchronization.
However, the evaluation of both these works are limited to simple tasks that are not typically conducive to
SNNs. Furthermore, while the spike encoding strategy of TTFS allows for better synchronization of spikes
for the model, it does not account for factors such as noise or irregularities in the event stream or long
periods of sparse events.

Other works have introduced delays alongside the weights in SNNs to offer a richer representation of the spike
patterns. For instance, Shrestha & Orchard (2018) introduced a fixed delay in SNNs to improve learning of
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temporal complexities, Sun et al. (2023b) extended this by making these delays learnable and introducing
a layer-specific maximum delay. Hammouamri et al. (2023) further refined this by making the per-layer
maximum delay learnable and utilizing Dilated Convolutions with Learnable Spacings (DCLS) (Khalfaoui-
Hassani et al., 2023) to capture spatio-temporal patterns. However, learning these delays, as in Sun et al.
(2023b); Hammouamri et al. (2023), introduces a new set of parameters with the same dimension as the
weights, essentially doubling the number of trainable parameters.

In contrast to these methods that rely on expensive tempral skip configuration evaluation strategies, estimat-
ing delay values for local path synchronization or learning delays, our proposed method introduces explicit
temporal delays in SNNs. We explore these delays in both forward and backward temporal skip connec-
tions, named TSkips. The use of TSkips coupled with a learnable scaling factor and adaptive LIF neurons
effectively captures long-term spatio-temporal patterns with minimal additional computational overhead.

3 Methodology

This section details our methodology, starting with the input representation and the neuron model employed
in our SNNs, followed by the proposed method, our NAS search space, and the training process.

3.1 Input Representation and Sensors

For efficient computation, SNNs require data in the form of discrete spikes, mirroring communication in bi-
ological neurons. DVS (Lichtsteiner et al., 2008) cameras output asynchronous spikes representing real-time
changes in pixel intensity (It). This eliminates redundant data transmission and achieves higher temporal
resolution than traditional frame-based cameras or rate coding methods (Cao et al., 2015). These cameras
trigger events when the log intensity change at a pixel crosses a threshold (θ) (Gallego et al., 2022), repre-
sented as ||log(It) − log(It−1)|| ≥ θ. Events are encoded in the Address Event Representation (AER) format
as tuples (x, y, t, p) — representing pixel coordinates, timestamp, and polarity. Similarly, event-based audio
datasets (Cramer et al., 2022) mimic human auditory spiking activity, with spikes represented as (x, t) —
denoting spike unit and timestamp.

3.2 Neuron Model

The fundamental computational unit of SNNs is the spiking neuron. We employ Leaky Integrate-and-Fire
(LIF) (Abbott, 1999) neurons for their biological plausibility and computational efficiency. The LIF neuron
integrates input spike information over time, accumulating it in its membrane potential. This potential
gradually decays, allowing controlled forgetting of less relevant information. The dynamics of the LIF
neuron can be described by

U t
l = λU t−1

l + WlO
t
l−1 − V th

l Ot−1
l (1)

where U t
l represents the membrane potential of the neurons in layer l at time step t, λ is the leak fac-

tor, controlling the decay rate of the membrane potential. Wl is the weight matrix for neurons in layer
l, V th

l is the voltage threshold of layer l and Ot
l is the output generated by layer l at time step t.

Input  
Events

Weights LIF Neuron
Output  
Events

Figure 2: LIF Neuron

When the membrane potential surpasses the volt-
age threshold, the neuron emits a spike. The first
term in Eq. (1) denotes the leakage in the membrane
potential, the second term computes the weighted
summation of output spikes from layer (l − 1) and
the third term denotes the reduction in membrane
potential when an output spike is generated at layer
l. The membrane potential is then reset, either to be
zero (hard reset) or by subtracting V th

l (soft reset).
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Equation (2) describes the spike generation.

Zt
l = U t

l

V th
l

− 1, Ot
l =

{
1, if Zt

l > 0
0, otherwise

(2)

We use a hard reset for optical flow estimation and a soft reset for gesture and speech classification. Fig. 2
shows the LIF neuron dynamics.

3.3 Proposed Method
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Figure 3: Illustration of TSkips in an SNN. (a) A 3-layer SNN with forward and backward TSkips, annotated
with their origin and destination layers and the delay (∆t). (b) Unrolled SNN with T = 4 with a forward
TSkips and ∆t = 3 compared with a standard skip connection (no delay). (c) Unrolled SNN with T = 4
with a backward TSkips and ∆t = 3 compared with a standard backward connection (∆t = 1) (Rumelhart
et al., 1986)
Efficiently training deep SNNs is often hindered by vanishing gradients (Hagenaars et al., 2021a; Neftci
et al., 2019), which impede accurate spike propagation across time steps. To address this, we propose a
novel method that augments skip connections in SNNs by introducing explicit temporal delays (∆t) within
the connections. We refer to these augmented skip connections, which can be forward, backward, or a
combination of both, as TSkips. The duration of these explicit delays is constrained by 0 < t − ∆t < T ,
where t is the current time step and T is the sequence length of the data. Specifically, t represents the set of
all discrete time steps within the sequence, denoted as t = {ti, ∀i = 0, · · · , T}. This constraint on ∆t ensures
that the network does not receive future information.

To illustrate the information flow in a neural network with TSkips, let us consider how they modify the output
of a layer. If ht

l denotes the input to a layer l at time step t, then a forward TSkips provides input ht
l−k and

a backward TSkips provides input ht
l+k. For brevity, we denote these skip inputs as ht

l±k, where k indicates
the layer separation between layer l and the source of the skip connection. TSkips can be represented as:
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ht
l = fl(ht

l−1 ⊕ Wsh
(t−∆t)
l±k ) (3)

where fl is the affine function of layer l, ⊕ represents either concatenation (Huang et al., 2017) or element-
wise addition (He et al., 2015) and Ws is a fixed shortcut path matrix (He et al., 2016) that randomly selects
channels in h

(t−∆t)
l±k to match the dimensions of ht

l . Eq. 3 demonstrates that the output of layer l at time
step t is now influenced by the output of layer l ± k at time step (t − ∆t). Here, k represents the difference
in layer indices between connected layers. For example, if l = 4 and k = 2, a forward TSkips connects layers
2 and 4 with delay ∆t.

Our method, incorporating TSkips, is illustrated in Fig. 3. Fig. 3(a) shows a simple 3-layer SNN architecture,
illustrating both forward and backward TSkips between adjacent layers. Each connection is annotated with
the origin and destination layers and (∆t). Fig. 3(b) depicts the temporal unrolling of the network over
T = 4 time steps. It contrasts a standard skip connection (∆t = 0) and a forward TSkips with ∆t = 3.
Fig. 3(c) similarly illustrates a backward TSkips with ∆t = 3 and contrasts it with a standard backward
connection that has a delay of ∆t = 1, typically seen in vRNNs (Rumelhart et al., 1986). This comparison
emphasizes that TSkips allow for more flexibility and can thus capture longer temporal dependencies com-
pared to standard RNNs. This flexibility comes with minimal overhead, as TSkips are identity mappings
that introduces very few additional parameters and no computational complexity to the network.

TSkips enhance the ability of SNNs and hybrid models to process sparse event streams by facilitating the
propagation of temporally relevant information across non-adjacent layers. By capturing these long-term
dependencies, TSkips can improve the network’s ability to learn complex temporal patterns. Furthermore,
the explicit temporal delays in TSkips offer finer control over spike timing within the network. This finer
control enhances the network’s responsiveness to temporal patterns by allowing it to selectively integrate
information from different time steps. Additionally, by enabling the network to access relevant information
from the past, TSkips can mitigate the issue of vanishing spikes. To further enhance temporal representation,
we introduce a learnable scaling factor, α, that controls the ratio of data at the current time-step (t) and
data from the delayed time step (t − ∆t) within the TSkips. This is incorporated into the skip as shown in
Eq. 4:

ht
l = fl(ht

l−1 ⊕ Ws(αht
l±k + (1 − α)h(t−∆t)

l±k )) (4)

3.4 Exploring the search space
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Figure 4: Illustration of the NAS Search Space.
(a) Example of possible TSkips combinations in
a 3-layer network with T = 6. (b) Top-ranked
forward and backward TSkips with ∆t = 4 and
∆t = 3, respectively, found by (Kim et al., 2022).
For visual clarity, the figure depicts the TSkips
spanning a single delay window (∆t). Here t0
refers to the first time step and T is the sequence
length.

Identifying optimal models with TSkips is challenging due
to the vast number of potential architectures and associ-
ated TSkips configurations. To manage this complexity,
we initialize our search with a backbone network (Cai
et al., 2020). This backbone provides a starting point
for exploration, reducing the number of possible config-
urations and allowing the search to focus on optimizing
the specific parameters of our proposed method. How-
ever, significant complexity remains due to the numerous
choices for ∆t, connection placement, and network depth.

To illustrate this complexity, consider a 3-layer network
with the possibility of forward and backward connections
between any two layers (Fig. 4). This simple example
results in 12 possible combinations of skip connections.
With a sequence length of T = 6, this grows to 120 pos-
sible delay combinations and 2120 total possible TSkips
configurations. This combinatorial problem, grows expo-
nentially with the sequence lengths, as each additional
time step introduces new TSkips configurations.

This large search space necessitates an efficient explo-
ration method to identify optimal architectures. To ad-
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dress this, we leverage NASWOT-SAHD (Kim et al., 2022), a training-free NAS method tailored for SNNs.
NASWOT-SAHD scores networks at initialization using the Sparsity Aware Hamming Distance (SAHD),
which quantifies the dissimilarity in spike patterns between different layers. By favoring networks with
diverse spiking activity, SAHD acts as a proxy for identifying optimal sub networks of the backbone archi-
tecture augmented with TSkips. Specifically, (Kim et al., 2022) performs a random search for architectures
with optimal ∆t, TSkips positions (origin and destination) and network depth.

3.5 Training with Explicit Temporal Delays

Training SNNs and hybrid models with gradient descent requires addressing the non-differentiable nature
of spike activations (Fang et al., 2021a) in LIF neurons. We employ adaptive LIF neurons (Kosta & Roy,
2023) with learnable leaks and thresholds, and use the ArcTangent (Fang et al., 2021a) surrogate gradient
to approximate the derivative of the spike activation function. To capture precise spike timing and spatio-
temporal dependencies, we unroll the network in time. This, combined with adaptive LIF neurons and
TSkips, allows for explicit representation of the network’s temporal evolution, capturing both long-term and
local temporal patterns. We then use back propagation through time (BPTT) (Werbos, 1990) for gradient
propagation and Batch Normalization Through Time (BNTT) (Kim & Panda, 2021) for improved training
stability.

4 Experiments

4.1 Experimental Setup

DSEC-Flow The DSEC-Flow dataset (Gehrig et al., 2021a) consists of 24 challenging driving sequences
with varying lighting conditions, fast motion, and occlusions. To assess our models on unseen data, we
created a custom test set by splitting the training set, following the approach in Ponghiran et al. (2023). To
evaluate the accuracy of the predicted optical flow, we use average end point error (AEE) (Zhu et al., 2018a),
which measures the average Euclidean distance between the predicted and ground truth flow vectors.

AEE = 1
n

∑
n

∥(u, v)pred − (u, v)gt∥2
(5)

For experiments on DSEC-flow (Gehrig et al., 2021a), we use a fully spiking (Kosta & Roy, 2023) and
hybrid (Negi et al., 2024) multi-scale encoder-decoder network inspired by EV-FlowNet (Zhu et al., 2018a)
as our backbone architecture. We augment this architecture by integrating TSkips into the existing skip
connections between the encoder and decoder blocks, as depicted in Fig. 5. Due to the inherent structure of
our backbone, the search space for optimal TSkips configurations is relatively small, focusing primarily on
selecting which existing skip connection to modify and determining the appropriate temporal delay (∆t).
DVS128-Gesture The IBM DVS128 Gesture dataset (Hu et al., 2022) contains 1342 instances of 11
hand gestures, captured with a DVS128 (Lichtsteiner et al., 2008) camera. For experiments on DVS128
Gesture, we use a ResNet18 (He et al., 2015) backbone architecture (Cai et al., 2020) and explore various
configurations by modifying its basic blocks. This search includes modifying the input and output channels
of each layer, kernel sizes, stride, and network depth. To integrate TSkips in the backbone, we remove the
original ResNet18 skip connections and search for optimal TSkips placement and corresponding ∆t.

For optical flow estimation and gesture recognition, we introduce a learnable scaling factor, α, within the
TSkips to further enhance temporal processing (detailed in Section. 3.3).
SHD and SSC The SHD (Cramer et al., 2022) dataset comprises 10,000 recordings of spoken digits
(zero to nine in English and German), while the larger SSC (Cramer et al., 2022) dataset contains 100,000
recordings of spoken words from various speakers. These datasets present challenges for audio classification,
requiring the network to capture and process subtle temporal patterns within spike trains that encode spoken
sounds. We focus on the top-one classification task for all 35 classes in SSC and all 20 classes in SHD. For
our experiments on speech recognition, we use a fully connected Multi Layer Perceptron(MLP) (Rumelhart
et al., 1986) as our backbone architecture. We explore various MLP configurations by adjusting the input
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Figure 5: Fully spiking EV-FlowNet (Zhu et al., 2018a) architecture with forward and backward TSkips.
Each TSkips replaces a pre-existing skip connection between the encoder and decoder. Although shown
together for conciseness, forward and backward connections are evaluated independently. In practice, when
used together, they connect different encoder-decoder layers. This architecture can be modified to be a
hybrid ANN-SNN model, by replacing the LIF neurons with ReLU activations.

and output features of each layer, the overall network depth, and the placement and ∆t of TSkips. In these
experiments, we omit α used in the EV-FlowNet and DVS128 Gesture TSkips architectures.

To improve generalization, we augment the training sets for DVS128 Gesture, SHD and SSC with channel
jitter and random noise (Shen et al., 2023). We use sequence lengths (T) of 10, 30, and 99 for DSEC-flow,
DVS128 Gesture, and SHD/SSC, respectively. All models are trained on an NVIDIA A40 GPU using the
Adam optimizer (Kingma & Ba, 2014). For DSEC-flow, we use a multi-step learning rate scheduler (initial
rate: 10−3, scaled by 0.7 every 10 epochs) and the supervised mean squared error (MSE) loss (Kosta &
Roy, 2023; Negi et al., 2024) for 200 epochs. For all other datasets, we use a Cosine Annealing Learning
Rate Scheduler (Loshchilov & Hutter, 2017) (initial rate: 0.001, minimum rate: 5 × 10−6, updated every 10
iterations) for 100 epochs.

Details on the constraints on the search parameters and TSkips configurations for DSEC-flow, DVS128
Gesture, SHD, and SSC can be found in Appendix D.1.

4.2 Ablation Study

Baseline Forward TSkip Backward TSkip

(c)(b)(a)

Figure 6: Ablation study results on the SHD dataset demonstrating the impact of varying the (a) temporal
delay (∆t), (b) TSkips position and (c) network depth on classification accuracy.

As detailed in Section 3.4, the search space of possible TSkips configurations is exponentially large. To
effectively navigate this complex search space, we performed an ablation study on an 8-layer MLP baseline
found using Kim et al. (2022) on the SHD dataset. We varied the temporal delay (∆t), TSkips position and
network depth using concatenation-based (Huang et al., 2017) TSkips for our analysis (see Appendix C.6 for
detailed baseline network configuration).
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Impact of Temporal Delay (∆t): We investigated the impact of varying ∆t for both forward and
backward TSkips (Fig. 6(a)). Forward connections connected the input data to the second layer, while
backward connections connected the final output to the seventh layer, with a delay of ∆t. Varying ∆t
significantly influenced accuracy, with larger delays generally leading to better classification. This highlights
the importance of optimizing ∆t relative to the sequence length (T ), as both excessively small and large
delays can hinder performance.
Impact of TSkips Position: Next, we investigated the impact of TSkips position on classification accu-
racy (Fig. 6(b)). Fixing ∆t = 16, we varied the destination layer of both forward and backward connections.
Forward connections originated from the input data, while backward connections originated from the final
output. Our analysis revealed that connecting TSkips to deeper layers consistently improved accuracy. This
suggests that propagating temporal information to deeper layers is crucial for enhancing model performance.
Note, the optimal placement varies based on forward or backward TSkips.
Impact of Network Depth: We analyzed the impact of TSkips on models of varying depth (Fig. 6(c)),
with forward connections originating from the input and backward connections originating from the final
output with ∆t = 16. Our analysis revealed that deeper networks benefited more from forward connections,
while shallower architectures favored backward connections. This suggests the optimal configuration of
TSkips and network depth are intertwined.

These findings underscore the complex interplay between ∆t, TSkips position (origin and destination layers),
and network depth, which we set as our search parameters. For the results presented in the following
sections, we leveraged Kim et al. (2022) to identify optimal baseline and concatenation-based (Huang et al.,
2017) TSkips architectures (see Appendix C.5 for comparisons with addition-based TSkips), constraining the
architecture search by the number of parameters.

4.3 DSEC-Flow Results

(a) GT (b) Mini - Baseline (c) Mini - F TSkip (d) Mini - B  TSkip (e) Base - Baseline

Figure 7: Qualitative results on the DSEC-flow dataset. (a) Ground Truth (GT) mask, (b) Mini (3.4M) SNN
baseline model mask, (c) Mini SNN (3.4M) with forward (F) TSkips, (d) Mini SNN (3.4M) with backward
(B) TSkips, and (e) Base (13M) SNN baseline model mask. As observed, the Mini model that is 3.8× smaller
than Base model performs just as well qualitatively when TSkips are incorporated.

Incorporating TSkips into the fully spiking and hybrid EV-FlowNet architectures (Kosta & Roy, 2023; Negi
et al., 2024), as detailed in Section 4.1, significantly lowers AEE on the DSEC-flow dataset (Table 1).
Across both fully spiking and hybrid architectures, TSkips consistently yielded an average reduction in AEE
of 14% and 9.5%, respectively. Notably, these improvements are achieved with models 3× smaller than
baselines with comparable AEE. Although SOTA methods such as E-RAFT (Gehrig et al., 2021b) and E-
FlowFormer (Li et al., 2023) achieve 6% and 10% lower AEE , respectively, these reductions come at the
cost of increased complexity. E-RAFT, for example, while being 3× smaller than our best model, relies on
complex processing of event data before its gated recurrent unit (GRU) update. These processing operations
involve converting each event to a voxel grid, extracting features using CNNs and building a correlation
volume. These dense kernel operations are computationally expensive during both training and inference,
as they must be performed for every event sample. E-FlowFormer is a transformer-based architecture which
relies on dense MAC operations in it’s self and cross attention blocks. These event processing steps lead
to higher inference energy compared to TSkips architectures, which take advantage of the inherent sparsity
and event-driven nature of SNNs, performing computationally cheaper sparse AC operations. Additionally,
E-FlowFormer is trained on a large custom dataset and DSEC-flow, which introduces a significant increase
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in computation power and memory during training. Fig. 7 provides a qualitative analysis of how the 3×
larger baselines perform compared to the smaller TSkips variants which highlights the efficiency of TSkips
in allowing accurate temporal processing without increasing model complexity. Hyper parameters and a
detailed analysis of convergence and inference energy for TSkips on DSEC-flow models are in Appendix B.

Table 1: AEE on DSEC-flow (lower is better). Best performing SNN and hybrid baselines and for-
ward/backward TSkips models are highlighted in bold.

Architecture #Params (M) AEE
SNN Hybrid

EV-FlowNet (Gehrig et al., 2021b) 13.04 2.32 -
LSTM-FlowNet (Ponghiran et al., 2023) N/A1 1.28 -
E-RAFT (Gehrig et al., 2021b) 5.3 0.79 -
E-FlowFormer (Li et al., 2023) N/A 0.76 -

Our Models

Base - Baseline 13.04 1.35 0.96
Base + Forward TSkips 1.12 0.86
Base + Backward TSkips 1.13 0.84

Mini - Baseline 3.41 1.65 1.11
Mini + Forward TSkips 1.44 1.02
Mini + Backward TSkips 1.46 1.01

Micro - Baseline 0.93 1.80 1.22
Micro + Forward TSkips 1.57 1.12
Micro + Backward TSkips 1.56 1.09

Nano - Baseline 0.27 2.17 1.47
Nano + Forward TSkips 1.86 1.37
Nano + Backward TSkips 1.77 1.35

Pico - Baseline 0.092 2.57 2.02
Pico + Forward TSkips 2.19 1.78
Pico + Backward TSkips 2.28 1.81

4.4 DVS128-Gesture, SHD and SSC Results

Using TSkips in ResNet18 and MLP backbone architectures, as detailed in Section 4.1, consistently improved
the classification accuracy of SNNs across the DVS Gesture, SHD, and SSC datasets (Tables 2 and 3).

On the DVS Gesture dataset, incorporating TSkips resulted in a significant 8.37% improvement in accuracy
over the baseline model, a convolutional SNN found by Kim et al. (2022). Importantly, our approach achieved
this with significantly smaller models compared to SOTA, including a spiking transformer (Qin & Liu, 2024),
demonstrating the efficiency of our proposed method. Furthermore, our method outperformed several other
approaches, including spiking RNNs (Xing et al., 2020), methods incorporating learnable delays (Shrestha
& Orchard, 2018), and methods using specialized LIF neurons or spatio-temporal feature extraction (Jiang
& Zhang, 2024; Samadzadeh et al., 2023). This highlights the effectiveness of our approach in capturing and
leveraging temporal dependencies for improved gesture recognition.

On the SHD dataset, TSkips achieved an average accuracy gain of 8.6% over the 4-layer baseline (Baseline
- 1) and 8.31% over the 8-layer baseline (Baseline - 2). Our approach also outperformed various recurrent
architectures (vRNNs, spiking RNNs, and LSTMs) by substantial margins. Similarly, on the SSC dataset,
TSkips yielded an average accuracy gain of 14% over Baseline - 1 and 16.04% over the 8-layer Baseline - 2,
again surpassing the performance of recurrent architectures.

1N/A - not reported #Params
2Backward skips are added to all baseline layers with ∆t = 1.
3Zhou et al. (2023) was evaluated on SHD and SSC with minimal updates to the architecture and tuned learning rate.
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Table 2: Classification accuracy on DVS-Gesture. Comparisons between forward/backward TSkips and
SOTA models. Best models in bold.

Method Base Model #Params (M) Accuracy (%)

SLAYER (Shrestha & Orchard, 2018) SNN (8 layer) N/A 93.6
KLIF (Jiang & Zhang, 2024) VGG-11 N/A 93.75
DECOLE (Kaiser et al., 2020) Custom N/A 95.2
SNN-Skip (Benmeziane et al., 2023) ResNet18 N/A 95.43
Streaming rollout SNN Kugele et al. (2021) DenseNet 0.8 95.56
SCRNN (Xing et al., 2020) Custom N/A 96.59
STS-ResNet (Samadzadeh et al., 2023) ResNet18 N/A 96.7
Mamba-Spike (Qin & Liu, 2024) Mambda 6.1 97.8

Our Models

Baseline
ResNet18
Backbone

0.30 88.75
vRNN2 0.30 89.12
Forward TSkips 0.42 94.82
Backward TSkips 0.38 95.97
Forward + Backward TSkips 0.55 97.52

Table 3: Classification accuracy on SHD and SSC datasets. Comparisons between forward, backward and a
combination of both TSkips against SOTA models and two baseline models: a shallow 4-layer MLP network
(Baseline - 1) and a deep 8-layer MLP (Baseline - 2). Best models with a single and two TSkips in bold.

Method #Params (M) Accuracy (%)

SHD SSC SHD SSC

SOTA Models

LSTM-LIF (Zhang et al., 2023) 0.14 0.11 88.91 63.46
SRNN (Yin et al., 2021) N/A N/A 90.4 74.2
DL256-SNN-DLoss (Sun et al., 2023a) 0.14 - 92.56 -
SpikGRU (Dampfhoffer et al., 2022) - 0.28 - 77.00
radLIF (Bittar & Garner, 2022) 3.9 3.9 94.62 77.40
Spikingformer (Zhou et al., 2023)3 1.98 1.99 82.68 72.43
DCLS-Delays (Sun et al., 2023b) 0.21 2.5 95.07 80.69

Our Baseline MLPs

Baseline - 1 0.16 0.12 84.32 64.19
Baseline - 2 1.04 1.04 86.42 67.54

Our MLP Models with TSkips

vRNN2 - 1 0.16 0.12 68.50 71.20
Forward TSkips - 1 0.24 0.42 92.32 76.50
Backward TSkips - 1 0.19 0.24 93.64 79.87
Forward + Backward TSkips - 1 0.20 0.54 93.01 78.64

vRNN2 - 2 1.04 1.04 71.35 72.24
Forward TSkips - 2 1.12 1.08 94.15 78.98
Backward TSkips - 2 1.16 1.14 93.86 79.65
Forward + Backward TSkips - 2 1.28 1.42 94.73 80.23

While TSkips achieves accuracy within 0.34% of SOTA model DCLS-Delays (Hammouamri et al., 2023)
on SHD and 0.46% on SSC, it offers several distinct advantages. Specifically, the architectural constraint
of DCLS-Delays to feedforward networks highlights a key area where TSkips provides a complementary
alternative. Furthermore, TSkips as an architectural addition coupled with NAS allows for modifications
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to various network architectures, as shown in Section 4.3 and also offers efficiency due to very few new
trainable parameters coupled with strong performance. In particular TSkips achieves accuracy comparable
to Hammouamri et al. (2023) on the SSC dataset with a 44% smaller model.

These improvements can be attributed to the ability of TSkips to capture long-term temporal dependencies,
facilitated by the unrolled network structure, detailed in Section 3. Our method improves both the accuracy
and convergence rate of the models by mitigating vanishing spikes and enabling more efficient gradient
propagation during training. The analysis presented in Appendices A and C demonstrates lower energy
consumption and faster convergence compared to standard SNNs and recurrent architectures. Additionally,
we show that incorporatingTSkips in ANNs and hybrid models significantly improves speech classification
(Appendix C.4).

(c)(a)

(d)(b)

B no skipInput Baseline FTSkips F no skip BTSkips

Figure 8: Trained network’s response to temporal patterns at inference, visualized by average spiking activity.
For two randomly sampled SHD event streams ((a) and (b)), we compare the true event activity against
that of a baseline MLP, a forward TSkips (FTSkips) network, the FTSkips network with the skip removed
(F no skip), a backward TSkips (BTSkips) network, and the BTSkips network with the skip removed (B no
skip). Sub-figures (c) and (d) show the average spiking activity specifically within the forward and backward
TSkips, demonstrating spike generation aligned with the specified delay window. All plots are normalized
by the 700-dimensional input feature representation.

4.5 Observations

To empirically validate our claim that TSkips enhance the network’s responsiveness to temporal patterns,
we analyze the spike representations of trained models at inference. Fig. 8 compares the average spiking
activity of trained models with and without TSkips against the true event stream for two randomly sampled
SHD data points. The TSkips models without a temporal skip have a zero tensor passing through the
TSkips connection to ensure the model being evaluated does not undergo any modifications. Figures 8(a)
and 8(b) show that the average spiking pattern of the trained models (even after removing the TSkips, called
F/B no skip) aligns more closely with the ground truth average spike distribution compared to the baseline
network. Removing TSkips during inference reduces the average spike rate and memory requirements, and
the qualitative results validate that the TSkips model has learned the input event distribution and captures
the input dynamics better than the baseline. We attribute this to TSkips aiding the adaptive LIF parameters
and weights to learn more effectively during BPTT.

Furthermore, Fig. 8(c) and (d) isolate the average spiking activity within the forward (F) and backward
(B) TSkips connections themselves. These plots reveal two key observations: first, spike generation within
the TSkips aligns with the specified temporal delay (∆t), and second, the activity mirrors a scaled version
of the original input distribution. This provides strong empirical evidence that TSkips propagates relevant
temporal information from the past. Furthermore, Figs. 8(a) and (b) validate that TSkips improve learning
rather than acting as additional connections. The distinct characteristics of F and B TSkips are also evident.
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FTSkips exhibit more distributed spike patterns and higher variability, likely due to processing denser latent
representations from earlier network stages. The smaller and sparser activity in BTSkips might facilitate
more nuanced error correction during BPTT. Crucially, both types of TSkips demonstrate sensitivity to the
entire event stream, including the sparse tail end, as seen in Figures 8(a) and (b). The sustained activity in
Fig.8(a) and (b) during the later, sparser parts of the sequence in both (TSkips/no TSkips) model evaluations
at inference indicates integration of information from earlier, denser time steps.

This ability of TSkips to integrate information across different temporal contexts allows the network to
build richer latent representations. This mechanism is particularly important for mitigating vanishing gra-
dients/spikes during BPTT, as TSkips establish direct pathways for information and gradients across long
temporal distances, ensuring learning even when events are sparser over the sequence length. We provide
quantitative results on these ‘no skip’ models for the DSEc-flow and SHD datasets in Appendixes B.2 and
C.2.

4.6 Scalability of TSkips

To assess the scalability of TSkips to deeper architectures and more complex visual tasks, we evaluated our
method on the CIFAR10-DVS (Li et al., 2017) dataset. While the DSEC-flow results (Section 4.3) demon-
strated the effectiveness of TSkips on a complex real-world task, the underlying EV-FlowNet architecture
is custom-designed. To further validate that TSkips works on standard, widely adopted architectures in
a more complex event-based setting, we applied our method to larger models like spiking ResNet18 and
VGG11, incorporating the NDA data augmentation technique (Li et al., 2022b) as our baseline. The results
presented in Table 4 consistently demonstrate that TSkips improve accuracy over baseline models in these
deeper networks.

Table 4: Classification accuracy on the CIFAR10-DVS dataset, comparing the performance of baseline spiking
ResNet18 and VGG11 models against their TSkips-augmented counterparts, illustrating the scalability of
our approach. We use the NDA (Li et al., 2022b) spiking ResNet18 and VGG11 models as our baselines.

Method Base Model #Params (M) Accuracy (%)
SOTA Models

Spikingformer
(Zhou et al., 2023)

Single-stage
ViT 2.57 81.3

α-SSA
(Xiao et al., 2025)

Multi-stage
ViT 1.54 82.24

SpikingResformer
(Shi et al., 2024) ResNet+ViT 35.52 84.8

Basline Models
Baseline - 1
(NDA (Li et al., 2022b)) ResNet18 11.700 78.00

Baseline - 2
(NDA (Li et al., 2022b)) VGG11 132.86 81.70

TSkips Models
FTSkips - 1 ResNet18 11.708 81.08
BTSkips - 1 ResNet18 12.224 82.93
FTSkips - 2 VGG11 134.04 82.56
BTSkips - 2 VGG11 134.04 83.01

The CIFAR10-DVS dataset (Li et al., 2017) provides a valuable test case, showing that TSkips can provide
accuracy gains even for event data with artificially generated temporal information from repeated closed-loop
movements. These results offer insight into the effectiveness of TSkips in challenging vision/audio tasks that
possess rich temporal dynamics, as detailed in Sections 4.3 and 4.4, demonstrating their ability to improve
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performance in deeper large-scale networks on event data. However, it is important to consider that smaller
transformer models, such as Zhou et al. (2023); Xiao et al. (2025); Shi et al. (2024) can achieve similar or
better performance with significantly fewer parameters.

Beyond specific task performance, the vast search space for optimal TSkips configurations (temporal delay
(∆t) and skip positions) is a recognized challenge. This motivated our use of training-free NAS for efficient
exploration. As detailed in Section 3.4, the NASWOT-SAHD (Kim et al., 2022) proxy inherently guides this
search by favoring networks with high linear separability in LIF activations across time steps, suggesting
robustness beyond just favorable initializations. To confirm that TSkips consistently provide performance
improvements over strong baselines identified by NAS, we analyzed the best-found baseline and their TSkips-
augmented variants across three random seeds. These results for DSEC-flow (Gehrig et al., 2021a) are
provided in Appendix D.2, Table 12, further validating the consistent improvement in inference with TSkips.

5 Discussion

While our approach demonstrates promising results, several avenues for future investigation remain. En-
hancing the energy efficiency of discovered architectures is one key area, potentially through energy-based
regularization within a training-free NAS proxy. Furthermore, mitigating the increase in memory usage
associated with TSkips and temporal unrolling requires exploring memory-efficient training techniques or
alternative architectures. Future research could also investigate making the temporal delays learnable/
dynamically changing and inference energy optimization techniques to further refine the efficiency of our
method.

Implementing TSkips in neuromorphic or biological systems presents distinct challenges. The storage of
historical neural states to enable connections across time steps necessitates memory allocation, which can be
a significant constraint on neuromorphic hardware with limited on-chip resources. TSkips can be implemented
on standard hardware by storing and retrieving past layer states, incurring memory and energy costs for
simulation. The analysis in Sec. 4.5 provides a promising solution to this problem, where the trained
models can be deployed without hidden state storage and passing a null input through the TSkips. On
neuromorphic hardware, TSkips can be realized through direct routing with delays, where information from
an earlier layer is directly routed to a later layer with a controlled temporal delay. This can be achieved using
physical delay lines or digital buffers within the chip’s architecture, potentially offering energy efficiency by
bypassing computations in intermediate layers. Importantly, our findings in Section 5 show that trained
TSkips models can perform well even without explicitly using the temporal skip at inference, reducing
hardware memory and energy requirements. Biologically, analogies might be found in short-term memory
mechanisms or axonal delays that could bridge temporal gaps in information flow. Overcoming connectivity
and communication latency limitations in neuromorphic hardware will also be crucial for realizing flexible
temporal skips. Balancing the performance gains of TSkips with these hardware costs will guide future work
exploring memory-efficient encoding of historical states, incorporating hardware constraints into the NAS
process, and investigating how to mitigate the inherent hardware delays using TSkips.

6 Conclusion

In conclusion, this work demonstrates the potential of incorporating temporal delays in forward and backward
skip connections across SNNs and hybrid architectures. Our proposed method, optimized through training-
free NAS, enhances accuracy, temporal representation, and efficiency while maintaining small model sizes, as
shown by our results on the DSEC-flow, DVS128 Gesture, SHD, and SSC datasets. Furthermore, our ablation
studies reveal the importance of understanding the interplay between network depth, temporal delays, and
connection placement in optimizing SNN performance. Overall, this work demonstrates a promising direction
for the development of efficient and accurate SNN architectures, achieving competitive performance with
reduced complexity, thus offering a compelling alternative for real-world applications requiring fast and
accurate processing of temporal information.
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A Inference Energy Estimation

To validate the observation that TSkips exhibit reduced energy consumption compared to baseline SNNs and
standard recurrent methods (vRNNs (Rumelhart et al., 1986) and LSTMs (Hochreiter, 1997)) for various
tasks (Sections 4.3 and 4.4), we estimate inference energy. These estimations are made using the method
from Rueckauer et al. (2017); Lee et al. (2021), which considers the energy required for sparse accumulate
(AC) operations in SNNs (EAC = 0.9pJ) and dense multiply-and-accumulate (MAC) operations in ANNs
(EMAC = 4.6pJ) based on a 45nm CMOS technology (Horowitz, 2014). We calculated the total inference
energy (Etotal) as:

Etotal =
{

#OPSSNN × EAC , for SNNs
#OPSANN × EMAC , for ANNs

(6)

where #OPSSNN and #OPSANN represent the layer-wise synaptic connections in SNNs and ANNs, re-
spectively, calculated as:

#OPSSNN = T × N × C × M,

#OPSANN = N × C.

Here, T is the sequence length, N is the number of neurons in the layer, C is the number of synaptic
connections per neuron, and M is the average spike rate over T .
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Figure 9: Ablation study on the SHD dataset demonstrating the impact of varying the (a) temporal delay
(∆t), (b) TSkips position and (c) network depth on inference energy.

A.1 Inference Energy Ablation Study

Building upon our ablation study in Section 4.2, we further investigated the impact of different TSkips
configurations on inference energy, estimated using Eq. 6. Specifically, we explored the impact of varying
temporal delay (∆t), TSkips position, and network depth on an 8-layer multilayer perceptron (MLP) baseline
model with concatenation-based TSkips, found using the Neural Architecture Search (NAS) framework (Kim
et al., 2022). This analysis is crucial because TSkips increases the average spike rate within the network,
potentially leading to higher inference energy consumption.
Impact of Temporal Delay (∆t): We investigated the impact of varying ∆t for both forward and
backward TSkips on inference energy (Fig. 9(a)). Forward connections originated from the input data and
terminated at the second layer, while backward connections originated from the final output and terminated
at the seventh layer. Our analysis revealed that varying ∆t significantly influenced inference energy. Larger
delays resulted in lower energy consumption, likely because fewer (but more temporally relevant) spikes were
propagated through the connections.
Impact of TSkip Position: Next, we investigated the impact of varying TSkips placement on inference
energy (Fig. 9(b)). With a fixed ∆t = 16, we varied the destination layer of both forward (originating from
the input data) and backward (originating from the final output) connections. While no clear trend emerged,
terminating both forward and backward TSkips at deeper layers generally resulted in lower inference energy
consumption.
Impact of Network Depth: Finally, we analyzed the impact of TSkips on inference energy across models
of varying depth (Fig. 9(c)). Forward connections originated from the input, and backward connections
originated from the final output, with ∆t = 16. Our analysis revealed that increasing the number of layers
led to a significant increase in inference energy.

This analysis of inference energy with varying TSkips parameters further emphasizes the complex interplay
between ∆t, TSkips position, and network depth. It highlights the importance of using methods like Kim
et al. (2022) to find optimal network architectures and TSkips configurations. While Kim et al. (2022) does
not explicitly optimize for minimal energy consumption, it prioritizes networks with diverse spiking activity
by quantifying the dissimilarity between spiking patterns. As a result, the identified configurations often
utilize TSkips with larger ∆t values, enabling our networks to efficiently capture long-term patterns while
maintaining low energy consumption.

B Additional Results - DSEC-flow

B.1 Inference Energy Analysis

As demonstrated in Section 4.3, TSkips reduce average endpoint error (AEE) without increasing model
complexity or energy consumption for optical flow estimation on the DSEC-flow dataset. To further analyze
this, we evaluated the inference energy of our fully spiking EV-FlowNet architectures augmented with TSkips
using Eq. 6.

Table 5 demonstrates the effectiveness of incorporating TSkips into fully spiking EV-FlowNet architec-
tures (Kosta & Roy, 2023). By efficiently utilizing temporal information, our approach achieves comparable
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Table 5: Comparison of inference energy (Etotal) using Eq. 6 for fully spiking DSEC-flow models with and
without forward/backward TSkips across all scales.

Model #Params
(×106)

(N )
Variant #OPSSNN

(×109)
Spike
Rate
(M)

Etotal
(mJ)

Base 13.04 Baseline 25.9 45.83 23.3
Forward TSkips 32.7 57.8 29.4

Backward TSkips 30.7 54.32 27.6

Mini 3.41 Baseline 9.71 45.15 8.75
Forward TSkips 11.7 54.23 10.5

Backward TSkips 11.4 53.21 10.3

Micro 0.93 Baseline 5.81 61.9 5.25
Forward TSkips 6.14 65.4 5.52

Backward TSkips 5.86 62.4 5.27

Nano 0.27 Baseline 2.67 55.55 2.40
Forward TSkips 2.81 58.47 2.53

Backward TSkips 2.71 56.3 2.44

Pico 0.092 Baseline 2.11 74.12 1.90
Forward TSkips 2.29 80.6 2.07

Backward TSkips 2.25 78.9 2.02

AEE to baseline models 3× larger, while significantly reducing inference energy. This improvement stems
from TSkips ability to enhance spike propagation with minimal added parameters. While adding TSkips
increases the average spike rate, the resulting models achieve comparable AEE to larger baselines (Table 1)
with substantially lower energy consumption. This highlights the potential of our method for accurate,
robust, and efficient optical flow prediction.

B.2 Inference Accuracy Analysis

As detailed in Sec. 4.5 the trained TSkips models were evaluated at inference after removing the temporal
hidden state propagation through the TSkips. We provide qualitative results for these models in Table 6 and
see that the DSEC models retain performance even without explicitly storing temporal states at inference. We
attribute this to the learnable scaling factor (α) within the TSkips as detailed in 3.3. This (α) dynamically
determines the weighted contribution of both the current timestep’s information and the information from
the delayed past timestep propagating through the skip connection. For our "no TSkips" inference analysis
on DSEC, we used the learned α to control how much of the past hidden state’s contribution was zeroed out
in the skip connection, allowing the model to still leverage the learned weighting of the current timestep’s
information.

Table 6: Comparison of AEE (lower is better) on DSEC-flow across baseline architectures, models with
forward (F)/ backward TSkips and models no TSkips.

Arch Baseline FTSkips F no TSkips BTSkips B no TSkips
Base 1.35 1.12 1.13 1.13 1.13
Micro 1.65 1.44 1.44 1.46 1.47
Mini 1.80 1.57 1.58 1.56 1.56
Nano 2.17 1.86 1.86 1.77 1.77
Pico 2.57 2.19 2.20 2.28 2.30

21



Published in Transactions on Machine Learning Research (07/2025)

B.3 Convergence Analysis

As discussed in Section 3, incorporating TSkips can lead to easier training and faster convergence for both
fully spiking (Kosta & Roy, 2023)and hybrid (Negi et al., 2024) EV-FlowNet architectures. To validate this,
we analyzed the convergence behavior of our DSEC-flow models across different scales. Fig. 10 shows that
both our largest (Base vs. Mini with TSkips) and smallest (Nano vs. Pico with TSkips) models exhibit faster
convergence when incorporating TSkips, for both fully spiking and hybrid variants. This faster convergence
can be attributed to TSkips ability to mitigate vanishing spikes and enhance gradient flow throughout the
network, enabling quicker optimization and improved learning dynamics. Additionally, by facilitating the
propagation of temporally relevant information, TSkips can help the network learn important temporal
dependencies more efficiently, leading to faster convergence. This consistent trend across different model
sizes highlights the benefits of TSkips in facilitating fast, efficient and effective training.

Backward TSkipForward TSkipBaseline

(a) SNN Nano Baseline
vs

Pico - F/B Tskip

(b) SNN Base Baseline
vs

Mini - F/B Tskip

(c) Hybrid Nano Baseline
vs

Pico - F/B Tskip

(d) Hybrid Base Baseline
vs

Mini - F/B Tskip

Figure 10: Convergence analysis of fully spiking (Kosta & Roy, 2023) and hybrid (Negi et al., 2024) EV-
FlowNet architectures on the DSEC-flow dataset. The plots compare the convergence behavior of baseline
models (Base and Nano) with their smaller forward (F) and backward (B) TSkips -augmented counterparts
(Mini and Pico, respectively).

B.4 Hyper parameters for DSEC-flow

Table 7 specifies the TSkips configurations used to replace existing skip connections in the fully spiking (Kosta
& Roy, 2023) and hybrid (Negi et al., 2024) EV-FlowNet architectures. Here, “TSkips Position" indicates
the targeted connection, with ‘1’ representing the longest skip (between the first encoder and last decoder
blocks) and ‘3’ the shortest (between the last encoder and first decoder blocks), see Fig. 5.

C Additional Results - DVS128 Gesture, SHD and SSC

C.1 Inference Energy Analysis

As demonstrated in Section 4.4,TSkips improves classification accuracy for speech recognition compared to
standard recurrent models (vRNNs and LSTMs). Additionally, we state that TSkips also reduce inference
energy compared to these models. This energy efficiency is further confirmed by the estimations presented
in Table 8 for both shallow (4-layer) and deep (8-layer) MLP (Rumelhart et al., 1986) networks on the
SHD (Cramer et al., 2022) dataset. These estimations were calculated using Eq. 6, which considers the
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Table 7: TSkip parameters used for fully spiking and hybrid DSEC-flow models.

Architecture SNN Hybrid

∆t TSkip Pos ∆t TSkip Pos

Base + Forward TSkips 3 1 3 1
Base + Backward TSkips 4 1 5 1

Mini + Forward TSkips 3 1 4 2
Mini + Backward TSkips 3 2 3 1

Micro + Forward TSkips 4 2 3 2
Micro + Backward TSkips 3 3 3 3

Nano + Forward TSkips 3 1 3 2
Nano + Backward TSkips 4 2 3 2

Pico + Forward TSkips 4 1 3 1
Pico + Backward TSkips 3 2 4 2

energy consumed by both sparse accumulate (AC) operations in SNNs and dense multiply-and-accumulate
(MAC) operations in ANNs.

For comparison, the vRNNs in Table 8 are our baseline SNNs with backward skip connections added to
every layer with ∆t = 1. The LSTMs are implemented as ANNs, with the 0.2 × 106 and 1.1 × 106 parameter
models having 700 input channels and hidden sizes of 75 and 400, respectively.

The observed reduction in energy consumption can be attributed to several key factors. Firstly, TSkips
introduce a limited number of additional synaptic connections (C) compared to the densely connected nature
of RNNs and LSTMs. Secondly, they promote sparse spiking activity by selectively propagating information
across time steps, leading to lower energy consumption than the dense computations inherent in recurrent
layers. Finally, the explicit temporal delays in TSkips enable the network to focus on the most relevant
information from previous time steps, thereby reducing unnecessary computations and further improving
energy efficiency.

Table 8: Inference energy (Etotal) best-performing models on the SHD dataset. Energy is calculated using
Eq. 6.

Model
#Params

(×106)
(N )

#OPS
(×1012)

Spike Rate
(×104)
(M)

Etotal
(mJ)

Baseline - 1 0.16 0.0083 3.16 7.52
vRNN - 1 0.16 0.213 38.08 192.41
LSTM - 1 0.2 0.016 - 74.63
Forward TSkips -1 0.24 0.038 5.62 34.79
Backward TSkips - 1 0.19 0.022 4.95 20.37
Forward + Backward TSkips - 1 0.20 0.032 7.42 29.06

Baseline - 2 1.04 0.815 7.63 734.26
vRNN - 2 1.04 10.854 58.23 9768.88
LSTM - 2 1.1 1.196 - 5505.28
Forward TSkips - 2 1.12 1.204 8.21 1083.90
Backward TSkips - 2 1.16 1.213 8.23 1091.87
Forward + Backward TSkips - 2 1.28 1.761 9.13 1585.70
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Table 9: Comparison of accuracy on SHD for two baseline models, forward (F)/ backward TSkips and no
TSkips.

Model TSkips no TSkips
Baseline - 1 84.32
FTSkips - 1 92.32 90.71
BTSkips - 1 93.64 92.78
F+B TSkips - 1 93.01 91.76
Baseline - 2 86.42
FTSkips - 2 94.15 92.32
BTSkips - 2 93.86 93.18
F+B TSkips - 2 94.73 92.34

C.2 Inference Accuracy Analysis

As detailed in Sec. 4.5 the trained TSkips models were evaluated at inference after removing the temporal
hidden state propagation through the TSkips. We see that the SHD models without the TSkips have a slight
decrease in inference accuracy. We attribute this slight decrease to less information being propagated to the
later layers of the network through the TSkips. However, the models continue to perform better than the
baselines, thus validating that TSkips helped to improve learning during training.

C.3 Convergence Analysis

Figure 11: Test accuracy convergence on the SHD dataset, comparing the best-performing models with
TSkips (from Table 3) to a vRNN and an LSTM with 0.2 × 106 parameters.

As discussed in Sections 3 and 4.4, incorporating TSkips can lead to easier training and faster convergence
compared to recurrent models like vRNNs and LSTMs, as demonstrated in Fig. 11 for a 4-layer MLP
network on the SHD dataset. This accelerated convergence can be attributed to several factors: improved
gradient flow by mitigating the vanishing gradient problem, efficient information propagation by facilitating
the access to temporally relevant information, and reduced computational complexity compared to the dense
connectivity of recurrent networks. These factors, combined with the ability of TSkips to capture long-term
temporal dependencies, contribute to the improved training efficiency observed in our experiments.

C.4 TSkips in ANNs and Hybrid Models

As discussed in Section 4.4, incorporating TSkips into ANNs and hybrid ANN-SNN models can lead to
improved classification accuracy. Table 10 presents these results, demonstrating the effectiveness of TSkips
in enhancing both ANN and hybrid model performance, surpassing the performance of vRNNs and LSTMs,
respectively.

This improvement can be attributed to the ability of TSkips to facilitate more effective temporal processing.
By incorporating explicit temporal delays, these connections allow the network to access and integrate
information from past time steps, which can be crucial for understanding complex temporal patterns. This
enhanced temporal awareness enables the network to make more accurate predictions, leading to improved
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Table 10: Classification accuracy of ANN and Hybrid ANN-SNN models on the SHD and SSC datasets. We
compare the 4-layer MLP baseline (Baseline-1) with forward/backward TSkips.

Method #Params (×106) Accuracy (%)

ANN Hybrid

SHD

Baseline 0.16 49.95 74.11
vRNN 0.16 60.51 67.45
Forward TSkips 0.24 69.08 84.54
Backward TSkips 0.19 73.45 86.02
Forward + Backward TSkips 0.20 73.25 85.74
LSTM 0.20 80.54 -

SSC

Baseline 0.12 55.41 59.61
vRNN 0.12 68.29 71.43
Forward TSkips 0.42 71.19 73.48
Backward TSkips 0.24 70.23 72.87
Forward + Backward TSkips 0.54 71.09 74.96
LSTM 0.20 72.3 -

classification accuracy. Furthermore, TSkips can mitigate the vanishing spikes problem often encountered in
deep networks, by providing more direct pathways for gradient flow during training. This improved gradient
propagation can lead to more stable and efficient training, further contributing to the enhanced performance
observed in ANNs and hybrid models.

C.5 Comparison between TSkip Operators

To further analyze the impact of different TSkips connection types, we compared the performance of
concatenation-based and addition-based TSkips on the 4-layer and 8-layer baselines (Table 3).

Table 11: Comparison of classification accuracy on SHD and SSC datasets with concatenation-based (C)
and addition-based (A) forward/backward TSkips on a 4-layer (Baseline -1) and 8-layer (Baseline - 2) MLP
network.

Method #Params (×106) Accuracy (%)

SHD SSC SHD SSC

Baseline - 1

Baseline 0.16 0.12 84.32 64.19
Forward TSkips - C 0.24 0.42 92.32 76.5
Backward TSkips - C 0.19 0.24 93.64 79.87
Forward + Backward TSkips - C 0.20 0.54 93.01 78.64
Forward TSkips - A 0.19 0.37 87.65 72.13
Backward TSkips - A 0.11 0.21 87.54 73.15
Forward + Backward TSkips - A 0.11 0.40 88.13 75.12

Baseline - 2

Baseline 1.04 1.04 86.42 67.54
Forward TSkips - C 1.12 1.08 94.15 78.98
Backward TSkips - C 1.16 1.14 93.86 79.65
Forward + Backward TSkips - C 1.28 1.42 94.73 80.23
Forward TSkips - A 0.99 1.05 86.39 72.15
Backward TSkips - A 0.97 1.01 87.32 75.53
Forward + Backward TSkips - A 0.98 1.14 89.45 77.12
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Table 11 demonstrates the superior performance of concatenation-based TSkips over addition-based on the
baseline models. Concatenation-based TSkips consistently outperformed their addition-based counterparts.
This can be attributed to the increased representational capacity of concatenation, which expands the feature
space by combining information from the skip connection and the destination layer. This richer representation
allows the network to learn more complex temporal patterns, particularly crucial in deep SNNs where
information is encoded in sparse spike trains and membrane potentials. Furthermore, concatenation preserves
information from both sources, preventing potential information loss that can occur with addition.

C.6 Hyper parameters for DVS128 Gesture, SHD and SSC

Table 13 presents the top-ranked network architectures and TSkips configurations identified by NASWOT-
SAHD (Kim et al., 2022), with corresponding results shown in Tables 2 and 3.
The table specifies the following for each configuration:

1. Network architecture:
(a) DVS128 Gesture: 2×64×64 represents the input dimensions (polarity 2, 64×64 spike resolution)

for all networks. Convolutional layers are represented concisely, for example, 3c80s1 denotes a
layer with a 3 × 3 kernel, 80 output channels, and a stride of 1.

(b) SHD and SSC: Specifies the number of input channels for each MLP layer, including the final
fully connected layer. The channels represented as n ∗ 2 indicate that concatenation-based
TSkips were used, doubling the number of channels (n) in that layer. This representation is
used to highlight that the results shown in Table 11, which uses addition-based TSkips, are
based on the same underlying network architectures.

2. TSkips parameters: The temporal delay (∆t) and the origin and destination layers (from → to) for
forward (F), backward (B) and combined (F + B) TSkips.

3. Other hyper parameters:
(a) Leak and threshold initialization values for adaptive LIF neurons: 0.6 and 15, respectively.
(b) Dataset-specific dropout rates: 0.4 for SHD and 0.2 for SSC.

D NASWOT-SAHD Validation

D.1 Correlation on TSkips
Baseline Forward TSkip Backward TSkip

Figure 12: Correlation between accuracy and SAHD score for different net-
work configurations (baseline, forward TSkips, and backward TSkips).

To validate the effectiveness of
NASWOT-SAHD (Kim et al.,
2022) in identifying optimal
network configurations, we an-
alyzed the correlation between
the accuracy and score of
the identified networks, as
shown in Fig. 12. The
scores are based on the Spar-
sity Aware Hamming Distance
(SAHD) (Kim et al., 2022),
and the correlation is mea-
sured using Kendall’s τ . Our
baseline models achieved a
τ correlation of 0.63, consis-
tent with the results reported
in Kim et al. (2022). How-
ever, the forward and back-
ward TSkips network searches
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resulted in slightly lower cor-
relations of 0.58 and 0.55, respectively. All results reported are for the top-ranked networks identified by
NASWOT-SAHD (Kim et al., 2022).

To ensure a focused and efficient search, we introduced several constraints:

1. Temporal Delay (∆t):

(a) DSEC-flow (T = 10): 2 ≤ ∆t ≤ 6
(b) DVS Gesture (T = 30): 5 ≤ ∆t ≤ 14
(c) SHD and SSC (T = 99): 10 ≤ ∆t ≤ 45

2. TSkips Position: We constrained connections to not be within the same layer, ensuring that all
connections originated from a different layer than the destination.

3. Model Size:

(a) DSEC-Flow: No constraint was applied as we directly replaced existing skip connections in the
fully spiking(Kosta & Roy, 2023) and hybrid (Negi et al., 2024) EV-FlowNet architecture with
TSkips, maintaining the original model size.

(b) DVS128 Gesture: 0.6 × 106 parameters
(c) SHD and SSC (Baseline-1): 0.3 × 106 parameters
(d) SHD and SSC (Baseline-2): 1.3 × 106 parameters

D.2 Robustness across Random Seeds

To validate the robustness of our NAS-identified configurations and the consistent performance enhancement
provided by TSkips, we conducted additional experiments on the DSEC-flow (Gehrig et al., 2021a) dataset.
Table 12 presents the Average Endpoint Error (AEE) for both baseline models and their TSkips-augmented
variants, averaged across three different random seeds. These results, reported as mean (µ)± standard
deviation (σ), demonstrate the stability and reliable improvement offered by our approach.

Table 12: DSEC flow results on performing NAS search for TSkips with multiple random seeds. Presented
below is the AEE (mean(µ) ± standard deviation(σ)) (lower is better) of the models found across 3 random
seeds.

Model ∆t Position AEE (µ ± σ)

Base - Baseline - - 1.38 ± 0.09
Base - FTSkip 3,2,3 1,1,2 1.16 ± 0.10
Base - BTSkip 4,3,4 1,2,1 1.14 ± 0.13
Mini - Baseline - - 1.72 ± 0.07
Mini - FTSkip 3,2,2 1,1,2 1.49 ± 0.06
Mini - BTSkip 3,2,3 2,1,2 1.47 ± 0.07
Micro - Baseline - - 1.97 ± 0.11
Micro - FTSkip 4,3,3 2,1,2 1.66 ± 0.10
Micro - BTSkip 3,2,2 3,2,3 1.69 ± 0.15
Nano - Baseline - - 2.23 ± 0.17
Nano - FTSkip 3,3,2 1,1,2 1.85 ± 0.07
Nano - BTSkip 4,3,3 2,1,2 1.78 ± 0.13
Pico - Baseline - - 2.64 ± 0.08
Pico - FTSkip 4,2,3 1,2,1 2.32 ± 0.13
Pico - BTSkip 3,2,3 2,1,1 2.28 ± 0.17
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Table 13: Optimal Parameters for Training MLP Networks with Temporal Skip Connections on SHD and
SSC Datasets.

Variant Network Delay
(∆t)

TSkip
Position

(from → to)

DVS128 Gesture

Baseline 2×64×64-3c80s1-3c80s1-
5c86s1-5c64s1-1c64s1-1c32s11 - -

F TSkips 2×64×64-3c83s1-3c83s1-5c110s1-
3c94s1-1c94s1-1c32s11 5 1 → 2

B TSkips 2×64×64-3c64s1-5c64s1-
5c64s1-5c76s1-1c76s1-1c32s11 5 4 → 3

F + B
TSkips

2×64×64-3c122s1-5c122s1-
3c122s1-5c64s1-1c64s1+1c32s11

F: 6
B: 8

F: 1 → 3
B: 5 → 4

SHD

Baseline - 1 700-124-288-144-20 - -
F TSkips - 1 700-124*2-432-115-20 24 1 → 2
B TSkips - 1 700*2-124-115-96-20 14 4 → 1
F + B
TSkips - 1 700*2-124-144-72*2-20 F: 18

B: 14
F: 2 → 4
B: 2 → 1

Baseline - 2 700-512-288-224-
192-896-288-20 - -

F TSkips - 2 700-532-288-524-
192-448*2-288-20 17 2 → 6

B TSkips - 2 700-321-558*2-334
292-452-328-20) 12 3 → 5

F + B
TSkips - 2 700-321-228*2-334-

492*2-462-448-20
F: 10
B: 13

F: 2 → 5
B: 7 → 3

SSC

Baseline - 1 700-124-148-130-35 - -
F TSkips - 1 700-324-298*2-145-35 15 1 → 3
B TSkips - 1 700-184*2-179-230-35 12 3 → 2
F + B
TSkips - 1 700-364*2-257*2-195-35 F: 14

B: 8
F: 1 → 3
B: 4 → 2

Baseline - 2 700-731-410-340-
150-184-58-35 - -

F TSkips - 2 700-646-410-400-
250-184*2-135-35 17 2 → 6

B TSkips - 2 700-663-373*2-337-
292-182-135-35 15 7 → 3

F + B
TSkips - 2 700-674-493*2-347*2-

278-192-89-35
F: 9
B: 11

F: 1 → 2
B: 7 → 3
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