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Abstract

Retrieval-Augmented Generation (RAG) at-
tempts to mitigate the issue of outdated knowl-
edge and hallucinations in large language mod-
els (LLMs) by retrieving real-time informa-
tion for LLMs. Nevertheless, we observe that
the domain of user questions undergoes rapid
changes over time, resulting in a significant
decrease in RAG performance. Meanwhile, ex-
isting methods either overlook the feedback
present in the workflow or fail to fully utilize
them to improve the RAG system. To this end,
we propose a method that utilizes both LLM
and User Feedback (LUF) to improve RAG per-
formance with shifts in question domains and
answer domains. With the framework designed
to automatically extract diverse feedback sig-
nals from both LLM and user within the exist-
ing workflow, LUF can adjust to variations in
questions and user preferences through updates
to the retriever and document database, guided
by three complementary training objectives de-
rived from feedback-all without explicit anno-
tations. Experiments on two tasks demonstrate
that LUF significantly improves the accuracy
of the retriever and the responses of the LLM.
Compared to baselines, LUF provides more
accurate responses aligned with different user
preferences.

1 Introduction

Retrieval-Augmented Generation (RAG) (Lewis
et al., 2021; Gao et al., 2024) tackles hallucinations
resulting from the inability to access real-time in-
formation by employing an additional retriever to
obtain the latest data. Existing RAG frameworks
typically involve the following steps: first, an addi-
tional retriever is used to fetch relevant documents
from a document database; then, an LLM is utilized
to rerank and filter irrelevant documents; finally,
the question is combined with the filtered docu-
ments and fed into an LLM to generate a response
(Sachan et al., 2023).
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Figure 1: Illustration of the feedback signals already
present in the existing workflow..

Previous research (Yoran et al., 2024) has shown
that LLMs exhibit a notable decrease in answer
accuracy when irrelevant documents are retrieved.
Thus, the output of the LLMs is highly dependent
on the precision of the retriever and the quality
of the document database. Several studies have
attempted to improve the performance of RAG re-
trieval, including constructing better training data
for retriever training (Yu et al., 2023), using data
augmentation techniques such as query rewriting
or expansion (Wang et al., 2023; Ma et al., 2023),
and employing multiple retrievals or active retrieval
methods (Borgeaud et al., 2021; Jiang et al., 2023).
However, these studies failed to recognize RAG’s
real-time potential as their retrievers and document
databases were frozen during testing.

However, our research shows that domain shifts
in questions and answers can significantly degrade
retriever performance, even when the document



database remains unchanged. In our experiments,
widely adopted dense retrievers like Contriever and
DPR experience up to an 8% drop in retrieval ac-
curacy on unseen datasets, resulting in a 6% de-
crease in LLM answer accuracy. This suggests that
static retrievers struggle to adapt as user queries
evolve over time. While some recent RAG methods
incorporate feedback to mitigate this issue, most
rely on explicit user annotations and overlook the
fine-grained feedback already present in the exist-
ing workflow, such as those reranking results from
LLM. Moreover, current research utilizes the same
database to answer all questions, providing indis-
tinguishable responses to different users, who often
have varying expectations for the domain of the an-
swers. For instance, when recommending courses,
a computer science student would benefit from an
answer of studying “Computer Systems”, yet a bi-
ology student would find “General Biology” more
appropriate.

Recognizing these limitations, we propose the
LLM and User Feedback-based RAG (LUF), an
RAG framework that autonomously adapts to do-
main shifts in questions and answers based on feed-
back. LUF initially follows the standard proce-
dure of retrieving, reranking, and generating out-
puts. It then self-updates based on LLM and user
feedback during user interaction. LUF initially
follows the standard RAG pipeline of retrieving,
reranking, and generating outputs. It then self-
improves by incorporating both LLM feedback
and user feedback during interaction. First, LUF
prompts the LLM to label retrieved documents
with fine-grained relevance signals, which are used
to construct relevance-aware contrastive training
samples. Second, we design three complementary
contrastive objectives—strict supervision from an-
swers, soft supervision from related content, and
hard negative penalization—to guide retriever up-
dates, enabling it to retrieve more useful evidence
for unseen questions. Finally, LUF processes in-
formation emerging from user-LLM interactions
through an agent-based pipeline that classifies feed-
back into factual updates and user-specific prefer-
ences. Notably, LUF operates entirely without ex-
plicit user annotations, relying instead on implicit
supervision, which allows it to continuously adapt
and enhance LLM outputs in evolving application
scenarios.

Our key motivation is to improve the adaptability
of RAG systems under domain shifts by leverag-
ing fine-grained and reliable supervision signals

already available in the RAG pipeline. Although
LLMs may not always know the correct answers,
they possess strong semantic understanding and
can accurately assess which documents are help-
ful for generation. These reranking signals offer
valuable supervision for retriever training. To fully
exploit them, we consider three types of feedback
as shown in Fig. 1 (a): the presence of answer-
containing documents, graded relevance of par-
tially helpful documents, and the rejection of irrele-
vant yet high-scoring ones. Each provides a distinct
learning signal—ranging from precise supervision
to softer or contrastive cues—that collectively en-
hance the retriever’s ability to identify documents
beneficial for generation. Beyond LLLM feedback,
user-LLM interactions often yield implicit signals
about factual knowledge and user preferences, as
shown in Fig. 1 (b). Incorporating such feedback
helps the system adapt not only to new knowledge
but also to individual user expectations.

LUF is compatible with any learning-based re-
triever and can be combined with other methods.
Experiments across multiple datasets demonstrate
that LUF improves both retriever accuracy and
LLM generation in tasks such as question answer-
ing and multi-turn dialogues, achieving superior
results compared to baselines. In summary, the
contributions of this paper are:

* We propose LUF, a self-improving RAG
framework that adapts to domain shifts with-
out requiring labeled data, enabling the system
to continuously refine its retriever and genera-
tor based on feedback signals observed during
deployment.

* We design three complementary contrastive
objectives based on LLM-provided pseudo-
supervision, which serve as a central part of
our feedback-driven training pipeline. Each
objective is tailored to a specific type of LLM-
derived feedback, enabling the retriever to
learn from both precise and approximate su-
pervision.

* We validate our approach on two tasks using
two backbone LLMs, demonstrating consis-
tent improvements in retrieval and generation
performance. We also provide empirical anal-
ysis showing how feedback-driven updates
help the system acquire new knowledge and
personalize to user intent.



2 Method

In this section, we present a contrastive training
framework that leverages feedback signals to im-
prove RAG system. Specifically, Section 2.1 in-
troduces how we utilize the capabilities of LLMs
to construct relevance-labeled training samples.
To help the retriever identify documents helpful
for generation, we propose a set of learning ob-
jectives described in Section 2.2, built upon the
relevance-labeled samples. In addition, Section 2.3
details how we incorporate user feedback through
an agent-based pipeline for personalized knowl-
edge updates.

2.1 Contrastive Learning Sample
Construction from LLM Feedback

Every time a user poses a question ¢, the system
first retrieves a set of candidate documents {d;}
from the document database. To construct informa-
tive samples for contrastive learning, we prompt
the LLM with a designed instruction to classify
each retrieved document into one of three cate-
gories: documents that contain the correct answer
(D*(q)), documents relevant but do not contain the
answer (D" (q)), and irrelevant documents (D~ (q)).
For each relevant document d € D"(q), we fur-
ther elicit from the LLM a scalar relevance score
sim/(q,d) € [0, 1], reflecting its estimated useful-
ness in answering q. This LLM-guided labeling
and scoring provides efficient pseudo supervision
that captures both direct answers and supporting
context without requiring manual annotation.

After obtaining relevance-labeled samples, we
further construct training batches by clustering
queries based on their similarity. For each query ¢;,
we identify its batch assignment by selecting the
cluster that maximizes relevant document overlap
with other queries:

Batch(g;) = arg max Z | DM (q:) N D (g5))|
%4€B
(1
This relevance-guided batching groups semanti-
cally related questions together, with their asso-
ciated documents naturally serving as in-batch neg-
atives, which in turn enhances contrastive supervi-
sion by promoting fine-grained semantic discrimi-
nation within each batch.
In practice, we also employ a multi-level rerank-
ing mechanism to better select and prioritize doc-
uments before sample construction. Detailed de-

scriptions of the multi-level reranking are provided
in Appendix A.2.

2.2 LLM Feedback-Based Contrastive
Training

Grounded in the relevance-labeled samples and
clustered training batches, we design three com-
plementary objectives that leverage this feedback
structure to update the retriever:

Strict Label Contrastive Learning. We treat
answer-containing documents as strong positive
examples for the query. Given a query ¢ and its as-
sociated answer-containing documents D%(q), we
minimize a standard contrastive loss that pulls these
documents closer in the embedding space:

Zd+eD+(q) exp (sim (¢,d") /7)
2 e exp (sim (¢, d) /7)

Ls(q) = —log
()

Here, B denotes all documents in the current batch
(including in-batch negatives), and 7 is a tempera-
ture scaling parameter.

Flaccid Label Distillation. While strict label
contrastive learning focuses on answer-containing
documents, we aim to further utilize the LLM-
provided graded relevance signals for documents
in D"(q) that are relevant but not fully answer-
bearing. Instead of treating these examples as
uniform positives, we adopt a soft label distilla-
tion approach based on the scalar relevance scores
o(q,d) € [0,1] introduced in Section 2.1.

We train the retriever to align its predicted simi-
larity distribution with these soft targets via a KL
divergence objective:

£f(q> = KL(PLLM H PRetriever)7

P(d) = exp(sim(q, d)/T) (3)
> exp(sim(g, d')/7)’
Hard Negative Contrastive Learning. In ad-

dition to utilizing relevant documents for positive
supervision, we incorporate hard negatives to penal-
ize high-scoring yet irrelevant documents. Specifi-
cally, we select documents from D" (g) with high
initial retrieval scores and apply a rank-weighted
margin loss:
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Figure 2: Framework of LUF, including the widely used RAG workflow and processors for LLM and user feedback.

Li(g)= Y w(d)x
d-eD;
max (0, v — sim(g,d™) + sim(q, d ™))

4)
where d € D%(q) is a strict positive, 7 is a margin
hyperparameter, and w(q, d ) is a weight based on
the retrieval rank of d—.

Overall Objective. We combine the three ob-
jectives into a weighted training loss: Lo =
A - Lg+ Ao - Le+ A3 - Ly, where A\, Ao, and
A3 balance the contributions of strict positives, soft
relevance, and hard negatives.

2.3 User Feedback Handling

Beyond LLM-generated feedback, we also leverage
information from user-LLM interactions to better
align the system with individual preferences. To
manage such feedback, we design an agent-based
processing pipeline that categorizes feedbacks into
two types: factual updates, which describe ob-
jective knowledge that applies to all users, and
user preferences, which reflect user-specific pref-
erences. Factual updates are verified and stored
in a shared document database, ensuring the con-
sistency and reliability of responses across users.
In contrast, user preferences are stored in a sepa-
rate user-specific database, enabling personalized
responses. This separation helps the system main-
tain factual accuracy while supporting flexible cus-
tomization for different users.

Since factual updates may be noisy or unreli-
able, we introduce a verification mechanism termed
Knowledge-Guided Discrimination. It is based on
the hypothesis that LLMs are less prone to error
when evaluating new information in the context of
existing knowledge, rather than in isolation. To
implement this, our approach uses two sources of
existing information: documents retrieved from
the database and the LLM’s own response gener-
ated without retrieval. Given these references, the
agent is prompted to assess the correctness of the
user feedback—reasoning based on the retrieved
evidence and its own prior answer. Based on this
judgment, and taking user feedback into account,
the system then updates the document database
through additions, deletions, or modifications as
needed.

3 Experiment

3.1 Implementation Details

Base LLMs. We employed two language mod-
els representing different deployment scenarios:
GPT-40 (OpenAl et al., 2024), a strong propri-
etary model, and Qwen3-32B (Yang et al., 2025),
a recent open-source model with a smaller param-
eter scale. Table 1 reports the answer accuracy of
both models without retrieval, where Qwen3-32B
performs significantly worse than GPT-40. We
conduct our experiments on both models with their
respective knowledge bases to demonstrate the gen-
erality and adaptability of LUF across different



NQ TQA SQuAD

Qwen3 33.99 57.60 16.06
GPT-40 59.42 67.33 27.66

Table 1: Accuracy without retrieval of GPT-40 and
Qwen3.

model capacities and accessibility levels.
Datasets. We evaluate the effectiveness of LUF
on two tasks that LL.Ms frequently encounter in
real-world applications:

Question Answering is a knowledge-intensive task
requiring the LLM to provide accurate answers to
specific questions. We used four English datasets:
Natural Questions (NQ) (Kwiatkowski et al., 2019),
TriviaQA (TQA) (Joshi et al., 2017), SQuAD (Ra-
jpurkar et al., 2016), and Web Questions (WebQ)
(Berant et al., 2013), with articles extracted from
Wikipedia as the initial document database as in
previous work (Izacard et al., 2022a). Another
Chinese dataset WebQA (Li et al., 2016), with orig-
inal document database is used. For this task, we
evaluate both the precision of the retriever and the
answers generated by the LLM.

Multi-turn Dialogue State Tracking requires to
extract user intents during interactions and provide
corresponding responses. We use MultiMOZ 2.2
(Zang et al., 2020) and SGD (Rastogi et al., 2020)
as our testbed, where the inputs are real dialogues
between users and assistants which contains real
user feedback. We follow the same evaluation pro-
tocol as in (Feng et al., 2023).

Our method. To simulate domain shift in ques-
tions, we use the contriever (Izacard et al., 2022a),
which is pretrained only on Wikipedia and CCNET,
without training on the training set, and is tested di-
rectly on the test set. The hyperparameter settings
of LUF can be found in the Appendix A.

3.2 Baselines

We compare LUF with several methods that also
utilize LLMs’ feedback:

Retrieve and Rerank (R&R) (Zhuang et al.,
2023): The widely-used approach which involves
retrieving documents based on the user-provided
question and then using a LLM to rerank the re-
sults.

Query Rewrite (Ma et al., 2023): Query rewriting
modifies or reformulates the initial user query to
improve retrieval accuracy. We use the same LLM
employed as a reranker to perform query rewriting.

Query2Doc (Wang et al., 2023): Query2Doc first
transforms a user query into a pseudo-document,
then concatenates the original query with the
pseudo-document to serve as a new query. We use
the same LLM serving as a reranker to generate
pseudo-documents.

RaFe (Mao et al., 2024): RaFe is a RAG method
that also utilizes ranking feedback. Unlike LUF,
RaFe additionally employs a query rewriter to im-
prove retrieval accuracy and uses ranking feedback
to update the query rewriter. To ensure alignment
with LUF, we adopt the “Online Feedback” settings
described in the original paper.

3.3 Improvement of Retriever Accuracy

The R@S5 in Table 2 shows the retrieval accuracy
of different methods. LUF w/o UF denotes the
setting where no user feedback is utilized, under
which our method has access to exactly the same
information as all baselines. Despite this, LUF
consistently outperforms all baselines across both
backbone LLMs, and maintains strong retrieval per-
formance on datasets and document databases in
different languages, highlights its robustness and
effectiveness across diverse application scenarios.
LUF yielded more substantial improvements on
larger datasets, as they provide richer LLM feed-
back for updating. Nevertheless, even on smaller
datasets like Web Questions—where only about
1,016 feedback instances were used to update the re-
triever—yet performance gains were still observed,
demonstrating the system’s ability to benefit from
sparse feedback.

Notably, even weaker LLMs can provide valu-
able supervision within our framework. For ex-
ample, Qwen3-32B, without access to retrieved
documents, correctly answers fewer than 20% of
questions on SQuAD. However, as shown in Ta-
ble 2, it still provides effective feedback by as-
sessing semantic relevance between questions and
documents, and helps the retriever perform more
accurate retrieval. This highlights that LUF lever-
ages the LLM’s general reasoning capabilities to
generate feedback, rather than relying on its stored
factual knowledge, making LUF applicable to open-
source or smaller-scale LLMs with limited paramet-
ric knowledge. When using stronger LLMs like
GPT-40, which offer higher-quality reranking sig-
nals, the retriever benefits from richer supervision
and achieves greater improvements.



Method NQ TriviaQA SQuaD WebQ WebQA
QA R@5 QA R@5 QA R@5 QA R@5 QA R@5

Qwen3-32B+ 3399 - 5760 - 16.06 - 28.04 - 5129 -
R&R 4429 54.82 59.47 64.02 32.14 55.03 38.39 43.86 47.59 16.24
Query2Doc  45.83 58.38 59.75 64.20 32.85 55.47 39.63 46.43 49.21 18.02
Query Rewrite 43.47 53.5 58.41 62.86 32.66 55.6 38.94 44.8 51.46 19.64
RaFe 45.09 56.46 59.97 64.66 32.40 54.25 39.48 46.28 48.02 21.99
LUF w/o UF 47.06 58.8 61.52 66.52 34.2 59.59 39.77 46.43 52.98 22.62
LUF w/UF 47.29 59.16 61.97 67.29 34.56 60.13 39.97 46.62 53.41 23.31

GPT-40 + 5942 - 6733 - 2766 - 5237 - 6314 -
R&R 63.38 59.86 64.27 67.05 34.95 58.28 54.82 51.67 61.89 20.57
Query2Doc  64.46 61.00 63.89 67.75 37.28 59.73 55.76 52.07 62.97 21.30
Query Rewrite 64.18 59.81 64.56 67.68 37.09 60.33 56.12 52.21 63.55 22.19
RaFe 64.57 61.66 68.03 69.12 37.36 59.67 55.09 51.72 63.22 21.73
LUF w/o UF 67.92 64.74 68.98 70.08 40.76 63.70 56.74 52.81 66.04 27.31
LUF w/UF 68.17 64.99 69.42 70.60 41.13 64.36 56.84 52.90 66.60 27.41

Table 2: The accuracy of the answers provided by the LLM, with “QA” representing responses from the LLM that
contain the correct answer. “UF” means incorporating user feedback.

Method NQ TQA SQuAD
Direct 92.02 89.14 87.79
Ours  98.73 98.34 97.71

Table 3: Accuracy of judging the correctness of user
feedback. “Direct” means directly asking the LLM to
make the judgment.

3.4 Improvement of LLMs’ Response in
Question Answering

We further evaluate how LUF affects LLMs’ out-
puts on all datasets. Specifically, we simulated
real-world scenarios where users provide feedback.
Based on the questions and corresponding answers
in each dataset, we used GPT-40 to generate a di-
alogue containing relevant information about the
questions to mimic user feedback. For each dataset,
40% of the questions were paired with correct feed-
back, 40% with incorrect feedback, and 20% with
feedback unrelated to the dataset questions, to eval-
uate the robustness against incorrect user feedback.
Details of the feedback and question simulation are
provided in Appendix A.1.

Table 2 presents the performance of all meth-
ods, with LUF delivering the most accurate re-
sponses across all datasets. Without incorporating
user feedback, LUF ’s superior retrieval accuracy
provided the LL.Ms with more precise evidence,
resulting in more accurate answers. Notably, under
comparable retrieval accuracy—such as on Natural
Questions, where LUF and Query2Doc perform

similarly—LUEF still produces significantly more
accurate responses. This may be attributed to the
flaccid label contrastive learning in LUF, which
encourages the retriever to retrieve not only answer-
containing documents but also additional relevant
context. After incorporating both correct and in-
correct user feedback, LUF effectively extracts and
filters useful signals from the correct feedback to
update the document database, leading to improve-
ments in both retrieval and answering accuracy.
Our proposed Knowledge-Guided Discrimina-
tion effectively prevents incorrect user feedback
from polluting the overall system. Table 3 com-
pares the accuracy of letting LLLM directly judge
correctness of user feedback and using LUF ’s
discriminate-and-classify modules. On all three
datasets, LUF correctly judged over 97% of the
feedback, significantly outperforming the direct
judgment. In our experiments, direct judging feed-
back correctness introduced erroneous updates,
leading to degradation in generation quality.

3.5 Improvement of LLMs’ Response in
Multi-turn Dialogues

To evaluate the impact of LUF on LLM outputs
in dialogue scenarios, we conducted tests on two
dialog state tracking datasets. The test samples
are conversations between the user and assistant,
containing real user feedback. Each test sam-
ple is paired with an annotated user intents, the
LLM was required to comprehend all user’s in-
tents and provide corresponding responses. Fol-



Method MultiwOZ 2.2 SGD
JGA AGA JGA AGA
Qwen3+ 54.30 86.53 73.20 84.71
R&R 55.90 87.89 73.11 84.06
Query2Doc  57.73 88.85 74.43 86.07
Query Rewrite 59.68 91.40 74.59 85.33
RaFe 59.60 91.68 74.98 86.84
LUF 60.67 92.81 77.27 88.95
GPT4o0+ 60.82 92.73 79.43 90.87
R&R 61.39 93.30 80.23 91.67
Query2Doc  61.73 92.71 80.67 91.19
Query Rewrite 61.85 93.52 80.85 91.63
RaFe 61.45 9390 79.95 91.29
LUF 62.83 94.67 81.51 92.55

Table 4: The accuracy of the LLM responses in multi-
turn dialogues.

lowing the evaluation setup in (Feng et al., 2023),
we adopted the same prompting strategy and as-
sessment method to evaluate whether the LLM
correctly understood and retained the user’s in-
tents. From Table 4, we observed that while other
methods provided minimal improvements, LUF-
generated responses better satisfied user require-
ments. This improvement stems from LUF’s ability
to distill user feedback into structured preferences,
persist them in the RAG document database, and
incorporate them as auxiliary context during re-
sponse generation—thereby enabling the LLM to
better capture user intent from dialogue.

Each test sample consisted of a full multi-turn
dialogue, allowing the LLM to infer user intents
directly from the conversational context. However,
we observed that the LLM occasionally failed to
retain specific user requests across turns. Exper-
imental results showed that LUF effectively rein-
forced user preferences through feedback integra-
tion, enabling the LLM to generate responses that
remained consistent with user expectations through-
out the conversation.

3.6 Further Investigations

Ablation Study

To understand the specific roles of different com-
ponents in LUF, we conducted a series of abla-
tion experiments. We tested the improvements
brought by different strategies within LUF across
three datasets, as shown in Table 5.

Adding LLM feedback (strict positive in Table 5)
supervision leads to a clear improvement over the
R&R standard procedure. This confirms that LLM-
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Figure 3: R@5 of LUF with different reranking accu-
racy.

labeled answer documents provide valuable train-
ing signals for grounding the retriever. Incorporat-
ing flaccid label supervision and hard negative loss
brings further gains, validating the effectiveness
of objectives in LUF. Moreover, integrating user
feedback yields additional improvements in both
QA and R@5, demonstrating that the agent-based
feedback processing module can extract useful in-
formation from noisy user interactions.

How Reliable Reranking Feedback is

LUF is updated based on reranking results from
LLMs, so relies on the accuracy of LLM feedback.
We simulated the impact of LLMs’ feedback with
different accuracy on the retriever on the NQ and
TQA datasets. In Fig. 3, the accuracy refers judging
single relevant documents, as there is no significant
difference between different LLMs in judging irrel-
evant documents.

Fig. 3 illustrates that even when the LLM cor-
rectly identifies only 60% of relevant samples, its
feedback still improves the retriever’s performance,
demonstrating LUF is highly robust to feedback
accuracy. This robustness allows smaller-scale
LLMs to provide useful feedback to improve LUF,
suggesting that our approach is broadly applicable
across models with varying capacities.

How LUF Identifies Feedback

The results in Table 3 demonstrate how LUF
identifies user feedback and safeguards the docu-
ment database from contamination by erroneous
information.

Compare with existing information: In the ex-
ample shown in Fig. 4 (a), the evidences from doc-
ument database and LLLM provide a foundational



Natural Questions TriviaQA SQuaD
Method 4 "R@5 QA R@5 QA R@5
R&R 44.18 57.01 57.21 58.45 31.79 52.26
+Strict Postive 64.51  61.20  63.16 64.37 38.52 62.38
+Flaccid Label 65.19  61.68  63.98 65.44 39.01 63.85
+Hard Negative 67.92  64.74  68.98 70.08 40.76 63.70
+User Feedback 68.17 64.99  69.42 70.60 41.13 64.36

Table 5: Ablation study results.
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Figure 4: Examples of LUF’s responses to different
kinds of incorrect feedback.

reference. If judged directly, the LLM may be mis-
led and add incorrect information to the database.
However, by comparing with existing knowledge,
LLM can identify misinformation and reject it.
Cautious handle unknown information: When
faced with feedback that neither the LLM nor the
document database can evaluate, LUF tends to pri-
oritize adding such feedback to the user’s personal
database rather than the shared one, as shown in
Fig. 4 (b).

4 Related Work

4.1 Retrieval-Augmented Generation

Research on RAG has advanced rapidly in recent
years. Sparse retrieval techniques, such as BM25
(Sparck Jones, 1988), are simple and effective
(Chen et al., 2024; Jiang et al., 2023; Ram et al.,
2023). Dense retrieval methods like Dense Passage
Retriever (DPR) (Karpukhin et al., 2020) demon-
strate greater flexibility and adaptability (Izacard
et al., 2022b; Shi et al., 2024; Sachan et al., 2024;
Siriwardhana et al., 2023).

Recent studies have proposed various pre-
retrieval and post-retrieval enhancement strate-
gies. Pre-retrieval enhancement strategies, such
as Query2doc (Wang et al., 2023), Hypothetical
Document Embedding (HyDE) (Gao et al., 2023),
and Query Rewriting (Ma et al., 2023) improve
the relevance of retrieval results by reorganizing

or expanding queries. Post-retrieval enhancement
strategies, such as R2G (Sachan et al., 2023), filter
irrelevant information by reranking retrieval results.
These methods use static retrievers and overlook
the role of feedback.

4.2 Feedback for Language Models

Feedback has been widely used in NLP and ap-
plied to many traditional tasks, such as question
answering (Li et al., 2022; Harabagiu et al., 2001),
text summarization (Nguyen et al., 2022; Liu et al.,
2023), and machine translation (Saluja et al., 2012).

We note that several recent studies have also
attempted to improve RAG using feedback too:
Pistis-RAG (Bai et al., 2024) focuses on utilizing
explicitly provided feedback from users in the form
of labels (e.g., copying or disliking certain content)
to improve retrieval performance. RaFe (Mao et al.,
2024) utilizes feedback to improve query rewriting,
while InstructRAG (Wei et al., 2024) employs feed-
back to train LLMs. Both approaches only utilize
feedback from LLMs, whereas LUF also consid-
ers user feedback. RaFe focuses more on enhanc-
ing query rewriter performance through feedback,
while LUF’s motivation is to adapt the entire RAG
system to changes in questions and answers, so we
adopt the most widely used RAG process without
query rewriter. InstructRAG requires training the
LLM, which is computationally costly and does
not fit our use case.

5 Conclusion

To address the performance degradation of RAG
on unseen questions, we propose an framework
called LUF based on user and LLM feedback. By
updating the retriever and the document database,
both the retriever and the LLM adapt to the shifts in
question and answer domains, thereby improving
their ability to provide responses that align with
user preferences. Experiments conducted on two
tasks demonstrate the effectiveness of our method.



6 Limitations

In this work, we primarily conducted evaluations
on the question-answering and multi-turn dialogue
state tracking, the performance of LUF on other
tasks such as commonsense reasoning and open-
domain summarization remains unknown. Besides
the LLMs mentioned in the paper, we also tested
smaller LLMs like Qwen3-7b-chat. For models
with such smaller parameters, their reranking accu-
racy was below the minimum threshold required to
improve the retriever, and LUF did not provide any
meaningful enhancement.

7 Ethics Statement

In this study, we utilized publicly available datasets
that do not contain any personal or private informa-
tion, ensuring full compliance with ethical guide-
lines. The prompts used and the outputs gener-
ated by the LLMs were selected to exclude any
content that might be discriminatory, violent, or
otherwise inappropriate. No personal data was col-
lected throughout the experimental process, and the
design and execution of the experiments pose no
negative societal impact. Therefore, this research
adheres to ethical standards, with no risks of pri-
vacy infringement or harmful social consequences.
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A Appendix

A.1 Prompt

Frequent LLM calls were required to generate re-
sponses in our experiment. In this section, we
present the prompts used to accomplish different
tasks.

Prompt A.1.1: Single Document Reranking

Please analyze whether this document can
help answer this question, and provide your
answer using single “yes” or “no” in the
end.

Question:

(Question)

Document:

(Document)

Prompt A.1.2: Multiple Documents Rerank-

ing

Below is a question, along with
(Numof Docs) documents that might
be related to this question. Please judge
if which document(s) are relevant to the
question, and finally provide your answer
using the document number + yes like
“answer:1,yes” or “no”.

Question:

(Question)

Document 1:

(First document)

Document 2:

(Second ocument)

When performing rerank for a single document
and multiple documents using LLM, to ensure that
the LLM’s response adheres to a fixed format suit-
able for code analysis, we use prompts as shown in
Prompt A.1.1 and A.1.2.

Prompt A.1.3: User Feedback Stimulation

Here is a question and the correct answer is
(Answer). Please simulate a user’s state-
ment in a conversation, and include the cor-
rect/incorrect information in this statement.
Here is an example for your reference:
Question: Who invented the microscope?
Answer: Zacharias Janssen

Stimulated: I was reading about the history
of scientific inventions, please tell me how
Zacharias Janssen invented the microscope.
Question:

(Question)

Answer:

(Answer)

Stimulated:

In the experiment in Table 2, we used LLMs
to simulate user feedback. Prompt A.1.3 asks the
LLM to simulate correct/incorrect user feedback.

Prompt A.1.4: User Feedback Summariza-

tion

The following is a conversation between a
user and an LLM. Did the user provide any
meaningful information? If so, please sum-
marize the information given by the user.

Prompt A.1.5: User Feedback Discriminate

and Classify

The following are the document from
Wikipedia, the LLM’s answer, and the feed-
back provided by the user in the conversa-
tion with the LLM. Please use the first two
as references to determine whether the in-
formation provided by the user is correct.
There are two databases, one shared by all
users and the other exclusive to the user.
Please decide which database this informa-
tion should be added to. At the end, give
your answer like “correct, shared” or “cor-
rect, personal”.

Document:

(Document)

LLM answer:

(LLM Answer)

User feedback:

(User Feedback)

LUF first summarizes the user feedback to ex-
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Figure 5: Retrieval results on Natural Questions and
Trivia QA, as the rank position increases, the number of
relevant documents decreases rapidly.

tract valid information, then performs discrimina-
tion and classification. Prompt A.1.4 is used to
extract user feedback from the conversation, while
Prompt A.1.5 simultaneously handles both the dis-
crimination and classification of the feedback.

Prompt A.1.6: Get LLM Knowledge

The following is a piece of mate-
rial that may be correct or incorrect.
Please generate a paragraph on the
same topic based on your knowledge.
Material: (Summarized U ser Feedback)

To accurately assess the correctness of user feed-
back, LUF need to compare it with the knowledge
from the LLM. We use prompt A.1.6 to retrieve
knowledge from the LLM.

Prompt A.1.7: Query Rewrite

Provide a better search query for retriever
to search the given question.

Original question: What 2000 movie does
the song "All Star" appear in?

New question: 2000 movie "All Star" song
Original question: (Question)

New question:

Query rewrite uses the original prompt from
previous work (Ma et al., 2023) where the LLM
was used as a rewriter. as shown in Prompt A.1.7.
Query2doc follows the original prompt in previous
work (Wang et al., 2023).

A.2 Multi-level Reranking

Previous methods primarily adopt two forms of
reranking: single reranking, where the LLM evalu-
ates each retrieved document individually, and total
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reranking, which evaluates all documents together.
Single reranking offers higher accuracy but incurs
additional token computation costs, primarily due
to the prompt. Conversely, total reranking yields
the opposite results.

We observe that the results of retrieval typically
follow a long-tail distribution, where higher-ranked
positions have a much higher likelihood of pro-
viding relevant documents and thus have greater
value compared to lower-ranked positions, as illus-
trated in Fig. 5. Therefore, we propose a multi-level
reranking strategy, employing different reranking
approaches for different positions. For higher-
ranked positions, we use smaller reranking steps
to enhance precision. As the process goes on, we
gradually increase the step to reduce token con-
sumption until at least one relevant document is
found. It is a cost-effective solution that balances
accuracy and computational overhead, allowing
for accurate judgment without incurring excessive
computational expenses.

A.3 Additional Experiment Results
A31

For retrieval results from 500 randomly sampled
questions, we applied the different reranking meth-
ods and calculated the average token consumption
(both input and output) to achieve a similar R@5.
“Single” means each document is individually as-
sessed by the LLM, while “Every 5” and “Every 20”
refer to a reranking step of 5 or 20 documents, re-
spectively. Table 7 shows the result, the multi-level
reranking consumes the fewest tokens while achiev-
ing similar R@5, can save the resources consumed
by reranking.

Multi-level Reranking

A.3.2 Time Consumption

Table 6 shows the detailed time required by differ-
ent methods to answer 3,000 questions, with all
results tested on an dual RTX 4090 and Intel Xeon
Gold 6430 machine. “Retrieve” refers to the time
spent on dense retrieval, “LLM” indicates the time
taken for LLM generation, and “Train” represents
the time required for model training. For Query
rewrite, we adopted the approach from (Mao et al.,
2024), where the results of two rewritten queries
are fused during retrieval.

Compared to the simplest R&R process, the ad-
ditional time introduced by LUF is within an ac-
ceptable range. Moreover, aside from reranking,
LUF does not require any preprocessing before re-
trieval, meaning the time from when the user asks



Time to Retrieve 3,000 Questions (s)

Method TriviaQA SQuAD
Retrieve LLM Train Retrieve LLM Train
R&R 4,096.4 6,696.8 - 4,077.1 9,706.9 -
Query Rewrite 8,157.2 §,110.0 -  8,134.8 11,3214 -
Query2Doc  4,092.9 8931.2 - 4,069.6 11,6354 -
TENT 8,162.4 6,709.2 66.0 8,138.4 9,704.8 66.0
LUF 4,091.4 7,639.5 65.8 4,069.5 12,261.8 65.6

Table 6: The detailed time required to retrieve 3,000 questions of different methods.

Method Natural Questions TriviaQA SQuAD
R@5 Docs Tokens R@5 Docs Tokens R@5 Docs Tokens
Single 55.75 39 3,257.6 57.64 38 3,313.7 55.09 38 3,174.1
Every5 54.11 75 5,899.2 57.51 75 15,3169 54.35 80 5,448.8
Every 20 55.44 80 4,920.1 5795 80 5,004.3 55.02 80 4,851.9
Multi-level 55.78 40 2,8164 57.9 40 2,880.9 55.08 40 2,777

Table 7: The number of tokens consumed by different reranking methods.

‘Web Questions
R@5 Docs Tokens R@5
49.16 35 2,853.3 18.68
Every5 47.64 70 5,129.8 18.29
Every 20 49.02 80 4,933.5 18.72
Multi-level 49.26 40 2,791.6 18.72

WebQA

Docs Tokens
35 2,069.6
75 2,406.5
60 1,623.9
40 1,183.0

Method

Single

Table 8: The number of tokens consumed by different
reranking methods on Web Questions and WebQA.

a question to receiving an answer is the same as in
the R&R. The additional time is attributed to sum-
marizing user feedback with the LLM and training
the retriever , both of which can be performed in
parallel with retrieval, thus not adding extra time.

A.3.3 Additional Examples

Fig. 6 presents two examples of responses provided
by LUF.

Fig. 6 (a) illustrates how user feedback can assist
the LLM in correcting outdated information. For
recent events, the LLM’s knowledge may not be
promptly updated; however, LUF can prevent giv-
ing outdated and incorrect answers by leveraging
user feedback.

In Fig. 6 (b), the user’s question has multiple cor-
rect answers, but the answer directly provided by
the LLM was not the one the user desired. Through
the first conversation, LUF learned the user’s pref-
erences and then provided the answer that met the
user’s expectations.
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Test Set Size

Dataset Number of Documents

Qwen3 GPT-40
Natural Questions 3,604 3,610 21,015,324
TriviaQA 11,311 11,313 21,015,324
SQuAD 10,570 10,570 21,015,324
Web Questions 2,032 2,032 21,015,324
WebQA 3,019 3,024 3,024

Table 9: The number of test questions and documents
of different dataset.

Dataset Update Interval Epochs Learning Rate
Natural Questions 2,000 4 5e-06
TriviaQA 4,000 4 le-05
SQuAD 4,000 4 le-05
Web Questions 1,000 1 5e-06
WebQA 2,000 3 5e-06

Table 10: Training details on different datasets.

B Implementation Details

B.0.1 Dataset

Table 9 shows the number of questions used for test-
ing and the number of documents in the database
across different datasets. For the four English
datasets, we used the splited Wikipedia from pre-
vious studies (Karpukhin et al., 2020) as the docu-
ment database, while for the Chinese dataset We-
bQA, we used the evidence provided within the
dataset. Since Kimi was unable to answer a few
questions, the number of questions tested by Kimi
is smaller than that tested by GPT-4o0.



B.0.2 Training

Table 10 presents the training details of different
datasets. Updating the retriever with more than
2,000 questions each time results in more signifi-
cant improvements. The similarity threshold A for
retrieving personal user information is set to 0.5.
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Figure 6: Examples of other LUF reponses.
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