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ABSTRACT

Anomaly detection in dynamic graphs is a very important task that has attracted
a lot of attention. Many dynamic graph anomaly detection methods are al-
ready available, but most of these efforts are based on supervised learning. In
the real world, however, it is often difficult to collect large amounts of labelled
anomaly data, which is not conducive to the training of these supervised meth-
ods and severely reduces their ability to be applied in different dynamic graph
anomaly detection scenarios. A novel semi-supervised anomaly detection frame-
work AAEDY for the detection of anomalous edges in dynamic graphs is pre-
sented in this paper, which improves reconstruction by combining adversarial
based on autoencoder, and discriminates whether an edge is anomalous by com-
paring the original edge to the reconstructed edge in low-dimensional space. Ex-
tensive experiments have been carried out on six real-world datasets, and the ex-
perimental results show that AAEDY can outperform the state-of-the-art competi-
tors in anomaly detection significantly.

1 INTRODUCTION

In real life, dynamic graph networks can be seen everywhere, such as social networks, financial
transaction networks, Internet of Vehicles, Internet of Things, etc. Among many dynamic graph
analysis tasks, dynamic graph anomaly detection is one of the most important tasks, and its focus
is on abnormal edge detection. Detecting abnormal edges helps to understand the state of the sys-
tem, protect the system and improve its robustness (Ranshous et al., 2015; Wang et al., 2022). For
example, in financial transaction systems, there are often criminals who try to make profits through
fraud, phishing, money laundering, etc., which seriously endangers the interests of ordinary users
and the healthy development of the system. Detecting abnormal edges in dynamic graphs is crucial
to protecting the interests of ordinary users and maintaining the healthy development of the system.

At present, most of the graph anomaly detection methods based on deep learning are aimed at
anomaly detection in static graphs, which are mainly divided into three methods: supervised
(Chouiekh & Haj, 2018; Alsheikh et al., 2016; Perozzi et al., 2014; Grover & Leskovec, 2016;
Tang et al., 2015), semi-supervised (Kumagai et al., 2021; Zhang et al., 2017; Castellini et al., 2017;
Guo et al., 2016) and unsupervised (Li et al., 2017; Ding et al., 2019; Fan et al., 2020; Ding et al.,
2021). Most of the supervised methods are based on the idea of feature embedding, which uses deep
learning to embed nodes from high-dimensional space to low-dimensional space to obtain more
effective node features. Semi-supervised and unsupervised methods are mostly based on the idea
of residual analysis, which finds abnormal target edges or nodes by comparing the errors between
the original data and the reconstructed data. Compared with anomaly detection methods on static
graphs, there are fewer anomaly detection methods based on deep learning for dynamic graphs, and
most of them are supervised methods. NetWalk Yu et al. (2018) uses random walks and deep au-
toencoders to obtain low-dimensional embeddings of nodes and combines clustering technology to
detect anomaly information. StrGNN (Cai et al., 2021), H-VGRAE (Yang et al., 2020) and TADDY
(Liu et al., 2021) design end-to-end supervised methods for anomaly detection. AddGraph (Zheng
et al., 2019) designs a semi-supervised learning framework based on residual analysis.

However, dynamic graph anomaly detection based on supervised learning methods requires a large
amount of labeled anomaly data to train the model. In practical applications, it is difficult to collect
a large amount of anomaly data, which seriously reduces the application ability in different dy-
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namic graph anomaly detection scenarios. In order to solve the problem that current dynamic graph
anomaly detection methods are not very practical,AAEDY, a novel semi-supervisedadversarial pro-
poses andynamic graph anomaly detection framework based onautoencoder, which only uses normal
data to train the model. Specifically, the subgraph sampling method (Liu et al., 2021) is used to ob-
tain the subgraph under the time snapshot of the target edge, and the node set is obtained according
to the importance of nodes under multiple subgraphs to represent the target edge. Three encoding
methods are used to encode the nodes from the global, local and temporal dimensions, and anomaly
detection is performed by comparing the differences between the original edge and the reconstructed
edge. In summary, the main contributions of this paper are as follows.

• A novel semi-supervised anomaly detection framework for dynamic graphs is proposed,
which requires only normal data to train the model, solving the problem of difficulty in
collecting anomaly information in real-world dynamic networks and effectively improving
the applicability in different dynamic graph anomaly detection scenarios.

• An adversarial autoencoder based on residual analysis is designed, which effectively im-
proves the reconstruction effect of the original edges by combining adversarial and autoen-
coder.

• Experiments on six real-world datasets achieve state-of-the-art performance, which proves
the effectiveness of AAEDY on detecting anomalies in different kinds of graphs.

2 RELATED WORK

2.1 ANOMALY DETECTION IN STATIC GRAPHS

The structure, attributes and other features of the graph in the static graph do not change over time.
A considerable number of methods have been developed for anomaly detection in static graphs
using deep learning, which are mainly divided into supervised methods, semi-supervised methods
and unsupervised methods. Among the supervised methods, Chouiekh & Haj (2018) proposed a
supervised learning method that uses convolutional neural networks to extract user attribute features
to distinguish normal users from abnormal users in telephone networks. Alsheikh et al. (2016)
proposed a method for extracting features using deep learning on Spark computing nodes, which
solves the problem that deep learning models contain a large number of hidden layers and a large
number of parameters. However, supervised methods require a certain amount of labeled data to
train the model, which is not suitable for real-world scenarios where anomalies are scarce.

Most semi-supervised and unsupervised methods adopt the idea based on residual analysis and use
reconstruction errors to measure whether a data instance is abnormal. Li et al. proposed an anomaly
detection framework Radar in the literature (Li et al., 2017) to detect anomalies in attribution net-
works from the perspective of residual analysis. Ding et al. (2019) designed a novel autoencoder
framework and used GCN (Kipf & Welling, 2017) to capture the nonlinearity of data and the com-
plex interactions between nodes. Fan et al. (2020) proposed a dual autoencoder framework, using
structural autoencoders and attribute autoencoders to learn the structural and attribute features of
static graphs. Ding et al. (2021) used generative adversarial methods to enhance the reconstruc-
tion ability of the model, and through joint training, the model automatically generated potential
abnormal data, effectively solving the problem of inductive learning. Kumagai et al. (2021) pro-
posed a semi-supervised static graph anomaly detection method that comprehensively considers the
graph structure and node attribute information, and identifies abnormal nodes by learning hyper-
spheres. Zhang et al. (2017) proposed an autoencoder-based anomaly detection method for rumor
detection. The focus of this method is to propose several adaptive thresholds to improve rumor
detection. Castellini et al. (2017) proposed a semi-supervised deep learning model for anomaly de-
tection, mainly using an autoencoder with a denoising mechanism to detect robot followers in social
networks.

2.2 ANOMALY DETECTION IN DYNAMIC GRAPHS

The structure, attributes, and other features of dynamic graphs change over time, and it is neces-
sary to comprehensively consider the graph information under multiple time snapshots. Miz et al.
(2019) proposed a scalable community-based anomaly detection method that connects and aggre-
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gates nodes with similar behaviors to analyze abnormal behaviors that occur in collective behaviors.
NetWalk (Yu et al., 2018) encodes the vertices of a dynamic network into vector representations
through Clique embedding, jointly minimizes the pairwise distance of each vertex representation,
and combines clustering-based methods with low-dimensional vertex features to gradually dynam-
ically detect network anomaly detection. Zheng et al. (2019) proposed a semi-supervised anomaly
detection method for dynamic graphs, using extended time GCN to obtain the structural embedding
and attribute embedding of the graph, and combining attention-based GRU (Chung et al., 2014) and
negative sampling strategies to solve the problem of insufficient labels. Cai et al. (2021) extracts
subgraph features under time snapshots through GCN, and uses recurrent neural network GRU to
fuse multiple subgraph features to capture the temporal relationship of dynamic graphs. Liu et al.
(2021) uses graph diffusion technology to sample substructures in dynamic graphs, adopts three
encoding methods to capture the global structural features, local structural features and temporal
information of the graph, and fuses multiple features through autoencoders to achieve anomaly de-
tection of dynamic graphs. In order to cope with the problem of scarce abnormal data, AAEDY
proposed a novel semi-supervised adversarial autoencoder, which only needs to use normal data in
the model training stage, avoiding the problem of being unable to train the model due to lack of
abnormal data.

3 FRAMEWORK

A novel and effective dynamic graph anomaly detection framework is proposed. The overall struc-
ture is shown in Figure 1. First, the graph diffusion technique is used to perform sub-graph sampling
on the target edge to obtain the graph information of the target edge at different times, and three en-
coding methods are used to encode the dynamic graph information at multiple times. Secondly, a
new deep autoencoder based on residual analysis is designed to detect abnormal edge information
by comparing the errors between the original data and the reconstructed individual data, and the ad-
versarial idea is used to continuously optimize the reconstruction performance training of the deep
autoencoder.

3.1 DATA PREPROCESSING

In sampling, each edge in the dynamic graph is first sampled according to its centre, which is the
centre of each subgraph after sampling, and is denoted as the target edge. The two nodes directly
connected to the target edge are called target nodes, while the neighbouring nodes around the target
node we call contextual nodes. The specific sampling steps are divided into static graph sampling
under a single temporal snapshot and dynamic graph sampling under multiple temporal snapshots.

Static graph sampling under a single temporal snapshot uses graph diffusion techniques (Hassani &
Khasahmadi, 2020; Klicpera et al., 2019) to collect a certain number of importance-aware contextual
node sets against a target edge. The specific idea is to obtain the diffusion degree of each node for a
target edge in a global view by using the graph diffusion technique, and use the diffusion degree as
the node importance, and then sample the nodes according to their importance degree.

Formally, given an adjacency matrix of a static graph G ∈ Rn×n, the graph diffusion Q ∈ Rn×n is
defined as:

Q =

∞∑
k=0

θkT
k (1)

where T ∈ Rn×n is the generalized transition matrix and θk is the weighting coefficient which
determines the ratio of global-local information.

Graph diffusion matrix Q is built using the graph diffusion technique for a static graph with a single
timestamp. For a given node, the connectivity with other nodes can be easily obtained through the
diffusion matrix, and a connectivity vector can be composed from this. For a given target edge
etgt = (v1, v2), this can be obtained by summing the two target node vectors . The formula is as
follows:

Cetgt = Cv1 + Cv2
(2)

Then, the set of connectivity top-k nodes is then selected from this as the set of contextual nodes
U (etgt).
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Figure 1: The architecture of our proposed AAEDY framework.

When it comes to dynamic graphs, using a time-sliding window mechanism, for a given target edge,
obtain a sequence of graph information at different timestamps, and for each timestamp, use graph
diffusion techniques to construct a diffusion matrix, then obtain the top-k important nodes by a static
graph method at a single timestamp, and finally fuse the nodes at different timestamps into a total
set of nodes S

(
ettgt

)
=

⋃t
i=t−τ+1 Si

(
ettgt

)
.

3.1.1 DIFFUSION-BASED SPATIAL ENCODING

Diffusion-based spatio encoding is a method that uses the diffusion information of nodes at the
global level for a secondary representation of each node. This method allows the use of global
information to represent the target edges.

Specifically, since the target edge is represented by its node set vij ∈ Si
(
ettgt

)
in each time-stamped

subgraph, the diffusion value of each node in the node set can first be obtained by using a graph
diffusion technique, then the diffusion value can be divided into ranks by a rank function, and finally
these ranks can be mapped to a high-dimensional space using a learnable encoding function using
a location encoding method very similar to that in natural language processing. The formula is as
follows:

Fdiff

(
vij
)
= linear

(
rank

(
C i

etgt

[
idx

(
vij
)]))

∈ Rdenc (3)

where denc denotes the dimension of node encoding, linear(·) is the learnable encoding function,
rank(·) denotes the rank calculation function, and idx(·) function is the index enquiring function.

3.1.2 DISTANCE-BASED SPATIAL ENCODING

Distance-based spatio encoding is similar to the idea of word position coding in natural language
processing, by which the local structural information of a node can be captured so that each node
has its unique representation in the set of nodes vij ∈ Si

(
ettgt

)
.

In practice: the distances of the local context nodes can be calculated by computing their distances
to the two target nodes and taking the smaller of them. Their distances to the two target nodes
and taking the smaller of them. And the distance from the target node to the target edge is set to
0. Finally these local importance are then mapped to a higher dimensional space by an encoding
function that can be learned. The formula is as follows.

Fdist
(
vij
)
= linear

(
min

(
dist

(
vij , v

i
1

)
,dist

(
vij , v

i
2

)))
∈ Rdenc (4)

where dist(·) function is the relative distance calculation function, min(·) function serves to calculate
the minimum value. The linear(·) and denc have the same meaning as Equation 3.
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3.1.3 RELATIVE TEMPORAL ENCODING

Since nodes may come from different single temporal snapshot in the set of nodes vij ∈ Si
(
ettgt

)
representing the target edge, encoding using the relevant time sets allows the representation of each
node’s time information, thus allowing the model to capture the important factor of dynamic vari-
ability of the target edge.

Represent the temporal information of the node by computing the difference between the time t at
which the target edge is located and the time i at which the node is located, and map these temporal
differences to a high-dimensional space using the learnable encoding function mentioned in the
previous section. The formula is as follows:

Ftemp
(
vij
)
= linear(∥t− i∥) ∈ Rdenc (5)

where ∥ · ∥ is the relative time computing function, linear(·) and denc have the same meaning as
Equation 3.

3.1.4 EDGE ENCODING

Once the three terms are computed, they are merged to form the downstream adversarial autoencoder
model’s input edge encodings. For performance reasons, the three encoding terms are added together
rather than concatenate them into a larger vetor. The encoding fusion is formalized as follows:

F
(
vij
)
= Fdiff

(
vij
)
+ Fdist

(
vij
)
+ Ftemp

(
vij
)
∈ Rdenc (6)

Finally, for the target edge ettgt, we stack all the node encodings in the node set into an encoding ma-
trix, which represents the feature information of the target edge and serves as the input information
for the anomaly detection model proposed in the next section. The encoding matrix is represented
by:

X
(
ettgt

)
=

⊕
vi
j∈S(ettgt)

[
F
(
vij
)]⊤ ∈ R(τ(k+2))×denc (7)

where [·]⊤ is the transpose operation and
⊕

is the concatenation operation.

3.2 ANOMANY DETECTION

Anomalous edge detection in dynamic graphs by designing an adversarial autoencoder. This au-
toencoder consists of a generator G, an encoder E, and a discriminator D.

The generator G is a autoencoder, consisting of an encoder GE , and a decoder GD, which is mainly
based on transformer’s self-attention mechanism and multi-headed attention mechanism (Vaswani
et al., 2017) to learn how to reconstruct the original edges of the input. Unlike Transformer, we
add an embedding layer to embed the high-dimensional features of the original edges into the low-
dimensional space. This generator G works as follows: the generator G first reads an input edge x
before forwarding it to its encoder network GE . By adding an embedding layer to the transformer,
GE embeds the whole input edge x into a low-dimensional vector z, which is also referred to as the
bottleneck features of G, since it has the smallest dimension that contains the best representation of
x. The decoder part GD of the generator network G adopts the architecture of transformer’s decoder,
on this basis, a layer of neural network is added to restore the low-dimensional vector z to its size
before embedding. This approach upscales the vector z to reconstruct the edge x as x̂.

The encoder E can take the x̂, generated by the generator G and re-embed it and generate the
embedding vector ẑ. The network structure of the encoder is the same as that of the encoder GE

in the generator, so that the generated embedding vector ẑ, has the same spatial dimension as the
generator embedding vector z.

The discriminator D whose objective is to classify the input x and the output x̂ as real or fake,
respectively. In our discriminator network, a layer of self-attention network is used to capture the
features of the edge x or x̂, and add a layer of linear neural network to map them to a one-dimensional
space. It is also normalized and nonlinearized by Softmax function as the activation function.
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3.2.1 MODEL TRAINING

In the training phase of the model, trained with a large amount of normal data, the generator GD can
reconstruct the normal data well and then pass the encoder E. Then the embedding vector z and the
embedding vector ẑ have a small difference.

It is hypothesized that when an abnormal edge is forward-passed into the network G, GD does not
be able to reconstruct the abnormalities although GE can map the input x to the latent vector z. This
should be expected because the network is modeled exclusively by normal samples during training
and its parametrization makes the network unsuitable for generating abnormal samples. There is a
potential consequence of an output x̂ that has missed abnormalities in it, resulting in the encoder’s
network E mapping mapping x̂ to a vector ẑ with the same lack of representation of the abnormal
features,resulting in a dissimilarity between z and ẑ causing dissimilarity between z and ẑ. As result,
if there is some dissimilarity within latent vector space corresponding to an input edge x, the model
classifies x as an anomalous edge. To validate this hypothesis, the objective function was formulated
by combining three loss functions, each optimised for a single sub-network.

Adversarial Loss. As a result of back propagation, the generator parameters are updated under
the supervision of the cross entropy loss function. The discriminatory ability of the discriminator
is calculated by the cross-entropy loss function, and the smaller the loss value, the stronger the
discriminatory ability of the discriminator.

Hence, the adversarial loss Ladv is defined as:

Ladv = Ex∼pX
∥D(x)−D (G(x)) ∥cross. (8)

Contextual Loss. It is sufficient to fool the discriminator D with generated samples by using the
adversarial loss Ladv . Even so, with only an adversarial loss, the generator would not be optimized
towards learning contextual information about the input data. In order to fix this, the distance be-
tween the input and generated edges is measured to penalize the generator. Here the difference
between the input and generated edges is calculated using a non-log-likelihood function. The con-
textual loss Lcon is defined as:

Lcon = Ex∼pX∥x−G(x)∥−log (9)

Algorithm 1 Model Train Algorithm

Input: Training set of dynamic graph: Gtrain = {Gt}Tt=1, Number of training epoches: n, Number
of sampled contextual nodes: k, Size of time window: τ , Number of attention heads h, Number
of attention Layers r.

1: Randomly initialize the parameters of encoding linear mappings, Adversarial autoencoder
model.

2: for i ∈ 1, 2, · · · , n do
3: Split the dynamic graph Gtrain = {Gt}Tt=1 with maximum timestamp T into snapshots at τ

timestamps Gt
train = (Vt, Et) ∈ {Gt}Tt=τ

4: for e ∈ Et do
5: Set e the as the target edge and sample its subgraph node set S(e) with τ(k + 2) nodes
6: Calculate edge encoding matrix X (e) via Equation (3)-(7)
7: for m = 1 to 10 (or other numbers) do
8: Calculate the total loss value L via Equation (8)-(11)
9: Back propagation and update the generator parameters

10: end for
11: Calculate the loss value Ladv of the discriminator D via Equation (8)
12: Back propagation and update the discriminator parameters
13: end for
14: end for

Encoder Loss. Using the two losses described above, the generator can be forced to produce a set
of edges that are not only realistic, but also contextually appropriate. Further, a second encoder loss
function Lenc is used, which uses a L2 loss function to minimize the distance between the bottleneck
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features of the input z = GE(x) and the encoded features of the generated edge ẑ = E(G(x)). The
Lenc is formally defined as:

Lenc = Ex∼pX ∥GE(x)− E(G(x))∥2 (10)

In so doing, the generator learns how to encode features of the generated image for normal samples.
To improve the robustness of the model, the model is trained using these three loss functions and
the three loss functions are added together to form a single total loss function. Overall, the objective
function for the generator becomes the following:

L = Ladv + Lcon + Lenc (11)

Algorithm 1 gives the overall training process of the model.

3.2.2 MODEL TESTING

In the testing phase, when anomalous data is required, the generator cannot effectively reconstruct
x. The x̂ and x have a certain discrepancy, which can be further amplified by embedding it through
the encoder E, because the model has not seen this type of data before.

During the test stage, the model employs the Lenc function from equation (10) to determine the
abnormality of a given edge. As a result, for a test sample xtest, our anomaly score A(xtest) is
defined as:

A(xtest) = ∥GE(xtest)− E(G(xtest))∥2 (12)

4 EXPERIMENTS

4.1 EXPERIMENT SETTING

The AAEDY framework is tested on six real-world dynamic graph benchmark datasets, including
UCI Messagegs (Opsahl & Panzarasa, 2009), Bitcoin-Alpha (Kumar et al., 2016), Bitcoin-OTC
(Kumar et al., 2018), Digg (De Choudhury et al., 2009), AS-Topology (Zhang et al., 2005), and
Email-DNC (Rossi & Ahmed, 2015).We compared AAEDY with seven anomaly detection meth-
ods, including DeepWalk (Perozzi et al., 2014) , node2vec (Grover & Leskovec, 2016) , spectral
clustering (Opsahl & Panzarasa, 2009) , NetWalk (Yu et al., 2018) , AddGraph (Zheng et al., 2019)
, StrGNN (Cai et al., 2021) , and TADDY (Liu et al., 2021).

Model training requires a large amount of normal data. Therefore, in the experiment, the training set
and test set are divided into 80% and 20%. The training set contains all normal data, while the test
set is injected with 1%, 5%, and 10% of abnormal data through the anomaly injection method. The
test indicator uses AUC, which is insensitive to the balance of positive and negative samples and can
be reasonably evaluated in the case of sample imbalance. In the preprocessing stage, the number of
context nodes is set to 5, the time window τ is set to 2, and the encoding dimension denc is set to
512. The PPR (Page et al., 1999) diffusion is the same as that used in TADDY and is calculated by
Equation (2). In the anomaly detection stage, in all datasets, the number of attention heads is set to
1, the number of attention layers is set to 1, and the dimensions of z and ẑ are set to 10. The model
is trained by the Adam optimizer with a learning rate of 0.0001. On the UCI Messages, Digg, and
Email-DNC datasets, 0.01 is set as the anomaly threshold.

In order to balance the performance between the generator G and the discriminator D, during the
training process, the generator G is trained first, and then the discriminator D is trained, and the
weights between the generator, encoder, and discriminator can be dynamically adjusted. Different
from the above datasets, a new training strategy is used on Bitcoin-OTC, Bitcoin-Alpha, and AS-
Topology datasets to train the generator G and encoder E once for each discriminator D. One epoch.
20 epochs are trained on all datasets, and the best trained model is finally adopted. The snapshot
size is set to 1,000 for UCI Messages and Email-DNC, 2,000 for Bitcoin-Alpha and Bitcoin-OTC,
and 4,000 for AS-Topology and Digg, respectively.

4.2 RESULTS ON BENCHMARK DATASETS

Experiments are carried out on six real data sets separately. The experimental results are shown in
Table 1. It can be found that our method has achieved better performance compared with the best
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Table 1: AUC comparison on benchmark datasets.

Methods UCI Messages Bitcoin-Alpha Bitcoin-OTC
1% 5% 10% 1% 5% 10% 1% 5% 10%

DeepWalk 0.7514 0.7391 0.6979 0.6958 0.6874 0.6793 0.7423 0.7356 0.7287
node2vec 0.7371 0.7433 0.6960 0.6910 0.6802 0.6785 0.6951 0.6883 0.6745
Spectral Clustering 0.6324 0.6104 0.5794 0.7401 0.7275 0.7167 0.7624 0.7376 0.7047
NetWalk 0.7758 0.7647 0.7226 0.8385 0.8357 0.8350 0.7785 0.7694 0.7534
AddGraph 0.8083 0.8090 0.7688 0.8665 0.8403 0.8498 0.8352 0.8455 0.8592
StrGNN 0.8179 0.8252 0.7959 0.8574 0.8667 0.8627 0.9012 0.8775 0.8836
TADDY 0.8912 0.8398 0.8370 0.9451 0.9341 0.9423 0.9455 0.9340 0.9425
AAEDY 0.9521 0.9513 0.9524 0.9683 0.9735 0.9758 0.9781 0.9642 0.9756

Methods Digg Email-DNC AS-Topology
1% 5% 10% 1% 5% 10% 1% 5% 10%

DeepWalk 0.7080 0.6881 0.6396 0.7481 0.7303 0.7197 0.6844 0.6793 0.6682
node2vec 0.7364 0.7081 0.6508 0.7391 0.7284 0.7103 0.6821 0.6752 0.6668
Spectral Clustering 0.5949 0.5823 0.5591 0.8096 0.7857 0.7759 0.6685 0.6563 0.6498
NetWalk 0.7563 0.7176 0.6837 0.8105 0.8371 0.8305 0.8018 0.8066 0.8058
AddGraph 0.8341 0.8470 0.8369 0.8393 0.8627 0.8773 0.8080 0.8004 0.7926
StrGNN 0.8162 0.8254 0.8272 0.8775 0.9103 0.9080 0.8553 0.8352 0.8271
TADDY 0.8617 0.8545 0.8440 0.9348 0.9257 0.9210 0.8953 0.8952 0.8934
AAEDY 0.8873 0.8935 0.8942 0.9411 0.9565 0.9458 0.9081 0.9142 0.9151
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(a) UCI Messages
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(b) Bitcoin-Alpha
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(c) Bitcoin-OTC
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(d) DIGG
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(e) Email-DNC
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(f) AS-Topology
Figure 2: The sensitivity of the number of subgraphs and the number of contextual nodes on six
datasets.
baseline when injecting 1%, 5% or 10% abnormalities. Experimental results show that our method
can effectively detect anomalies in dynamic graphs.

4.3 PARAMETER SENSITIVITY

This section analyses the effect of hyperparameters on the performance of AAEDY, focusing on the
effect of the number of attention and attention layers and the training ratio on performance.

Firstly, on the UCI Messages dataset, Bitcoin-Alpha dataset, Bitcoin-OTC dataset, DIGG dataset,
Email-DNC dataset and AS-Topology dataset, the number of subgraphs and the number of con-
textual nodes are set as {1, 2, 3, 4} and {1, 2, 3, 4, 5, 6, 7, 8, 9} respectively, and conducted a large
number of experiments. In the experiment, the training set is set to account for 80% , the number of
epochs is 20, and the two different training strategies mentioned above are used. The experimental
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(a) UCI Messages (b) Bitcoin-Alpha (c) Bitcoin-OTC

(d) DIGG (e) Email-DNC (f) AS-Topology
Figure 3: The sensitivity of training ratios on six datasets.

results are shown in Figure 2. It can be seen that it gives the best results with a number of subgraphs
of 2 and 3 and a number of contextual nodes of around 7.

z
z

(a) 0 epoch

z
z

(b) 3 epoch

z
z

(c) 7 epoch

z
z

(d) 0 epoch

z
z

(e) 3 epoch

z
z

(f) 7 epoch
Figure 4: Visualisation of reconstruction differences between normal and abnormal edges on the
UCI dataset. The first row shows the normal edge visualisation, the second row shows the abnormal
edge visualisation.

Then, the effect of training ratio on performance is analyzed on the UCI Messages dataset, Bitcoin-
Alpha dataset, Bitcoin-OTC dataset, DIGG dataset, Email-DNC dataset and AS-Topology dataset
where the ratio of the training is set to {40%, 50%, 60%, 70%, 80%} and inject 10% of anomalous
data into the test set. In the experiments, the number of epochs is set to 10 , using the two different
training strategies mentioned above. The experimental results are shown in Figure 3, and it can be
seen when the effect of anomaly detection is proportional to the training ratio.
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4.4 VISUAL ANALYTICS

In this section, the embedding vectors z, ẑ of normal and abnormal edges are visualised separately.
And the individual vectors are downscaled to a two-dimensional space using TSNE to visualise
the degree of difference between edges z and ẑ by visualising the spatial distance. Experiments
are conducted on the UCI dataset, and the visualisation results of 0 epoch, 3 epoch and 7 epoch
are shown in Figure 4. It can be found that for normal edges, the embedding vectors z and ẑ are
relatively close in spatial distribution, while for abnormal edges the feature vectors z and ẑ are
farther apart in spatial distribution, therefore, this aspect can be used to identify abnormal edges by
reconstructing the differences.

4.5 MULTI-INDICATOR COMPARATIVE ANALYSIS

(a) UCI Messages (b) Bitcoin-Alpha

(c) Bitcoin-OTC (d) Email-DNC
Figure 5: Multi-indicator comparison results on the UCI Messages, Bitcoin-Alpha, and Email-DNC
datasets.
To verify the effectiveness of adding discriminator D, comparative experiments are conducted on
the UCI data, the Bitcoin-Alpha dataset, the Bitcoin-OTC dataset and Email-OTC with both discrim-
inators removed and with discriminators, respectively. The four evaluation metrics, macro-average
Precision, macro-average Recall and macro-average F1-score, AUC, are used for full identification.
Using AEEDY* to denote the model without discriminator D.The comparative results are shown in
Figure 5. Based on the results of the experiment, it can be found that AAEDY has better indicators
than AEEDY*.

5 CONCLUSION AND FUTURE WORK

Based on the idea of esidual analysis, this paper proposes a novel semi-supervised anomaly detec-
tion frameworkAAEDY, which solves the problem that the supervised model cannot be trained due
to the scarcity of abnormal data. The framework mainly consists of two modules, the data prepro-
cessing module and the anomaly addition detection module. The data preprocessing module uses
three codes to obtain the spatiotemporal encoding information of the edge. The anomaly detection
module consists of an adversarial code autoencoder, which performs anomaly detection by compar-
ing the differences between edges in two low-dimensional spaces. The effectiveness of our proposed
framework has been confirmed by experiments on six benchmark datasets. In the next step, we will
combine node attribute information to jointly learn the complex cross-modal interactions between
graph structure and node attributes.
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Algorithm 2 Model Test Algorithm

Input: Testing set of dynamic graph: Gtest = {Gt}Tt=1, Number of sampled contextual nodes: k,
Size of time window: τ , Number of attention heads h, Number of attention Layers r.

1: Randomly initialize the parameters of encoding linear mappings, And use the already trained
adversarial autoencoder model.

2: Split the dynamic graph Gtest = {Gt}Tt=1 with maximum timestamp T into snapshots at τ
timestamps Gt

test = (Vt, Et) ∈ {Gt}Tt=τ
3: for e ∈ Et do
4: Set e the as the target edge and sample its subgraph node set S(e) with τ(k + 2)
5: Calculate edge encoding matrix X (e) via Equation (3)-(7)
6: Calculate the anomaly score with Equation (12)
7: end for

A APPENDIX

A.1 ALGORITHM

The overall testing process of our AEDDY framework is described in Algorithm 2. In Algorithm 2,
step 1 is to initialize the parameters in the model, and in steps 2-7, step 2 is to divide the dynamic
graph into several temporal snapshots, and step 4 is to perform preprocessing of the data to obtain
the set of nodes of an edge. Step 5 is to obtain the fusion code of an edge by three encodings. In
step 6, the anomaly value of the edge is calculated to determine whether it is an anomalous edge or
not.

A.2 DATASET DETAILS

Six real-world benchmark datasets of dynamic graphs are demonstrated as follows:

The UCI Messagegs dataset Opsahl & Panzarasa (2009) is a social network dataset consisting of
users and the communication between them. In this dataset, there are 1,899 nodes, 13,838 edges,
and the average degree of the nodes is 14.57.

The Bitcoin-Alpha dataset Kumar et al. (2016) and the Bitcoin-OTC dataset Kumar et al. (2018) are
Bitcoin transaction data on the Bitcoin-Alpha and Bitcoin-OTC platforms, respectively, consisting
of user and transaction information in the platforms, where the Bitcoin-Alpha dataset has 3,777
nodes and 24,173 edges, and the average degree of the nodes is 12.80. The Bitcoin-OTC dataset has
5,881 nodes and 35,588 edges, with an average degree of nodes of 12.10.

The Digg dataset De Choudhury et al. (2009) is a collection of social network information collected
from August 3rd 2008 to August 6th 2008, consisting of information about users and inter-user
communication on the Digg social networking site.

The AS-Topology Zhang et al. (2005) dataset is the network connections between autonomous sys-
tems of the Internet.

The Email-DNC dataset Rossi & Ahmed (2015) is an email network collected in 2016, which has
1,866 nodes with 39,364 edges in this dataset, and the average degree of the nodes is 42.08.

A.3 BASELINES DETAILS

Seven anomaly detection methods are demonstrated as follows:

DeepWalk Perozzi et al. (2014) is inspired by Word2vec, which acquires node sequences by random
wandering and performs feature embedding using skip-gram models.

node2vec Grover & Leskovec (2016) is a graph embedding method that combines DFS neighbour-
hoods and BFS neighbourhoods. In simple terms, it can be seen as an extension of deepwalk, a
deepwalk that combines DFS and BFS random wandering.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Spectral Clustering Opsahl & Panzarasa (2009) is a technique for learning node embedding by max-
imizing the similarity between nodes in a region. The idea behind this strategy is to keep the local
connection relationship between nodes in a network intact.

NetWalk Yu et al. (2018) obtains a sequence of nodes by designing a wander in a dynamic graph,
embeds the nodes into a low-dimensional space using a deep self-encoder, and finally uses a tech-
nique of clustering to detect anomalous information.

AddGraph Zheng et al. (2019) based on the idea of residual analysis, trains a normal pattern by
designing a semi-supervised learning framework that uses normal edges continuously during the
training process. In this framework, GCN embedding features are mainly used to extract long and
short-term spatio-temporal information using GRU.

StrGNN Cai et al. (2021) is also a deep learning-based framework for dynamic graph anomaly
detection, mainly by using GCN to extract features from subgraphs under each temporal snapshot,
and finally using the recurrent neural network GRU to fuse features from subgraphs under multiple
temporal snapshots in order to capture the spatio-temporal information of the dynamic graph.

TADDY Liu et al. (2021) is a newly proposed anomaly detection framework for dynamic graphs.
And uses graph diffusion techniques to sample sub-structures in dynamic graphs, and proposes three
encoding methods to capture global structural information, local structural information and temporal
information of the graph, and finally performs information fusion learning based on autoencoders to
finally achieve anomaly detection on dynamic graphs.
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