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ABSTRACT

This paper tackles a challenge in learning the long-term point trajectories in
videos, like the Tracking Any Point (TAP) task. Fundamentally, the estimation of
point-level motions is hindered by the significant uncertainty inherent in compre-
hensive comparisons across the entire video frame. While existing models attempt
to mitigate this issue by considering a regularized comparison space (e.g., the cost
volumes), point-level motion remains highly noisy, often leading to failures on in-
dividual points. To tackle the issue, our key idea is to jointly track multiple points
within a given semantic object: since points in an object tend to move together
on average, individual noise trajectories can be effectively marginalized, subse-
quently obtaining fine-grained motion information. Specifically, we predict the
object mask using point-prompted segmentation provided by Segment Anything
Models (SAM) and enhance the performance of existing models through a sys-
tematic two-stage procedure: (a) estimating the average motion of points within
the object mask (predicted by SAM) as the initial estimate, and (b) refining this
estimate to achieve point-level tracking. In stage (b), we actively generate fine-
grained features around the initial estimate, preserving high-frequency details for
precise tracking. Consequently, our method not only overcomes the failure modes
seen in existing state-of-the-art methods but also demonstrates superior precision
in tracking results. For example, on the recent TAP-Vid benchmark, our method
advances the state-of-the-art performance, achieving up to a 25% improvement in
accuracy at the 1-pixel error threshold. Furthermore, we showcase the advantages
of our method in two downstream tasks: video depth estimation and video frame
interpolation, exploiting the point-wise correspondence in each task.

1 INTRODUCTION

Finding point correspondences over the multiple views of a scene is a crucial challenge in handling
visual data, playing a vital role in tasks understanding the geometry of the scene, e.g., 3D recon-
struction ( Hartley & Zisserman  ,  2003 ). Specifically, when the scene features dynamically moving
objects and backgrounds, i.e., video data, the problem becomes estimating dense point-level motion
over the video frames. For example, optical flow ( Teed & Deng ,  2020 ) has widely been adopted,
where its goal is predicting the pixel-wise displacements between two frames, assuming that the ma-
jority of the pixels are visible in both frames. Consequently, the optical flow is only reliable within
short-term frames, and its application can be limited to videos comprising longer frames.

To this end, video point tracking has recently emerged as a prominent next direction, overcoming the
limitation of the previous approach. For example, the recent Tracking Any Point (TAP) task ( Doersch
et al. ,  2022 ) has attracted many research focus, which aims to predict the long-term trajectory of a
given point, as well as the occlusion probability over the whole frames in a given video. However,
tracking motions over the entire video entails comprehensive comparisons across the 3D spatial-
temporal coordinates. In turn, the main challenge of point tracking is mostly regarding how to
handle the computation burden and uncertainties arising from the large comparison space.

For instance, the canonical design in state-of-the-art models ( Karaev et al. ,  2023 ;  Doersch et al. ,
 2023 ;  Harley et al. ,  2022 ) considers the regularized space, referred to as the cost volume ( Xu et al. ,
 2017 ), which basically represents the likelihood of the point’s location in low-resolution frames,
producing a coarse-grained trajectory. Then, they employ refinement modules that smooth away
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Figure 1: The illustration of the failure mode in point tracking. Even the state-of-the-art baseline,
e.g.,  Doersch et al. ( 2023 ), can fall into the failure mode when the cost volume (i.e., likelihood of
the point’s location) is significantly erroneous; for example, when the model fails to capture the
high-frequency visual details to represent thin object parts, such as the dog’s ear. Our method
mitigates this issue by referring to the estimated instance-level motion and focusing only on the
region occupied by the instance to ensure the visual details required for accurate tracking. Indeed,
we find that the cost volume in the baseline (left, red circles) is moving in the wrong direction to the
query point, while our method (right, green circles) is correctly tracking the dog’s ear.

the errors in the initial predictions, which are trained with datasets annotated for tracking, such
as the Kubric ( Greff et al. ,  2022 ) and PointOdyssey ( Zheng et al. ,  2023 ). However, there exist
failure modes in these methods, specifically when the cost volume is significantly erroneous and the
refinement module fails to fix it, e.g., the failure case on thin object parts in Fig.  1 . We note that
enhancing the quality of the cost volume is not trivial, as the naive extension of its size trades off its
purpose of regularizing the comparison space and computational demands.

To overcome the fundamental limitation, our key idea is utilizing the semantic instance-level motion
estimates to actively guide the tracking model to focus only on the important region when building
the cost volume. Intuitively, the points on the same object instance are physically bonded, so that
they would jointly share the long-term motion statistics. Hence, their aggregated motion can act as
a reliable estimate. Specifically, we leverage the recent Segment Anything Models (SAM;  Kirillov
et al.  2023 ) to predict the segmentation mask of the instance that a given query point belongs to and
utilize points on the segmentation mask when aggregating the instance-level motions.

Formally, we propose InstaTAP: Instance motion estimation for Tracking Any Point, a new tracking
method that overcomes the failure modes seen in existing state-of-the-art models, as-well-as provid-
ing a significant gain for models to be accurate up to the pixel scale. In a nutshell, InstaTAP can be
built on top of any existing point tracker, e.g.,  Doersch et al.  ( 2023 ), to bootstrap its tracking per-
formance. Specifically, given the segmentation mask indicating the semantic instance of the query
point, we sample and track points on the mask and aggregate their trajectory. Then, we leverage
this instance-level motion to actively clip the video frames along the instance’s trajectory, so that the
tracking model can only focus on the clipped regions and more details can be preserved in the cost
volume without modifying the size.

Through the experiments on TAP-Vid point tracking benchmark suite ( Doersch et al.  ,  2022 ), we
demonstrate the effectiveness of our new point tracking method using instance-level motions; for
example, our method achieved up to 25% relative improvement in the 1-pixel tracking accuracy
compared to the strongest baseline,  Karaev et al. ( 2023 ). In addition, we present the application of
our point tracking in two downstream tasks: robust video depth estimation ( Kopf et al.  ,  2021 ) and
video frame interpolation ( Chen & Jiang ,  2023 ). Overall, our work highlights the effectiveness of
considering instance-level motion as a reliable estimate for enhancing video point tracking, and we
believe our work could inspire researchers to consider a new way to further leverage it in the future.
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2 RELATED WORK

2.1 OPTICAL FLOW

The optical flow tackles the dense computation of instantaneous motion patterns between two given
video frames. Commencing with the pioneering work of the FLowNet series which extended the
adaptation of convolutional neural networks for motion estimation ( Dosovitskiy et al.  ,  2015 ;  Ilg
et al. ,  2017 ), DCFlow ( Xu et al. ,  2017 ) introduced the innovative concept of the cost volume. This
concept effectively encapsulates the dense correspondence between pairs of image patches. Subse-
quent breakthroughs, such as PWC-Net ( Sun et al. ,  2018 ) and RAFT ( Teed & Deng ,  2020 ), have
laid out systematic methodologies for processing the cost volume. These methodologies have since
become integral to a plethora of modern motion estimation models, encompassing elements like
feature pyramids, rigid warping, and iterative refinement techniques. Despite the progress in optical
flow research, it is essential to acknowledge its inherent limitations, valid only within the context of a
pair of frames, rendering it incapable of providing predictions regarding occlusions. This limitation
assumes particular significance in the downstream video applications.

2.2 POINT TRACKING

The inherent constraint within optical flow has triggered the recent emergence of the point-tracking
task. In essence, the task entails tracking any arbitrary physical point within a video sequence, en-
compassing both its occlusion behavior and the regression of its spatial coordinates across the entire
duration of the video frames. Prominent contemporary models in this domain, such as PIPs ( Harley
et al. ,  2022 ), TAPNet ( Doersch et al. ,  2022 ), TAPIR ( Doersch et al. ,  2023 ), MFT ( Neoral et al. ,

 2023 ), and CoTracker (  Karaev et al. ,  2023 ), all incorporate the foundational concept of the cost
volume. Meanwhile, the distinguishing factor among these models is the refinement mechanisms
employed subsequent to the initial estimation of correspondence within the cost volume. For in-
stance, PIPs ( Harley et al. ,  2022 ) utilize a recurrent neural network for iterative refinement, whereas
both TAPNet ( Doersch et al. ,  2022 ) and TAPIR (  Doersch et al. ,  2023 ) leverage 3D convolutions and
mixers to enhance the correspondence estimation. Nevertheless, the refinement modules can fail
when the cost volume is extremely erroneous (see Fig.  1 ), and one of the focuses of this paper is
preventing errors in the cost volume so that any existing tracking model can be improved.

2.3 PROMPTED POINT SEGMENTATION

A recent advancement within the domain of image segmentation has been the introduction of
prompted segmentation tasks, notably spearheaded by the pioneering Segemnt Anything Model
(SAM;  Kirillov et al. ( 2023 )). SAM is specifically designed to perform image segmentation on re-
gions indicated by general point and box-prompted user queries. Bolstered by the extensive SA-1B
dataset ( Kirillov et al. ,  2023 ), which comprehensively represents the broad concept of segmentation
within natural images and drawings. SAM and its derivative architectures ( Zhang et al. ,  2023 ;  Zhao
et al. ,  2023 ;  Ke et al. ,  2023 ), exhibit an impressive capacity for class-agnostic image segmentation.
In the context of point tracking, specifically, prompted segmentation serves as a valuable resource by
generating segmentation masks for physical surfaces for the object instance indicated by the query
point. These masks enable our method to sample a set of coordinates that are subsequently utilized
to estimate the instance-level motion.

3 METHOD

In this section, we provide the preliminary of tracking any point (TAP) task and our method de-
tails. Our idea leverages that the points on the same object instance are physically bonded, sharing
the long-term motion statistics. Specifically, we directly leverage the foundational prior from re-
cent point-queried segmentation models to segment object instances, indicating which segmentation
mask a given query point belongs to. Then, we jointly track a set of points on the mask, referred
to as the semantic neighbors, and take their expected motion to marginalize over individual noise
trajectories. This instance-level motion can serve as an initial guess of the query trajectory, where
we propose further steps for bootstrapping the tracking performance given the reliable initial guess,
significantly boosting the tracking precision, which we refer to it as high-fidelity tracking.
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The organization is as follows. In Secs.  3.1 and  3.2 , we formally define the terminology and describe
the canonical design found in point tracking literature, including the cost volume. Then, we provide
the details of our method, step by step. First, we describe our instance-level motion estimation
module in Sec.  3.3 . For a given query point, this module predicts the initial guess of the query
trajectory based on the joint instance-level motion estimate of the points within the point-queried
segmentation mask. Next, in Sec.  3.4 , we describe our enhanced high-fidelity point tracking module,
which is designed to bootstrap the tracking performance given the initial guess by utilizing enhanced
visual features gathered by constraining the tracking regions around the guessed trajectory.

3.1 BASIC FORMULATION

Point tracking is a task of predicting the point trajectory, given a query point in a sequence of video
frames. When there exist multiple query points, e.g., every pixel within a frame, they can be jointly
tracked through batch-processing in practice, so we focus on a single-point formulation without loss
of generality.

Formally, let I ∈ RH×W×L×3 be an RGB, monocular video frame sequence of the resolution
(H,W ) and the frame length L, and p ≡ (x, y, t) ∈ (0, 1)3 be the continuous point coordinate
in the (horizontal, vertical, temporal) basis within the video. To give an example for clarity, (0, 0, 0)
denotes the left-top corner in first frame, (1, 1, 1) denotes the right-bottom in final frame, and the
center of the discrete pixel Ih,w,l is equivalent to ((w + 0.5)/W, (h+ 0.5)/H, (l + 0.5)/L). Also,
let T ∈ (0, 1)L×2 represent the predicted trajectory over the entire video frames, and o ∈ (0, 1)L

represent the probability of occlusion for each frame, associated with the trajectory.

We consider a model Tracker, which takes the video frame I and the query point as the inputs,
denoted by p(q) ∈ (0, 1)3, and predicts the trajectory T (q) ∈ (0, 1)L×2 and the occlusion probability
o(q) ∈ (0, 1)L over the entire set of frames,

(T (q),o(q)) := Tracker(p(q), I). (1)

3.2 COST VOLUME ARCHITECTURE

In the canonical design of contemporary tracking models, the key component is the cost volume,
which basically represents the likelihood of the spatial-temporal location of the query point in the
video, denoted by C ∈ (−1, 1)HF×WF×L, where (HF ,WF ) is the resolution of the cost map. For
example, the element Ch,w,l represents the likelihood that the query point is on that specific discrete
location. The specific process of building the cost volume is as follows.

First, the video I is processed into the regular-sized visual feature map F ∈ RHF×WF×L×D, e.g.,
by convolutional networks with pooling layers. Here, each feature vector Fh,w,l is considered the
embedding of its corresponding point coordinate. In general, to support the continuous coordinate
p ∈ (0, 1)3, the point embedding is gathered by interpolating the adjacent feature vectors (e.g.,
bilinear interpolation), which we denote F̂ (p) ∈ RD.

Next, for the given query point p(q) and its embedding F̂ (p(q)), the similarity with respect
to the feature map F is calculated, constituting each element of the cost volume, Cx,y,t :=

S
(

Fx,y,t, F̂ (p(q))
)

, where S(·, ·) is the vector similarity (e.g., dot product). Finally, models pre-
dict the coarse trajectory estimates by connecting the elements with the largest similarity for each
frame, and also detect occlusions by thresholding the similarity values. Subsequently, they produce
the final tracking results by improving the smoothness of the coarse trajectory through sophisticated
refinement mechanisms. 

1
 

We note that one of our main focuses is to prevent failure modes in the cost volume, as exemplified in
the Fig.  1 . For example, the cost volume can be significantly erroneous when the embedding F̂ (p(q))
lacks the high-frequency details required to correctly represent the visual details in the query point,
which causes a common tracking failure mode.

1We refer the readers to literature for the refinement mechanisms found in practical models, e.g.,  Karaev
et al. ( 2023 );  Doersch et al. ( 2023 )
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Figure 2: Illustration of our point tracking mechanism. In the initial frame (l = 0) and the
given query point p(q) (the red dot), we predict the semantic object mask (depicted with the yellow
mask) using the Segment Anything Model (SAM) and sample the semantic neighbors (the blue dots)
from the mask. By tracking the semantic neighbor, we estimate the instance-level motion, which
essentially locates the clipping region (the orange square). Finally, the query trajectory (the green
dot) is predicted within the clipping region, i.e., the high-fidelity tracking.

3.3 INSTANCE-LEVEL MOTION ESTIMATION

Given a query point suffering from the failure modes, our key idea is to compute the instance-level
motion estimate and then incorporate it into the point-level tracking process. Intuitively, instance-
level tracking could be viewed as a relaxed problem compared to point-level tracking as marginaliz-
ing individual point-level sources would reduce noise. Additionally, instance-level motion is benefi-
cial for tracking individual points, as points within the same object instance are physically connected
and tend to exhibit similar long-term motion statistics.

Specifically, our method tracks a set of points contained in the instance mask predicted by a point-
query segmentation model, e.g.,  Ke et al.  ( 2023 ), which produces the pixel-wise confidence in how
the pixels are semantically related to the query point p(q). For example, we consider the model Seg,
which produces the segmentation mask for the initial frame indicated by the query’s time coordinate,

Seg(p(q), I) := (0, 1)H×W . (2)

Specifically, we sample a fixed N number of points of based on Seg(p(q), I). For the confidences
having significantly large values, e.g., Seg(p(q)) ≥ 0.5, we employ a weighted multinomial sam-
pling to choose a set of points, coined semantic neighbors, N (p(q)) := {p(a0), . . . ,p(aN )}, where
p(a0) ≡ p(q) for convenience.

Then, we jointly track these semantic neighbors using Tracker and the frame-wise trajectory dis-
placements, (

T (ai),o(ai)
)
= Tracker

(
p(ai), I

)
, (3)

∆T
(ai)
t,: := T

(ai)
t,: − T

(ai)
t−1,: for t ≥ 1. (4)
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Here, some semantic neighbors could fall into failure modes, while others tend to be accurately
predicted showing minimal occlusion probabilities o(ai). Hence, we perform a weighted aggregation
with their occlusion confidences, so the effect of invisible trajectories can be removed, producing a
reliable instance-level motion estimates,

∆T̄
(q)
t,: :=

N∑
i=0

(1− o
(ai)
t ) ·∆T

(ai)
t,:∑N

j=0(1− o
(aj)
t )

, (5)

T̄
(q)
t,: = T̄

(q)
t−1,: +∆T̄

(q)
t,: for t ≥ 1, (6)

where T̄
(q)
0,: ≡ p(q). While the above aggregation formula mostly functions as expected, we could

identify a seldom edge case due to the failure of the segmentation model; the mask might not in-
dicate the correct instance-level region. Nevertheless, we find the problem can be mitigated by
simply putting a stronger preference to the query trajectory, in an adaptive manner depending on its
occlusion probability,

T̂
(q)
t,: := (1− o

(q)
t ) · T (q)

t,: + o
(q)
t · T̄ (q)

t,: . (7)
Finally, our model can produce the reliable initial guess for the instance-level trajectory even when
affected by the failure mode of the cost volume, given a sufficiently large constant N , e.g., we choose
N = 31 unless stated otherwise.

3.4 ENHANCED HIGH-FIDELITY POINT TRACKING

Given the instance-level motion estimate, we now aim to utilize it for enhanced point-tracking per-
formance. Specifically, we propose to actively generate fine-grained features around the estimated
trajectory, preserving high-frequency details for precise tracking.

Recall that the feature map F has the fixed resolution (HF ,WF ), as described in Sec.  3.2 . Specifi-
cally, the existing models perform the image resizing to shrink the resolutions to meet the resolution
requirement, which essentially acts as the low-pass filters that sweep away fine-grained details from
the feature maps. As there is a good initial trajectory guess in our method, we propose to actively
clip each frame, around the region centered at the trajectory.

Specifically, let (HC ×WC) a clipping resolution with conditions HC < H and WC < W , and we
denote the active clip for the query trajectory as

I(q) := clip(I, T̂ (q), HC ,WC) ∈ RHC×WC×L×3. (8)
Given the clipped frames, the degree of resizing in the feature map reduces by (HC×WC)/(H×W ),
and thus more high-frequency details can be preserved in the visual features. We would like to
emphasize that the feature resolution (HF ×WF ) is not modified by clipping, hence the size of the
cost volume remains the same. Specifically, we denote this enhanced version of the tracker by

(T̃ (q), õ(q)) := TrackerHD(p(q), I(q)). (9)
Additionally, we can boost the performance of TrackerHD, by considering the progressive reduction
of the clip sizes (Hk,Wk). Specifically, we define the recursive predictions,

(T̃
(q)

k+1, Õ
(q)
k+1) := TrackerHDk(p

(q), clip(I, T̃
(q)

k , Hk,Wk)) for k ≥ 0, (10)

where T(q)
0 ≡ T̂ (q). In this recursive structure with the progressive resolution reduction, the model

is essentially being bootstrapped to achieve a better tracking performance. Finally, we note that it
is also useful to aggregate the outputs from the progressive clip sizes, giving an effect similar to the
multi-scale pyramids found in various vision architectures (  Lin et al.  ,  2017 ;  Liu et al.  ,  2016 ). To do
so, we perform the weighted aggregation of the trajectories by the occlusion probabilities, and the
harmonic mean for the occlusion probabilities to get the final prediction:

T
(q)
t,: :=

K∑
k=0

1− Õ
(q)

k,t · T̃
(q)

k,t,:∑K
j=0 Õ

(q)
j,t

∈ (0, 1)2, (11)

o
(q)
t :=

(
K∏

k=0

Õ
(q)
k,t

) 1
K+1

∈ (0, 1). (12)
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Table 1: TAP-Vid benchmark results on high-precision metrics. The δxn indicates the ratio of the
correct trajectories (i.e., accuracy), judged by whether it is within n pixels from the ground truth,
and the Jn (Jaccard-n) indicates the ratio of the correct trajectories with the true positive visibility
prediction.

DAVIS-F DAVIS-S

Method J1 δx1 J2 δx2 J1 δx1 J2 δx2

TAPNet ( 2022 ) 20.7 30.1 40.4 51.7 25.3 36.3 46.0 57.8
PIPS2 ( 2023 ) 19.6 35.8 35.1 57.8 6.9 14.2 14.2 27.0
TAPIR ( 2023 ) 23.0 34.3 45.0 58.5 28.1 41.0 51.4 65.3
CoTracker ( 2023 ) 28.3 43.5 49.7 67.0 34.9 50.9 55.4 71.9
InstaTAP (Ours) 35.4 48.2 57.7 70.1 41.9 55.0 63.6 75.2

Kinetics RGBStack

TAPNet ( 2022 ) 18.9 28.3 37.3 48.8 38.9 55.6 58.8 74.1
PIPS2 ( 2023 ) 14.0 28.6 28.0 50.5 29.8 50.6 45.0 68.6
TAPIR ( 2023 ) 17.9 27.4 36.7 49.0 38.5 55.7 59.6 75.6
CoTracker ( 2023 ) 20.3 33.3 36.8 53.4 35.4 52.3 52.3 70.9
InstaTAP (Ours) 23.8 34.0 42.6 54.6 44.2 60.2 61.5 76.5

4 EXPERIMENTS

In this section, we demonstrate the effectiveness of the proposed method, InstaTAP. Specifi-
cally, we mainly incorporate our method with the recent point tracking and refinement model,
TAPIR ( Doersch et al. ,  2023 ). 

2
 For the segmentation model, we utilize MobileSAM ( Ke et al. ,

 2023 ) a lightweight model variant trained in the same dataset as the original SAM ( Kirillov et al. ,
 2023 ). We choose the TrackerHD hyperparameters H0 = W0 = 960, H1 = W1 = 384 and K = 1,
for all experiments unless stated otherwise. We note that the frame resolutions are not affected
by these hyperparameters, as models always resize images to a pre-defined size; the clipping only
controls the size of physical regions depicted by the frames ( Creamer ,  2010 ).

4.1 TRACKING ANY POINT

Baselines. We compare our method to the recent baselines CoTracker ( Karaev et al.  ,  2023 ), TAPIR
( Doersch et al.  ,  2023 ), PIPS2 ( Zheng et al. ,  2023 ), and TAPNet ( Doersch et al.  ,  2022 ), by utilizing
the official checkpoints and hyperparameters provided in their project pages.

Datasets. We evaluate these models in three different datasets from the TAP-Vid benchmark suit
( Doersch et al. ,  2022 ), DAVIS (  Pont-Tuset et al. ,  2017 ), Kinetics (  Carreira & Zisserman ,  2017 ), and
RGB-Stacking ( Lee et al. ,  2021 ), each of which represents distinct characteristics. For example,
DAVIS ( Pont-Tuset et al. ,  2017 ) contains 30 videos, specifically curated for evaluating the track-
ing performance under the large variance in the appearance and motions of the object entities. Its
two variants, DAVIS-F and DAVIS-S differ by how the query points are given to models: DAVIS-F
queries the model only once in the first frame, while DAVIS-S queries the model in strides of five
frames. As DAVIS-F requires long-term tracking, it is generally a more difficult setting. Kinetics
( Carreira & Zisserman ,  2017 ) contains 1,144 web videos collected from YouTube representing re-
alistic noisy characteristics of the video in the wild, such as sudden scene changes. RGB Stacking
( Lee et al. ,  2021 ) is a synthetically rendered dataset, depicting 50 different moves by a robotic arm.

Point tracking. To measure the quality of point tracking, the benchmark considers the δxn accuracy
which indicates the ratio of the correct trajectories judged by whether it is within n-pixel error
threshold around the ground truth. In addition, Jn (Jaccard-n) metric takes the model’s occlusion
prediction into account, by measuring the ratio of the correct points with the true positive visibility
predictions.

2Our method can be generally applied to any existing models, even including the concurrent CoTracker
model ( Karaev et al. ,  2023 ) that is available very recently at the moment this work is almost done. Nevertheless,
ours with TAPIR outperforms CoTracker and we did not put efforts to incorporate our method with CoTracker
at this submission (although ours + CoTracker is expected to perform even better than ours + TAPIR).
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Table 2: Average Metrics in Tap-VID Benchmark. The δxavg indicates the average ratio of the
trajectory being within different error thresholds (1, 2, 4, 8 and 16 pixels), and AJ (Average Jaccard)
additionally considers whether the visibility of the trajectory is true positive.

DAVIS-F DAVIS-S Kinetics RGBStack
Method AJ δxavg AJ δxavg AJ δxavg AJ δxavg

TAPNet ( Doersch et al. ,  2022 ) 51.6 63.8 56.5 68.2 49.2 60.6 65.4 79.0
PIPS2 ( Zheng et al. ,  2023 ) 46.6 69.4 25.6 42.9 37.3 62.0 52.3 74.9
TAPIR ( Doersch et al. ,  2023 ) 57.5 70.5 62.8 75.1 50.2 62.3 66.3 80.6
CoTracker ( Karaev et al. ,  2023 ) 60.8 76.1 64.3 78.9 48.2 64.4 64.1 78.0
InstaTAP (Ours) 65.3 78.6 69.3 81.4 51.4 65.8 66.6 81.8

Table 3: Ablation study of the components in our model. We ablate the effect of Instance-level
Motion (IM), active feature clipping (Clip), and the multi-scale fusion (Fusion) modules considered
in our method. For the evaluation, we calculate both pixel-scale and average-scale metrics under the
DAVIS-F dataset ( Doersch et al. ,  2022 ).

IM Clip Fusion J1 δx1 AJ δxavg

✗ ✗ ✗ 23.0 34.3 57.5 70.5
✓ ✗ ✗ 28.2 41.1 62.5 75.3
✓ ✗ ✓ 28.3 41.2 62.6 75.6
✓ ✓ ✗ 34.0 48.0 62.9 77.0
✓ ✓ ✓ 35.4 48.2 65.3 78.6

First of all, we demonstrate the efficacy of our InstaTAP in the high-precision (i.e., 1- and 2-pixel
error thresholds) metrics in Tab.  1 . For example, InstaTAP can achieve up to 25% relative improve-
ments in the Jaccard-1 metric J1 in DAVIS-F, compared to the strongest baseline CoTracker( Karaev
et al.  ,  2023 ). We attribute this gain to the enhanced high-frequency details by our active feature
enhancement module. To provide a more general comparison with respect to the baselines, we also
provide the evaluation results of the models in the average metrics in Tab.  2 , which represents the
overall tracking performance in different precision thresholds. We find our method can still outper-
form every baseline, e.g., 65.3% (ours) vs. 60.8% (  Karaev et al.  ,  2023 ). Overall, we argue that our
method demonstrates a reliable performance, generalizing well to various datasets (  Pont-Tuset et al. ,

 2017 ;  Carreira & Zisserman ,  2017 ;  Lee et al. ,  2021 ) and precision thresholds.

Ablation study. We additionally perform an ablation study to understand further how each com-
ponent in our method affects the performance in Tab.  3 . Specifically, we consider the instance-
level motion estimation (IM), the active feature enhancement by clipping (Clip), and the multi-scale
fusion (Fusion) as the subject for the ablation. Following our key motivation, incorporating the
instance-level motion provides the most significant effect, (e.g., 23.0 → 28.2 in Jaccard-1), and the
feature clipping provides another comparable gain, (e.g., 28.2 → 35.4 in Jaccard-1). The multi-
scale fusion provides some additional boost, (e.g., 34.0 → 35.4 in Jaccard-1) when combined with
the feature clipping. We note that the multiscale fusion without the feature clipping has only a minor
ensemble effect on the model’s output, and thus its effect becomes marginal.

4.2 DOWNSTREAM APPLICATIONS

The point-level motion estimates in monocular videos can be applied to various downstream appli-
cations suffering from the lack of accurate correspondence. For example, the consistent video depth
estimation ( Zhang et al. ,  2021 ;  Luo et al. ,  2020 ;  Kopf et al. ,  2021 ) and the video frame interpolation
( Chen & Jiang ,  2023 ;  Jin et al. ,  2023 ).

Consistent video depth estimation. In a monocular (single-frame) depth estimation, predictions
are essentially constrained to be only accurate up-to-scale (  Hartley & Zisserman ,  2003 ). As a result,
they suffer from the large variance in the prediction scales over the frames, when directly applied to
videos. To mitigate the problem, the test-time optimization ( Zhang et al. ,  2021 ;  Kopf et al. ,  2021 )
calibrates the depth scales over the frames given externally provided pixel-wise correspondences.
Specifically, we test our method on R-CVD optimizer ( Kopf et al. ,  2021 ), which minimizes the
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Table 4: The effect of point tracking in consistent depth estimation. We execute the R-CVD
depth optimizer ( Kopf et al. ,  2021 ) on the motion estimates by the optical flow ( Jin et al. ,  2023 ) and
our method. We utilize the test metrics of R-CVD, e.g., δ1 accuracy with the threshold of 1.25m
errors, and L1 and RMSE representing the relative and absolute regression errors, respectively.

Model δ1 accuracy (%) ↑ L1 relative error (%) ↓ RMSE (meters) ↓
Flow ( Jin et al. ,  2023 ) 38.69 102.8 7.85

InstaTAP (Ours) 39.14 (+0.45) 98.79 (-4.09) 7.82 (-0.03)

Table 5: The effect of point tracking in video frame interpolation. We evaluate the frame inter-
polation on SportsEBME ( Chen & Jiang ,  2023 ), an end-to-end trained baseline with reconstruction
error, and the variants using the motion estimates by an optical flow ( Jin et al. ,  2023 ) and our method,
respectively. To measure the quality, we consider the standard metrics, e.g., PSNR, structural simi-
larity (SSIM;  Wang et al.  2004 ), and RGB interpolation errors (IR-RGB;  Baker et al.  2011 ).

Model PSNR (dB)↑ SSIM (%) ↑ IE-RGB ∈ [0, 255] ↓
SportsEBME ( Chen & Jiang ,  2023 ) 26.48 89.73 15.67

SportsEBME + Flow ( Jin et al. ,  2023 ) 26.05 (-0.33) 88.94 (-0.79) 16.70 (+1.03)
SportsEBME + InstaTAP (Ours) 26.78 (+0.30) 90.18 (+0.45) 14.39 (-1.28)

depth variance among the pixels associated with optical flow ( Teed & Deng ,  2020 ). As the optical
flow is limited to two adjacent frames, we expect that our method can improve the consistency in
the long term. Specifically, in Tab.  4 , our method can achieve better depth consistency compared to
state-of-the-art optical flow ( Jin et al. ,  2023 ), e.g., 4.09 points reduction in the L1 relative error.

Video frame interpolation. Synthesizing novel intermediate frames from input images is a widely
adopted subject of research in video processing, to enhance the clarity of the video content. Specif-
ically, its recent paradigm introduces warping functions, where the images are synthesized through
the learned perspective transform between adjacent frames, e.g., softmax splatting ( Niklaus & Liu ,

 2020 ). However, when the given frames feature complex motion and occlusion, the synthesized
image can suffer from aliasing effects, as the model cannot correctly capture the pixel-wise corre-
spondences. For example, the recent SportsSlomo benchmark ( Chen & Jiang ,  2023 ) is towards the
application in dynamic sports videos, in which the model is largely affected by complex motions. In
this regard, we check the efficacy of our point tracking method, by additionally providing pixel-wise
motions to the splatting function found in a contemporary model in literature ( Chen & Jiang ,  2023 ).
Specifically, in Tab.  5 , we evaluate the frame interpolation quality of the vanilla model, a model
provided with the external optical flow ( Jin et al. ,  2023 ), and the model provided with point tracking
by our method. As a result, we find that our method can improve the frame interpolation quality;
for example +0.30dB gain in PSNR. Interestingly, we find the optical flow degrades the quality, e.g.,
-0.33dB in PSNR, due to severe noises in its estimates under complex dynamic sports videos.

5 CONCLUSION

In this paper, we propose a new video point tracking method, coined InstaTAP, which aims to over-
come the failure modes arising from the lack of high-fidelity details in considering the cost volume
architecture, by incorporating instance-level motion estimates into point tracking. Specifically, we
utilize the segmentation mask predicted by Segment Anything Models (SAM) as the object instance
prior and jointly track the sampled points on the mask to estimate the instance-level motion. Sub-
sequently, we utilize the instance-level motion to actively clip the video frames along the instance’s
trajectory, so that the tracking model can only focus on the clipped regions and more details can be
preserved in the cost volume without extending the size. InstaTAP demonstrates a significant impact
over the state-of-the-art and shows that our point tracking can be applied in downstream tasks such
as video depth estimation and video frame interpolation, replacing the optical flow traditionally used
in these models. Overall, our work highlights the effectiveness of considering instance-level motion
as a reliable estimate for enhancing video point tracking, and we believe our work could inspire
researchers to consider a new alternative way to further leverage it in the future.

9



Under review as a conference paper at ICLR 2024

REFERENCES

Simon Baker, Daniel Scharstein, JP Lewis, Stefan Roth, Michael J Black, and Richard Szeliski. A
database and evaluation methodology for optical flow. International journal of computer vision,
92:1–31, 2011.

Joao Carreira and Andrew Zisserman. Quo vadis, action recognition? a new model and the kinetics
dataset. In proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.
6299–6308, 2017.

Jiaben Chen and Huaizu Jiang. Sportsslomo: A new benchmark and baselines for human-centric
video frame interpolation. arXiv preprint arXiv:2308.16876, 2023.

D Creamer. Understanding resolution and the meaning of dpi, ppi, spi, & lpi, 2010.

Carl Doersch, Ankush Gupta, Larisa Markeeva, Adrià Recasens, Lucas Smaira, Yusuf Aytar, João
Carreira, Andrew Zisserman, and Yi Yang. Tap-vid: A benchmark for tracking any point in a
video. Advances in Neural Information Processing Systems, 35:13610–13626, 2022.

Carl Doersch, Yi Yang, Mel Vecerik, Dilara Gokay, Ankush Gupta, Yusuf Aytar, Joao Carreira,
and Andrew Zisserman. Tapir: Tracking any point with per-frame initialization and temporal
refinement. arXiv preprint arXiv:2306.08637, 2023.

Alexey Dosovitskiy, Philipp Fischer, Eddy Ilg, Philip Hausser, Caner Hazirbas, Vladimir Golkov,
Patrick Van Der Smagt, Daniel Cremers, and Thomas Brox. Flownet: Learning optical flow with
convolutional networks. In Proceedings of the IEEE international conference on computer vision,
pp. 2758–2766, 2015.

Klaus Greff, Francois Belletti, Lucas Beyer, Carl Doersch, Yilun Du, Daniel Duckworth, David J
Fleet, Dan Gnanapragasam, Florian Golemo, Charles Herrmann, et al. Kubric: A scalable dataset
generator. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, pp. 3749–3761, 2022.

Adam W Harley, Zhaoyuan Fang, and Katerina Fragkiadaki. Particle video revisited: Tracking
through occlusions using point trajectories. In European Conference on Computer Vision, pp.
59–75. Springer, 2022.

Richard Hartley and Andrew Zisserman. Multiple view geometry in computer vision. Cambridge
university press, 2003.

Eddy Ilg, Nikolaus Mayer, Tonmoy Saikia, Margret Keuper, Alexey Dosovitskiy, and Thomas Brox.
Flownet 2.0: Evolution of optical flow estimation with deep networks. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 2462–2470, 2017.

Xin Jin, Longhai Wu, Guotao Shen, Youxin Chen, Jie Chen, Jayoon Koo, and Cheul-hee Hahm.
Enhanced bi-directional motion estimation for video frame interpolation. In Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 5049–5057, 2023.

Nikita Karaev, Ignacio Rocco, Benjamin Graham, Natalia Neverova, Andrea Vedaldi, and Christian
Rupprecht. Cotracker: It is better to track together. arXiv preprint arXiv:2307.07635, 2023.

Lei Ke, Mingqiao Ye, Martin Danelljan, Yifan Liu, Yu-Wing Tai, Chi-Keung Tang, and Fisher Yu.
Segment anything in high quality. arXiv preprint arXiv:2306.01567, 2023.

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. arXiv
preprint arXiv:2304.02643, 2023.

Johannes Kopf, Xuejian Rong, and Jia-Bin Huang. Robust consistent video depth estimation. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1611–
1621, 2021.

10



Under review as a conference paper at ICLR 2024

Alex X. Lee, Coline Devin, Yuxiang Zhou, Thomas Lampe, Konstantinos Bousmalis, Jost Tobias
Springenberg, Arunkumar Byravan, Abbas Abdolmaleki, Nimrod Gileadi, David Khosid, Claudio
Fantacci, Jose Enrique Chen, Akhil Raju, Rae Jeong, Michael Neunert, Antoine Laurens, Stefano
Saliceti, Federico Casarini, Martin Riedmiller, Raia Hadsell, and Francesco Nori. Beyond pick-
and-place: Tackling robotic stacking of diverse shapes. In Conference on Robot Learning (CoRL),
2021. URL  https://openreview.net/forum?id=U0Q8CrtBJxJ .

Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge Belongie.
Feature pyramid networks for object detection. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pp. 2117–2125, 2017.

Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang Fu, and
Alexander C Berg. Ssd: Single shot multibox detector. In Computer Vision–ECCV 2016: 14th
European Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part I
14, pp. 21–37. Springer, 2016.

Xuan Luo, Jia-Bin Huang, Richard Szeliski, Kevin Matzen, and Johannes Kopf. Consistent video
depth estimation. ACM Transactions on Graphics (Proceedings of ACM SIGGRAPH), 39(4),
2020.
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