
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TOWARDS LEARNED OPTIMIZATION FREE LUNCH

Anonymous authors
Paper under double-blind review

ABSTRACT

Learned optimizers are powerful alternatives to hand-designed update rules like
Adam, yet they have seen limited practical adoption since they often fail to meta-
generalize beyond their training distribution and incur high meta-training cost. For
instance, prior work, VeLO, scaled meta-training to 4,000 TPU months („10ˆ

GPT-3 compute) to meta-train a general-purpose optimizer but it failed to gener-
alize beyond 600M parameters tasks. In this work, we present a surprising find-
ing: by crafting a simple normalized optimizer architecture and augmenting meta-
training, it becomes feasible to meta-train a performant general-purpose learned
update rule on a tiny fraction of VeLO compute, 4.5 GPU hours to be precise. Our
learned update rule scales stably to a billion-scale pretraining task (GPT-3 XL
1.3B) which is six orders of magnitude larger than its meta-training distribution.
Furthermore, it shows strong performance across diverse out-of-distribution tasks
and is compatible with modern optimization harness that includes orthogonaliza-
tion, distinct update rules for input-output and hidden weights, and decoupled
weight decay. In all, this work paves the way for practically applicable learnable
optimization algorithms, unlocking exploration of richer meta-training and data
curation recipes to further improve performance.

0 1B 2B 3B 4B 5B 6B 7B 8B 9B 10B
Train tokens

2.5

3.0

3.5

4.0

4.5

5.0

V
al

lo
ss

GPT-3 (1.3B) FineWeb

AdamW
Celo2
VeLO

0 120M 240M 360M 480M 600M
Train tokens

3.5

4.0

4.5

5.0

V
al

lo
ss

LM (30M) FineWeb-Edu

0 0.5B 1B 1.5B 2B 2.5B
Train tokens

3.25

3.50

3.75

4.00

4.25

4.50
GPT-2 (124M) FineWeb

Figure 1: Celo2, our learned update rule scales stably to large-scale pretraining tasks. Our
learned update is meta-trained on very limited compute budget (4.5 GPU hours) but generalizes to
1,000,000ˆ larger language modeling task (GPT-3) and outperforms strong well-tuned baselines
such as AdamW (Loshchilov, 2017; Kingma & Ba, 2015) and VeLO (Metz et al., 2022b). In con-
trast, VeLO (Metz et al., 2022b), meta-trained with exhorbitant compute (4000 TPU months), fails
to generalize. All the language modeling tasks have modern architecture that includes RMS normal-
ization, rotary positional embeddings (RoPE), QK-norm, and GELU (Marek et al., 2025).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

1 INTRODUCTION

Pre-training of foundation models has begun to heavily dominate workloads in the past years, pro-
ducing progressively more powerful models at the cost of great computational resources. Existing
optimization strategies used at scale often rely on the now classic Adam optimizer (Kingma & Ba,
2015). As a result, progress made in the direction of improving optimizers for these large-scale tasks
thus shows great promise in reducing the computational burden of pre-training. One direction that
has yielded strong initial results is learned optimization (Metz et al., 2019b): leveraging learning
to improve the optimization process itself. The field of learned optimization has progressively seen
more practical results since being introduced in (Andrychowicz et al., 2016). However, progress in
this area has not been as fast-paced as that in pre-training, primarily due to the inability of learned
optimizers to generalize to data that lies outside their training distributions.

The most powerful learned optimizer to date is the Versatile Learned Optimizer (VeLO) (Metz et al.,
2022b), which uses an hierarchical architecture for the network representing the optimizer and then
performs meta-learning at an immense scale to achieve generalization across tasks. One key obser-
vation regarding VeLO is its high computational requirement: VeLO meta-training used 4000 TPU
months’ worth of compute to meta-learn the optimizer for achieving high task coverage. It could
be argued that this would be partially or fully offset by the fact that VeLO outperformed Adam
across a wide variety of tasks, becoming a prototype of the vast potential of learned optimization.
However, while the performance gains over Adam were significant, they did not scale to the train-
ing of large foundation models like LLMs with billions of parameters. We believe that this result
presents a great opportunity for the learned optimization community to tackle the problem of gen-
eralization at scale. More recent work (Moudgil et al., 2025; Thérien et al., 2024) in this direction,
notably Celo (Moudgil et al., 2025), attempts to address this through architectural modifications and
training recipes aimed at improving meta-generalization. While successful in significantly reducing
meta-training compute, these approaches show some performance degradation compared to VeLO,
which remains the state-of-the-art learned optimizer at scale.

In this work we propose Celo2, a simple recipe for meta-training stable learned optimizers that
significantly improves meta-generalization, and is able to outperform VeLO on large-scale tasks
while meta-learning on orders of magnitude less. Our proposed recipe aims to tackle the three key
challenges: generalization, scalability, and compute-efficiency. We would like to emphasize that our
primary objective while developing this simple approach for learned optimization was stability (§A):
we hope that this work eventually evolves to the level that it can be used directly in the training of
foundation models. Finally, we highlight a key finding: we do not explicitly scale up meta-training
for performance in order to keep meta-training compute-efficiency, however, we obtain it as a by-
product of following the Celo2 recipe, essentially offering a “free lunch" from limited compute.

Our key contributions are as follows:

• We present Celo2, a stable learned optimizer that achieves strong meta-generalization to
billion-scale tasks (GPT-3 XL 1.3B), outperforming prior state-of-the-art learned optimizer
VeLO (Metz et al., 2022b).

• Our proposed meta-training recipe (§3) is compute-efficient aand we demonstrate that even
with a few GPU hours of meta-traning, it demonstrates strong performance on out-of-
distribution standard machine learning tasks in language modeling (GPT-2, GPT-3, LM-
30M), vision (ViT ImageNet), and reinforcement learning (Atari PPO) domains.

• We conduct systematic ablations keeping meta-generalization as the key focus and also pro-
pose Celo2-base, a computationally lighter variant of Celo2 that trades some performance
for improved efficiency while maintaining core parts of our generalization recipe.

2 RELATED WORK

Hand-designed optimizers have long been the cornerstone of neural network training, with meth-
ods like SGD with momentum (Sutskever et al., 2013) and Adam (Kingma & Ba, 2015) providing
robust baselines through adaptive learning rates and momentum terms. To further enhance conver-
gence and stability, second-order optimizers such as Shampoo (Gupta et al., 2018) introduce pre-
conditioning by maintaining running statistics of gradients in each tensor mode, effectively rescaling

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

updates to account for curvature in high-dimensional spaces. Similarly, SOAP (Vyas et al., 2024)
explores optimization in modular norms, allowing for flexible preconditioning that adapts to the
geometry of parameter spaces. Recent advancements have incorporated orthogonalization tech-
niques to mitigate issues like ill-conditioned gradients; for instance, Muon (Jordan et al.) applies a
Newton-Schulz iteration to approximately orthogonalize momentum-based updates, projecting them
onto the nearest semi-orthogonal matrix to amplify rare directions and improve sample efficiency, as
demonstrated in speed-running benchmarks like NanoGPT and CIFAR-10. Complementary work by
Tuddenham et al. (2022) proposes gradient orthogonalization via SVD, showing speedups in neural
network optimization for SGD with momentum. These approaches highlight the value of precondi-
tioning and orthogonalization in hand-crafted optimizers, but they often require manual tuning and
lack the adaptability of learned methods.

Learned optimizers (LOs) aim to meta-learn update rules from data, potentially surpassing hand-
designed counterparts by discovering task-agnostic strategies. Early efforts, such as those by
Andrychowicz et al. (2016), framed optimization as a recurrent process, but scaling remained chal-
lenging. State-of-the-art LOs like VeLO (Metz et al., 2022b) represent a breakthrough, training a
large hierarchical LO on thousands of diverse tasks to achieve broad generalization, though at im-
mense computational cost (4000 TPU-months). Other works have focused on efficiency: Metz et al.
(2022a) analyze trade-offs in LO design, proposing a simple MLP-based optimizer augmented with
strong features like Adafac (Adafac MLP) balancing memory and compute while maintaining com-
petitive performance. More recently, µLOs (Thérien et al., 2024) introduce micro-scale learned opti-
mizers tailored for vision and language models, emphasizing compute-efficient meta-training. These
works underscore the potential of LOs but reveal persistent limitations in meta-generalization—i.e.,
the ability to apply learned rules to unseen tasks or longer optimization horizons (unrolls). For exam-
ple, many LOs struggle with extrapolation beyond meta-training distributions, leading to instability
on out-of-distribution problems or when scaling to models with ě1B parameters. Celo (Moudgil
et al., 2025) addresses some of these by optimizing LO architectures and meta-training protocols
for better generalization with minimal compute (24 GPU-hours), outperforming tuned baselines on
diverse tasks, yet it stops short of integrating advanced normalization or orthogonalization for fur-
ther stability. Building on these foundations, our work integrates insights from both hand-designed
and learned optimizers. Unlike prior LOs that overlook robust normalization for optimization sta-
bility, we introduce a specialized normalization scheme that enhances generalization across tasks
and extends unroll lengths. Furthermore, by incorporating the Newton-Schulz orthogonalization
from Muon into a learned framework inspired by Celo, we achieve superior meta-generalization and
enable stable and performant training of larger models, bridging the gap between efficient meta-
training and practical scalability.

3 APPROACH

We introduce a new compute-efficient learned optimizer, Celo2 (Alg. 1), that is just meta-trained
for 4.5 GPU hours and generalizes to practical large-scale tasks such as GPT-3, ImageNet-ViT, and
Reinforcement Learning. The key ingredients of our approach are discussed below:

Tunable step-size. Unlike prior work in learned optimization (Metz et al., 2022a;b; Moudgil et al.,
2025), our approach solely focuses on learning the update rule, thus decoupling step size tuning from
update rule learning. This does result in an extra tunable knob in the form of step size. However, we
find that with this decoupling, the learned update rule meta-trained on small-scale tasks generalizes
surprisingly well to large-scale tasks. This provides a scalable approach to improve the optimization
update rule used to train deep networks. This effect of decoupling step size tuning from learning the
update rule is also noted by prior work such as Celo (Moudgil et al., 2025). Since Celo learns the
scheduler as well as the update rule, it fails to generalize to large-scale tasks. We keep the step size
tunable as per the user and leave the learning of a general scheduler for all tasks to future work.

Simple design that scales. Building on prior work (Metz et al., 2022a;b; Moudgil et al., 2025),
we just learn a small MLP as a drop-in replacement for Adam in large-scale distributed and sharded
training setups (§B). We ablate its design in Section 5 to improve meta-generalization and perfor-
mance, and provide full details on its inputs, outputs, and architecture in Appendix D. The MLP
can also be meta-trained on specific tasks; notably, we find that meta-training on simple 8ˆ8 image-

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Algorithm 1 Celo2

Input: θt optimizee parameters
∇θt gradients
ηt learning rate
st optimizer state
α (optional) weight decay

Require: learned update rule fmlpwith direction and magnitude coefficients λ1 P R
accumulators update function facc

1: st`1 Ð faccpst,∇θt, Lt, tq ▷ update accumulators in state
2: initialize next params θt`1 Ð pq

3: for each tensor with params pt P θt in parallel do ▷ parallel scan over tensors
4: prepare per-param features F for pt using updated state st`1

5: ∆pt Ð fmlppF q ▷ learned update rule forward pass
6: ∆pt Ð NewtonShulz5p∆ptq ▷ Orthogonalization
7: ∆pt Ð ∆pt { ∥∆pt∥rms ▷ RMS normalization
8: pt`1 Ð pt ´ ηt∆pt ´ ηtαpt ▷ updated params
9: θt`1 Ð θt`1 Y pt`1 ▷ gather params

return θt`1, st`1

classification tasks (§4) suffices to learn a descent rule that generalizes. This provides a scalable
path for advancing optimization algorithms.

RMS normalized learned update. Prior work in learned optimizers (Metz et al., 2022a; Harrison
et al., 2022) which learn a per-parameter update rule like ours normalizes inputs to the MLP by
RMS of each feature across the parameter tensors. However, all of them directly use raw output
from the MLP as the step update. We find that simply normalizing the outputs of the MLP update,
thus resulting in fully-normalized learned update rule, generalizes well to large-scale tasks. This
not only forces the MLP during meta-training to learn a task-invariant update rule (instead of raw
MLP outputs) but also results in a similar optimization as AdamW as demonstrated in Figure 2. The
challenges of learning such MLP update rule that operates directly on raw gradients have been dis-
cussed in prior work (Almeida et al., 2021; Metz et al., 2019a). Another concurrent work (Si et al.,
2025) also suggests benefits of using RMS scaling of the step in order to match the learning rate of
AdamW which is used to optimize 1D parameters. We extensively ablate over different normaliza-
tion choices in Section A (appendix) including RMS norm clipping used in AdaFactor (Shazeer &
Stern, 2018), RMS accumulation, etc. Empirically, we find that simply normalizing by RMS of the
current step works the best. Note that this RMS normalization plays a key role in Celo2-base that
uses a single learned update for all params, however, in Celo2, we orthogonalize directly the step
obtained by the MLP update rule, making this operation redundant.

Compatible with modern optimization harness. Celo2 is highly compatible with modern tech-
niques such as orthogonalization (Jordan et al.; Gupta et al., 2018), distinct update rules for 1-D and
2-D params (Jordan et al.), and decoupled weight decay (Loshchilov, 2017), as demonstrated by our
experiments we describe in the next section. Since Celo2 is a learned update rule, this provides a
scalable path to improving optimization algorithms for deep neural networks by simply leveraging
the data and compute.

4 GENERALIZATION AT SCALE

Meta-training. Following prior work (Moudgil et al., 2025), we meta-train our update rule on 4
image MLP classification tasks consisting of a mixture of datasets such as MNIST (LeCun & Cortes,
1998), Fashion-MNIST (Xiao et al., 2017), CIFAR-10 (Krizhevsky et al., 2009) and SVHN (Netzer
et al., 2011). The images are resized to 8ˆ8 as in the prior work for faster meta-training, thus
yielding a high research throughput. We use Persistent Evolutionary Strategies (PES) (Vicol et al.,
2021) to meta-train our optimizer with unroll length logrithmically sampled between 100 and 2000
steps. PES yields unbiased gradients with truncated training. Truncated training which updates the
learned optimizer every K steps (we use K=50 in our experiments) during unroll in inner loop allows

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

0 10K 20K 30K 40K 50K
Train steps

0.0

0.2

0.4

0.6

0.8

A
cc

ur
ac

y

AdamW
Celo2
VeLO

0 10K 20K 30K 40K 50K
Train steps

1

2

3

4

5

6

7

L
os

s

Train
Val

0 25K 50K
Train steps

0K

5K

10K

15K

20K

Parameter norm

0 25K 50K
Train steps

2

4

6

Gradient norm

0 25K 50K
Train steps

0.0

2.5

5.0

7.5

10.0

Update norm

Figure 2: ImageNet classification with ViT. We test our learned update rule, Celo2, on the Im-
ageNet classification task with batch size 512 and 50K steps, which is 25ˆ longer than its meta-
training unroll length and 30,000ˆ larger than the tasks seen during training. Since VeLO is trained
with final loss as the meta-objective, it shows non-trivial dynamics during training in order to achieve
low final loss (see norm plots). Celo2 achieves VeLO’s final loss within „50% steps. As test ac-
curacy reaches „66%, all optimizers start overfitting in this task; this is consistent with findings in
prior work (Dahl et al., 2023). Since our update rule is normalized, it shows training norm dynamics
consistent with AdamW. Moreover, VeLO is meta-trained with 200K unroll length on large amount
of diverse tasks including ViTs and ImageNet dataset, whereas Celo2 is only meta-trained on small
image MLP tasks (§4) which highlights its strong meta-generalization capability.

multiple updates in a single outer loop. This is much more computationally efficient than ES (used in
VeLO) that does only a single optimizer update within an unroll; see Appendix D for full background
on the meta-training setup. We use average loss from the unroll during meta-training as the meta-
objective. Despite being meta-trained with average loss as the meta-objective, our optimizer yields
strong final performance on large-scale tasks as demonstrated by experiments discussed next.

Implementation details. We conduct all large-scale evaluations in JAX (Bradbury et al., 2018) on
a v4 TPU pod with 32 chips and 4 VM hosts, using fully sharded data parallelism (FSDP). For RL
experiments, we use JAX (jit, pmap) to vectorize agent and environment computations end-to-end
on device, avoiding TPU–CPU transfers. Our learned optimizer is meta-trained for 100K iterations
with K=50 inner steps and 8 parallel tasks on RTX8000 GPUs. Unless stated otherwise, optimizer
evaluations sweep 7 learning rates logarithmically between 1e-3 and 1e-5, cosine decay schedule
with linear warmup fraction 0.05 and report the best performing hyperparameter setting for each
optimizer based on final performance (see §B for more details). VeLO is tested in default self-tuned
mode with by specifying target duration at initialization along with training loss at each step. Since
Celo2 is a learned update rule, we implemented it in Optax (§C) and evaluated with a 1-line drop-in
replacement in all the standard tasks used in this work. We used float32 as the default precision
for language modeling experiments to decouple instabilities introduced by the learned optimizer
experiments from mixed-precision instabilities during research. However, testing our update rule
with bfloat16 on ImageNet ViT (Fig. 2) revealed no instability. We leave targeted study with respect
to lower/mixed precisions to reduce memory footprint of learned optimizers for future work.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

0 2M 4M 6M 8M 10M
Frames

20

40

60

R
et

ur
n

Freeway

0 2M 4M 6M 8M 10M
Frames

0

50

100

150

SpaceInvaders

0 2M 4M 6M 8M 10M
Frames

0

5

10

15

Asterix
AdamW
Celo2
VeLO

Figure 3: Reinforcement Learning. We directly evaluate our learned optimizer, Celo2, on Atari
RL tasks using the PPO algorithm to learn the RL policy. Our results clearly indicate that Celo2
performs at par with a well-tuned AdamW baseline on these out-of-distribution tasks, while the
VeLO baseline stagnates at a much lower return. The latter result can be corroborated by Figure 11
in Metz et al. (2022b).

4.1 RESULTS

Generalizing to billion-scale models (GPT-3). Although learned optimizers have been shown to
generalize to small and medium-scale tasks (Metz et al., 2022b; Moudgil et al., 2025), they have
fallen short of generalizing to large-scale pretraining tasks such as GPT (Achiam et al., 2023) which
is highly important to the machine learning community. We show that Celo2, our proposed learned
update rule, generalizes to GPT-3 1.3B, GPT-2 124M and a 30M transformer models, see Fig. 1.
Notably, GPT-3 1.3B is 1,000,000ˆ or six orders of magnitude larger than the tasks Celo2 is meta-
trained on, so this is purely out of distribution performance. Not only does it scale gracefully and
is stable on such large-scale tasks, it is also competitive against strong well-tuned baselines such as
VeLO and AdamW using the same tuning budget. The three transformer tasks in Fig. 1 are identical
in architecture; they only differ in size.

Generalizing to longer unrolls. In order to stress-test our learned update rule on long horizon
tasks, we choose the ImageNet (Krizhevsky et al., 2012) classification task with the Vision Trans-
former (ViT) as our testbed. We perform unrolls for 50,000 steps; this is 25ˆ larger than the unrolls
seen during meta-training. As a result, this is a strong test of length generalization for Celo2, ex-
ceeding previously attempted length generalization evaluations in literature (Moudgil et al., 2025;
Thérien et al., 2024). Our results in Fig. 2 show that Celo2 not only generalizes reliably and sta-
bly to large-scale tasks, it also significantly outperforms VeLO and tuned AdamW baselines. Note
that VeLO is optimized to achieve the lowest final validation loss; Celo2, on the other hand, achieves
VeLO’s target final validation loss „2ˆ faster than VeLO. In addition, Celo2 surpasses 80% training
accuracy much faster than the baselines within the given number of steps.

Reinforcement learning. This is another out-of-distribution generalization result from noisy (pol-
icy) gradients. Prior work (Metz et al., 2022a; Harrison et al., 2022; Moudgil et al., 2025; Thérien
et al., 2024), with the exception of VeLO in learned optimizers, has not reported results on Rein-
forcement Learning tasks from a generalization perspective. However, such tasks are particularly
valuable for evaluating generalization, as they involve long-horizon credit assignment, high variance
in training dynamics, and non-stationary objectives, making them a challenging and informative
benchmark for optimizer robustness. We reuse the hyperparameters for PPO and the environment
from prior work (Lu et al., 2022). We further tune the AdamW LR using the search space sug-
gested by prior work and our AdamW baseline closely matches the reported results. As a result, our
AdamW baseline has near-optimal hyperparameters, for instance ϵ=1e-5. Fig. 3 clearly indicates
that Celo2, evaluated zero-shot on these RL tasks, outperforms VeLO by a significant margin, and
is competitive with AdamW. This is despite it being meta-trained on 8ˆ8 image classification tasks
with potentially unfavorable hyperparameters for RL (for example, low epsilon value). It is impor-
tant to note here that the VeLO paper also reported similar trends in the stagnation of reward and the
failure of the model to learn after a point (refer to Figure 11 in Metz et al. (2022b).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

0 0.5B 1B 1.5B 2B 2.5B
Train tokens

3

4

5

6

7

V
al

lo
ss

GPT-2 (124M) FineWeb

celo2
celo2 (test-only)
celo2-base
adamw

celo2-base + orthogonalize + adamw@1D
3.60

3.65

3.70

3.75

3.80

3.85

V
al

lo
ss adamw

LM (30M) FineWeb-Edu

base
meta-testing
meta-training

Figure 4: As shown in the figure on the left, Celo2-base that uses a simple learned MLP rule for
all parameters without orthogonalization or AdamW, is able to scale stably on GPT-2 task. We
find that both techniques (1) Orthogonalization and (2) Adam for 1D params improve performance
when applied on top of Celo2-base. Applying these two techniques directly at test-time improves
performance but meta-training with them is even better.

hidden size val lossÓ

4 4.12854
8 3.81268

16 3.85722
32 3.86929

(a)

RMS decay val lossÓ

0.999 3.89345
0.950 3.81268
0.990 3.86537
0.900 3.92201

(b)

task aug. val lossÓ

4.4175
✓ 3.81268

(c)
RMS norm

meta-training test-time val lossÓ

3.96168
✓ 3.99271

✓ ✓ 3.81268

(d)

update form val lossÓ

λ1d 3.81268
λ1d ¨ epλ2mq 3.9004
λ1d ¨ epλ2mavgq 4.07578

(e)

Table 1: Ablations over the ingredients of our proposed recipe. We find that learned optimizer
generalization performance is sensitive to architecture and meta-training hyperparameters and they
must be ablated thoroughly to achieve strong performance. (a) Hidden size: learned update rule
with hidden size 8 emerges as the ideal choice, resulting in a smaller yet more performant learned
optimizer; (b) RMS decay: we find that a value of 0.95 for the RMS decay yields the best results; (c)
Task augmentation: one of the ingredients in our proposed recipe is task augmentation; this result
clearly shows a significant improvement in validation loss using task augmentation; (d) RMS norm:
RMS norm is another component we propose for Celo2-base. Using RMS norm helps both during
meta-testing and also meta-training. This trend is consistent with our overall results; (e) Update
form: the best learned update rule predicts simply d instead of more complex update rules that need
to predict both d and m. All ablations are evaluated on a 30M transformer decoder model trained
on FineWeb-Edu with 600M tokens (§5). Celo2-base with our default settings are highlighted .

5 ABLATIONS

We now discuss the ablations we perform to study each individual component of the Celo2 recipe.
All ablations are evaluated on the LM (30M) task with the FineWeb-Edu dataset, using 600M tokens.
We tune the learning rate of the meta-learned rule on this task and report the best result for each row
in Table 1. Full hyperparameter configs for all tasks can be found in Appendix B.

Orthogonalization. Recent progress in optimization (Jordan et al.), has proposed an optimizer
that relies on orthogonalization to achieve faster convergence. Although this incurs a penalty in the
form of wall clock time, the downstream benefits include lower final losses in addition to the already

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

mentioned faster convergence. We find that Celo2 is highly compatible with orthogonalization, as
demonstrated in Fig. 4. Specifically, adding orthogonalization to a base Celo2 model directly at
meta-testing time yields an improvement over Celo2-base (referred to as celo2 (test-only) in Fig. 4).
This improvement is amplified by adding orthogonalization while meta-training Celo2. We find that
similar trends hold by using AdamW for 1-D / bias parameters, which is another recently adopted
practice (Jordan et al.). Fig. 4 clearly shows that adding orthogonalization to Celo2-base, followed
by AdamW update for 1-D gives a compounding benefit in performance, both for meta-testing and
meta-training. However, as shown in Fig. 4, our Celo2-base model which uses a fully learned update
rule across all parameters is also highly stable on the GPT-2 (124M) task.

Task augmentation. Task augmentation is a useful technique (Metz et al., 2022b; Moudgil et al.,
2025) to simulate a diverse range of tasks from a limited set of tasks during meta-training to en-
hance generalization. This is done by randomly sampling a scaling parameter and then rescaling
the parameters of the optimizee network during meta-training. This leads to a perturbation in the
gradients, thereby resulting in a higher coverage of the optimization landscape, analogous to the role
that data augmentation plays in supervised learning. We find that task augmentation is critical for
good performance (refer to Table 1(c) for task augmentation ablation). Qualitatively, we see that
meta-training with task augmentation allows the use of a higher learning rate, thereby speeding up
the optimization process and resulting in lower final validation loss.

RMS normalization. In order to achieve high performance by using a purely learned rule without
any hand-designed update rules for 1-D parameters such as Adam, we find that RMS normalization
plays a key role. The results of our ablations in Table 1(d) indicate that adding RMS normalization
during the meta-training phase yields improved performance. This trend did not hold for using it
simply during meta-testing with the Celo2-base update rule. In Appendix §A, we provide more abla-
tions with respect to different normalization variants. Different normalization variants are provided
in the appendix (§A), showing that the choice in Alg. 1 performs best.

Meta-training hyperparameters that matter. In addition to the components discussed above, we
find that generalization performance is sensitive to several architectural choices in the learned MLP
update and to specific hyperparameters. The first is the magnitude multiplier: the exponential mag-
nitude multiplier proposed by prior work (Metz et al., 2022a) does not improve meta-generalization
(Table 1(e)). Using only the direction coefficient from the MLP update is sufficient. Averaging the
exponential magnitude multiplier per tensor, as in Harrison et al. (2022), also reduces performance.
The second factor is the RMS decay term with coefficient β, used similarly to Adam (see §D for
background). For LM pretraining tasks, β “ 0.95, the standard choice in recent LLM works Marek
et al. (2025) gives the best generalization, and this is the default in Celo2. The third factor is the
MLP hidden size: prior work (Metz et al., 2022b;a) uses a 2-layer MLP with 4 units per layer, but
we find that using 8 units per layer provides the best balance between performance and efficiency.

Runtime and memory overhead. Celo2-base and Adam have identical wall clock time, since
the optimizer update is an inexpensive part of the entire training step. However, in the number of
parameters, Adam has a memory overhead of 3ˆ due to 2 additional (momentum and RMS decay)
accumulators per-parameter. On the other hand, Celo2 has a memory overhead of „5.5ˆ (Metz
et al., 2022a) since it maintains 3 momentum accumulators with 3 β decays (unlike 1 in Adam),
along with one RMS decay per-parameter and tensor-level Adafactor features (Metz et al., 2022b).
Celo2 incurs a higher cost (1.3ˆ) in wall clock time due to Newton-Schulz orthogonalization.

6 CONCLUSION

In this paper, we proposed a practically applicable, inexpensive, yet effective recipe for learned opti-
mization. Our approach results in a win-win situation on several axes: stability, compute-efficiency,
and performance. Our learned update rule has several benefits: 1) it is more compute efficient than
prior work, taking merely 4.5 GPU hours for meta-training, 2) it shows strong out-of-distribution
generalization across datasets, 3) it demonstrates powerful scaling on large models like GPT-3. We
provide a detailed set of ablations to study the impact of each individual design decision proposed
in our recipe. We hope that this work serves as an important milestone in the development and
discovery of high-performing scalable learned optimizers.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023. 6, 14

Diogo Almeida, Clemens Winter, Jie Tang, and Wojciech Zaremba. A generalizable approach to
learning optimizers. arXiv preprint arXiv:2106.00958, 2021. 4, 21

Marcin Andrychowicz, Misha Denil, Sergio Gomez, Matthew W Hoffman, David Pfau, Tom Schaul,
Brendan Shillingford, and Nando De Freitas. Learning to learn by gradient descent by gradient
descent. Advances in neural information processing systems, 29, 2016. 2, 3, 21, 22

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao
Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL http:
//github.com/google/jax. 5, 16

George E Dahl, Frank Schneider, Zachary Nado, Naman Agarwal, Chandramouli Shama Sastry,
Philipp Hennig, Sourabh Medapati, Runa Eschenhagen, Priya Kasimbeg, Daniel Suo, et al.
Benchmarking neural network training algorithms. arXiv preprint arXiv:2306.07179, 2023. 5

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at
scale. ICLR, 2021. 14

Vineet Gupta, Tomer Koren, and Yoram Singer. Shampoo: Preconditioned stochastic tensor opti-
mization. In International Conference on Machine Learning, pp. 1842–1850. PMLR, 2018. 2,
4

Nikolaus Hansen and Andreas Ostermeier. Completely derandomized self-adaptation in evolution
strategies. Evolutionary computation, 9(2):159–195, 2001. 23

James Harrison, Luke Metz, and Jascha Sohl-Dickstein. A closer look at learned optimization:
Stability, robustness, and inductive biases. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave,
and Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems, 2022. URL
https://openreview.net/forum?id=cxZEBQFDoFK. 4, 6, 8, 23

Keller Jordan, Yuchen Jin, Vlado Boza, You Jiacheng, Franz Cecista, Laker Newhouse, and
Jeremy Bernstein. Muon: An optimizer for hidden layers in neural networks, 2024. URL
https://kellerjordan. github. io/posts/muon, 6. 3, 4, 7, 8

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua
Bengio and Yann LeCun (eds.), 3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL http:
//arxiv.org/abs/1412.6980. 1, 2, 21

Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-10 and cifar-100 datasets. URl:
https://www. cs. toronto. edu/kriz/cifar. html, 6(1):1, 2009. 4

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. Advances in neural information processing systems, 25, 2012. 6

Yann LeCun and Corinna Cortes. The mnist database of handwritten digits. 1998. URL http:
//yann.lecun.com/exdb/mnist. 4

I Loshchilov. Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101, 2017. 1, 4

Chris Lu, Jakub Kuba, Alistair Letcher, Luke Metz, Christian Schroeder de Witt, and Jakob Foerster.
Discovered policy optimisation. Advances in Neural Information Processing Systems, 35:16455–
16468, 2022. 6, 15

9

http://github.com/google/jax
http://github.com/google/jax
https://openreview.net/forum?id=cxZEBQFDoFK
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://yann.lecun.com/exdb/mnist
http://yann.lecun.com/exdb/mnist

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Martin Marek, Sanae Lotfi, Aditya Somasundaram, Andrew Gordon Wilson, and Micah Goldblum.
Small batch size training for language models: When vanilla sgd works, and why gradient accu-
mulation is wasteful, 2025. 1, 8, 13, 14

Luke Metz, Niru Maheswaranathan, Brian Cheung, and Jascha Sohl-Dickstein. Learning unsuper-
vised learning rules. 2019a. 4, 22, 23

Luke Metz, Niru Maheswaranathan, Jeremy Nixon, Daniel Freeman, and Jascha Sohl-Dickstein.
Understanding and correcting pathologies in the training of learned optimizers. In International
Conference on Machine Learning, pp. 4556–4565. PMLR, 2019b. 2

Luke Metz, Niru Maheswaranathan, C Daniel Freeman, Ben Poole, and Jascha Sohl-Dickstein.
Tasks, stability, architecture, and compute: Training more effective learned optimizers, and using
them to train themselves. arXiv preprint arXiv:2009.11243, 2020. 21, 22, 23

Luke Metz, C Daniel Freeman, James Harrison, Niru Maheswaranathan, and Jascha Sohl-Dickstein.
Practical tradeoffs between memory, compute, and performance in learned optimizers. In Confer-
ence on Lifelong Learning Agents (CoLLAs), 2022a. URL http://github.com/google/learned_
optimization. 3, 4, 6, 8, 21, 22, 23

Luke Metz, James Harrison, C Daniel Freeman, Amil Merchant, Lucas Beyer, James Bradbury,
Naman Agrawal, Ben Poole, Igor Mordatch, Adam Roberts, et al. Velo: Training versatile learned
optimizers by scaling up. arXiv preprint arXiv:2211.09760, 2022b. 1, 2, 3, 6, 8, 21, 22, 23

Abhinav Moudgil, Boris Knyazev, Guillaume Lajoie, and Eugene Belilovsky. Celo: Training ver-
satile learned optimizers on a compute diet. Transactions on Machine Learning Research, 2025.
ISSN 2835-8856. URL https://openreview.net/forum?id=SLqJbt4emY. 2, 3, 4, 6, 8, 21, 22,
23, 24

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Baolin Wu, Andrew Y Ng, et al.
Reading digits in natural images with unsupervised feature learning. In NIPS workshop on deep
learning and unsupervised feature learning, volume 2011, pp. 4. Granada, 2011. 4

Ingo Rechenberg. Evolutionsstrategie: Optimierung technischer systeme nach prinzipien der biolo-
gischen evolution. 1973. 23

Tim Salimans, Jonathan Ho, Xi Chen, Szymon Sidor, and Ilya Sutskever. Evolution strategies as a
scalable alternative to reinforcement learning. arXiv preprint arXiv:1703.03864, 2017. 23

Silvia Sapora, Gokul Swamy, Chris Lu, Yee Whye Teh, and Jakob Nicolaus Foerster. Evil: Evolution
strategies for generalisable imitation learning. arXiv preprint arXiv:2406.11905, 2024. 15

Noam Shazeer and Mitchell Stern. Adafactor: Adaptive learning rates with sublinear memory cost.
arXiv preprint arXiv:1804.04235, 2018. 4

Chongjie Si, Debing Zhang, and Wei Shen. Adamuon: Adaptive muon optimizer, 2025. URL
https://arxiv.org/abs/2507.11005. 4

Andreas Steiner, Alexander Kolesnikov, Xiaohua Zhai, Ross Wightman, Jakob Uszkoreit, and Lucas
Beyer. How to train your vit? data, augmentation, and regularization in vision transformers, 2022.
URL https://arxiv.org/abs/2106.10270. 14

Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of initial-
ization and momentum in deep learning. In International conference on machine learning, pp.
1139–1147. PMLR, 2013. 2

Benjamin Thérien, Charles-Étienne Joseph, Boris Knyazev, Edouard Oyallon, Irina Rish, and Eu-
gene Belilovsky. µLO: Compute-efficient meta-generalization of learned optimizers. arXiv
preprint arXiv:2406.00153, 2024. 2, 3, 6

Hugo Touvron, Matthieu Cord, Alexandre Sablayrolles, Gabriel Synnaeve, and Hervé Jégou. Train-
ing data-efficient image transformers & distillation through attention. In ICML, 2021. 14

10

http://github.com/google/learned_optimization
http://github.com/google/learned_optimization
https://openreview.net/forum?id=SLqJbt4emY
https://arxiv.org/abs/2507.11005
https://arxiv.org/abs/2106.10270

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Mark Tuddenham, Adam Prügel-Bennett, and Jonathan Hare. Orthogonalising gradients to speed
up neural network optimisation. arXiv preprint arXiv:2202.07052, 2022. 3

Paul Vicol, Luke Metz, and Jascha Sohl-Dickstein. Unbiased gradient estimation in unrolled com-
putation graphs with persistent evolution strategies. In International Conference on Machine
Learning, pp. 10553–10563. PMLR, 2021. 4, 21, 22, 23

Nikhil Vyas, Depen Morwani, Rosie Zhao, Mujin Kwun, Itai Shapira, David Brandfonbrener, Lucas
Janson, and Sham Kakade. Soap: Improving and stabilizing shampoo using adam. arXiv preprint
arXiv:2409.11321, 2024. 3

Olga Wichrowska, Niru Maheswaranathan, Matthew W Hoffman, Sergio Gomez Colmenarejo,
Misha Denil, Nando Freitas, and Jascha Sohl-Dickstein. Learned optimizers that scale and gen-
eralize. In International conference on machine learning, pp. 3751–3760. PMLR, 2017. 22

Daan Wierstra, Tom Schaul, Tobias Glasmachers, Yi Sun, Jan Peters, and Jürgen Schmidhuber.
Natural evolution strategies. Journal of Machine Learning Research, 15(1):949–980, 2014. 23

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmark-
ing machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017. 4

Xiaohua Zhai, Alexander Kolesnikov, Neil Houlsby, and Lucas Beyer. Scaling vision transformers.
In CVPR, 2022. 14

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A ADDITIONAL EXPERIMENTS AND ANALYSIS

Normalization variants. To achieve high meta-generalization performance, we explore several
normalization strategies for the predicted updates. Table 2 compares different approaches: us-
ing raw MLP outputs, per-step RMS normalization, rolling RMS normalization (aggregated over
time), and variants with hard clipping. Per-step RMS normalization (norm) achieves the best val-
idation loss of 3.81268, substantially outperforming the raw output baseline (3.96168). Rolling
normalization (rolling norm) also improves over the baseline but falls short of per-step normaliza-
tion. Incorporating hard clipping, either with rolling normalization (rolling norm clip) or per-step
normalization (norm clip), degrades performance compared to their non-clipped counterparts, sug-
gesting that overly constraining update magnitudes can be detrimental. These results demonstrate
that simple per-step RMS normalization is the most effective strategy for stabilizing meta-learned
updates without requiring hand-designed rules.

functional form val lossÓ

raw output ∆pt = MLP(...) 3.96168
rolling norm ∆pt {

řt ∥∆pt∥rms 3.86025
rolling norm clip ∆pt ¨ min

`

1, τ ¨ p
řt ∥∆pt∥rmsq{ ∥∆pt∥rms

˘

3.99982
norm clip ∆pt ¨ min

`

1, τ{ ∥∆pt∥rms

˘

4.08469
norm ∆pt { ∥∆pt∥rms 3.81268

Table 2: We evaluate several ways of scaling the predicted update vector ∆pt. “Raw output” applies
the MLP output directly. “Rolling norm” normalizes by the cumulative RMS magnitude of past
updates, while “rolling norm clip” additionally limits step size using a time-dependent threshold τ .
“Norm clip” clips each update based on its RMS norm. “Norm” simply normalizes each update
by its own RMS magnitude and performs the best, achieving the lowest validation loss among all
variants. All variants are evaluated on a language modeling task using a 30M-parameter Transformer
trained on the FineWeb-Edu dataset with 600M tokens (§5).

0 120M 240M 360M 480M 600M
Train tokens

3.6

3.8

4.0

4.2

4.4

4.6

4.8

5.0

V
al

lo
ss

LM (30M) FineWeb-Edu

AdamW
VeLO
Celo2 LR=0.001
Celo2 LR=0.000464
Celo2 LR=0.000215
Celo2 LR=0.0001
Celo2 LR=0.000046

Figure 5: Validation loss curves for Celo2 with
various learning rates uniformly sampled on
log-scale between 1e-5 and 1e-3 on LM (30M)
FineWeb-Edu dataset.

Stability and hyperparameter sensitivity. As
evident from the LM (30M) FineWeb-Edu plot
on the right (Figure 5), Celo2 demonstrates sta-
ble optimization behavior across a range of learn-
ing rates, with performance characteristics that
closely match standard optimizers like AdamW
and VeLO. The best tuned AdamW and VeLO con-
figurations are also plotted for reference from Fig-
ure 1. Learning rates toward the higher end of our
sweep generally perform well, though the highest
learning rate (0.001) underperforms compared to
the best setting with a slightly lower learning rate
(0.000464). This pattern, where moderately high
learning rates optimize effectively while very high
rates cause instability, is consistent across all our
supervised learning experiments. We did not find
Celo2’s stability to be sensitive to any specific hy-
perparameter values within reasonable ranges. For
reinforcement learning experiments, we present a
parallel coordinate plot in Figure 6 showing sen-
sitivity to ablated parameters in our sweep for the
SpaceInvaders environment as a representative example. The highlighted yellow curves indicate
high-return trajectories. Here too, Celo2’s behavior aligns well with standard optimizers. The opti-
mal learning rate value is close to the higher end of the range but not the highest, as the maximum
learning rate leads to unstable optimization and consequently lower returns. The optimizer shows
no particular sensitivity to random seed initialization, demonstrating robust performance across dif-
ferent experimental runs. We also ablate over the choice of linear learning rate decay (a common
practice in these Atari RL tasks) and find that in this environment, Celo2 benefits from incorporating
linear decay, though it maintains stable performance across both configurations.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Figure 6: Parallel coordinate plot showing Celo2 hyperparameter sensitivity on SpaceInvaders RL
task. Yellow curves indicate high-return configurations.

B EXPERIMENTAL DETAILS

Language Modeling. For our large-scale language–modeling evaluations, we evaluate Celo2 on
three autoregressive Transformer architectures ranging from 30M to 1.3B parameters, all of which
were trained on a TPU pod. All models use the same decoder–only Transformer implementation
provided in the public codebase1 by Marek et al. (2025). Each model consists of token embed-
dings (input and output), L pre-norm Transformer blocks, and a 2-layer MLP with inner dimension
F “ 4D; full model configs are presented in Table 3 below. Multi-head causal self-attention is im-
plemented with query/key RMSNorm, RoPE positional embeddings, and either standard dot-product
attention or TPU FlashAttention via splash_attention_kernel (automatically enabled when train-
ing on TPU). Weights are initialized using Xavier-uniform except embedding parameters, which are
initialized using variance scaling with a normal distribution, fan-in mode, and a scaling factor of 1.0
along the output axis.

model D L F H N T
30M (LM-30M) 512 6 2048 128 4 512
124M (GPT-2) 768 12 3072 128 6 1024
1.3B (GPT-3) 2048 24 8192 128 16 2048
D: hidden dimension, L: number of transformer layers,
F: feedforward inner dimension, H: attention head dimension,
N: number of attention heads, T: context/sequence length

Table 3: Language model architectures. We evaluate Celo2 on three autoregressive Transformer
architectures. All models share the same architecture template but differ in size. F “ 4D and N “

D{H . Vocab size for FineWeb dataset is 50257 and rounded to match device sharding requirements.

Sharded parameters are placed across a 2D device mesh (data ˆ model). Training follows standard
next-token prediction using teacher forcing with cross-entropy loss. Large global batch sizes are
supported through gradient accumulation. We evaluate all the optimizers by sweeping learning rate
and weight decay hyperparameters. All training hyperparameters for tuned LM experiments from
Figure 1 are described in Table 4. We search over learning rates and weight decay values for both
Celo2 and AdamW. For Celo2, we sample seven learning rates logarithmically between 0.00001 and
0.001 (specifically: 1e-5, 2.15e-5, 4.6e-5, 1e-4, 2.15e-4, 4.64e-4, 1e-3) and test them with a linear
warmup and cosine decay to zero schedule. For weight decay, we test three values: 0.0, 0.1, and 10.0.
We include the high value of 10.0 because initial experiments with Celo2-base showed it can handle
higher weight decay than typical optimizers. For AdamW, we consult tuned values / search space

1https://github.com/martin-marek/batch-size

13

https://github.com/martin-marek/batch-size

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

hyperparameter LM-30M GPT-2 (124M) GPT-3 (1.3B)
learning rate (celo2) 0.000464 0.0002 0.00002
learning rate (adamw) 0.01976 0.0048 0.0002
warmup fraction 0.05 0.05 0.05
batch size (global) 256 512 512
weight decay 0.1 0.1 0.1
adamw epsilon 1e-8 1e-8 1e-8
adamw β1 0.9 0.9 0.9
adamw β2 0.999 0.999 0.999
learning rate schedule linear warmup + cosine decay

Table 4: Hyperparameters used for the language modeling experiments in Figure 1.

from prior work (Marek et al., 2025; Achiam et al., 2023), which were found using larger compute
budgets than our Celo2 search (for example, 13 learning rates between 0.0002 and 0.03 in the LM-
30M task for AdamW) and we further tune them with additional weight decay values discussed
above. This makes AdamW a stronger baseline. Empirically, our search ranges appear well-chosen:
for both optimizers, mid-range values generally perform best, with larger models preferring slightly
lower learning rates.

Image Classification. Vision Transformer (ViT) experiments are conducted using the
jaxtransformer2, a minimal but performant Transformer repository implemented in JAX. Full hy-
perparameter config is presented in the Table 5 below. Models are trained on the ImageNet dataset
with a base-size configuration (hidden size 768, 12 Transformer layers, 12 attention heads, MLP
ratio 4). Images are preprocessed by resizing or padding the smaller side to make them square, then
resized to 256×256 and passed as input to ViT model. During training, additional data augmenta-
tion is applied: images are randomly flipped horizontally, and a random resized crop (area range
5–100%, aspect ratio 0.75–1.33) is performed, followed by resizing back to 256×256. Pixel values
are normalized to [-1, 1]. Training uses a batch size of 512 for a total of 50,000 steps. Weight decay
is fixed to 0.1. ViTs are known to be data-hungry (Dosovitskiy et al., 2021; Zhai et al., 2022; Steiner
et al., 2022; Touvron et al., 2021) and on this task begin to overfit around „66% validation accuracy,
making stronger regularization crucial. We also tried lower weight values (0.01 and 0.001), but they
consistently underperform compared to 0.1. The learning rate is swept log-uniformly from 1ˆ10´5

to 1 ˆ 10´3 for both Celo2 and AdamW optimizers. We found this to be an effective search space,
as the optimal values for both optimizers lie within this range, with AdamW favoring comparatively
higher learning rates. Fully Sharded Data Parallel (FSDP) is leveraged to efficiently distribute model
parameters and optimizer states across multiple devices, enabling large-batch training on TPUs.

hyperparameter value
learning rate (celo2) 0.000046
learning rate (adamw) 0.0001
dataset imagenet-256
model ViT
hidden size 768
depth (layers) 12
number of heads 12
MLP expand ratio 4
weight decay 0.1
batch size (global) 512
training steps 50,000
warmup fraction 0.02
learning rate schedule linear warmup + cosine decay

Table 5: Hyperparameters used for the Vision Transformer (ViT) experiments in Figure 2.

2https://github.com/kvfrans/jaxtransformer

14

https://github.com/kvfrans/jaxtransformer

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Reinforcement Learning. We conduct reinforcement learning experiments using a distributed PPO-
style framework3 implemented in JAX. Agents are trained on multiple Atari environments, including
Asterix, Freeway, and Space Invaders. The hyperparameter configurations used to generate the re-
sults in Figure 3 are listed in Table 6. Each environment runs in parallel across multiple actors,
and observations are flattened and logged for stability. Policies are parameterized as actor-critic
networks with two hidden layers of size 64 and tanh activations, producing action distributions and
value estimates. Training proceeds in mini-batches collected over multiple steps per environment.
Following common practices and PPO hyperparameters from the purejaxrl repository, we perform
multiple PPO update epochs per batch of trajectories, subdivide batches into minibatches for gra-
dient updates, and use generalized advantage estimation (GAE) with discount factor γ “ 0.99 and
GAE parameter λ “ 0.95. The PPO objective includes clipped surrogate losses, with clip epsilon
defining the maximum allowed deviation. Entropy regularization encourages exploration, weighted
by the entropy coefficient. Similar to other experiments, we sweep learning rates log-uniformly
from 1 ˆ 10´5 to 1 ˆ 10´3 for AdamW and Celo2. Gradients are clipped to a maximum norm,
and learning rates are either kept constant or linearly decayed to zero (we found linear decay cou-
pled with high learning rate to be slightly better) which is a standard practice in the aforementioned
purejaxrl repository that multiple works build on (Lu et al., 2022; Sapora et al., 2024).

hyperparameter freeway space-invaders asterix
learning rate (celo2) 0.000215 0.000464 0.0001
learning rate (adamw) 0.001 0.001 0.001
total timesteps 10M 10M 10M
discount factor (γ) 0.99 0.99 0.99
GAE parameter (λ) 0.95 0.95 0.95
num steps per update 128 128 128
parallel actors 64 64 64
PPO clip epsilon 0.2 0.2 0.2
PPO entropy coefficient 0.01 0.01 0.01
gradient norm clipping 0.5 0.5 0.5
value loss coefficient 0.5 0.5 0.5
random seeds 5 5 5
weight decay 0.0 0.0 0.0
adamw epsilon 1e-5 1e-5 1e-5
adamw β1 0.9 0.9 0.9
adamw β2 0.999 0.999 0.999
learning rate schedule linear decay linear decay linear decay

Table 6: Hyperparameters used for the RL experiments in Figure 3.

3https://github.com/luchris429/purejaxrl

15

https://github.com/luchris429/purejaxrl

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

C JAX IMPLEMENTATION

Optax overview. Celo2 is implemented in JAX with Optax (Bradbury et al., 2018) syntax. Specifi-
cally, in Optax, each optimizer is expressed as a transformation that maps parameters and gradients
to updated parameters together with any auxiliary state. For example, the standard Adam opti-
mizer is constructed via optax.adam(learning_rate), which returns a transformation consisting of
an init function that initializes the optimizer state and an update function that applies the Adam
update rule. Concretely, in python, an optimization step can be written as:

for example, adam transformation is initialized as:
tx = optax.adam(learning_rate)

initialize optimizer state
state = tx.init(params)

update state
updates, state = tx.update(grads, state, params)
params = optax.apply_updates(params, updates)

Celo2 follows this same abstraction: we implement our method as a custom Optax transformation
with its own state definition, initialization logic, and update rule, ensuring compatibility with JAX’s
functional style and seamless integration with existing Optax training pipelines. One of the powerful
features of this transformation view is that transformations can be composed using optax.chain.
Multiple transformations, such as gradient clipping, weight decay, and learning rate scaling, can be
appended in a modular way. For example:

Compose multiple transformations using optax.chain
tx = optax.chain(

celo2_optax(...), # celo2 transform function
optax.add_decayed_weights(0.1), # weight decay
optax.scale_by_learning_rate(learning_rate) # scale by learning rate (-lr*update)

)

state = tx.init(params)
updates, state = tx.update(grads, state, params)
params = optax.apply_updates(params, updates)

This modular design us to implement learned update rules such as Celo2 cleanly, while keeping
each component of the update logic separated and reusable within standard Optax pipelines. In
addition to modular transformations, Optax also supports flexible learning rate schedules that can
be combined seamlessly with any optimizer. For instance, one can define a schedule such as cosine
decay, exponential decay and then scale updates accordingly:

from optax.schedules import warmup_cosine_decay_schedule

Define a cosine learning rate schedule
schedule = warmup_cosine_decay_schedule(init_lr, peak_lr, warmup_steps, num_opt_steps, end_lr)

Apply schedule to Celo2 transformation
tx = optax.chain(

celo2_optax(...),
optax.scale_by_learning_rate(schedule) # dynamically scales updates with schedule

)

Furthermore, Optax provides the optax.multi_transform utility to apply different update rules to
different subsets of parameters. This is particularly useful when one wants to treat 1D parameters
(e.g., embeddings, biases, layer norms) differently from 2D+ parameters (e.g., weight matrices,
convolution kernels). With optax.multi_transform, separate transformations can be defined for
each parameter group and combined into a single optimizer:

Define transformations for 1D and 2D+ parameters
tx_1d = optax.chain(optax.adam(...), ...)
tx_2d = optax.chain(celo2_optax(...), ...)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Create param_labels as a function that returns a label pytree
param_labels = lambda params: jax.tree_map(

lambda p: '1d' if p.ndim == 1 else '2d',
params

)

Combine using multi_transform
tx = optax.multi_transform(

transforms={'1d': tx_1d, '2d': tx_2d},
param_labels=param_labels

)

Initialize and use
state = tx.init(params)
updates, state = tx.update(grads, state, params)
params = optax.apply_updates(params, updates)

Celo2 optax transformation. The Celo2 transformation (CeloOptaxTransformation) is imple-
mented in JAX as a custom GradientTransformation following the standard Optax interface. Its
internal state (CeloOptaxState) consists of rolling averages for momentum, RMS, and Adafactor-
style scaling, along with a step counter. At each update, the rolling statistics are updated, and
per-parameter updates are computed by applying a small MLP defined in the Celo2 class.

import functools
from typing import Optional
import flax
import jax
import jax.numpy as jnp
import chex
import optax

@flax.struct.dataclass
class CeloOptaxState:

"""Internal state of the Celo2 optimizer."""
rms_rolling: chex.ArrayTree
mom_rolling: chex.ArrayTree
fac_rolling: chex.ArrayTree
step: jnp.ndarray

class CeloOptaxTransformation(optax.GradientTransformation):
"""
Optax-compatible gradient transformation for Celo2.
Computes per-parameter updates using rolling statistics and a small MLP.
"""

def __init__(self, celo2, theta: dict):
"""
Args:

celo2: Instance of the Celo2 optimizer
theta: Meta-parameters or pretrained state for the MLP

"""
self.celo2 = celo2
self.theta = theta

def init(self, params: chex.ArrayTree) -> CeloOptaxState:
"""Initialize rolling statistics and step counter."""
mom_acc, rms_acc, fac_acc = self.celo2.accumulators_for_decays()
return CeloOptaxState(

mom_rolling=mom_acc.init(params),
rms_rolling=rms_acc.init(params),
fac_rolling=fac_acc.init(params),
step=jnp.asarray(0, dtype=jnp.int32),

)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

def update(
self,
grads: chex.ArrayTree,
state: CeloOptaxState,
params: Optional[chex.ArrayTree] = None,

) -> tuple[chex.ArrayTree, CeloOptaxState]:
"""Compute per-parameter updates and return new optimizer state."""
Increment step and clip gradients as in Celo/VeLO
step = optax.safe_increment(state.step)
grads = jax.tree_util.tree_map(lambda g: jnp.clip(g, -1000.0, 1000.0), grads)

Update rolling statistics
mom_acc, rms_acc, fac_acc = self.celo2.accumulators_for_decays()
next_mom = mom_acc.update(state.mom_rolling, grads)
next_rms = rms_acc.update(state.rms_rolling, grads)
next_fac, fac_g = fac_acc.update(state.fac_rolling, grads)

Prepare MLP function
apply_mlp = functools.partial(self.celo2.mlp_apply, self.theta)

Compute per-parameter updates
updates = jax.tree_util.tree_map(

apply_mlp,
params,
grads,
next_mom.m,
next_rms.rms,
fac_g,
next_fac.v_col,
next_fac.v_row,
next_fac.v_diag

)

Update optimizer state
new_state = CeloOptaxState(

mom_rolling=next_mom,
rms_rolling=next_rms,
fac_rolling=next_fac,
step=step,

)
return updates, new_state

The above Celo2 transformation can be directly plugged in a standard Optax chain. Following
example constructs a simple Celo2 optimizer with weight decay and learning rate scaling as in
celo2-base variant:

def create_celo2_optimizer(params, learning_rate, weight_decay=0.0, checkpoint_path=None):
"""Create a Celo2 optimizer with weight decay."""
celo2 = Celo2(...)
theta = celo2.init_params()
pretrained_state = load_state(checkpoint_path, theta) if checkpoint_path else None

return optax.chain(
CeloOptaxTransformation(celo2, pretrained_state),
optax.add_decayed_weights(weight_decay),
optax.scale_by_learning_rate(learning_rate)

)

For advanced usage, different update rules can be applied to different parameter groups using
optax.multi_transform as described in optax overview section above; for example Adam for em-
beddings and Celo2 for other parameters (2D+ tensors) as in language modeling experiments (§4)).

Notice that the above CeloOptaxTransformation implementation relies on an instance of the Celo2
optimizer class. This object is responsible for maintaining and updating the internal rolling statistics
(momentum, RMS, and Adafactor-style scaling), providing the accumulators for these decays, and
defining the MLP function that computes per-parameter updates. In essence, the Optax transforma-

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

tion acts as a wrapper that translates standard gradient inputs into updates generated by the Celo2
optimizer logic which is described next.

Celo2 optimizer. The Celo2 class below implements a learned optimizer that tracks rolling statis-
tics for momentum, RMS, and Adafactor-style accumulators, and computes per-parameter updates
through a small MLP with normalized inputs and outputs. Optionally, updates can be orthogonal-
ized using the Newton–Schulz method. The following pseudocode shows the adapted Celo2 class,
based on the original implementation (available here), along with an example of its usage.

import jax
import jax.numpy as jnp
import flax
import haiku as hk
import optax
import functools
from learned_optimization.learned_optimizers import common

def orthogonalize_via_newton_schulz(x, ns_coeffs, ns_steps=5, eps=1e-8):
if x.ndim < 2:

raise ValueError("Input must have >= 2 dims")
transposed = False
if x.shape[-2] > x.shape[-1]:

x = jnp.swapaxes(x, -2, -1)
transposed = True

x /= (jnp.linalg.norm(x, axis=(-2, -1), keepdims=True) + eps)
def ns_iter(_, x):

x_mT = jnp.swapaxes(x, -2, -1)
a = x @ x_mT
b = ns_coeffs[1] * a + ns_coeffs[2] * a @ a
return ns_coeffs[0] * x + b @ x

x = jax.lax.fori_loop(0, ns_steps, ns_iter, x)
if transposed:

x = jnp.swapaxes(x, -2, -1)
return x

class Celo2:
def __init__(self,

ff_hidden_size=8,
ff_hidden_layers=2,
momentum_decays=(0.9, 0.99, 0.999),
rms_decays=(0.95,),
adafactor_decays=(0.9, 0.99, 0.999),
orthogonalize=True,
ns_coeffs=(3.4445, -4.7750, 2.0315),
ns_iters=5,
ns_eps=1e-8):

self.ff_hidden_size = ff_hidden_size
self.ff_hidden_layers = ff_hidden_layers
self.momentum_decays = jnp.asarray(momentum_decays)
self.rms_decays = jnp.asarray(rms_decays)
self.adafactor_decays = jnp.asarray(adafactor_decays)
self.orthogonalize = orthogonalize
self.ns_coeffs = jnp.asarray(ns_coeffs)
self.ns_iters = ns_iters
self.ns_eps = ns_eps
self.act_fn = jax.nn.relu

Haiku transform for per-parameter MLP
self.apply_mlp = hk.without_apply_rng(hk.transform(self._apply_mlp))

def accumulators_for_decays(self):
"""
Returns rolling statistics for momentum, RMS, and Adafactor-style scaling.
"""
mom_acc = common.vec_rolling_mom(self.momentum_decays)
rms_acc = common.vec_rolling_rms(self.rms_decays)

19

https://github.com/amoudgl/celo/blob/a55fa893c699b971dda60f95da7cb9b0f451c459/celo/optimizers/celo.py

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

fac_acc = common.vec_factored_rolling(self.adafactor_decays)
return mom_acc, rms_acc, fac_acc

def _second_moment_normalizer(self, x, axis, eps=1e-9):
rms = jnp.mean(jnp.square(x), axis=axis, keepdims=True)
return x * jax.lax.rsqrt(rms + eps)

def _apply_mlp(self, param, grad, mom, rms, fac_g, fac_vec_col, fac_vec_row, fac_vec_v, summary_prefix):
"""
Per-parameter MLP that computes updates.
"""
inps = [grad, param, mom, rms, fac_g, fac_vec_col, fac_vec_row, fac_vec_v]
axis = list(range(len(param.shape)))[-2:]

Input normalization
inps = [self._second_moment_normalizer(x, axis=axis) for x in inps]

Concatenate features and apply MLP
x = jnp.concatenate([jnp.reshape(i, (-1, i.shape[-1])) for i in inps], axis=-1)
for _ in range(self.ff_hidden_layers):

x = hk.Linear(self.ff_hidden_size)(x)
x = self.act_fn(x)

out = hk.Linear(1)(x)
step = jnp.reshape(out, param.shape)

Newton-Schulz orthogonalization
if self.orthogonalize and step.ndim >= 2:

step = orthogonalize_via_newton_schulz(step, self.ns_coeffs, self.ns_iters, self.ns_eps)

Output normalization
step = self._second_moment_normalizer(step, axis=axis)
return step

--- Example initialization ---
celo2 = Celo2(

ff_hidden_size=8,
ff_hidden_layers=2,
momentum_decays=(0.9, 0.99, 0.999),
rms_decays=(0.95,),
adafactor_decays=(0.9, 0.99, 0.999),
orthogonalize=True,

)
lr_schedule = warmup_cosine_decay_schedule(init_lr, peak_lr, warmup_steps, num_opt_steps)
celo2_opt = optax.chain(

CeloOptaxTransformation(celo2, params),
optax.add_decayed_weights(weight_decay),
optax.scale_by_learning_rate(learning_rate)

)
scaled_lr_schedule = lambda step: embedding_lr_mult * learning_rate(step)
adam_opt = optax.adamw(scaled_lr_schedule, b1=0.9, b2=0.95, weight_decay=weight_decay)

Combine using multi_transform, labeling embedding parameters as 'adam' and others as 'celo2'
tx = optax.multi_transform(

transforms={
'celo2': celo2_opt,
'adam': adam_opt

},
param_labels=lambda params: jax.tree.map_with_path(

lambda path, val: 'adam' if 'embed' in jax.tree_util.keystr(path) else 'celo2',
params

)
)

Use just like a standard optax optimizer!
updates, state = tx.update(grads, state, params)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

D ADDITIONAL BACKGROUND

This section provides background on learned optimizers for readers new to the field. We focus
on two key components: the architectural design of MLP-based learned optimizers and the meta-
training procedure used to train them. For the architecture, we describe the Adafactor MLP learned
optimizer introduced by Metz et al. (2022a), which serves as the foundation for several state-of-
the-art learned optimizers including VeLO (Metz et al., 2022b) and Celo2, proposed in this work.
For meta-training, we explain the bi-level optimization framework and describe key techniques that
enable practical meta-training of learned optimizers: Persistent Evolution Strategies (PES) (Vicol
et al., 2021), an efficient gradient estimation method, and task augmentation (Metz et al., 2022b;
Moudgil et al., 2025), which improves generalization to unseen tasks. Finally, we present the com-
plete outer-training loop that integrates all these components.

Learned MLP update. Several learned optimizer architectures have been proposed in previous
works (Andrychowicz et al., 2016; Metz et al., 2020; Almeida et al., 2021; Metz et al., 2022a;b),
each varying in the types of inputs they process, the elements they maintain within their state, and
the functional form of their outputs. In this section, we review a learned optimizer parameterized
using a multi-layer perceptron (MLP) (Metz et al., 2022a) (Adafactor MLP LOpt) that our work and
other state-of-the-art works like VeLO (Metz et al., 2022b) build upon. It is a simple MLP-based
learned optimizer that can serve as a drop-in replacement for hand-designed update rules such as
SGD or Adam (Kingma & Ba, 2015).

learned
MLP

update

param
grad

momentum with
rms with

reciprocal rms
normalized momentum with

adafactor row features with
adafactor reciprocal row features

adafactor column features with
adafactor reciprocal column features

adafactor gradient:
adafactor momentum:

learning rate

θt∇θt
mt β1, β2, β3

vt β4
1/ vt

mt / vt β1, β2, β3
rt β5, β6, β7

1/ rt
ct β5, β6, β7

1/ ct∇θt × 1/ ct × 1/ ct
mt × 1/ ct × 1/ ct

ηt

shape

state

 mt+1
rt+1

rt
ct

(N,M,3)
(N,M,1)
(N,3)
(M,3)

 ΔθtAdam

param
grad

momentum with
rms with

iteration
learning rate

θt∇θt
mt β1
vt β2

t
ηt

state

 mt+1
rt+1

 Δθt
param
update

shape

(N,M,1)
(N,M,1)
(N,M,1)
(N,M,1)
(N,M,1)
(N,M,1)

(N,M,1)

(N,M,1)
(N,M,1)

(N,M,1)
(N,M,1)
(N,M,3)
(N,M,1)
(N,M,1)
(N,M,3)
(N,M,3)
(N,M,3)
(N,M,3)
(N,M,3)
(N,M,3)
(N,M,3)
(N,M,1)

(N,M,1)
param
update

(N,M) example tensor shape— tiled dimension— shape annotations

Figure 7: Comparing Adam with learned MLP update rule. Given a parameter tensor of shape
pN,Mq, the Adam update (left) maintains two additional accumulators per parameter, leading to
a 3ˆ memory overhead over SGD. In contrast, the learned MLP optimizer proposed by Metz
et al. (2022a) (right) incorporates additional momentum, root mean square-normalized features,
and Adafactor-style row and column features. While the MLP optimizer maintains extra row and
column accumulators, their memory cost scales sublinearly with the total parameter count N ˆ M .
In total, MLP consists of <200 params (Metz et al., 2022a) and provides an effective trade-off be-
tween runtime and memory overhead („5.5ˆ), making it practical for large-scale tasks. We adapt
the same learned MLP optimizer illustrated on the right in our work for per-parameter updates (with
a few changes, see § 5). Tensor shape annotations are shown in blue, with tiled dimensions in red.

Concretely, at a given iteration t, the Adafactor MLP learned optimizer takes as input the parameter
vector θt and gradient ∇θt. These values are used to build per-parameter input features that are
passed to the learned MLP, as illustrated in Figure 7. The learned MLP takes these input features
and updates different accumulators in its state st, which we describe in detail next.

The Adafactor MLP optimizer maintains four types of accumulators for each tensor (i.e., layer
weight or bias) in its state, as illustrated in Figure 7: (1) gradient momentum mt with β1, β2, β3,
(2) root mean square gradient accumulator vt with β4, (3) Adafactor row feature accumulator rt
with β5, β6, β7, and (4) Adafactor column feature accumulator ct with β5, β6, β7. The momentum
mt and RMS vt accumulators are “per-parameter,” meaning they correspond to each parameter in
a given tensor. In contrast, the Adafactor accumulators rt and ct are “per-tensor,” as these features

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

are extracted from the entire parameter tensor. Formally, given a parameter θ and its gradient ∇θ
from parameter tensor θt P RNˆM , momentum mt and RMS accumulators vt for each parameter
are updated as follows:

mt`1 “ βimt ` p1 ´ βiq∇θ @i P t1, 2, 3u

vt`1 “ β4vt ` p1 ´ β4q∇θ2
(1)

where β1, . . . , β4 are scalar constants. In Metz et al. (2022a;b), three momentum accumulators are
used with β1, β2, β3 “ p0.9, 0.99, 0.999q and one RMS accumulator with β4 “ 0.999. Adafactor
accumulators prt, ctq maintain row and column mean of squared gradient tensor in each iteration:

rt`1 “ βjrt ` p1 ´ βjqrow-meanp∇θ2q @j P t5, 6, 7u

ct`1 “ βjct ` p1 ´ βjqcol-meanp∇θ2q
(2)

where β5, β6, β7 are scalar constants set to p0.9, 0.99, 0.999q in Metz et al. (2022b;a). These row
and column accumulators are tiled (replicated) corresponding to each parameter position and are
then used to compute Adafactor momentum mt ˆ 1{

?
rt ˆ 1{

?
ct and Adafactor gradient ∇θ ˆ

1{
?
rt ˆ 1{

?
ct features, as illustrated in Figure 7.

These accumulated values are then used to build input features for each parameter, which are
passed to the learned MLP rule. Metz et al. (2022a) also passes global training progress
features ωp as input to the MLP update rule, which we omit since we defer step-size tun-
ing to the practitioner (§3). Concretely, Metz et al. (2022a) constructs training progress fea-
tures ωp are computed by taking the current iteration t and computing tanhpt{xq where x P

t1, 3, 10, 30, 100, 300, 1000, 3000, 10k, 30k, 100ku. In total, the learned MLP optimizer by Metz
et al. (2022a) takes 39 input features as input for each parameter. These features are processed
through a 2-layer MLP network with 4 hidden units each and ReLU activations (we ablate over
hidden size in §1), which has total 197 parameters (Metz et al., 2022a). The forward pass through
the learned MLP returns two outputs of the same dimensionality as θt, corresponding to direction d
and magnitude m, which are used to compute parameter updates ∆θt and then parameters θt`1 as
follows:

∆θt “ λ1d ¨ epλ2mq

θt`1 “ θt ´ ∆θt,
(3)

where λ1 and λ2 are fixed scalars set to low values (0.001) to keep meta-training stable. The learned
optimizers discussed in this work, including VeLO (Metz et al., 2022a), Celo (Moudgil et al., 2025),
and our proposed Celo2, roughly maintain the same Adafactor MLP architecture but differ in minor
details such as accumulator constants (β values), progress features and update functional form. We
refer the reader to the respective works for more details.

Meta-training problem. Unlike hand-designed optimizers, learned optimizers’ parameterized up-
date function ϕ is trained through a meta-training process. A standard approach to meta-training
involves solving a bi-level optimization problem that consists of an inner problem, which opti-
mizes network parameters θ using the learned optimizer update ϕ on a sampled task, and an outer
problem, which optimizes the learned optimizer parameters ϕ based on feedback from the inner
loop (Andrychowicz et al., 2016; Wichrowska et al., 2017; Metz et al., 2019a; 2020; Vicol et al.,
2021). Formally, given a set of optimization tasks T , the learned optimizer parameters ϕ are ob-
tained by sampling an optimization task consisting of data distribution D, initial network parameters
θ0, and a training objective L, and solving the bi-level problem below:

ϕ˚ “ argmin
ϕ

EpD,L,θ0q„T EXt„D

ˆ

1

T

T´1
ÿ

t“0

L
`

Xt;θt,ϕ
˘

˙

, (4)

where the inner loop is recursively defined for t “ r0, T ´ 1s as:

pθt, stq “ pθ0,0q if t “ 0, (5)
pθt, stq “ fϕpθt´1,∇θt´1,Mt´1, st´1q if t ą 0; (6)

∇θt “
BL

`

Xt;θt,ϕ
˘

Bθt
; Xt „ D @t. (7)

Here T denotes the unroll length in the inner loop and X denotes sampled data from D. The
outer training objective or meta-objective is based on the mean loss as formalized above or, less

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

commonly, the final loss of the inner loop (Metz et al., 2019a; 2020; 2022b). Computing meta-
gradients for ϕ in Eq. 4 is challenging, as we explain next.

Evolution strategies for gradient estimation. Directly back-propagating through the inner loop
in Eq. 4 to compute meta-gradients can lead to noisy gradient estimates, especially when the unroll
length T is large, due to the accumulation of errors through the computational graph (Metz et al.,
2019a). An alternative approach is to use Evolution Strategies (ES) (Rechenberg, 1973; Hansen &
Ostermeier, 2001; Wierstra et al., 2014; Salimans et al., 2017), a class of black-box optimization
methods that estimate gradients by evaluating the objective function at perturbed parameter values.
ES estimates the gradient of an objective Jpϕq with respect to parameters ϕ by sampling perturba-
tions ϵ „ N p0, σ2Iq and evaluating:

∇ϕJpϕq «
1

nσ2

n
ÿ

i“1

Jpϕ ` ϵiqϵi, (8)

where n is the number of perturbation samples and σ is the perturbation scale. This gradient estimate
is obtained by evaluating the objective function J at n different perturbed versions of ϕ (specifically
at ϕ ` ϵi for each i), and then computing a weighted average of the perturbations based on how
much each perturbation improved or worsened the objective. ES has the advantage of not requiring
backpropagation through the inner loop, making it memory-efficient and applicable even when the
inner optimization process is non-differentiable or extremely long. However, standard ES applied
to the full unroll of length T in Eq. 4 can be computationally expensive, as it requires completing
entire training runs for each perturbation sample before computing any meta-gradients. This is
where Persistent Evolution Strategies (PES) provides a practical solution.

Persistent Evolution Strategies (PES). PES (Vicol et al., 2021) extends ES to work efficiently
with truncated unrolls while maintaining unbiased gradient estimates. Instead of unrolling the entire
inner loop of length T before computing meta-gradients, PES divides the inner loop into shorter
segments of length K (where K ! T). After each segment, meta-gradients are computed using
ES on that truncated segment, and the learned optimizer parameters ϕ are updated. The key insight
of PES is that it maintains persistence of the inner problem state across truncations. Specifically,
the optimizer state st and inner problem parameters θt are carried forward after each meta-gradient
update, allowing the inner optimization to continue from where it left off. This persistence is crucial:
without it, truncated gradient estimates would be biased because they would not account for how
parameter updates affect future optimization trajectories. PES provides unbiased gradient estimates
in the truncated setting by carefully accounting for how perturbations ϵ to the learned optimizer
parameters affect both the immediate truncated objective and the carry-over effects through the
persistent state. Formally, for a truncated segment from step t to t ` K, PES estimates:

∇ϕJtruncated «
1

nσ2

n
ÿ

i“1

˜

t`K´1
ÿ

j“t

LpXj ;θ
piq
j ,ϕ ` ϵiq

¸

ϵi, (9)

where θpiq
j denotes the inner parameters at step j when using the perturbed optimizer ϕ`ϵi, starting

from the persistent state at step t. This makes meta-training significantly more efficient, as the
learned optimizer can be updated frequently (every K steps) rather than only after full unrolls of
length T . The frequent updates also lead to better training dynamics, as the learned optimizer can
adapt more quickly to improve performance. We use PES for computing meta-gradients in our work,
following prior work (Metz et al., 2022a; Harrison et al., 2022; Moudgil et al., 2025).

Task augmentation. To improve the generalization of learned optimizers, meta-training can incor-
porate task augmentation (Metz et al., 2022b; Moudgil et al., 2025). Task augmentation modifies
the sampled optimization tasks during meta-training to create a more diverse training distribution,
helping the learned optimizer generalize better to unseen tasks at test time. One effective form of
augmentation is parameter reparameterization, where the initial parameters θ0 of each sampled task
are scaled by random factors. This reparameterization can be done at three levels of granularity: (1)
global, where all parameters are scaled by the same factor, (2) per-tensor, where each weight ma-
trix or bias vector is scaled independently, or (3) per-parameter, where each individual parameter is
scaled independently. Formally, given a sampled task with initial parameters θ0, the reparameterized
initialization is θ̃0 “ α d θ0, where α is a scaling factor (or tree of scaling factors for per-tensor
and per-parameter cases) sampled from a log-uniform distribution:

α “ exppuq, u „ Uniformplnαmin, lnαmaxq, (10)

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

with the range typically set to rαmin, αmaxs “ r0.001, 1000s. During training, the learned opti-
mizer sees parameters at vastly different scales within each task, which encourages it to learn scale-
invariant update rules that generalize better across different initialization schemes and architectures.
In our work, we follow the task augmentation approach used in Celo (Moudgil et al., 2025), applying
reparameterization at global-level during meta-training to improve generalization to unseen tasks.

Outer-training loop. Putting these components together, the complete meta-training procedure for
learned optimizers proceeds as follows. At each meta-training iteration, we sample a task pD,L,θ0q

from the task distribution T and apply task augmentation to obtain reparameterized initial parame-
ters θ̃0. We then perform K steps of inner optimization using the current learned optimizer fϕ on
this task, accumulating a truncated meta-objective over these steps. PES is used to compute unbiased
gradient estimates ∇ϕJ for the learned optimizer parameters by evaluating n perturbations ϕ ` ϵi
on the same truncated segment. The learned optimizer parameters are then updated using these
meta-gradients (typically with Adam or another outer optimizer). The inner problem state pθt, stq is
maintained across truncations, and this process repeats for multiple truncations until the total unroll
length T is reached or the task is considered complete. This entire process is repeated across many
sampled tasks to train the learned optimizer to generalize across the task distribution T . The combi-
nation of efficient gradient estimation via PES, task augmentation for improved generalization, and
the expressive MLP architecture enables the practical meta-training of learned optimizers that can
match or exceed the performance of hand-designed optimizers like Adam on a variety of tasks.

24

	Introduction
	Related Work
	Approach
	Generalization at Scale
	Results

	Ablations
	Conclusion
	Additional Experiments and Analysis
	Experimental Details
	Jax Implementation
	Additional Background

