

000 001 002 003 004 005 TQA-BENCH: EVALUATING LLMs FOR MULTI- 006 TABLE QUESTION ANSWERING 007 008 009

010 **Anonymous authors**
011

012 Paper under double-blind review
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030

031 ABSTRACT

032 The advance of large language models (LLMs) has unlocked great opportunities
033 in complex data management tasks, particularly in question answering (QA) over
034 complicated multi-table relational data. Despite significant progress, systematically
035 evaluating LLMs on multi-table QA remains a critical challenge due to the
036 inherent complexity of analyzing heterogeneous table structures and the poten-
037 tially large scale of serialized tabular data. Existing benchmarks primarily focus
038 on single-table QA, failing to capture the intricacies of connections across multi-
039 ple relational tables, as required in real-world domains such as finance, healthcare,
040 and e-commerce. To bridge this gap, we present TQA-Bench, a new multi-table
041 QA benchmark designed to evaluate the capabilities of LLMs in tackling com-
042 plex QA tasks over complicated relational data. Our benchmark incorporates di-
043 verse relational database instances sourced from real-world public datasets and
044 introduces a flexible sampling mechanism to create tasks with varying multi-table
045 context lengths, ranging from 8K to 64K tokens. To further ensure robustness
046 and reliability, we integrate symbolic extensions into the evaluation framework,
047 enabling the assessment of LLM reasoning capabilities beyond simple data re-
048 trieval or probabilistic pattern matching. We systematically evaluate a range of
049 LLMs, both closed-source and open-source, spanning model scales from 2 billion
050 to 671 billion parameters. Our extensive experiments reveal critical insights into
051 the performance of LLMs in multi-table QA, highlighting both challenges and op-
052 portunities for advancing their application in complex, data-driven environments.
053

1 INTRODUCTION

034 The rise of large language models (LLMs) (Jin et al., 2022) has unlocked unprecedented oppor-
035 tunities for tackling complex data management tasks (Biswal et al., 2024; Chen et al., 2024; Patel
036 et al., 2024; Wornow et al., 2024), particularly in question answering (QA) across intricate relational
037 data (Chen et al., 2020b; Gu et al., 2022; Pal et al., 2023; Zhang et al., 2024b; Zhu et al., 2024; He
038 et al., 2024). Despite these advancements, systematically evaluating LLMs on multi-table QA re-
039 mains a significant challenge due to the task's inherent complexity - multi-table QA requires LLMs
040 to extract and analyze information from multiple interconnected tables, often dealing with highly
041 heterogeneous table structures and serialized lengths. As LLMs continue to demonstrate remarkable
042 capabilities across various data management applications (Patel et al., 2024; Wornow et al., 2024;
043 Madden et al., 2024; Jiang et al., 2024), we believe there is an urgent need for *a comprehensive
understanding of LLMs' performance in tackling the complexities of multi-table QA*.

044 Systematically evaluating and understanding the performance of LLMs on multi-table QA is a cru-
045 cial step toward unlocking their full potential for data management and business intelligence (Chen
046 et al., 2020b; Lei et al., 2023; Wu et al., 2025b). Structured relational data is pervasive across do-
047 mains such as finance (Zhu et al., 2021), healthcare (Zhu et al., 2019), and e-commerce (Gao et al.,
048 2021). Real-world tasks often require the processing, retrieving, and analyzing of multiple tables to
049 support data-driven decision making. However, there is *a significant gap* between the existing Table
050 QA benchmarks (Chen et al., 2020b; Lei et al., 2023; Wu et al., 2025b) and the practical demands
051 of applications that operate on real-world tabular data. We believe that addressing this disparity is
052 essential to bridge the divide and advance the utility of LLMs in complex, data-centric environments.

053 We list the current table QA benchmarks in Appendix §A (Table 7), and summarize the challenges
054 of constructing a practical table QA benchmark from three key aspects. **First**, most existing Table

QA benchmarks are designed based on single-table contexts (Pasupat & Liang, 2015; Iyyer et al., 2017; Nan et al., 2022; Chen et al., 2020c;a; 2021; Katsis et al., 2021; Cheng et al., 2021; Wu et al., 2025b; Zhu et al., 2021), which fail to capture complex relationships across multiple interconnected tables in real-world scenarios. **Second**, the tables included in these benchmarks are often limited to tables with tiny data volumes, which do not reflect the most advanced LLMs' abilities since they can process millions of tokens (Dubey et al., 2024a; OpenAI, 2024a). **Third**, evaluating analytical abilities over a fixed set of tables and questions raises concerns regarding the reliability and generalizability of the results, as models may merely learn to exploit probabilistic patterns - that is, relying on dataset artifacts (answer-frequency priors, spurious word overlaps, recurring operator templates) instead of genuine cross-table reasoning - in the dataset rather than exhibit robust performance on genuinely complex multi-table queries (Mirzadeh et al., 2024).

To address these challenges, we propose a novel design for multi-table QA benchmarks. **First**, going beyond the simplistic single-table setups commonly used in current benchmarks, we construct the benchmark by collecting multi-table relational database instances from diverse public datasets, where these datasets are carefully curated to represent real-world scenarios incorporating varied table structures, relationships, and domains. **Second**, we introduce a novel sampling mechanism to create evaluation tasks with varying multi-table context lengths, ranging from 8K to 64K tokens - this mechanism enables us to assess the scalability of LLM's context length when processing multiple relation tables of different sizes, a critical requirement for real-world applications where data volumes can vary significantly. Adjustable context length is important for evaluating LLM's performance in its token limit. Meanwhile, we can mitigate contamination risk and make it easy to regenerate new evaluation splits if contamination is suspected. **Third**, to further reinforce the benchmark results' reliability, we incorporate symbolic extensions (Mirzadeh et al., 2024) into the evaluation framework, where flexible augmentation is integrated to evaluate the LLM's inherited reasoning ability over multi-table relational data instead of probabilistic retrieving or pattern matching. Both sampling and symbolic extension method makes our benchmark reliable enough and can be updated periodically. Comprehensively, we take a principled design to construct TQA-Bench, a multi-table QA benchmark, to evaluate LLMs' performance over complicated real-world relational QA tasks. Our concrete contribution can be summarized below:

- **A comprehensive multi-table QA benchmark.** We construct a new benchmark for multi-table QA that addresses the limitations of existing single-table benchmarks. Our benchmark incorporates varied relational data contexts by employing a sampling mechanism to generate evaluation tasks with context lengths ranging from 8K to 64K tokens. To ensure the reliability of evaluation results, we integrate symbolic extensions into the question templates, accessing the essential capabilities of LLMs beyond simple data retrieval or pattern matching.
- **A wide range of LLM evaluation results.** We systematically evaluate both open-source and closed-source LLMs on our benchmark, where the open-source models span a range of scales, from 2 billion to 671 billion parameters. We provide a comprehensive assessment of LLMs over real-world multi-table QA tasks.
- **Key observations and insights.** Our comprehensive evaluation yields the following key insights: **(i) Single- vs. multi-table performance:** LLMs consistently perform better in single-table settings, achieving up to 20% higher accuracy compared to multi-table scenarios. This highlights the inadequacy of existing single-table benchmarks in capturing the complexity of real-world analytical tasks and underscores the need for dedicated multi-table QA evaluation. **(ii) Table serialization format:** The choice of serialization format significantly affects the model performance. Markdown outperforms CSV, JSON, and HTML across most LLMs and context lengths, providing a more LLM-friendly structure. **(iii) Model category and context sensitivity:** Instruction-tuned LLMs significantly outperform chat-oriented and domain-specific models, particularly under long-context settings. Reasoning LLMs (e.g., DEEPSEEK-R1) achieve state-of-the-art performance, while some distilled variants often fail to handle longer contexts. Overall, increasing context length leads to consistent performance degradation, especially for aggregation and complex analytical tasks. **(iv) Sampling and symbolic extension:** Our symbolic extension and database sampling strategies enhance benchmark diversity and robustness, which introduces a wider range of query patterns and difficulty levels, reduces variance in evaluation results, and enables consistent assessment across different database instances and question templates. **(v) Direct prompting vs. Text2SQL:** LLM-based Text2SQL methods demonstrate stable performance across context lengths and offer a complementary approach to direct prompting.

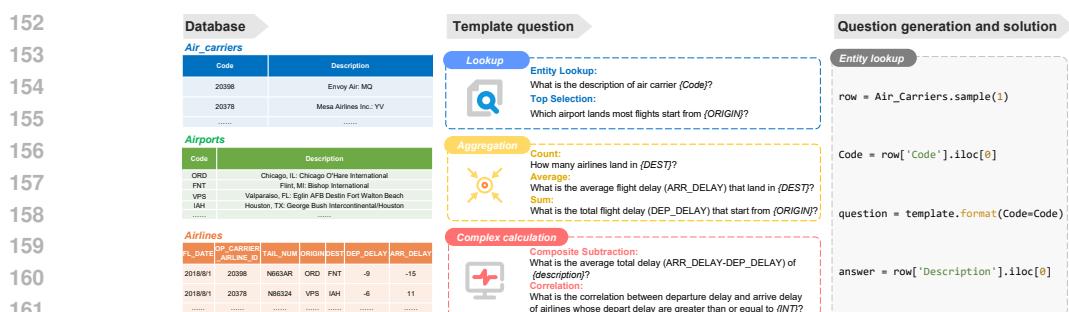
108 However, they struggle with complex analytical queries, such as correlation calculations, due to
 109 challenges in composing semantically correct SQL, and actually underperform the best LLMs by
 110 direct-prompting.
 111

112 2 BENCHMARK CONSTRUCTION

113 We consider *multi-table QA* as the task of answering a single natural language question using tabular
 114 data from two or more distinct tables that are semantically related (e.g., through foreign-key relationships). The correct answer may require joining information across tables and possibly performing
 115 computations or analytics over the combined data.
 116

117 The construction process of our multi-table QA benchmark is systematically divided into four key
 118 phases: data collection, relational data sampling, evaluation task definition, and question generation
 119 with symbolic extensions, where each phase can be summarized as:
 120

- 121 • **Collect multi-table data** (§B.1). To ensure the diversity and representativeness of our bench-
 122 mark, we collect a wide variety of large-scale relational databases. These databases serve as the
 123 foundation for generating multi-table QA tasks. We curate databases from three complementary
 124 sources: *World Bank*, *Data.gov*, and *BIRD*. *World Bank* contributes large, systematically related
 125 tables suitable for multi-table analytics; *Data.gov* offers heterogeneous public-sector datasets with
 126 diverse schemas; and *BIRD* provides relational environments originally developed for Text2SQL
 127 evaluation. We retain databases whose foreign-key graphs are valid so that sampled instances
 128 admit meaningful multi-table queries. Appendix §B.1 details the rationale of the sources, the
 129 filtering criteria, and the final database list.
- 130 • **Relational data sampling** (§B.2). We design a sampling methodology to create subsets of each
 131 table with varying serialized lengths. This approach ensures that the sampled data maintains the
 132 structural integrity and heterogeneity of the original datasets to evaluate LLM’s performance un-
 133 der different context lengths. Raw databases can exceed LLM context budgets by orders of mag-
 134 nitude. We therefore create sampled database instances at target serialized lengths (e.g., 8k–64k
 135 tokens) via a two-stage procedure that (i) preserves foreign-key structure and (ii) approximates
 136 the token budget. Concretely, we topologically order tables on the foreign-key graph and sample
 137 rows parent-first; children are then restricted to referenced keys to maintain referential integrity.
 138 Next, we tune a sampling rate by binary search to hit the desired length; for each source database
 139 and each length, we generate multiple instances to reduce evaluation variance. Appendix §B.2
 140 provides details and pseudocode, including the serializer used for token accounting.
- 141 • **Define evaluation task categories** (§B.3). We define three primary question categories, fur-
 142 ther divided into seven subcategories, inspired by those commonly found in traditional Table QA
 143 datasets. These categories are designed to capture a broad spectrum of question types, reflecting
 144 the diverse requirements of real-world multi-table QA tasks. Table 1 summarizes each subcate-
 145 gory with an informal relational-algebra (RA) sketch; complete formal definitions and examples
 146 are given in Appendix §B.3.
- 147 • **Generate question with symbolic extension** (§B.4). As illustrated in Figure 1, for each ques-
 148 tion subcategory, we develop structured question templates that are augmented with symbolic
 149 extensions to assess reasoning capabilities beyond simple retrieval. These templates are paired
 150 with Python-based answer generation, enabling the automated creation of benchmark questions



151
 152 Figure 1: Symbolic extension formation in the “airline” database.
 153
 154
 155
 156
 157
 158
 159
 160
 161

162 and ensuring scalability and reliability in task evaluation. Detailed generation method and more
 163 examples are listed in Appendix §B.4.

164
 165 Table 1: Task category summary. RA uses selection σ , projection π , grouping γ , join \bowtie , and
 166 $\text{AGG} \in \{\text{COUNT}, \text{SUM}, \text{AVG}\}$. Given a condition Θ , let J denote the minimal join closure that
 167 contains all attributes required by Θ and the output.

Primary	Subcategory	RA sketch
Lookup	Entity Lookup (EL)	$\pi_a \sigma_\Theta(J)$
	Top Selection (TS)	$\pi_g \sigma_{c=\max \pi_c}(\gamma_{g;c:=\text{AGG}(e)}(\sigma_\Theta(J)))$
Aggregation	Count (CNT)	COUNT($\sigma_\Theta(J)$)
	Sum (SUM)	SUM($\pi_a \sigma_\Theta(J)$)
	Average (AVG)	SUM($\pi_a \sigma_\Theta(J)$)/COUNT($\sigma_\Theta(J)$)
Complex Calculation	Composite Comparison (CC)	AGG($\pi_e \sigma_\Theta(J)$)
	Correlation (COR)	COR($\pi_{\{a,b\}} \sigma_\Theta(J)$)

168 This structured and systematic process enables the creation of a scalable, diverse, and effective
 169 benchmark for evaluating LLM performance on complex multi-table QA tasks.

170 3 EVALUATION SETUP

171 Building on our benchmark construction with database sampling and symbolic extension, we design
 172 experiments across multiple dimensions to systematically evaluate LLM performance.

173 **LLM Benchmark Scope.** To ensure a comprehensive evaluation of LLM’s performance on our
 174 benchmark, we select 28 LLMs from various companies or research organizations. The selected
 175 models cover the most advanced proprietary LLMs available such as GPT (OpenAI, 2024c;b;
 176 2025b; 2024d), as well as other widely-recognized open-source models such as QWEN2.5 (Team,
 177 2024b). It is worth mentioning that we also choose a state-of-the-art model from DeepSeek that
 178 employs mixture-of-experts (MoE) architecture (DeepSeek-AI, 2024; Guo et al., 2025). Moreover,
 179 we include two domain-specific LLMs, TABLELLAMA (Zhang et al., 2024a) and TABLEGPT2 (Su
 180 et al., 2024), which are specifically fine-tuned for analyzing tabular data and accomplishing vari-
 181 ous table-based tasks. Meanwhile, the parameter scales of the models we choose range from 2B
 182 to 671B, which may provide insights into the relationship between model size and multi-table QA
 183 performance. Such diversity ensures the benchmark evaluates models of varying architectures, spe-
 184 cializations, and computational complexities, providing valuable insights into the strengths and lim-
 185 itations of current LLMs in Table QA tasks. We enumerate the details of LLMs in the Appendix
 186 §C.

187 **Evaluation Design.** To better understand the performance of LLMs on multi-table QA, we propose
 188 the following research questions that capture different aspects of the challenge and motivate the
 189 design of our experiments. All subsequent experiments are constructed around these questions:

- 190 • (i) *What is the performance difference between single- and multi-table scenarios?*
- 191 • (ii) *How does the choice of table serialization format impact LLM performance in multi-table*
 192 *question answering tasks?*
- 193 • (iii) *How do different categories of LLMs vary in their ability to perform multi-table QA tasks*
 194 *under different context lengths?*
- 195 • (iv) *How does the symbolic extension, when combined with sampling, improve the diversity and*
 196 *difficulty of generated questions?*
- 197 • (v) *What is the performance variance between direct LLM prompt and LLM-based Text2SQL?*

198 4 EXPERIMENTS AND ANALYSIS

199 **Experiment Design.** To answer the five research questions in Section §3, we design a series of
 200 experiments (**Experiments 1–5**), each corresponding to one question. These are presented in Sec-
 201 tion 4.1 to Section 4.5, ensuring a clear one-to-one alignment between the evaluation questions and
 202 our experimental design. This step-by-step evaluation makes our benchmark rigorous, consistent,
 203 and provides meaningful insights into the performance of different LLMs in multi-table QA tasks.
 204 The experiment details, including dataset setup, evaluated LLMs, and model-specific observations,
 205 are provided in Appendix §D, and the prompts used in our evaluation are provided in Appendix §E.
 206 Moreover, the statistics of benchmark tasks are provided in Appendix §D.

216 4.1 COMPARE SINGLE- AND MULTI- TABLE SCENARIOS
217218 **Experiment Setup.** The previous table QA benchmarks mainly focus on single-table settings. To
219 examine how integrating multiple tables affects performance, we compare LLM accuracy in single-
220 versus multi-table scenarios. In the single-table setting, only the necessary tables per query are
221 merged into one table, while in the multi-table setting, the original relational structure is preserved.222 **Comparison Results and Discussion.** Table 2 shows that LLMs consistently achieve higher
223 accuracy in the single-table setting, with up to 20% improvement. This confirms that single-table
224 benchmarks cannot fully capture the complexity of real-world multi-table QA tasks and high-
225 lights the need for dedicated evaluation. Moreover, our analysis indicates that carefully designed
226 merging strategies—for example, assigning semantic meaning to overlapping columns (e.g., renam-
227 ing “Description” to “ORIGIN_Description” and “DEST_Description” when merging
228 “Airlines” with “Airports”) and restricting merges to relevant tables—can further boost per-
229 formance and avoid excessive context length.230
231 Table 2: Single-Table and multi-tables accuracy comparison.
232

Model	GLM-4-9B-Chat	Qwen-2.5-7B-Instruct	Llama3.1-8B-Instruct	GPT-4o-mini	DS-R1-Qwen-7B
Single-Table	32.43	55.36	49.21	54.50	34.00
multi-tables	22.14	35.29	31.79	48.43	28.79

233
234 **Answer to Question (i):** *Our findings show that LLMs generally outperform in the
235 single-table scenario, demonstrating that single-table benchmarks alone are insufficient for
236 evaluating complex real-world Table QA applications comprehensively. At the same time,
237 transforming multi-table inputs into single-table representations can be a potential avenue
238 to improve model performance, provided that merging strategies preserve semantic integrity.*
239240 4.2 SERIALIZATION FORMAT EVALUATION RESULTS
241242 **Experiment Setup.** Given the importance of serialization in managing long-context, multi-table
243 data, our first experiment compares four commonly used formats: Markdown, CSV, JSON and
244 HTML. These formats are selected for their standardization. The goal is to identify the most effective
245 format for subsequent experiments.246 Before we start our experiment, we count the context length of different formats. Each format is
247 serialized by using the pandas library. The results are in Table 3. Note that in terms of *serialization
248 efficiencies* - the tokenized length after serialization into a given format, even for the same database,
249 it varies significantly: CSV is the most compact format, whereas HTML takes nearly three times
250 more tokens. In some cases, a 64K-scale database in HTML can exceed 128K tokens—beyond
251 most LLM token limits. To ensure consistency, we tested HTML only up to a 32K scale. Table 4
252 summarizes the LLMs’ performances across these formats.253 Finally, we note that although all underlying databases in TQA-Bench are fully relational and
254 equipped with explicit foreign-key graphs, the serialization formats induce different degrees of struc-
255 tural regularity in the model input. Markdown and CSV present tables as flat row–column grids,
256 whereas JSON and HTML introduce more verbose, tree-like encodings. Across models and context
257 lengths, JSON is consistently the weakest format and HTML often lags behind Markdown/CSV
258 (Tables 3–4), suggesting that more semi-structured encodings of the same relational data can al-
259 ready make multi-table reasoning harder for current LLMs. At the same time, TQA-Bench does
260 not yet include genuinely semi-structured table sources such as web tables or document-style JSON
261 stores; extending our sampling and serialization pipeline to such heterogeneous data is an important
262 direction for future table QA benchmarks.263 Table 3: Context length of different formats and scales.
264

Format	8K	16K	32K	64K
Markdown	5.4×10^3	1.04×10^4	2.02×10^4	4.17×10^4
CSV	3.73×10^3	7.24×10^3	1.42×10^4	2.93×10^4
JSON	5.75×10^3	1.12×10^4	2.19×10^4	4.54×10^4
HTML	1.05×10^4	2.02×10^4	3.92×10^4	8.16×10^4

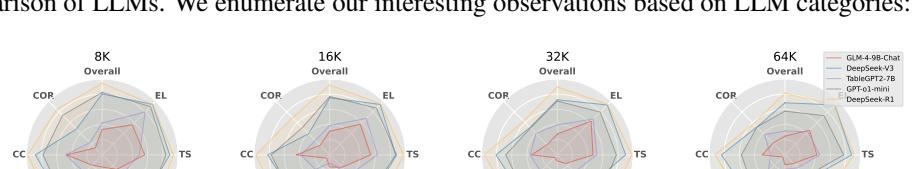
270
 271 Table 4: Results of the serialization format comparison. Accuracies are computed at the question
 272 level. The “Average” column reports the macro-average across the seven subcategories—entity
 273 lookup (EL), top selection (TS), count (CNT), sum (SUM), average (AVG), composite comparison
 274 (CC), and correlation (COR).

274 Model	275 Format	276 8K							277 16K								
		278 EL	279 TS	280 CNT	281 SUM	282 AVG	283 CC	284 COR	285 Average	286 EL	287 TS	288 CNT	289 SUM	290 AVG	291 CC	292 COR	293 Average
294 Qwen2.5-7B-Instruct	295 MD	296 86.00	297 52.00	298 42.00	299 45.00	299 50.00	299 59.00	299 15.00	299 49.86	299 84.00	299 53.00	299 54.00	299 36.00	299 52.00	299 58.00	299 19.00	299 50.86
	295 CSV	296 75.00	297 36.00	298 25.00	299 38.00	299 38.00	299 61.00	299 11.00	299 40.57	299 71.00	299 41.00	299 30.00	299 27.00	299 24.00	299 51.00	299 14.00	299 36.86
	295 JSON	296 61.00	297 42.00	298 38.00	299 33.00	299 42.00	299 52.00	299 19.00	299 41.00	299 63.00	299 46.00	299 29.00	299 17.00	299 25.00	299 42.00	299 14.00	299 33.71
	295 HTML	296 82.00	297 43.00	298 40.00	299 33.00	299 41.00	299 66.00	299 21.00	299 46.57	299 78.00	299 55.00	299 29.00	299 24.00	299 26.00	299 52.00	299 31.00	299 42.14
294 Qwen2.5-Coder-7B-Instruct	295 MD	296 87.00	297 51.00	298 40.00	299 26.00	299 44.00	299 62.00	299 26.00	299 48.00	299 83.00	299 55.00	299 34.00	299 31.00	299 40.00	299 63.00	299 24.00	299 47.14
	295 CSV	296 88.00	297 50.00	298 43.00	299 32.00	299 42.00	299 62.00	299 16.00	299 47.57	299 80.00	299 43.00	299 30.00	299 28.00	299 38.00	299 59.00	299 23.00	299 43.00
	295 JSON	296 59.00	297 35.00	298 34.00	299 22.00	299 31.00	299 55.00	299 20.00	299 36.57	299 64.00	299 40.00	299 33.00	299 18.00	299 30.00	299 49.00	299 24.00	299 36.86
	295 HTML	296 81.00	297 45.00	298 38.00	299 27.00	299 39.00	299 61.00	299 23.00	299 44.86	299 81.00	299 47.00	299 31.00	299 24.00	299 39.00	299 54.00	299 26.00	299 43.14
294 Llama3.1-8B-Instruct	295 MD	296 86.00	297 62.00	298 32.00	299 30.00	299 44.00	299 60.00	299 12.00	299 46.57	299 84.00	299 58.00	299 29.00	299 20.00	299 34.00	299 56.00	299 20.00	299 43.00
	295 CSV	296 87.00	297 55.00	298 32.00	299 22.00	299 33.00	299 66.00	299 15.00	299 44.29	299 81.00	299 55.00	299 28.00	299 16.00	299 21.00	299 57.00	299 13.00	299 38.71
	295 JSON	296 65.00	297 37.00	298 26.00	299 19.00	299 24.00	299 49.00	299 20.00	299 34.29	299 70.00	299 53.00	299 19.00	299 12.00	299 17.00	299 45.00	299 10.00	299 32.29
	295 HTML	296 82.00	297 48.00	298 34.00	299 25.00	299 31.00	299 65.00	299 23.00	299 44.00	299 80.00	299 56.00	299 20.00	299 21.00	299 19.00	299 56.00	299 18.00	299 38.57
296 32K																297 64K	
294 Qwen2.5-7B-Instruct	295 MD	296 67.00	297 51.00	298 32.00	299 28.00	299 33.00	299 45.00	299 35.00	299 41.57	299 44.00	299 49.00	299 26.00	299 22.00	299 26.00	299 32.00	299 35.00	299 33.43
	295 CSV	296 66.00	297 41.00	298 15.00	299 10.00	299 15.00	299 52.00	299 37.00	299 33.71	299 58.00	299 38.00	299 23.00	299 18.00	299 12.00	299 42.00	299 37.00	299 32.57
	295 JSON	296 44.00	297 39.00	298 21.00	299 14.00	299 19.00	299 27.00	299 26.00	299 27.14	299 41.77	299 62.03	299 26.58	299 13.92	299 15.19	299 28.21	299 21.79	299 29.95
	295 HTML	296 62.00	297 41.00	298 28.00	299 20.00	299 24.00	299 39.00	299 38.00	299 36.00	299 36.00	299 0OC						
294 Qwen2.5-Coder-7B-Instruct	295 MD	296 75.00	297 51.00	298 33.00	299 24.00	299 38.00	299 51.00	299 42.00	299 44.86	299 63.00	299 50.00	299 20.00	299 19.00	299 31.00	299 40.00	299 35.00	299 36.86
	295 CSV	296 76.00	297 40.00	298 17.00	299 20.00	299 23.00	299 38.00	299 27.00	299 34.43	299 60.00	299 43.00	299 26.00	299 19.00	299 32.00	299 38.00	299 34.00	299 36.00
	295 JSON	296 49.00	297 43.00	298 30.00	299 20.00	299 20.00	299 39.00	299 33.00	299 33.43	299 45.00	299 43.00	299 23.00	299 12.00	299 25.00	299 20.00	299 27.86	299 27.86
	295 HTML	296 66.00	297 46.00	298 22.00	299 24.00	299 39.00	299 47.00	299 34.00	299 39.71	299 45.00	299 47.00	299 20.00	299 17.00	299 11.00	299 41.00	299 30.00	299 35.71
294 Llama3.1-8B-Instruct	295 MD	296 78.00	297 49.00	298 20.00	299 12.00	299 17.00	299 50.00	299 22.00	299 35.43	299 74.00	299 54.00	299 21.00	299 10.00	299 18.00	299 45.00	299 29.00	299 35.86
	295 CSV	296 73.00	297 50.00	298 19.00	299 15.00	299 9.00	299 44.00	299 21.00	299 33.00	299 75.00	299 55.00	299 21.00	299 17.00	299 11.00	299 41.00	299 30.00	299 35.71
	295 JSON	296 51.00	297 42.00	298 14.00	299 12.00	299 9.00	299 37.00	299 14.00	299 25.57	299 57.47	299 45.98	299 16.28	299 13.95	299 10.47	299 29.07	299 19.77	299 27.65
	295 HTML	296 75.00	297 48.00	298 15.00	299 13.00	299 18.00	299 54.00	299 32.00	299 36.43	299 60.00	299 0OC						

297
 298 **Overall Results.** The benchmark results indicate that *Markdown consistently leads better performances other formats across a majority of LLMs*. While CSV and HTML show no clear advantage over each other, JSON is the weakest, yielding the lowest accuracy in almost all scales and models.

299
 300 **Detailed Discussion.** We further enumerate several interesting observations. **First**, *Markdown’s advantage holds across most subcategories and context lengths, with only minor deviations*. **Second**, our analysis revealed that *coder LLMs outperformed their original counterparts with certain formats*. **Overall**, based on these findings, we adopt Markdown as the standard format in subsequent experiments to ensure consistency and optimal performance.

301
 302 Figure 2: The accuracy distribution of question subcategories in different context lengths.



303 **Chat LLM Performance.** *Chat-oriented models generally underperform, with most achieving less*
 304 *than 25% accuracy due to weak instruction adherence. They often output invalid responses such*
 305 *as “I don’t know”, “None of the above”, multiple answers, or verbose explanations that*
 306 *deviate from the required format which has been explicitly clarified in the instruction. We speculate*
 307 *this behavior likely stems from their design, which prioritizes conversational fluency over strict*
 308 *adherence to task-specific instructions. Interestingly, we also find that the overall accuracy of chat*
 309 *models tends to decline as their scale increases.*

310 **Instruct LLM Performance.** We find that *instruct LLMs demonstrated superior adherence to instructions and generally perform better, with most exceeding 25%*. As expected, larger instruct
 311 *models generally performed better, showing a clear trend of improved accuracy with scale. Notably,*

324 Table 5: Complete benchmark results. NFI indicates “not following instructions”, and OOC indicates
 325 “out of context”.

Model	8K							16K								
	EL	TS	CNT	SUM	AVG	CC	COR	Average	EL	TS	CNT	SUM	AVG	CC	COR	Average
Chat Models																
GLM-4.9B-Chat	56.00	56.00	27.00	16.00	19.00	47.00	13.00	33.43	57.00	54.00	23.00	16.00	6.00	44.00	18.00	31.14
Baichuan2-7B-Chat	35.00	34.00	22.00	19.00	20.00	17.00	22.00	24.14	26.00	45.00	14.00	11.00	14.00	17.00	16.00	20.43
Baichuan2-13B-Chat	2.00	4.00	8.00	2.00	4.00	3.00	7.00	4.29	5.00	3.00	1.00	6.00	3.00	4.00	5.00	3.86
Vicuna-7B-V1.5-16K	29.00	22.00	40.00	20.00	23.00	30.00	27.00	27.29	11.00	23.00	19.00	11.00	13.00	13.00	8.00	14.00
Vicuna-13B-V1.5-16K	31.00	29.00	12.00	2.00	8.00	10.00	12.00	14.86	19.00	26.00	19.00	3.00	7.00	9.00	4.00	12.43
Instruct Models																
Mistral-7B-Instruct	44.00	41.00	16.00	8.00	13.00	25.00	12.00	22.71	46.00	48.00	14.00	5.00	10.00	18.00	4.00	20.71
Mistral-Nemo-Instruct	83.00	59.00	38.00	32.00	40.00	57.00	33.00	48.86	42.00	43.00	21.00	13.00	17.00	34.00	18.00	26.86
Llama3.1-8B-Instruct	86.00	62.00	32.00	30.00	44.00	60.00	12.00	46.57	84.00	58.00	29.00	20.00	34.00	56.00	20.00	43.00
Llama3.1-70B-Instruct	93.00	82.00	57.00	51.00	54.00	83.00	20.00	62.86	94.00	81.00	39.00	39.00	46.00	80.00	20.00	57.00
Qwen2.5-3B-Instruct	62.00	31.00	23.00	24.00	23.00	46.00	8.00	31.00	59.00	36.00	25.00	15.00	25.00	36.00	12.00	29.71
Qwen2.5-7B-Instruct	86.00	52.00	42.00	45.00	50.00	59.00	15.00	49.86	84.00	53.00	54.00	36.00	52.00	58.00	19.00	50.86
Qwen2.5-Coder-7B-Instruct	87.00	51.00	40.00	26.00	44.00	62.00	26.00	48.00	83.00	55.00	34.00	31.00	40.00	63.00	24.00	47.14
Qwen2.5-14B-Instruct	89.00	72.00	60.00	47.00	59.00	80.00	9.00	59.43	86.00	75.00	48.00	35.00	43.00	72.00	13.00	53.14
Qwen2.5-72B-Instruct	91.00	72.00	55.00	59.00	51.00	78.00	3.00	58.43	86.00	61.00	34.00	34.00	38.00	73.00	1.00	46.71
Gemma2-2B-It	49.00	33.00	28.00	25.00	13.00	18.00	31.00	28.14	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Gemma2-9B-It	76.00	41.00	42.42	28.72	27.96	46.32	2.11	38.17	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Gemma2-27B-It	83.00	44.00	29.00	31.00	33.00	65.00	15.00	42.86	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
DeepSeek-V3	94.00	89.00	79.00	84.85	79.00	88.00	48.00	80.26	94.00	86.87	74.00	79.80	70.00	81.82	39.39	75.14
Table Specific Models																
TableGPT2-7B	80.00	49.00	37.00	24.00	33.00	48.00	23.00	42.00	68.00	63.00	37.00	11.00	27.00	38.00	27.00	38.71
TableLlama	NFI	OOC														
Close-Source Models																
GPT-4o-mini	82.00	66.00	55.00	51.00	60.00	72.00	40.00	60.86	82.00	71.00	49.00	47.00	57.00	68.00	24.00	56.86
GPT-4o	92.00	88.00	80.00	76.00	76.00	90.00	48.48	78.68	91.00	82.00	75.00	63.00	68.00	85.00	42.00	72.29
GPT-01-mini	90.00	84.00	85.00	89.90	75.76	77.78	73.74	82.33	87.00	88.00	78.00	84.00	73.00	77.00	51.00	76.86
GPT-03-mini	89.00	86.00	91.92	93.00	85.00	91.00	86.00	88.84	92.00	91.00	94.00	94.00	84.00	93.00	90.29	
Reasoning Models																
DeepSeek-R1-Distill-Qwen-7B	39.00	40.00	39.00	15.00	20.00	21.00	21.00	27.86	29.00	31.00	19.00	14.00	16.00	28.00	25.00	23.14
DeepSeek-R1-Distill-Qwen-14B	89.00	59.00	52.00	48.00	44.00	71.00	9.00	53.14	83.00	59.00	37.00	28.00	24.00	58.00	13.00	43.14
DeepSeek-R1	94.00	93.94	95.96	98.99	94.95	98.00	84.69	94.38	94.95	97.00	93.94	98.00	94.00	97.00	69.39	92.10
QwQ-32B-Preview	1.00	4.00	2.00	1.00	2.00	2.00	2.00	1.00	1.00	3.00	1.00	0.00	2.00	4.00	3.00	2.00
32K								64K								
Chat Models																
GLM-4.9B-Chat	63.00	47.00	16.00	8.00	5.00	34.00	19.00	27.43	46.00	42.00	16.00	13.00	4.00	30.00	22.00	24.71
Baichuan2-7B-Chat	27.00	33.00	12.00	13.00	14.00	13.00	12.00	17.71	28.00	41.00	21.00	16.00	22.00	14.00	17.00	22.71
Baichuan2-13B-Chat	4.00	4.00	4.00	4.00	1.00	3.00	1.00	3.00	5.00	5.00	5.00	5.00	1.00	3.00	1.00	3.57
Vicuna-7B-V1.5-16K	OOC	OOC	OOC	OOC	OOC	OOC	OOC	OOC								
Vicuna-13B-V1.5-16K	OOC	OOC	OOC	OOC	OOC	OOC	OOC	OOC								
Instruct Models																
Mistral-7B-Instruct	43.00	35.00	10.00	7.00	5.00	9.00	9.00	16.86	OOC							
Mistral-Nemo-Instruct	19.00	22.00	6.00	11.00	11.00	15.00	14.00	14.00	6.00	12.00	6.00	1.00	7.00	5.00	6.00	6.14
Llama3.1-8B-Instruct	78.00	49.00	20.00	12.00	17.00	50.00	22.00	35.43	74.00	54.00	21.00	10.00	18.00	45.00	29.00	35.86
Llama3.1-70B-Instruct	93.00	73.00	29.00	24.00	33.00	76.00	27.00	50.71	88.00	83.00	26.00	25.00	27.00	57.00	29.00	47.86
Qwen2.5-3B-Instruct	46.00	28.00	19.00	11.00	21.00	22.00	15.00	33.46	39.00	33.00	11.00	10.00	19.00	24.00	19.00	22.14
Qwen2.5-7B-Instruct	67.00	51.00	32.00	28.00	33.00	45.00	35.00	41.57	44.00	49.00	26.00	22.00	26.00	32.00	35.00	33.43
Qwen2.5-14B-Instruct	75.00	51.00	33.00	24.00	38.00	51.00	42.00	44.86	63.00	50.00	20.00	19.00	31.00	40.00	35.00	36.86
Qwen2.5-27B-Instruct	83.00	67.00	27.00	24.00	21.00	59.00	8.00	41.29	50.00	56.00	25.00	15.00	14.00	28.00	23.00	30.14
Gemma2-2B-It	OOC	OOC	OOC	OOC	OOC	OOC	OOC	OOC								
Gemma2-9B-It	OOC	OOC	OOC	OOC	OOC	OOC	OOC	OOC								
Gemma2-27B-It	OOC	OOC	OOC	OOC	OOC	OOC	OOC	OOC								
DeepSeek-V3	93.00	90.00	58.76	64.95	69.07	80.81	51.00	72.61	93.00	87.88	44.90	47.31	70.53	83.51	52.00	68.62
Table Specific Models																
TableGPT2-7B	67.00	52.00	32.00	19.00	31.00	36.00	40.00	39.57	43.00	46.00	24.00	19.00	31.00	19.00	38.00	31.43
TableLlama	OOC	OOC	OOC	OOC	OOC	OOC	OOC	OOC								
Close-Source Models																
GPT-4o-mini	82.00	68.00	44.00	38.00	59.00	63.00	38.00	56.00	74.00	73.00	31.00	34.00	47.00	58.00	36.73	50.57
GPT-4o	88.00	93.00	56.00	54.00	60.00	81.00	50.00	68.86	90.62	85.42	46.74	32.63	54.95	83.33	47.78	63.41
GPT-01-mini	79.80	77.78	78.00	78.79	64.00	68.00	50.00	70.88	73.00	77.55	39.80	42.55	60.42	57.14	52.00	57.60
GPT-03-mini	89.00	87.00	91.00	96.00	89.00	87.00	63.00	86.00	80.00	82.83	78.00	78.00	75.00	74.00	53.54	74.50
Reasoning Models																
DeepSeek-R1-Distill-Qwen-7B	25.00	27.00	9.00	8.00	11.00	18.00	23.00	17.29	NFI							
DeepSeek-R1-Distill-Qwen-14B	78.00	49.00	18.00	12.00	8.00	42.00	15.00	31.71	57.00	37.00	20.00	14.00	15.00	24.00	31.00	28.29
DeepSeek-R1	94.00	98.00	94.00	94.95	87.00	96.00	63.00	89.56	92.63	91.11	75.00	81.61	80.22	92.31	58.33	81.50
QwQ-32B-Preview	3.00	2.00	1.00	0.00	2.00	2.00	9.00	2.71	OOC							

Figure 3: The overall accuracy of all models.</div

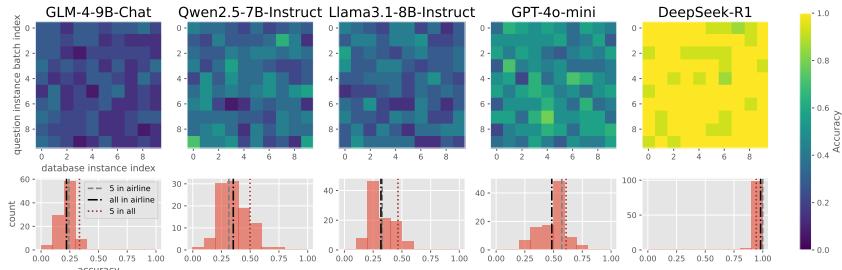
378 at logical and analytical tasks, our findings suggest that this expectation does not hold for distilled
 379 models. Specifically, distilled versions fail to surpass their original counterparts, like the distilled
 380 QWEN models, which perform worse than the original ones.

381 **Impact of Context Length.** We analyze how table context length affects the performance of LLMs,
 382 focusing on instruct LLMs. Our experiments show that *performance generally decreases as context*
 383 *length increases*. While some LLMs show slight improvements with longer contexts, these gains are
 384 marginal. Even in simpler subcategories, performance declines as table context grows, confirming
 385 that handling long tabular contexts remains challenging for all but the simplest questions. Detailed
 386 task-specific observations are provided in Appendix §D.3, and Figure 2 illustrates this phenomenon.
 387

388 **Answer to Question (iii):** *Our comprehensive evaluation highlights interesting observa-*
 389 *tions: instruct-tuned LLMs exhibit significantly better task performance compared to chat-*
 390 *oriented LLMs. Specialized tabular LLMs demonstrate limited flexibility, underperforming*
 391 *relative to expectations. Reasoning LLMs can exhibit optimal performance (i.e., DEEPSEEK-*
 392 *R1), whereas distillation may negatively impact accuracy and long-context handling. More-*
 393 *over, longer context lengths consistently challenge LLMs, with substantial performance*
 394 *drops in aggregation and complex calculation tasks.*

397 4.4 SAMPLING AND SYMBOLIC EXTENSION

398 **Experiment Setup.** This experiment evaluates how sampling and symbolic extensions increase
 399 the diversity and difficulty of the benchmark, thereby improving its ability to assess LLM analytic
 400 capabilities. Detailed procedures for question generation and batch construction are provided in
 401 Appendix §D.4. We visualize results using heatmaps (batch-level accuracy of question instances)
 402 and histograms (accuracy distributions across batches). We also compare average accuracy across
 403 three test sets: all airline batches, five airline batches (5 in airline), and five batches sampled across
 404 all databases (5 in all), as shown in Figure 4.



416 Figure 4: Accuracy distribution of 8K airline database question instances across four models.

417 **Results and Detailed Analysis.** The heatmaps reveal that question difficulty varies across batches
 418 and models, indicating that different LLMs have distinct preferences when handling certain question
 419 instances. Incorporating sampling and symbolic extensions thus enhances the stability of the
 420 benchmark, ensuring more reliable assessment of model performance. The histograms further show
 421 that too few questions yield unstable results, underscoring the value of sampling and symbolic extensions
 422 for a more balanced evaluation. Finally, results are consistent between broad and sensitive tests in
 423 the “airline” database, suggesting that using five batches, as in earlier studies, is often sufficient to
 424 approximate performance across the full dataset. A broader comparison across all databases versus
 425 the airline database also reveals that question difficulty differs across datasets.

427 **Answer to Question (iv):** *The sampling mechanism combined with sampling and sym-*
 428 *biotic extension will generate reliable benchmark results, where when the number of sampled*
 429 *database instances increases, it will lead to different sampling and symbolic extension exe-*
 430 *cutions. The alignment of the accuracy distribution illustrates the stable benchmark results*
 431 *when equipped with both our sampling mechanism and symbolic extensions.*

432 4.5 DIRECT LLM PROMPT VS. TEXT2SQL
433434 **Experiment Setup.** Given the prevalence of relational databases in practice, Text2SQL has emerged
435 as a widely used paradigm. We compare direct LLM prompting with LLM-based Text2SQL to
436 identify which approach better handles multi-table QA.

437 Table 6: Text2SQL Performance in the TQA-Bench.

Model	8K						16K									
	EL	TS	CNT	SUM	AVG	CC	COR	EL	TS	CNT	SUM	AVG	CC	COR		
GLM-4-9B-Chat	54.00	27.00	46.00	39.00	25.00	20.00	0.00	30.14	49.00	21.00	47.00	28.00	25.00	21.00	0.00	27.29
Qwen2.5-Coder-7B-Instruct	31.00	20.00	32.00	33.00	21.00	19.00	0.00	22.29	40.00	16.00	34.00	31.00	26.00	13.00	0.00	22.86
Llama3.1-8B-Instruct	39.00	11.00	33.00	24.00	27.00	13.00	0.00	21.00	33.00	12.00	28.00	29.00	18.00	6.00	0.00	18.00
Arctic-Text2SQL-R1-7B	74.00	50.00	78.00	57.00	62.00	43.00	3.00	52.43	75.00	43.00	72.00	59.00	58.00	37.00	2.00	49.43
GPT-4o-mini	74.00	55.00	77.00	55.00	56.00	42.00	0.00	51.29	78.00	45.00	72.00	56.00	54.00	34.00	0.00	48.43
DeepSeek-R1	85.00	73.00	80.00	73.00	64.00	52.00	14.00	63.00	87.00	69.00	78.00	70.00	58.00	54.00	20.00	62.29
Model	32K						64K									
	EL	TS	CNT	SUM	AVG	CC	COR	EL	TS	CNT	SUM	AVG	CC	COR		
GLM-4-9B-Chat	53.00	30.00	48.00	31.00	24.00	21.00	0.00	29.57	50.00	26.00	44.00	29.00	22.00	36.00	0.00	29.57
Qwen2.5-Coder-7B-Instruct	27.00	24.00	38.00	19.00	22.00	11.00	1.00	20.29	39.00	22.00	30.00	21.00	18.00	18.00	0.00	21.14
Llama3.1-8B-Instruct	42.00	12.00	33.00	24.00	19.00	9.00	0.00	19.86	29.00	11.00	28.00	21.00	12.00	11.00	0.00	16.00
Arctic-Text2SQL-R1-7B	75.00	48.00	74.00	48.00	52.00	43.00	1.00	48.71	74.00	43.00	61.00	48.00	50.00	41.00	3.00	45.71
GPT-4o-mini	73.00	54.00	74.00	49.00	49.00	40.00	0.00	48.43	74.00	49.00	65.00	47.00	47.00	31.00	0.00	44.71
DeepSeek-R1	84.00	74.00	73.00	63.00	50.00	50.00	11.00	57.86	84.00	65.00	66.00	63.00	46.00	54.00	8.00	55.14

446 **Results and Detailed Analysis.** The results of LLM-based Text2SQL are listed in Table 6. Comparison
447 with the comprehensive LLM prompt results (Table 5) reveals a few interesting observations:
448 **First**, we find significant distinctions between these two approaches concerning context-length sen-
449 sitivity: *While the performance of direct prompt tends to deteriorate notably with increasing table*
450 *lengths due to the escalating complexity of inputs, the performance of LLM-based Text2SQL remains*
451 *relatively stable across context lengths ranging from 8K to 64K tokens*. Specifically, top-performing
452 models like DEEPSEEK-R1 exhibited only slight performance declines as context increased, demon-
453 strating the robustness of schema-only prompting against context length variation. **Second**, despite
454 their stability in handling varied context lengths, *LLM-based Text2SQL methods still faced notable*
455 *challenges with complex analytical queries, particularly correlation tasks, worse than direct LLM*
456 *prompt methods*. This mirrors the limitations identified in end-to-end TableQA experiments, high-
457 lighting that advanced analysis could remain challenging for both approaches.

458 **Answer to Question (v):** *LLM-based Text2SQL methods offer stable performance across*
459 *varying context lengths, complementing direct prompting approaches. However, they strug-*
460 *gle with complex analytical tasks, often generating incorrect SQL and falling short of the*
461 *peak performance achieved by top LLMs using direct prompting.*

462 5 RELATED WORK
463

464 **Table QA.** Question answering (QA) over relational databases has long been central to natural
465 language processing and data management (Jin et al., 2022). Given a user query, table QA seeks
466 accurate answers via table understanding and reasoning (Pal et al., 2023; Zhang et al., 2024b; Zhu
467 et al., 2024). Methods are commonly grouped into two classes: (i) *Text2SQL*, which translates nat-
468 ural language into executable SQL (Liu et al., 2021; Fu et al., 2023; Gu et al., 2023; Li et al., 2024a;
469 Fan et al., 2024; Zhang et al., 2024b; Katsogiannis-Meimarakis & Koutrika, 2023); and (ii) *end-
470 to-end* models that process the question with a serialized table to directly produce an answer (Nan
471 et al., 2022; Zhao et al., 2022; Cheng et al., 2021; Chen et al., 2020a;c). Representative E2E systems
472 include TABLE-BERT (Chen et al., 2020b), which converts tables into coherent text for downstream
473 processing; TAPAS (Herzig et al., 2020), which encodes tables within BERT; and PASTA (Gu et al.,
474 2022), which pre-trains on cloze-style sentence–table tasks using WikiTables. Multi-table QA has
475 been explored by MULTITABQA (Pal et al., 2023), while AutoTQA (Zhu et al., 2024) uses multi-
476 agent LLMs for conversational solving. Our benchmark focuses on comprehensively evaluating
477 techniques in the second class with reliable, comparable results.

478 **Assessment of LLM over data management tasks.** LLMs enable new AI applications (Bom-
479 masani et al., 2021) and are reshaping data management (Biswal et al., 2024; Chen et al., 2024;
480 Patel et al., 2024; Wornow et al., 2024), including data integration (Huo et al., 2024; Döhmen
481 et al., 2024), tuning (Giannakouris & Trummer, 2024), query optimization (Liu et al., 2024), ta-
482 ble summarization (Liu et al., 2022), and formatting (Singh et al., 2023). Domain-specific table
483 LLMs: TABLELLAMA (Zhang et al., 2023) (fine-tuned on TableInstruct for multiple in-domain
484 tasks) and TABLEGPT (Zha et al., 2023; Su et al., 2024) (unifying tables, language, and commands
485 for QA, manipulation, visualization, and reporting). Benchmarks evaluate Text2SQL (Yu et al.,
486 2018; Lei et al., 2024; Gao et al., 2024), relational structure understanding (Sui et al., 2024), and
487 table QA (Chen et al., 2020b; Lei et al., 2023; Wu et al., 2025b). We introduce a multi-table QA

486 benchmark to assess LLM reasoning robustly with variable relational contexts and symbolic exten-
 487 sion.

488 6 CONCLUSION

490 In this paper, we introduce TQA-Bench, a new multi-table QA benchmark specifically designed to
 491 rigorously evaluate the capabilities of LLMs in processing complex, relational data across multiple
 492 tables. Our benchmark applies diverse relational database instances drawn from real-world public
 493 datasets, a flexible sampling mechanism that allows for the creation of tasks with varying context
 494 lengths from 8K to 64K tokens, and the integration of symbolic extensions to test higher-order rea-
 495 soning capabilities. Through systematic evaluations involving both open-source and closed-source
 496 LLMs, with scales ranging from 2 billion to 671 billion parameters, our findings highlight the vari-
 497 able performance of these models under complex multi-table QA scenarios. We expect that TQA-
 498 Bench can serve as a pivotal step toward realizing the full potential of LLMs in the analysis of
 499 complex tabular data.

500 501 REFERENCES

502 Aida Amini, Saadia Gabriel, Peter Lin, Rik Koncel-Kedziorski, Yejin Choi, and Hannaneh Ha-
 503 jishirzi. Mathqa: Towards interpretable math word problem solving with operation-based for-
 504 malisms. *arXiv preprint arXiv:1905.13319*, 2019.

505

506 Nishant Balepur and Rachel Rudinger. Is your large language model knowledgeable or a choices-
 507 only cheater? In *Proceedings of the 1st Workshop on Towards Knowledgeable Language Models*
 508 (*KnowLLM 2024*), pp. 15–26, 2024.

509

510 BIRD-bench. A big bench for large-scale database grounded text-to-sqls, July 2025. URL <https://bird-bench.github.io/>.

511

512 Asim Biswal, Liana Patel, Siddarth Jha, Amog Kamsetty, Shu Liu, Joseph E Gonzalez, Carlos
 513 Guestrin, and Matei Zaharia. Text2sql is not enough: Unifying ai and databases with tag. *arXiv*
 514 *preprint arXiv:2408.14717*, 2024.

515

516 Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx,
 517 Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al. On the opportu-
 518 nities and risks of foundation models. *arXiv preprint arXiv:2108.07258*, 2021.

519

520 Si-An Chen, Lesly Miculicich, Julian Martin Eisenschlos, Zifeng Wang, Zilong Wang, Yanfei Chen,
 521 Yasuhisa Fujii, Hsuan-Tien Lin, Chen-Yu Lee, and Tomas Pfister. Tablerag: Million-token ta-
 522 ble understanding with language models. In *The Thirty-eighth Annual Conference on Neural*
 523 *Information Processing Systems*, 2024.

524

525 Wenhua Chen, Ming-Wei Chang, Eva Schlinger, William Wang, and William W Cohen. Open ques-
 526 tion answering over tables and text. *arXiv preprint arXiv:2010.10439*, 2020a.

527

528 Wenhua Chen, Hongmin Wang, Jianshu Chen, Yunkai Zhang, Hong Wang, Shiyang Li, Xiyou Zhou,
 529 and William Yang Wang. Tabfact: A large-scale dataset for table-based fact verification. In
International Conference on Learning Representations, 2020b.

530

531 Wenhua Chen, Hanwen Zha, Zhiyu Chen, Wenhan Xiong, Hong Wang, and William Wang. Hy-
 532 bridqa: A dataset of multi-hop question answering over tabular and textual data. *arXiv preprint*
arXiv:2004.07347, 2020c.

533

534 Zhiyu Chen, Wenhua Chen, Charese Smiley, Sameena Shah, Iana Borova, Dylan Langdon, Reema
 535 Moussa, Matt Beane, Ting-Hao Huang, Bryan Routledge, et al. Finqa: A dataset of numerical
 536 reasoning over financial data. *arXiv preprint arXiv:2109.00122*, 2021.

537

538 Zhoujun Cheng, Haoyu Dong, Zhiruo Wang, Ran Jia, Jiaqi Guo, Yan Gao, Shi Han, Jian-Guang
 539 Lou, and Dongmei Zhang. Hitab: A hierarchical table dataset for question answering and natural
 language generation. *arXiv preprint arXiv:2108.06712*, 2021.

540 Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
 541 Siyuan Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica, and Eric P. Xing. Vicuna: An
 542 open-source chatbot impressing gpt-4 with 90%* chatgpt quality, March 2023. URL <https://1m.sys.org/blog/2023-03-30-vicuna/>.
 543

544 Allegheny County. Allegheny county restaurant/food facility inspections and lo-
 545 cations, May 2024. URL <https://catalog.data.gov/dataset/allegheny-county-restaurant-food-facility-inspections-and-locations>.
 546

547 Susmita Dasgupta, Brian Blankespoor, and David J Wheeler. Revisiting global biodiversity: A spa-
 548 tial analysis of species occurrence data from the global biodiversity information facility. Technical
 549 report, The World Bank, 2024.
 550

551 DeepSeek-AI. Deepseek-v3 technical report, 2024. URL <https://arxiv.org/abs/2412.19437>.
 552

553 Till Döhmen, Radu Geacu, Madelon Hulsebos, and Sebastian Schelter. Schemapile: A large collec-
 554 tion of relational database schemas. *Proceedings of the ACM on Management of Data*, 2(3):1–25,
 555 2024.
 556

557 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
 558 Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
 559 *arXiv preprint arXiv:2407.21783*, 2024a.
 560

561 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
 562 Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
 563 *arXiv preprint arXiv:2407.21783*, 2024b.
 564

565 Ju Fan, Zihui Gu, Songyue Zhang, Yuxin Zhang, Zui Chen, Lei Cao, Guoliang Li, Samuel Madden,
 566 Xiaoyong Du, and Nan Tang. Combining small language models and large language models for
 567 zero-shot nl2sql. *Proceedings of the VLDB Endowment*, 17(11):2750–2763, 2024.
 568

569 Han Fu, Chang Liu, Bin Wu, Feifei Li, Jian Tan, and Jianling Sun. Catsql: Towards real world
 570 natural language to sql applications. *Proceedings of the VLDB Endowment*, 16(6):1534–1547,
 571 2023.
 572

573 Dawei Gao, Haibin Wang, Yaliang Li, Xiuyu Sun, Yichen Qian, Bolin Ding, and Jingren Zhou.
 574 Text-to-sql empowered by large language models: A benchmark evaluation. *Proceedings of the
 575 VLDB Endowment*, 17(5):1132–1145, 2024.

576 Shen Gao, Xiuying Chen, Zhaochun Ren, Dongyan Zhao, and Rui Yan. Meaningful answer gener-
 577 ation of e-commerce question-answering. *ACM Transactions on Information Systems (TOIS)*, 39
 578 (2):1–26, 2021.
 579

580 Victor Giannakouris and Immanuel Trummer. Demonstrating λ -tune: Exploiting large language
 581 models for workload-adaptive database system tuning. In *Companion of the 2024 International
 582 Conference on Management of Data*, pp. 508–511, 2024.
 583

584 Team GLM, Aohan Zeng, Bin Xu, Bowen Wang, Chenhui Zhang, Da Yin, Dan Zhang, Diego Rojas,
 585 Guanyu Feng, Hanlin Zhao, et al. Chatglm: A family of large language models from glm-130b to
 586 glm-4 all tools. *arXiv preprint arXiv:2406.12793*, 2024.
 587

588 The United States Government. Dataset-catalog, 2024. URL <https://catalog.data.gov/dataset/>.
 589

590 World Bank Group. Data catalog, 2024. URL <https://datacatalog.worldbank.org/home>.
 591

592 Zihui Gu, Ju Fan, Nan Tang, Preslav Nakov, Xiaoman Zhao, and Xiaoyong Du. Pasta: Table-
 593 operations aware fact verification via sentence-table cloze pre-training. In *Proceedings of the
 2022 Conference on Empirical Methods in Natural Language Processing*, pp. 4971–4983, 2022.

594 Zihui Gu, Ju Fan, Nan Tang, Lei Cao, Bowen Jia, Sam Madden, and Xiaoyong Du. Few-shot
 595 text-to-sql translation using structure and content prompt learning. *Proceedings of the ACM on*
 596 *Management of Data*, 1(2):1–28, 2023.

597

598 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
 599 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
 600 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

601 Xinyi He, Mengyu Zhou, Xinrun Xu, Xiaojun Ma, Rui Ding, Lun Du, Yan Gao, Ran Jia, Xu Chen,
 602 Shi Han, et al. Text2analysis: A benchmark of table question answering with advanced data
 603 analysis and unclear queries. In *Proceedings of the AAAI Conference on Artificial Intelligence*,
 604 volume 38, pp. 18206–18215, 2024.

605 Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
 606 Jacob Steinhardt. Measuring massive multitask language understanding. *arXiv preprint*
 607 *arXiv:2009.03300*, 2020.

608

609 Jonathan Herzig, Paweł Krzysztof Nowak, Thomas Mueller, Francesco Piccinno, and Julian Eisen-
 610 schlos. Tapas: Weakly supervised table parsing via pre-training. In *Proceedings of the 58th*
 611 *Annual Meeting of the Association for Computational Linguistics*, pp. 4320–4333, 2020.

612 Nan Huo, Reynold Cheng, Ben Kao, Wentao Ning, Nur Al Hasan Haldar, Xiaodong Li, Jinyang
 613 Li, Mohammad Matin Najafi, Tian Li, and Ge Qu. Zeroea: A zero-training entity alignment
 614 framework via pre-trained language model. *Proceedings of the VLDB Endowment*, 17(7):1765–
 615 1774, 2024.

616

617 Mohit Iyyer, Wen-tau Yih, and Ming-Wei Chang. Search-based neural structured learning for se-
 618 quential question answering. In *Proceedings of the 55th Annual Meeting of the Association for*
 619 *Computational Linguistics (Volume 1: Long Papers)*, pp. 1821–1831, 2017.

620 Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chap-
 621 lot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
 622 Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril,
 623 Thomas Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023. URL <https://arxiv.org/abs/2310.06825>.

624

625 Jie Jiang, Haining Xie, Yu Shen, Zihan Zhang, Meng Lei, Yifeng Zheng, Yide Fang, Chunyou
 626 Li, Danqing Huang, Wentao Zhang, et al. Siriusbi: Building end-to-end business intelligence
 627 enhanced by large language models. *arXiv preprint arXiv:2411.06102*, 2024.

628

629 Nengzheng Jin, Joanna Siebert, Dongfang Li, and Qingcai Chen. A survey on table question an-
 630 swering: recent advances. In *China Conference on Knowledge Graph and Semantic Computing*,
 631 pp. 174–186. Springer, 2022.

632

633 Yannis Katsis, Saneem Chemmengath, Vishwajeet Kumar, Samarth Bharadwaj, Mustafa Canim,
 634 Michael Glass, Alfio Gliozzo, Feifei Pan, Jaydeep Sen, Karthik Sankaranarayanan, et al. Ait-
 635 qa: Question answering dataset over complex tables in the airline industry. *arXiv preprint*
 636 *arXiv:2106.12944*, 2021.

637

638 George Katsogiannis-Meimarakis and Georgia Koutrika. A survey on deep learning approaches for
 639 text-to-sql. *The VLDB Journal*, 32(4):905–936, 2023.

640

641 Sunjun Kweon, Yeonsu Kwon, Seonhee Cho, Yohan Jo, and Edward Choi. Open-wikitables:
 642 Dataset for open domain question answering with complex reasoning over table. *arXiv preprint*
 643 *arXiv:2305.07288*, 2023.

644

645 Fangyu Lei, Tongxu Luo, Pengqi Yang, Weihao Liu, Hanwen Liu, Jiahe Lei, Yiming Huang, Yifan
 646 Wei, Shizhu He, Jun Zhao, et al. Tableqakit: A comprehensive and practical toolkit for table-based
 647 question answering. *arXiv preprint arXiv:2310.15075*, 2023.

648

649 Fangyu Lei, Jixuan Chen, Yuxiao Ye, Ruisheng Cao, Dongchan Shin, Hongjin Su, Zhaoqing Suo,
 650 Hongcheng Gao, Wenjing Hu, Pengcheng Yin, et al. Spider 2.0: Evaluating language models on
 651 real-world enterprise text-to-sql workflows. *arXiv preprint arXiv:2411.07763*, 2024.

648 Haoyang Li, Jing Zhang, Hanbing Liu, Ju Fan, Xiaokang Zhang, Jun Zhu, Renjie Wei, Hongyan
 649 Pan, Cuiping Li, and Hong Chen. Codes: Towards building open-source language models for
 650 text-to-sql. *Proceedings of the ACM on Management of Data*, 2(3):1–28, 2024a.

651

652 Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua Li, Bowen Li, Bailin Wang, Bowen Qin,
 653 Ruiying Geng, Nan Huo, et al. Can llm already serve as a database interface? a big bench for
 654 large-scale database grounded text-to-sqls. *Advances in Neural Information Processing Systems*,
 36, 2024b.

655

656 Xiao Li, Yawei Sun, and Gong Cheng. Tsqa: tabular scenario based question answering. In *Pro-
 ceedings of the AAAI Conference on Artificial Intelligence*, volume 35, pp. 13297–13305, 2021.

657

658 Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi Lin, Weizhu Chen, and Jian-Guang Lou.
 659 Tapex: Table pre-training via learning a neural sql executor. 2021.

660

661 Shu Liu, Asim Biswal, Audrey Cheng, Xiangxi Mo, Shiyi Cao, Joseph E Gonzalez, Ion Stoica, and
 662 Matei Zaharia. Optimizing llm queries in relational workloads. *arXiv preprint arXiv:2403.05821*,
 663 2024.

664

665 Shuaiqi Liu, Jiannong Cao, Ruosong Yang, and Zhiyuan Wen. Long text and multi-table summariza-
 666 tion: Dataset and method. In *Findings of the Association for Computational Linguistics: EMNLP*
 667 2022, pp. 1995–2010, 2022.

668

669 Samuel Madden, Michael Cafarella, Michael Franklin, and Tim Kraska. Databases unbound: Query-
 670 ing all of the world’s bytes with ai. *Proceedings of the VLDB Endowment*, 17(12):4546–4554,
 2024.

671

672 Iman Mirzadeh, Keivan Alizadeh, Hooman Shahrokhi, Oncel Tuzel, Samy Bengio, and Mehrdad
 673 Farajtabar. Gsm-symbolic: Understanding the limitations of mathematical reasoning in large
 674 language models. *arXiv preprint arXiv:2410.05229*, 2024.

675

676 Linyong Nan, Chiachun Hsieh, Ziming Mao, Xi Victoria Lin, Neha Verma, Rui Zhang, Wojciech
 677 Kryściński, Hailey Schoelkopf, Riley Kong, Xiangru Tang, et al. Fetaqa: Free-form table question
 678 answering. *Transactions of the Association for Computational Linguistics*, 10:35–49, 2022.

679

680 California Department of Water Resources. Water quality data, May 2024. URL <https://catalog.data.gov/dataset/water-quality-data-c4036>.

681

682 OpenAI. Openai gpt-4o, 2024a. URL <https://platform.openai.com/docs/models/gpt-4o>.

683

684 OpenAI. Hello gpt-4o, May 2024b. URL <https://openai.com/index/hello-gpt-4o/>.

685

686 OpenAI. Gpt-4o mini: Advancing cost-efficient intelligence, July 2024c. URL <https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/>.

687

688 OpenAI. Openai o1-mini, September 2024d. URL <https://openai.com/index/openai-o1-mini-advancing-cost-efficient-reasoning/>.

689

690 OpenAI. Openai gpt-5.1, November 2025a. URL <https://openai.com/index/gpt-5-1/>.

691

692 OpenAI. Openai o3-mini, September 2025b. URL <https://openai.com/index/openai-o3-mini/>.

693

694 Vaishali Pal, Andrew Yates, Evangelos Kanoulas, and Maarten de Rijke. Multitabqa: Generating
 695 tabular answers for multi-table question answering. In *Proceedings of the 61st Annual Meeting of
 696 the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 6322–6334, 2023.

697

698 Panupong Pasupat and Percy Liang. Compositional semantic parsing on semi-structured tables.
 699 *arXiv preprint arXiv:1508.00305*, 2015.

700

701 Liana Patel, Siddharth Jha, Carlos Guestrin, and Matei Zaharia. Lotus: Enabling semantic queries
 702 with llms over tables of unstructured and structured data. *arXiv preprint arXiv:2407.11418*, 2024.

702 U.S. Securities and Exchange Commission. Dataset-catalog, 2024. URL <https://www.sec.gov/>.

703

704

705 Anshul Singh, Chris Biemann, and Jan Strich. Mtabvqa: Evaluating multi-tabular reasoning of
706 language models in visual space. *arXiv preprint arXiv:2506.11684*, 2025.

707

708 Mukul Singh, José Cambronero, Sumit Gulwani, Vu Le, Carina Negreanu, Elnaz Nouri, Mohammad
709 Raza, and Gust Verbruggen. Format5: Abstention and examples for conditional table formatting
710 with natural language. *Proceedings of the VLDB Endowment*, 17(3):497–510, 2023.

711

712 Aofeng Su, Aowen Wang, Chao Ye, Chen Zhou, Ga Zhang, Guangcheng Zhu, Haobo Wang, Haokai
713 Xu, Hao Chen, Haoze Li, et al. Tablegpt2: A large multimodal model with tabular data integration.
714 *arXiv preprint arXiv:2411.02059*, 2024.

715

716 Yuan Sui, Mengyu Zhou, Mingjie Zhou, Shi Han, and Dongmei Zhang. Table meets llm: Can
717 large language models understand structured table data? a benchmark and empirical study. In
718 *Proceedings of the 17th ACM International Conference on Web Search and Data Mining*, pp.
719 645–654, 2024.

720

721 Gemma Team. Gemma. 2024a. doi: 10.34740/KAGGLE/M/3301. URL <https://www.kaggle.com/m/3301>.

722

723 Qwen Team. Qwen2.5: A party of foundation models, September 2024b. URL <https://qwenlm.github.io/blog/qwen2.5/>.

724

725 Qwen Team. Qwq: Reflect deeply on the boundaries of the unknown, November 2024c. URL
726 <https://qwenlm.github.io/blog/qwq-32b-preview/>.

727

728 Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming
729 Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, et al. Mmlu-pro: A more robust and challenging multi-
730 task language understanding benchmark. *Advances in Neural Information Processing Systems*,
731 37:95266–95290, 2024.

732

733 Ziting Wang, Shize Zhang, Haitao Yuan, Jinwei Zhu, Shifu Li, Wei Dong, and Gao Cong. Fd-
734 abench: A benchmark for data agents on analytical queries over heterogeneous data. *arXiv
735 preprint arXiv:2509.02473*, 2025.

736

737 Michael Wornow, Avanika Narayan, Krista Opsahl-Ong, Quinn McIntyre, Nigam H Shah,
738 and Christopher Re. Automating the enterprise with foundation models. *arXiv preprint
739 arXiv:2405.03710*, 2024.

740

741 Jian Wu, Linyi Yang, Dongyuan Li, Yuliang Ji, Manabu Okumura, and Yue Zhang. Mmqa: Evalu-
742 ating llms with multi-table multi-hop complex questions. In *The Thirteenth International Con-
743 ference on Learning Representations*, pp. 1, 2025a.

744

745 Xianjie Wu, Jian Yang, Linzheng Chai, Ge Zhang, Jiaheng Liu, Xeron Du, Di Liang, Daixin Shu,
746 Xianfu Cheng, Tianzhen Sun, et al. Tablebench: A comprehensive and complex benchmark
747 for table question answering. In *Proceedings of the AAAI Conference on Artificial Intelligence*,
748 volume 39, pp. 25497–25506, 2025b.

749

750 Aiyuan Yang, Bin Xiao, Bingning Wang, Borong Zhang, Ce Bian, Chao Yin, Chenxu Lv, Da Pan,
751 Dian Wang, Dong Yan, Fan Yang, Fei Deng, Feng Wang, Feng Liu, Guangwei Ai, Guosheng
752 Dong, Haizhou Zhao, Hang Xu, Haoze Sun, Hongda Zhang, Hui Liu, Jiaming Ji, Jian Xie, JunTao
753 Dai, Kun Fang, Lei Su, Liang Song, Lifeng Liu, Liyun Ru, Luyao Ma, Mang Wang, Mickel Liu,
754 MingAn Lin, Nuolan Nie, Peidong Guo, Ruiyang Sun, Tao Zhang, Tianpeng Li, Tianyu Li, Wei
755 Cheng, Weipeng Chen, Xiangrong Zeng, Xiaochuan Wang, Xiaoxi Chen, Xin Men, Xin Yu,
756 Xuehai Pan, Yanjun Shen, Yiding Wang, Yiyu Li, Youxin Jiang, Yuchen Gao, Yupeng Zhang,
757 Zenan Zhou, and Zhiying Wu. Baichuan 2: Open large-scale language models, 2023. URL
758 <https://arxiv.org/abs/2309.10305>.

759

760 Zhewei Yao, Guoheng Sun, Lukasz Borchmann, Zheyu Shen, Minghang Deng, Bohan Zhai, Hao
761 Zhang, Ang Li, and Yuxiong He. Arctic-text2sql-r1: Simple rewards, strong reasoning in text-to-
762 sql. *arXiv preprint arXiv:2505.20315*, 2025.

756 Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li, James Ma, Irene Li,
 757 Qingning Yao, Shanelle Roman, et al. Spider: A large-scale human-labeled dataset for complex
 758 and cross-domain semantic parsing and text-to-sql task. In *Proceedings of the 2018 Conference*
 759 *on Empirical Methods in Natural Language Processing*, pp. 3911–3921, 2018.

760 Liangyu Zha, Junlin Zhou, Liyao Li, Rui Wang, Qingyi Huang, Saisai Yang, Jing Yuan, Changbao
 761 Su, Xiang Li, Aofeng Su, et al. Tablegpt: Towards unifying tables, nature language and commands
 762 into one gpt. *arXiv preprint arXiv:2307.08674*, 2023.

763 Tianshu Zhang, Xiang Yue, Yifei Li, and Huan Sun. Tablellama: Towards open large generalist
 764 models for tables. *arXiv preprint arXiv:2311.09206*, 2023.

765 Tianshu Zhang, Xiang Yue, Yifei Li, and Huan Sun. Tablellama: Towards open large generalist
 766 models for tables. In *Proceedings of the 2024 Conference of the North American Chapter of*
 767 *the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long*
 768 *Papers)*, pp. 6024–6044, 2024a.

769 Yunjia Zhang, Jordan Henkel, Avrilia Floratou, Joyce Cahoon, Shaleen Deep, and Jignesh M Patel.
 770 Reactable: Enhancing react for table question answering. *Proceedings of the VLDB Endowment*,
 771 17(8):1981–1994, 2024b.

772 Yilun Zhao, Yunxiang Li, Chenying Li, and Rui Zhang. Multihierrt: Numerical reasoning over multi
 773 hierarchical tabular and textual data. *arXiv preprint arXiv:2206.01347*, 2022.

774 Xinyi Zheng, Douglas Burdick, Lucian Popa, Xu Zhong, and Nancy Xin Ru Wang. Global table
 775 extractor (gte): A framework for joint table identification and cell structure recognition using
 776 visual context. In *Proceedings of the IEEE/CVF winter conference on applications of computer*
 777 *vision*, pp. 697–706, 2021.

778 Fengbin Zhu, Wenqiang Lei, Youcheng Huang, Chao Wang, Shuo Zhang, Jiancheng Lv, Fuli Feng,
 779 and Tat-Seng Chua. Tat-qa: A question answering benchmark on a hybrid of tabular and textual
 780 content in finance. *arXiv preprint arXiv:2105.07624*, 2021.

781 Jun-Peng Zhu, Peng Cai, Kai Xu, Li Li, Yishen Sun, Shuai Zhou, Haihuang Su, Liu Tang, and
 782 Qi Liu. Autotqa: Towards autonomous tabular question answering through multi-agent large
 783 language models. *Proceedings of the VLDB Endowment*, 17(12):3920–3933, 2024.

784 Ming Zhu, Aman Ahuja, Wei Wei, and Chandan K Reddy. A hierarchical attention retrieval model
 785 for healthcare question answering. In *The World Wide Web Conference*, pp. 2472–2482, 2019.

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810
811
812
A CURRENT TABLE QA BENCHMARKS
813
814
815
816
817
818
819
820
821
822
823
824
825
826

We collect mainstream table QA benchmarks and summarize them in Table 7. Most of these benchmarks are built on Wikipedia tables, reflecting that Wikipedia is both a widely used benchmark source and a common component of LLM pre-training corpora. For TQA-Bench, we deliberately exclude Wikipedia tables and instead construct our benchmark from non-Wikipedia sources (WorldBank, Data.gov, and BIRD), which reduces reliance on the most heavily reused Wikipedia tables and provides large relational schemas that better match our multi-table evaluation setting. However, this choice alone cannot fully prevent pre-training contamination, since these public datasets may also appear in model training data. In this work we do not perform a full pre-training-corpus contamination analysis—such an analysis is infeasible for proprietary LLMs—and our design should therefore be viewed as mitigating contamination risk and enabling easy regeneration of fresh evaluation splits, rather than eliminating contamination entirely. To that end, we combine relational sampling with symbolic extensions so that (i) questions and answers are generated by sampling relational subgraphs and recomputing derived quantities, making exact question–answer pairs unlikely to coincide with memorized facts, and (ii) the entire pipeline can be re-run with new random seeds to regenerate new database instances and evaluation splits if contamination is suspected.

827
828
Below we additionally discuss two very recent multi-table QA benchmarks, MMQA and MTab-
VQA, which are closely related to TQA-Bench but are not included in the table.

829
830
831
832
833
834
835
836
837
838
MMQA (Wu et al., 2025a). MMQA evaluates LLMs on multi-table, multi-hop questions built on top of the Spider databases. Conceptually, it is close to our work in that it targets complex questions over multiple relational tables. However, MMQA remains within the Spider schema, whereas TQA-Bench constructs diverse analytical databases from WorldBank, Data.gov, and BIRD, which differ in domain, scale, and schema design. Moreover, TQA-Bench explicitly controls serialized context length (8K–64K tokens) and table formats via relational sampling and symbolic extensions, enabling systematic studies of long-context and serialization effects; MMQA does not target controlled context-length sweeps. To the best of our knowledge, MMQA code and data are not publicly available at the time of writing (the anonymous repository appears to have expired), so we are currently limited to a conceptual comparison rather than an experimental one.

839
840
841
842
843
844
845
846
MTabVQA (Singh et al., 2025). MTabVQA is a visual multi-tabular QA benchmark designed for vision–language models: models are given images of tables (often across multiple sheets) and must answer questions in the visual modality. In contrast, TQA-Bench operates purely in the text modality: we serialize relational tables into Markdown/CSV/JSON/HTML and feed these token sequences directly to LLMs. As such, MTabVQA and TQA-Bench explore orthogonal dimensions of multi-table reasoning—visual versus text-only interfaces. A quantitative comparison would require extending TQA-Bench with a VLM-based evaluation pipeline, which we view as interesting future work rather than the focus of the present paper.

847
848
Table 7: The information of current table QA benchmarks.

Benchmark	Tabular Data Source	Avg tokens
Single-Table QA		
WikiTableQuestions (Pasupat & Liang, 2015)	Wikipedia	1175.05
SQA (Iyer et al., 2017)	Wikipedia	554.02
FetaQA (Nan et al., 2022)	Wikipedia	499.06
HybirdQA (Chen et al., 2020c)	Wikipedia	601.07
OTT-QA (Chen et al., 2020a)	Wikipedia	559.61
FinQA (Chen et al., 2021)	FinTabNet (Zheng et al., 2021)	190.37
AIT-QA (Katsis et al., 2021)	SecGov (Securities & Commission, 2024)	499.53
Hitab (Cheng et al., 2021)	Wikipedia, Statistical reports	792.31
TableBench (Wu et al., 2025b)	Wikipedia, FinTabNet, SecGov	655.46
TATQA (Zhu et al., 2021)	Real-world financial report	447.91
Multi-Table QA		
Open-WikiTable (Kweon et al., 2023)	Wikipedia	685.97
Multihiert (Zhao et al., 2022)	FinTabNet	1470.48
TSQA (Li et al., 2021)	Chinese high school exams	410.31
Ours	BIRD (Li et al., 2024b), DataGov (Government, 2024), WorldBank (Group, 2024)	Scale from 8K to 64K

* For prior work, Avg tokens is computed per serialized table; for TQA-Bench (ours), per serialized database instance.

864 **B BENCHMARK CONSTRUCTION**
865866 **B.1 MULTI-TABLE DATA COLLECTION**867 Many Table QA datasets are based on tables from Wikipedia (Pasupat & Liang, 2015; Iyyer et al.,
868 2017; Kweon et al., 2023; Chen et al., 2020c;a; Cheng et al., 2021; Nan et al., 2022). However, be-
869 cause many LLMs are pre-trained on Wikipedia, its inclusion risks bias and contamination. More-
870 over, Wikipedia’s tables are typically short (only tens of rows) and do not adequately challenge
871 models on comprehensive Table QA tasks. To ensure a rigorous evaluation with complex, unfamil-
872 iar tables, we deliberately excluded Wikipedia-derived data. Our data collection instead considers
873 the following sources:874

- 875 • **WORLDBANK.** We incorporated datasets from WorldBank (Group, 2024) to overcome
876 Wikipedia’s limitations. WorldBank tables feature extensive rows and columns with simple yet
877 meaningful foreign key relationships that generate actionable insights. Our analysis shows that
878 these datasets often have long-context, multi-table structures—characteristics missing in existing
879 benchmarks. We selected a WorldBank dataset (Dasgupta et al., 2024) that fits our experimental
880 setup and challenges LLMs in realistic, complex scenarios.
- 881 • **DATAGOV.** DataGov (Government, 2024) offers a rich source of real-world tables. Its datasets
882 comprise tables with numerous rows and columns and include basic foreign key relationships
883 that support multi-table reasoning. For our benchmark, we chose two DataGov datasets: the
884 Water Quality Data (of Water Resources, 2024) and Food Facility Inspections (County, 2024).
885 These datasets were sampled and scaled to different context lengths, enabling a wide range of
886 experimental setups.
- 887 • **BIRD.** To complement the above, we included seven databases from BIRD (Li et al., 2024b), a
888 benchmark originally designed for Text2SQL tasks. BIRD databases resemble real-world multi-
889 table environments with complex foreign key relationships; however, many lack referential in-
890 tegrity. Since our sampling requires acyclic, valid foreign key graphs for meaningful queries, we
891 excluded about half of BIRD’s databases, narrowing the selection to 20. From these, we carefully
892 chose seven databases that balance semantic richness and manageable complexity, aligning with
893 our benchmark’s objectives. The information of the selected databases is shown in Table 8.

894 **Table 8: Structural and query-complexity statistics of the ten TQA-Bench databases.**
895896

Database Name	Source	Table Count	Average #Columns	Average Rows	Total Cells	Join Depth
airline	BIRD	3	10.67	2.37×10^5	1.97×10^7	1.79
food_inspection	BIRD	3	8.33	2.21×10^4	3.77×10^5	1.64
movie	BIRD	3	9.00	2.55×10^3	6.00×10^4	1.21
music_tracker	BIRD	2	5.00	1.19×10^5	1.01×10^6	1.5
restaurant	BIRD	3	4.00	6.43×10^3	8.66×10^4	1.64
university	BIRD	6	3.33	5.34×10^3	1.29×10^5	1.71
cookbook	BIRD	4	9.75	2.59×10^3	7.97×10^4	1.43
food_facility_inspections	DataGov	3	13.67	1.69×10^5	4.82×10^6	1.64
water_quality	DataGov	4	9.75	1.64×10^6	7.01×10^7	1.21
global_biodiversity	WorldBank	2	15.50	5.97×10^5	1.85×10^7	1.71
Overall Average	-	3.3	8.36	2.83×10^5	1.15×10^7	1.55

897 **B.2 SAMPLING TO VARIATE CONTEXT-LENGTH**
898899 Table 8 shows that many selected databases include tables with over 100,000 rows - far beyond
900 the token limits of mainstream LLMs, which makes direct construction of a multi-table QA dataset
901 impractical. To address this challenge, we develop a sampling method to generate databases of
902 varying context lengths, enabling scalable benchmarking across experimental setups under different
903 computational constraints. The sampling process of the original databases is detailed in Table 9.
904 This sampling process involves two primary steps: **(i)** determine the topological order of the tables
905 based on their foreign key relationships to ensure referential integrity is maintained during sampling;
906 **(ii)** perform the row sampling for each table to create new multi-table database instances from the
907 original databases. These steps ensure that the structural and relational properties of the databases
908 are preserved, even at a reduced scale, allowing for effective benchmarking under various conditions.909 **Topological Sort.** The first step in our sampling procedure, as outlined in Algorithm 1, involves
910 determining a topological order among tables to preserve referential integrity during sampling. For-

918 Table 9: The context length of the serialized sampled database should fall in the range of the minimal
 919 and maximal tokens.

921 Context Length	922 Minimum Token Limit	923 Maximum Token Limit
922 8K	923 4000	924 6000
923 16K	924 8000	925 12000
924 32K	925 16000	926 24000
925 64K	926 32000	927 48000

927 mally, for tables within a database, *if table T_i references table T_j , then T_i must be sampled prior*

928 to T_j . This ordering relies on the assumption that table reference relationships constitute a directed
 929 acyclic graph (DAG). While alternative approaches exist for handling cyclic dependencies among
 930 tables, such methods complicate precise control over the number of sampled rows per table. Controlling
 931 the row count is essential for generating databases with variable context lengths, as it directly
 932 influences the scalability and generalizability of our benchmarks across diverse computational set-
 933 tings.

934 **Row Sampling.** The second step, detailed in Algorithm 2, involves sampling rows from the database
 935 while preserving referential integrity. Given a parameter k to determine the sampled number of rows,
 936 the algorithm handles tables differently based on their reference dependencies. For tables without
 937 incoming references, an ordered sampling of k rows is performed directly. For tables referenced
 938 by others, sampling is guided by the topological order of the tables. Rows are selected from the
 939 original table that match the referenced column values in the sampled tables, ensuring that all for-
 940 eign key constraints are respected. To determine the token counts for the sampled databases, we
 941 serialize the tables into Markdown format, include table names, and calculate token sizes using a
 942 tokenizer. By adjusting the parameter k , databases with varying token sizes are generated, approxi-
 943 mating the desired context length through a binary search approach. For each target context length,
 944 ten database instances were sampled for each original database. The details of the sampled databases
 945 are summarized in Table 10.

946 **Algorithm 1** Topological Sort

947 **Require:** D : Database instance with tables $\{T_1, \dots, T_n\}$ and foreign key dependencies
 948 **Ensure:** A topologically sorted list of tables or an indication of a cyclic dependency

949 Initialize an empty list $L \leftarrow \emptyset$
 950 Create a map R , where $R[T_i]$ is the count of incoming references (in-degree) for table T_i
 951 Initialize a set $S \leftarrow \{T_i \mid R[T_i] = 0\}$ containing all tables with zero in-degree
 952 **while** $S \neq \emptyset$ **do**
 953 /* Pick any table with zero in-degree */
 954 Select and remove a table $T \in S$
 955 Append T to L
 956 **for** each table U referenced by T (i.e., $T \rightarrow U$) **do**
 957 $R[U] \leftarrow R[U] - 1$
 958 **if** $R[U] = 0$ **then**
 959 Add U to S
 960 **end if**
 961 **end for**
 962 **end while**
 963 /* Check for remaining edges indicating a cycle */
 964 **if** $\exists T_i$ such that $R[T_i] > 0$ **then**
 965 **return** “Cycle detected”
 966 **end if**
 967 **return** L

966 B.3 EVALUATION TASK CATEGORIES

968 The landscape of table QA benchmarks has evolved substantially over time, reflecting increasingly
 969 sophisticated LLM capabilities. Early benchmarks emphasized relatively straightforward tasks, pri-
 970 marily involving direct table lookups and aggregations, which required extracting values or comput-
 971 ing basic summaries from tabular data (Pasupat & Liang, 2015; Kweon et al., 2023). As research ad-
 972 vanced, benchmarks began to incorporate more intricate tasks demanding numerical reasoning, such

972 **Algorithm 2** Row Sampling with Referential Integrity

973 **Require:** D : Database instance

974 **Require:** k : Number of rows to sample from tables without incoming references

975 **Ensure:** Sampled subset of D maintaining referential integrity

976 Initialize an empty list $L \leftarrow \emptyset$

977 Compute a topological order $O \leftarrow \text{TOPOLOGYSORT}(D)$

978 **for** each table $U \in O$ **do**

979 **if** U has no incoming references **then**

980 /* Sample k rows from U and preserve row order */

981 $T \leftarrow \text{KEEPORDERSAMPLE}(U, k)$

982 **else**

983 Initialize an empty map $M \leftarrow \emptyset$

984 /* Column A_R in R references column A_U in U */

985 **for** each reference $R.A_R \rightarrow U.A_U$ **do**

986 /* Add referenced values of A_R in $M[A_U]$ */

987 $M[A_U] \leftarrow M[A_U] \cup R[A_R]$

988 **end for**

989 Initialize an empty set $T \leftarrow \emptyset$

990 **for** each row $r \in U$ **do**

991 **if** any attribute A of r satisfies $r[A] \in M[A]$ **then**

992 $T \leftarrow T \cup \{r\}$

993 **end if**

994 **end for**

995 **end if**

996 $L \leftarrow L \cup T$

997 **end for**

998 **return** L

Table 10: The detailed information on ten databases under four different context lengths.

Database Name	Average Rows Per Table				Average Token Per Database			
	8K	16K	32K	64K	8K	16K	32K	64K
airline	28.60	48.30	80.07	134.17	5.07×10^3	9.45×10^3	1.78×10^4	3.42×10^4
food_inspection	31.97	63.63	126.33	250.50	5.87×10^3	1.16×10^4	2.27×10^4	4.46×10^4
movie	23.83	47.17	92.60	180.40	5.62×10^3	1.1×10^4	2.11×10^4	4.09×10^4
music_tracker	95.90	191.95	382.70	765.25	4.92×10^3	9.7×10^3	1.95×10^4	3.89×10^4
restaurant	79.50	149.40	284.07	718.93	5.16×10^3	9.82×10^3	1.89×10^4	4.85×10^4
university	47.28	83.07	145.32	353.55	5.33×10^3	9.6×10^3	1.74×10^4	4.49×10^4
cookbook	15.82	29.82	60.62	114.28	5.88×10^3	1.1×10^4	2.27×10^4	4.28×10^4
food_facility_inspections	24.00	47.97	95.80	190.70	5.45×10^3	1.06×10^4	2.1×10^4	4.13×10^4
water_quality	17.80	35.67	70.50	137.93	5.31×10^3	1.04×10^4	2.02×10^4	3.92×10^4
global_biodiversity	32.00	64.00	128.00	256.00	5.4×10^3	1.06×10^4	2.09×10^4	4.17×10^4
Overall	39.67	76.10	146.60	310.17	5.4×10^3	1.04×10^4	2.02×10^4	4.17×10^4

as arithmetic operations and understanding numerical relationships, thereby elevating task complexity and sophistication (Chen et al., 2021; Zhao et al., 2022).

Despite these advancements, most current datasets are limited to short-context, single-table scenarios, focusing heavily on analysis within constrained contexts. While they frequently include multi-step arithmetic tasks like addition, subtraction, multiplication, or division (Chen et al., 2021; Zhao et al., 2022), they rarely capture the complexities inherent in long-context, multi-table situations. To address this limitation, our benchmark is explicitly structured around three carefully defined categories—*lookup*, *aggregation*, and *complex calculation*—corresponding to distinct levels of difficulty. This categorization enables a comprehensive assessment across various table QA complexities and scenarios. Illustrative examples for each category appear in Figure 1, and the formal definitions of all subcategories are provided as follows.

Let the database be $\mathcal{D} = (\mathcal{R}, \mathcal{E})$. We use standard relational algebra $\sigma, \pi, \bowtie, \gamma$ for selection, projection, natural join, and group-by aggregation; COUNT, SUM for standard aggregates; and COR for the correlation between 2 selected columns. Given a condition Θ and a set of attributes A , let $\bowtie(A, \Theta)$ denote the minimal join closure that contains all attributes required by Θ and the output. The formal definitions of each subcategory are as follows:

1026 • *Lookup* tasks are foundational in table-based reasoning. They require the model to locate and
 1027 extract specific information from tables. We design two tasks in this category:
 1028 ◦ *Entity lookup* task retrieves a specific value in the table based on given conditions. Given target
 1029 attribute a and condition Θ ,

$$1031 \quad \text{EL}(a, \Theta) = \pi_a(\sigma_\Theta(\bowtie(\{a\}, \Theta)))$$

1032 Our condition Θ ensures that the final answer is a single item.

1033 ◦ *Top selection* task focuses on identifying key elements or the top entities in a table based on
 1034 a specific criterion. Given grouping key g , a metric $m = \text{AGG}(e)$ (e.g., COUNT, SUM) and
 1035 condition Θ ,

$$1037 \quad G = \gamma_{g;c:=\text{AGG}(e)}(\sigma_\Theta(\bowtie(\{g\}, \Theta)))$$

$$1038 \quad \text{TS}(g, \Theta, \text{AGG}(e)) = \pi_g(\sigma_{c=\max \pi_c}(G))$$

1039 • *Aggregation* tasks, though conceptually simpler, test an LLM’s ability to filter and compute in-
 1040 tegrated information from the table or the join of multiple tables. We include three aggregation
 1041 functions in categories:

1042 ◦ *Count* task requires the model to determine the total number of rows or elements satisfying a
 1043 specific condition. For a specific condition Θ ,

$$1044 \quad \text{CNT}(\Theta) = \text{COUNT}(\sigma_\Theta(\bowtie(\emptyset, \Theta)))$$

1045 ◦ *Sum* task requires the LLM to compute the sum of a specific numerical attribute across the rows
 1046 that meet certain criteria. For a numerical column a and condition Θ ,

$$1047 \quad \text{SUM}(a, \Theta) = \text{SUM}(\pi_a(\sigma_\Theta(\bowtie(\{a\}, \Theta))))$$

1048 ◦ *Average* task requires the LLM to calculate the mean of a numerical column for rows matching
 1049 conditions. For a numerical column a and condition Θ ,

$$1050 \quad \text{AVG}(a, \Theta) = \frac{\text{SUM}(a, \Theta)}{\text{CNT}(\Theta)}$$

1051 • *Complex calculation* tasks evaluate advanced reasoning capabilities, focusing on more intricate
 1052 operations. We categorize these into two subcategories:

1053 ◦ *Composite comparison* task requires the LLM to compare the difference between two values,
 1054 which may either be directly available in the table or derived through intermediate calculations.
 1055 For a comparison expression e (e.g., $e = \text{ARR_DELAY-DEP_DELAY}$), a metric $m = \text{AGG}(e)$
 1056 and condition Θ ,

$$1057 \quad \text{CC}(\text{AGG}(e), \Theta) = \text{AGG}(\pi_a(\sigma_\Theta(\bowtie(\{e\}, \Theta))))$$

1058 ◦ *Correlation* task requires the LLM to compute the statistical relationship between two numeric
 1059 columns. For numeric columns a, b and condition Θ , the answer is the Pearson correlation
 1060 coefficient over the rows satisfying Θ :

$$1061 \quad \text{COR}(a, b, \Theta) = \frac{\sum_{i \in I_\Theta} (a_i - \bar{a})(b_i - \bar{b})}{\sqrt{\sum_{i \in I_\Theta} (a_i - \bar{a})^2} \sqrt{\sum_{i \in I_\Theta} (b_i - \bar{b})^2}},$$

1062 where I_Θ indexes rows satisfying Θ , and \bar{a}, \bar{b} are the corresponding sample means.

1063 Unlike existing Table QA benchmarks, our tasks are clearly categorized across multiple tables, en-
 1064 abling targeted question creation and systematic performance evaluation. By organizing tasks hi-
 1065 erarchically - from simple lookups to complex calculations - our benchmark compares model per-
 1066 formance across a spectrum of challenges. It also emphasizes scalability and multi-table contexts,
 1067 filling critical gaps in current datasets while maintaining practical reasoning depth. This structure
 1068 enhances evaluation robustness and promotes the model’s capabilities of handling intricate situa-
 1069 tions.

1080 B.4 QUESTION GENERATION BY SYMBOLIC EXTENSION
10811082 Inspired by the GSM-Symbolic framework (Mirzadeh et al., 2024), we adopt symbolic extension in
1083 our benchmark to generate a larger set of high-quality evaluation questions. By combining symbolic
1084 extension with sampling, we create diverse and meaningful queries, enhancing the benchmark’s
1085 robustness for LLM evaluation.1086 **Symbolic Question Generation.** Our symbolic extension is divided into two principal components:
1087 template question design, and the generation of questions and solutions, as depicted in Figure 1.
1088 Template questions are crafted with placeholder variables instead of fixed values, enabling dynamic
1089 content generation. These variables are subsequently instantiated, and the correct answers are com-
1090 puted using Python implementation. This methodology facilitates the creation of multiple question
1091 instances from a single template, thereby enhancing the benchmark’s versatility and scalability. To
1092 enable a more effective evaluation, we employ multiple-choice questions (MCQs) rather than relying
1093 solely on traditional metrics such as exact match, BLEU, or F1 scores. These conventional metrics
1094 can fall short of accurately assessing the reasoning capabilities of LLMs. MCQs offer a more direct
1095 method to evaluate understanding and reasoning by providing discrete, comparable options (Balepur
1096 & Rudinger, 2024). Moreover, many of our items involve multi-step analytical computation, where
1097 current LLMs often struggle to produce exact numeric answers. Framing these items as MCQs
1098 yields unambiguous scoring, reduces spurious partial matches, and aligns with established practice
1099 in STEM and mathematics benchmarks (Hendrycks et al., 2020; Wang et al., 2024; Amini et al.,
1100 2019). For each database, we manually design two template questions per subcategory, each paired
1101 with a corresponding Python code solution. This approach yields a total of 140 template questions
1102 across all databases and subcategories. To populate the benchmark with diverse instances, we lever-
1103 age the ten database instances created for each database and context length. Using the symbolic
1104 extension, we generate ten question instances for each template question. An overview of the total
1105 number of benchmark instances is provided in Table 11, illustrating the extensive scale and scope of
1106 our benchmark. More examples of the generation process for the Airline database in Figure 1 are
1107 provided in Figure 5.

1108 Table 11: An overview of our benchmark instances.

1109
1110

Context Length	Database Instances	Question Instances
8K	100	14000
16K	100	14000
32K	100	14000
64K	100	14000
Total	400	56000

1111
1112
1113
11141115 **Wrong Choice Generation.** To create incorrect options for the MCQs, we use a rule-based ap-
1116 proach. For *entity lookup* and *top selection* tasks, we randomly select different cells from the same
1117 column to generate error choices. For the rest tasks, which require numerical answers, we produce
1118 three error options by multiplying the correct answer by 0.25, 2.0, and 3.0. While this method is
1119 simple, our experiments show that these questions remain challenging for LLMs, especially due to
1120 the design consideration that our tasks require reasoning over long contexts and multiple tables.1121 C SELECTED MODEL DETAILS
1122

1123 We list the LLMs included in the comprehensive evaluation below:

1124
1125

- GPT (OpenAI, 2024c;b; 2025b; 2024d): we evaluate GPT-4O-MINI, GPT-4O, GPT-O1-MINI
1126 and GPT-O3-MINI from OpenAI as the state-of-the-art close-source models. All of them are
1127 tailored for conversational AI and reasoning tasks, supporting context up to 128K tokens.
- QWEN2.5 (Team, 2024b): we select the 3B, 7B, 14B, 72B versions of QWEN2.5 Instruct model
1128 and a 7B Coder model for evaluation. All of them support long context up to 128K tokens.
- QWQ (Team, 2024c): it is a reasoning model that was developed by the Qwen team. It supports
1129 up to 32K tokens.
- LLAMA3.1 (Dubey et al., 2024b): we include the 8B and 70B LLAMA3.1 Instruct. Both of them
1130 support a context length up to 128K tokens.

1134

1135

(a) Top Selection: Which airport lands most flights start from ORIGIN?

```
1136     1 ORIGIN = self.Airlines['ORIGIN'].sample(1).iloc[0]
1137     2 origin_description = self.Airports[self.Airports['Code'] ==
1138         ORIGIN]['Description'].iloc[0]
1139     3 filtered = self.Airlines[self.Airlines['ORIGIN'] == ORIGIN]
1140     4 max_count = filtered['DEST'].value_counts()
1141     5 max_val = max_count.max()
1142     6 lands_airport = max_count[max_count == max_val].index
1143     7 dest_description =
1144         self.Airports[self.Airports['Code'].isin(lands_airport)]['Description'].to_list()
```

1143

1144

(b) Count: How many airlines land in DEST?

1145
1146
1147
1148

```
1 DEST = self.Airlines['DEST'].sample(1).iloc[0]
2 dest_description = self.Airports[self.Airports['Code'] == DEST]['Description'].iloc[0]
3 filtered = self.Airlines[self.Airlines['DEST'] == DEST]
4 land_airline = len(filtered)
```

1149

1150

(c) Average: What is the average flight delay (ARR_DELAY) that land in DEST?

1151
1152
1153
1154

```
1 DEST = self.Airlines['DEST'].sample(1).iloc[0]
2 dest_description = self.Airports[self.Airports['Code'] == DEST]['Description'].iloc[0]
3 filtered = self.Airlines[self.Airlines['DEST'] == DEST]
4 avg = filtered['ARR_DELAY'].mean()
```

1155

1156

Figure 5: Additional QA generation examples.

- BAICHUAN2 (Yang et al., 2023): we include BAICHUAN2 7B chat model and 13B chat model. Both of them support long context up to 192K tokens.
- GEMMA2 (Team, 2024a): we select the 2B, 9B, and 27B versions of GEMMA2 Instruct model for evaluation. All of them only support a context length up to 8K tokens.
- GLM-4 (GLM et al., 2024): we evaluate GLM-4-9B-CHAT on the benchmark. The model is a chat model with a context length of 128K tokens.
- MISTRAL (Jiang et al., 2023): we evaluate MISTRAL-NEMO-INSTRUCT and MISTRAL-7B-INSTRUCT on the benchmark. Both of them are instruct models. MISTRAL-NEMO-INSTRUCT is trained with 12.2B parameters and supports up to 128K context window. MISTRAL-7B-INSTRUCT is trained with 7B parameters and supports up to 32k tokens.
- VICUNA (Chiang et al., 2023): we select VICUNA-7B-V1.5-16K and VICUNA-13B-V1.5-16K to evaluate. As the name suggests, VICUNA-7B-V1.5-16K is a chat model trained with 7B parameters and supports up to 16k tokens. VICUNA-13B-V1.5-16K is a chat model trained with 13B parameters and supports up to 16k tokens.
- TABLELLAMA (Zhang et al., 2024a): The TABLELLAMA model is fine-tuned on the TableInstruct dataset using LongLoRA so that it is specialized in table-based tasks. The size of the model is 7B but it only supports a context length up to 8k tokens.
- TABLEGPT2 (Su et al., 2024): The TABLEGPT2 is derived from the QWEN2.5 architecture and specialized in analyzing tabular data. However, it is trained mostly on Chinese corpora and may not support other languages well. The model size is 7B, and it supports up to 128K tokens as input.
- ARCTIC-TEXT2SQL-R1 (Yao et al., 2025): The ARCTIC-TEXT2SQL-R1 model is trained on the QWEN2.5 series and specialized in Text2SQL tasks. It achieves state-of-the-art performance on the BIRD (Li et al., 2024b) benchmark. The size of the model ranges from 7B to 32B.
- DEEPSEEK-V3 (DeepSeek-AI, 2024): we evaluate DEEPSEEK-V3 on the benchmark. Unlike dense architecture, this model adopts a MoE architecture. It is trained with 671B parameters, and it supports a context length of 128K tokens.
- DEEPSEEK-R1 (Guo et al., 2025): The DEEPSEEK-R1 is a widely recognized reasoning model that enhances its reasoning capabilities through reinforcement learning. It includes a full version, post-trained from DEEPSEEK-V3, along with several distilled variants derived from the full

1188 model. In our study, we select the full DEEPSEEK-R1-671B model and two distilled versions:
 1189 DEEPSEEK-R1-DISTILL-QWEN-7B and DEEPSEEK-R1-DISTILL-QWEN-14B.
 1190

1191 D EXPERIMENT DETAILS

1192 D.1 EXPERIMENT 1

1195 **Dataset setup.** We conduct this experiment on the `airline` database at the 8K context length,
 1196 using all ten sampled database instances and 1,400 generated questions. For *single-table* evalua-
 1197 tion, for each question we materialize a denormalized table by pre-joining exactly those base tables
 1198 referenced by the question. This produces a question-specific single table that preserves the same
 1199 answer as the original multi-table query. Each question is then evaluated under both settings: (i) the
 1200 original *multi-table* schema, and (ii) the corresponding *single-table* (pre-joined) version, enabling a
 1201 controlled comparison across the two contexts.

1202 **Evaluated LLMs.** GLM-4-9B-CHAT, QWEN2.5-7B-INSTRUCT, LLAMA3.1-8B-INSTRUCT,
 1203 DEEPSEEK-R1-DISTILL-QWEN-7B.

1204 **LLM selection rationale.** This experiment studies how single- vs. multi-table structural settings af-
 1205 fect accuracy under a fixed context budget. We therefore choose a small but diverse set of mid-sized
 1206 models: a chat-oriented LLM (GLM-4-9B-CHAT), two instruction-tuned LLMs from different fam-
 1207 ilies (QWEN2.5-7B-INSTRUCT and LLAMA3.1-8B-INSTRUCT), and a reasoning-oriented model
 1208 (DEEPSEEK-R1-DISTILL-QWEN-7B). This configuration lets us probe whether the single–multi
 1209 gap is consistent across model categories while keeping the cost of running all context-length and
 1210 sampling variants manageable.

1212 D.2 EXPERIMENT 2

1214 **Dataset setup.** For each database and each context length, we sample five database instances. For
 1215 each instance, we select one question instance for each of the 14 question templates, yielding 50
 1216 database instances and 700 questions per context length. This protocol is used to compare perfor-
 1217 mance across formats and scales while keeping the per-instance question diversity fixed.

1218 **Evaluated LLMs.** QWEN2.5-7B-INSTRUCT, QWEN2.5-CODER-7B-INSTRUCT, LLAMA3.1-
 1219 8B-INSTRUCT.

1220 **LLM selection rationale.** This experiment isolates how different serialization formats (Markdown,
 1221 CSV, JSON, HTML) interact with model pre-training. To control for model-side factors, we keep
 1222 two general-purpose instruction-tuned baselines from Experiment 1 (QWEN2.5-7B-INSTRUCT and
 1223 LLAMA3.1-8B-INSTRUCT) and additionally include a coder-oriented variant (QWEN2.5-CODER-
 1224 7B-INSTRUCT). This allows us to contrast general vs. code-specialized instruction tuning while
 1225 reusing the same 7B–8B scale to stay within our computation budget.

1226 **Model-Specific Observations.** Our analysis revealed that coder LLMs often outperform their base
 1227 counterparts, with the extent of improvement depending on the serialization format. In the CSV
 1228 format, the QWEN2.5-CODER-7B-INSTRUCT outperformed QWEN2.5-7B-INSTRUCT across all
 1229 scales. For other formats, performance improvements were observed in specific scales.

1231 D.3 EXPERIMENT 3

1233 **Dataset setup.** We adopt the same protocol as Experiment 2 (five instances per database and context
 1234 length; 14 templates per instance), and evaluate at 8K, 16K, 32K, and 64K context lengths. This
 1235 setting allows us to study scale effects and long-context robustness across open- and closed-source
 1236 models.

1237 **Evaluated LLMs.** We evaluate LLMs on following two categories:

1238 *Open-source:* QWEN2.5, LLAMA3.1, BAICHUAN2, GLM-4, MISTRAL, DEEPSEEK-V3,
 1239 DEEPSEEK-R1, TABLEGPT2; additionally, GEMMA2, TABLELLAMA, and VICUNA are evaluated
 1240 up to their respective context-length limits.

1241 *Closed-source:* GPT-4O, GPT-4O-MINI, GPT-O1-MINI, GPT-O3-MINI via the OpenAI API.

1242 **LLM selection rationale.** This experiment constitutes our main benchmark evaluation. After fixing
 1243 Markdown as the default serialization format based on Experiment 2, we run all 28 LLMs listed in
 1244 Appendix C on TQA-Bench across all four context-length settings. These results provide the global
 1245 comparison that subsequent in-depth analyses (Experiments 4–5) build upon.

1246 **Model-Specific Observations.** We enumerate our interesting model-specific observations based on
 1247 LLM categories:

1248 *Chat LLM Performance.* A manual inspection using the airline database revealed distinct failure
 1249 patterns for different models. For instance, larger versions of BAICHUAN2 frequently exhibited
 1250 repetitive output (e.g., “`-338.1666666666...`” repeated many times), whereas smaller ver-
 1251 sions, while often failing to follow instructions, still managed to produce readable and structured
 1252 responses. For the VICUNA series, smaller models occasionally produced multiple-choice outputs
 1253 (e.g., “C/D”), where our regex could possibly still capture one valid option, whereas larger versions
 1254 tended to produce verbose answer or “None of the above”.

1255 *Instruct LLM Performance.* Although instruct models generally outperform chat models, **two exceptions stand out:** MISTRAL and QWEN2.5. Despite being instruction-tuned, MISTRAL frequently
 1256 outputs “None of the above”, especially with long contexts, indicating diminished instruction
 1257 adherence. For QWEN2.5, the largest version does not show a significant improvement in overall
 1258 accuracy. Our manual inspection of its generated outputs reveals that its tendency to produce ver-
 1259 bose analyses often pushes outputs beyond the token limit, leaving no space for providing a valid
 1260 final answer.

1261 *Domain-Specific Tabular LLMs.* Although designed for table-based tasks, domain-specific models
 1262 such as TABLELLAMA and TABLEGPT2 do not meet performance expectations in our benchmark.
 1263 We hypothesize that overspecialization may narrow their adaptability: TABLELLAMA fails to follow
 1264 the required output format, and TABLEGPT2, while format-compliant, delivers only average results.
 1265 This behavior suggests that their continuous pre-training may not have adequately represented the
 1266 full range of question types or formats used in our evaluation. Furthermore, these models may not
 1267 optimally balance between relational data generation and the flexibility required for general QA
 1268 tasks, indicating a potential misalignment between training objectives and the evaluation criteria
 1269 introduced by our benchmark.

1270 *Reasoning LLM Performance.* Distilled models consistently underperform their original counter-
 1271 parts, with distillation particularly harming smaller models’ ability to handle long contexts. For
 1272 instance, QWEN2.5-7B-INSTRUCT can follow instructions at the 64K scale, whereas its distilled
 1273 variant fails. Interestingly, QWQ-32B-PREVIEW shows anomalous behavior, frequently producing
 1274 repetitive and meaningless tokens—a pattern also observed in DEEPSEEK-R1-DISTILL-QWEN-7B
 1275 at the 64K scale.

1276 **Task-Specific Observations under Context Length.** The effect of context length varies across
 1277 different categories of questions:

- 1278 • *Lookup tasks* decline relatively slowly, as they often require retrieving only a single or few items,
 1279 which remains manageable even with longer contexts.
- 1280 • *Aggregation tasks* suffer sharper declines. Notably, models perform better on *average* questions
 1281 than on *sum* questions, since estimating an approximate average is more intuitive, whereas sum-
 1282 mation requires precise computation.
- 1283 • For *complex calculations*, the impact depends on the subcategory. Composite comparison tasks
 1284 retain relatively stable performance, while correlation tasks show the steepest declines, likely
 1285 because they demand both complex numerical computation and logical reasoning.

1286 D.4 EXPERIMENT 4

1287 **Dataset setup.** We reuse the same dataset as Experiment 1: the `airline` database at the 8K context
 1288 length, the same ten sampled database instances, and the same 1,400 generated question instances.
 1289 For analysis granularity, we organize questions into *batches* at the instance level: for each database
 1290 instance, we create 10 batches; each batch contains 14 questions, one from each of the 14 templates
 1291 (thus $10 \times 14 = 140$ questions per instance and $10 \times 10 \times 14 = 1,400$ in total). Batches are indexed

1296 by the pair (database-instance index, batch index) to support controlled cross-batch comparisons
 1297 under a fixed schema and data sample.

1298 **Evaluated LLMs.** GLM-4-8B-CHAT, QWEN2.5-7B-INSTRUCT, LLAMA3.1-8B-INSTRUCT,
 1299 GPT-4O-MINI, DEEPSEEK-R1.

1300 **LLM selection rationale.** This experiment provides in-depth analyses (e.g., sampling and sym-
 1301 bolic extension) on top of the global results in Experiment 3. To keep the analysis readable while
 1302 still covering the main model axes, we select a small but representative subset of strong LLMs:
 1303 GLM-4-9B-CHAT, QWEN2.5-7B-INSTRUCT, LLAMA3.1-8B-INSTRUCT, GPT-4O-MINI, and
 1304 DEEPSEEK-R1. This subset spans open- vs. closed-source models and chat-, instruction-, and
 1305 reasoning-oriented paradigms.

1306 **Model-Specific Observations.** While overall trends are consistent, some models exhibit distinct be-
 1307 haviors. For example, a batch in the lower-left corner of the heatmap appears easier for QWEN2.5-
 1308 7B-INSTRUCT, which achieves high accuracy, but presents average difficulty for other models.
 1309 In comparative tests, all models except GPT-4O-MINI showed similar results between broad and
 1310 sensitive airline evaluations. Furthermore, most models perform better when evaluated across all
 1311 databases than on the airline database alone, indicating that “airline” contains relatively challenging
 1312 questions. Interestingly, DEEPSEEK-R1 displays the opposite trend, performing better on the airline
 1313 database than across all databases, suggesting that these instances are comparatively simpler for this
 1314 model.

1316 D.5 EXPERIMENT 5

1317 **Dataset setup.** We evaluate multiple context lengths using the same 2,800 questions and database
 1318 instances from Experiment 3. Under the Text2SQL setting, models are provided with database
 1319 schemas and prompted to produce executable SQL queries using an instruction adapted from
 1320 ARCTIC-TEXT2SQL-R1 (Yao et al., 2025) (see Appendix §E). Execution correctness is measured
 1321 by running the generated SQL against the corresponding database instance.

1322 **Evaluated LLMs.** GLM-4-9B-CHAT, QWEN2.5-7B-INSTRUCT, LLAMA3.1-8B-INSTRUCT,
 1323 ARCTIC-TEXT2SQL-R1, GPT-4O-MINI, DEEPSEEK-R1. Among these, ARCTIC-TEXT2SQL-
 1324 R1 is a representative Text2SQL-specialized LLM that ranks highly on BIRD-Bench (BIRD-bench,
 1325 2025).

1326 **LLM selection rationale.** This experiment compares direct end-to-end prompting with an LLM-
 1327 based Text2SQL pipeline. We reuse the representative subset from Experiment 4, replacing
 1328 QWEN2.5-7B-INSTRUCT with the coder-optimized QWEN2.5-CODER-7B-INSTRUCT, and addi-
 1329 tionally include the Text2SQL-specialized model ARCTIC-TEXT2SQL-R1. This configuration
 1330 reflects typical Text2SQL practice (coder-style models plus a dedicated Text2SQL baseline) while
 1331 keeping the setup consistent with our earlier analyses.

1332

1334 E PROMPTS IN THE EVALUATION

1335

1336 We attach the prompt used in our benchmarks below:

1337

1338 **LLM Prompts in Table QA.** We design the prompts to be as simple and universally applicable
 1339 as possible for end-to-end TableQA evaluations, while supporting various methods of encoding
 1340 tables as input. The following prompt is used in Experiments 1-4, and the direct LLM prompt in
 1341 Experiment 5.

1342

Basic Prompt for Experiment 1 to 4.

1343

1344 Please carefully analyze and answer the following single choice question step by step.

1345

1346 **Database: {database name}**

1347

1348 **Table: {table name 0}**

1349

{table 0 in markdown/csv/html/json}

```

1350
1351 Table: {table name 1}
1352 {table 1 in markdown/csv/html/json}
1353
1354
1355 ...
1356
1357 Question:
1358 {question}
1359 A) {choice A}
1360 B) {choice B}
1361 C) {choice C}
1362 D) {choice D}

1363 This question has only one correct answer. Please break down the question, evaluate each
1364 option, and explain why it is correct or incorrect. Conclude with your final choice on a new
1365 line formatted as Answer: A/B/C/D.

```

1366 **Text2SQL Prompt.** The following prompt template is used in Experiment 5 to guide LLMs to
 1367 generate SQL, i.e., LLM based-Text2SQL. The prompt is based on the original prompt from the
 1368 report of ARCTIC-TEXT2SQL-R1 (Yao et al., 2025), but relaxes strict formatting requirements to
 1369 allow the evaluation of a broader range of models.

1370

1371 **Text2SQL Prompt for Experiment 5.**

1372 You are a data science expert. Below, you are provided with a database schema and a natural
 1373 language question. Your task is to understand the schema and generate a valid SQL query to
 1374 answer the question.

1375 **Database Engine:**
 1376 SQLite

1377 **Database Schema:**
 1378 { schema }
 1379 This schema describes the database's structure, including tables, columns, primary keys,
 1380 foreign keys, and any relevant relationships or constraints.

1381

1382 **Question:**
 1383 {question}

1384 **Instructions:**

- 1385 • Make sure you only output the information that is asked in the question. If the question
 1386 asks for a specific column, make sure to only include that column in the SELECT clause,
 1387 nothing more.
- 1388 • The generated query should return all of the information asked in the question without any
 1389 missing or extra information.
- 1390 • Before generating the final SQL query, please think through the steps of how to write the
 1391 query.

1392 **Output Format:**
 1393 Please provide a detailed chain-of-thought reasoning process. Ensure that your SQL query
 1394 follows the correct syntax and is formatted as follows:

```

1395     '''sql
1396     -- Your SQL query here
1397     '''
  
```

F FRONTIER MODEL AND AGENT TESTING

1400
 1401 We additionally evaluate a strong frontier model, GPT-5.1 (OpenAI, 2025a), on the 64K setting.
 1402 The results are shown in Table 12.

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
Table 12: Performance of GPT-5.1 on TQA-Bench (64K setting).

EL	TS	CNT	SUM	AVG	CC	COR	Average
94.85	93.81	58.16	57.29	72.63	90.82	53.54	74.41

We observe that GPT-5.1 obtains only 53.54% on the 64K COR task, a result comparable to earlier models such as GPT-03-MINI. In other words, despite approximately ten months of rapid model development since DeepSeek-R1’s release (Jan 2025), frontier LLMs still struggle significantly on the long-context COR setting.

This lack of improvement suggests that (i) the 64K analytical tasks remain far from being solved, and (ii) current frontier models still exhibit clear weaknesses in long-context multi-table reasoning. Therefore, TQA-Bench is not saturated and retains meaningful long-term utility for the community as a target for evaluating future progress.

We further clarify our position on current agentic AI workflows. The agentic ecosystem today contains many heterogeneous workflow designs. As recent work (e.g., FDABench) highlights, current research proposes diverse agent workflows but lacks standardized implementations. FDABench attempts to standardize four representative workflow patterns, yet it still concludes that a universally accepted agent workflow does not exist (Wang et al., 2025). Hence, instead of broadly surveying agent workflows, our work focuses on a more fundamental and actionable experimental question: In a complex workflow, which implementation of the table agent should be used to best improve the full agent system? (i) direct prompting, and (ii) with a code interpreter (Python engine).

For the COR task, we compare GPT-5.1 (64K) under direct prompting versus code interpreter, and observe that replacing direct prompting with code interpreter yields substantial improvements. The model achieves 60.53% accuracy, which is higher than 53.54%.

G ERROR ANALYSIS

G.1 EFFECT OF THE MULTIPLE-CHOICE ANSWER FORMAT

One concern about our evaluation protocol is that the single-choice A/B/C/D format, together with prompts that insist on “output a single letter,” might punish otherwise correct solutions that are phrased in a different way (e.g., a correct numeric answer without the final option letter). To examine whether this is a dominant failure mode in practice, we manually inspected 50 mispredictions made by GPT-4O at the 8k scale in the multiple-choice setting.

For all 50 examined cases, we found that the model’s reasoning or final numerical conclusion was incorrect relative to the ground-truth answer. In 46 out of 50 cases, the model produced a well-formed single-letter choice (“A”–“D”) that was fully consistent with its (incorrect) reasoning. In the remaining 4 cases, the model gave answers such as `Answer: None`, i.e., it confidently stated that no option was correct, which contradicts our dataset construction where exactly one option is guaranteed to be correct. These were consistently marked as incorrect.

Crucially, in this sample we did not observe instances where the model arrived at the correct numeric value but was scored as incorrect solely because it failed to output the desired letter format. This suggests that, at least for a strong model such as GPT-4O at 8k, the main source of errors under our evaluation protocol is the underlying analytical reasoning, rather than the answer-format restriction itself. We acknowledge that more fine-grained partial-credit schemes (e.g., parsing and evaluating intermediate numeric outputs) could be explored in future work, but we adopt the single-letter multiple-choice design here to enable scalable, objective, and unambiguous automatic evaluation across tens of thousands of questions.

This multiple-choice, exact-match evaluation protocol is consistent with many widely used LLM benchmarks (Hendrycks et al., 2020; Wang et al., 2024; Amini et al., 2019), where models are also scored by exact match on the selected option rather than by partial credit.

1458
1459

G.2 TEXT2SQL: QUALITATIVE ERROR PATTERNS ON COMPOSITE QUERIES

1460
1461
1462
1463

To better understand why top models struggle on correlation and composite analytical tasks in the Text2SQL setting, we manually analyzed 50 mispredicted queries produced by DEEPSEEK-R1 at the 8k scale. These queries are dominated by correlation and multi-step arithmetic questions. We identify three recurring error patterns:

1464
1465
1466
1467
1468
1469
1470

- **Non-executable or non-SQL output (approximately 26–52%).** The model sometimes produces a mathematical formula instead of an executable SQL query, especially for COR questions. For example, it may output $\text{correlation} = (n * \text{sum}_{xy} - \text{sum}_x * \text{sum}_y) / \text{SQRT}((n * \text{sum}_{x^2} - \text{sum}_x^2) * (n * \text{sum}_{y^2} - \text{sum}_y^2))$ as the “final SQL query”. While this expression is mathematically meaningful, it cannot be executed by the SQL engine and therefore fails under our evaluation protocol.
- **Wrong solution step or task formulation (approximately 16–32%).** In these cases, the model produces syntactically valid SQL, but the query does not implement the correct computational step required by the question. For instance, for the question “How many budgets is *Remember the Titans* higher than *X-Men Origins: Wolverine*?", one generated query is:

1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485

```
SELECT
CASE
    WHEN (SELECT Budget FROM movie WHERE Title = 'Remember the Titans') >
        (SELECT Budget FROM movie WHERE Title = 'X-Men Origins: Wolverine')
    THEN 1
    ELSE 0
END AS Count;
```

This query only checks whether one budget is larger than the other and returns a binary indicator (1 or 0), instead of computing the numeric difference between the two budgets as requested.

1486
1487
1488
1489
1490

- **Correct high-level plan but mis-specified expression (approximately 8–16%).** Here the model outlines a reasonable multi-step strategy in SQL, but small expression-level choices lead to a mismatch with the intended semantics. For example, consider the question “What is the average total fly time (ARR_TIME - DEP_TIME) of United Air Lines Inc.: UA?”. One generated query is:

1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

```
SELECT AVG(
CASE
    WHEN (ARR_TIME / 100 * 60 + ARR_TIME % 100) >=
        (DEP_TIME / 100 * 60 + DEP_TIME % 100)
    THEN (ARR_TIME / 100 * 60 + ARR_TIME % 100) -
        (DEP_TIME / 100 * 60 + DEP_TIME % 100)
    ELSE (ARR_TIME / 100 * 60 + ARR_TIME % 100 + 1440) -
        (DEP_TIME / 100 * 60 + DEP_TIME % 100)
END) AS average_fly_time
FROM Airlines
JOIN "Air Carriers"
    ON Airlines.OP_CARRIER_AIRLINE_ID = "Air Carriers".Code
WHERE "Air Carriers".Description = 'United Air Lines Inc.: UA'
    AND Airlines.CANCELLED = 0
    AND Airlines.DEP_TIME IS NOT NULL
    AND Airlines.ARR_TIME IS NOT NULL;
```

This query attempts to interpret times in HHMM format and converts them to minutes using $t/100 * 60 + t \% 100$, while also handling overnight flights via a 1440-minute wrap-around. Although this logic is intricate, it does not correspond to the ground-truth interpretation used in our benchmark, where the task is defined clearly as the direct difference $\text{ARR_TIME} - \text{DEP_TIME}$. Thus, a seemingly “overly careful” expression actually moves the answer away from the target computation.

Overall, these qualitative patterns support our main claim that the bottleneck for Text2SQL models on correlation and composite tasks lies in composing the right sequence of SQL operations and expressions, rather than merely recalling individual operators. Models can often identify relevant tables and columns, but they frequently fail to (i) express statistical formulas in valid SQL, (ii) select the correct computational step for the question (e.g., difference vs. comparison), or (iii) align their detailed time and arithmetic handling with the benchmark’s problem formulation.

H STATISTICAL ROBUSTNESS OF FORMAT COMPARISON

In Section 4.2, Table 4 compares four serialization formats and shows that Markdown typically achieves higher accuracies than the alternatives across models and context lengths. Since HTML and JSON do not offer a better accuracy–length trade-off under our settings, the practically relevant choice is between Markdown and CSV: Markdown tends to yield higher accuracy, while CSV is more compact in terms of serialization length. Tables 13 and 14 therefore focus on a direct Markdown–CSV comparison.

Table 13: McNemar χ^2 tests comparing Markdown vs. CSV for three instruction-tuned models on the 8k–64k multi-table QA tasks.

Model	Context	χ^2	p-value
Qwen2.5-7B-Instruct	8k	19.79	8.65×10^{-6}
	16k	42.00	9.11×10^{-11}
	32k	13.32	2.63×10^{-3}
	64k	0.11	0.74
Qwen2.5-Coder-7B-Instruct	8k	0.019	0.89
	16k	3.54	0.060
	32k	22.44	2.17×10^{-6}
	64k	0.11	0.74
Llama3.1-8B-Instruct	8k	1.14	0.29
	16k	4.72	0.030
	32k	1.31	0.25
	64k	0.0	1.0

Table 14: Average accuracy (%) and 95% binomial confidence intervals for Markdown (MD) and CSV formats across models and context scales.

Model	Format	8k	16k	32k	64k
Qwen2.5-7B-Instruct	MD	49.86(47.97-51.75)	50.86(48.97-52.75)	41.57(39.71-43.43)	33.43(31.65-35.21)
	CSV	40.57(38.71-42.43)	36.86(35.04-38.68)	33.71(31.92-35.50)	32.57(30.80-34.34)
Qwen2.5-Coder-7B-Instruct	MD	48.0(46.11-49.89)	47.14(45.25-49.03)	44.86(42.98-46.74)	36.86(35.04-38.68)
	CSV	47.57(45.68-49.46)	43.0(41.13-44.87)	34.43(32.63-36.23)	36.0(34.19-37.81)
Llama3.1-8B-Instruct	MD	46.57(44.68-48.46)	43.0(41.13-44.87)	35.43(33.62-37.24)	35.86(34.05-37.67)
	CSV	44.29(42.41-46.17)	38.71(36.87-40.55)	33.0(31.22-34.78)	35.71(33.90-37.52)

Table 13 reports McNemar χ^2 statistics and p -values for paired per-question correctness between Markdown and CSV for three instruction-tuned models and four context scales. Each question instance is treated as a paired binary outcome (correct / incorrect) for the two formats, and the test is conducted with one degree of freedom. For QWEN2.5-7B-INSTRUCT, the Markdown–CSV gaps are highly significant at 8k, 16k, and 32k ($p \ll 0.01$), but not at 64k, where the two formats have very similar accuracies. QWEN2.5-CODER-7B-INSTRUCT shows a strong and significant Markdown advantage at 32k. In all cases, the large χ^2 values and very small p -values coincide with the largest raw accuracy gaps in Table 4.

Table 14 complements this analysis by reporting point estimates and 95% binomial confidence intervals for the average accuracy of Markdown and CSV at each context scale. The intervals are fairly tight (typically within ± 1 –2.5 percentage points). Whenever McNemar’s test indicates a significant Markdown–CSV difference, the corresponding intervals for Markdown and CSV do not overlap, while in the remaining conditions the intervals overlap substantially, reflecting that the two formats are statistically indistinguishable there. Taken together, these diagnostics confirm that the main

1566 Markdown gains highlighted in Section 4.2 are statistically robust in several core model–context
1567 configurations, while also clarifying that Markdown does not uniformly dominate CSV across all
1568 settings and that CSV remains competitive whenever the accuracy gaps are small. Considering both
1569 accuracy and serialization efficiency—and the severe token overhead of HTML—these results sup-
1570 port our choice of Markdown as a strong default serialization format for TQA-Bench.
1571

1572 I THE USE OF LLMs IN WRITING

1573

1574 We used LLM, namely OPENAI-GPT5, to polish the writing of this manuscript. No other generative
1575 AI functionality is used in the writing of this submission.
1576

1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619