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ABSTRACT

Recently, various personalized federated learning (FL) algorithms have been pro-
posed to tackle data heterogeneity. To mitigate device heterogeneity, a common
approach is to use masking. In this paper, we first show that using random mask-
ing can lead to a bias in the obtained solution of the learning model. To this end,
we propose a personalized FL algorithm with optimized masking vectors called
PerFedMask. In particular, PerFedMask facilitates each device to obtain its opti-
mized masking vector based on its computational capability before training. Fine-
tuning is performed after training. PerFedMask is a generalization of a recently
proposed personalized FL algorithm, FedBABU (Oh et al., 2022). PerFedMask
can be combined with other FL algorithms including HeteroFL (Diao et al., 2021)
and Split-Mix FL (Hong et al., 2022). Results based on CIFAR-10 and CIFAR-100
datasets show that the proposed PerFedMask algorithm provides a higher test ac-
curacy after fine-tuning and lower average number of trainable parameters when
compared with six existing state-of-the-art FL algorithms in the literature. The
codes are available at https://github.com/MehdiSet/PerFedMask.

1 INTRODUCTION

Federated learning (FL) is a distributed artificial intelligence (AI) framework, which allows multiple
edge devices to train a single model collaboratively (Konečnỳ et al., 2015; McMahan et al., 2017).
The model is trained under the orchestration of a central server. In a typical FL algorithm, each
communication round includes the following steps: (1) the edge devices download the latest model
from the server to be used as their local model; (2) each device performs multiple local update
iterations for updating the local model based on its local dataset; (3) the devices upload their updated
local models to the server; (4) the server computes the new model by aggregating the local models.
In practical systems, the devices may have diverse and limited computation, communication, and
storage capabilities. Moreover, the local datasets available to the devices may be different in size,
and contain non-independent and identically distributed (non-IID) data samples across the devices.

Under these heterogeneous settings, the performance of the conventional FL algorithms can de-
grade (Wang et al., 2020; Li et al., 2021). To handle the case when the data is non-IID, some
works (Li et al., 2020a; Karimireddy et al., 2020) have introduced new optimization frameworks
to obtain a more stable global model for the devices. Another approach to address the data het-
erogeneity issue is by designing a personalized model for each device (Arivazhagan et al., 2019;
Fallah et al., 2020; Collins et al., 2021; Oh et al., 2022). In personalized FL algorithms, instead of
obtaining a single model for all the devices, an initial model is obtained. This initial model can then
be personalized for each device using its local data samples.

To overcome the computation limitation of the heterogeneous devices, one common approach is
to use masking vectors. Masking vectors can be used to train only a sub-network of the learn-
ing model for each device based on the computational capability of that device. Masking vectors
can be combined with pruning and freezing methods. Pruning methods utilize masking vectors to
keep the important parameters of the learning model and remove those which are unimportant from
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Figure 1: Illustration of an FL system using PerFedMask. The model is decoupled into a global model and a
local head model. The local head model remains unchanged during training. The devices collaboratively train
the global model. Some parts of the global model can be frozen for the devices during local updates using the
optimized masking vectors. After training, a personalized model is obtained for each device by fine-tuning.

the model architecture. However, leveraging pruning in FL may incur additional communication
overhead (Babakniya et al., 2022; Bibikar et al., 2022). Moreover, it results in different model ar-
chitectures for the devices (Guo et al., 2016). This may lead to accuracy loss, particularly when data
heterogeneity exists in the system (Hong et al., 2022). In the freezing methods, the masking vectors
are used to freeze some parts of the learning model for each device. Unlike pruning, the masked
parameters are not removed but are frozen during local updates. Hence, a more stable FL algorithm
is obtained without changing the learning model architecture. Sidahmed et al. (2021) and Pfeiffer
et al. (2022) have shown that freezing methods can reduce the computational and communication
resources required for training the learning model in FL. However, the aforementioned works use
heuristic approaches for designing the masking vectors, and do not provide a theoretical analysis for
their choice. Also, the aforementioned works do not address the data heterogeneity issue in their
proposed algorithms. In this work, we aim to answer the following question: By exploiting freezing
method in FL, what is a systematic approach to determine the masking vectors which can improve
the final test accuracy in a setting with data and device heterogeneities?

We first show that using the masking vectors to freeze the model parameters for the devices may
lead to a bias in the convergence bound. This bias can hinder the success of employing masking
vectors to tackle the device heterogeneity issue in FL. Using the insights from our analysis, we pro-
pose PerFedMask, Personalized Federated Learning with Optimized Masking Vectors (see Fig. 1).
Specifically, by decoupling the learning model into a global model and a local head model, we first
freeze the local head model for all the devices. Then, we freeze a portion of the global model for
each device based on its computational capability. In our work, the masking vectors are determined
before training through minimizing the bias term in the convergence bound. The bias can be miti-
gated by this approach. However, it may not be eliminated completely. Thus, after training of the
global model, the frozen parameters of the local head model can assist to fine-tune the entire learn-
ing model for each device. We demonstrate empirically the effectiveness of PerFedMask under the
heterogeneous settings when compared with six existing state-of-the-art FL algorithms.

PerFedMask has several distinct advantages: (1) PerFedMask generalizes the recently proposed
personalized FL algorithm, FedBABU (Oh et al., 2022). In particular, FedBABU is a special case
of PerFedMask when all the devices have the same computational capability. (2) PerFedMask is
flexible. Since PerFedMask does not change the model architecture, it can be combined with other
FL algorithms such as HeteroFL (Diao et al., 2021) and Split-Mix FL (Hong et al., 2022) to further
improve the performance. (3) PerFedMask can address the objective inconsistency problem, which
arises due to different number of local update iterations. Unlike FedNova (Wang et al., 2020) which
requires the modification of device optimizers to tackle this issue, in PerFedMask, we consider the
same number of local update iterations for all the devices, while adjusting the required number of
computations for those devices with lower computational capabilities.

2 RELATED WORK

FL Algorithms with non-IID Data. FedAvg (McMahan et al., 2017) is the most popular FL algo-
rithm, which aims to find a single model for all the devices. However, the local data samples at the
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devices are usually non-IID, which can lead to data heterogeneity among the devices. To address
this problem, Li et al. (2020a) proposed FedProx by introducing a proximal term in the objective
function. However, this method does not attempt to find a personalized model for each device.
To tackle this issue, different personalized FL algorithms have been proposed (Arivazhagan et al.,
2019; Fallah et al., 2020; Collins et al., 2021; Oh et al., 2022) and most of them utilize fine-tuning
to obtain a higher accuracy. In particular, after training, each device uses its local data samples to
fine-tune the obtained model by performing several iterations of stochastic gradient descent (SGD).
Personalization by fine-tuning may be limited if we focus on increasing the performance of a single
model across all devices (Deng et al., 2020; Oh et al., 2022). Oh et al. (2022) proposed FedBABU,
where after decoupling the learning model into a global model and a local head model, the same
randomly initialized local head model is considered for all the devices. In FedBABU, the local head
model is not updated during training. Nevertheless, the aforementioned methods are not designed
specifically to tackle the device heterogeneity issue.

FL Algorithms with Heterogeneous Devices. Since different types of devices (e.g., smartphones,
tablets, laptops) may participate in FL, the devices’ capabilities vary from one another. Pruning
method is one approach to address the device heterogeneity issue. Jiang et al. (2022); Babakniya
et al. (2022); Bibikar et al. (2022) proposed different algorithms for consistent mask adjustment at
the devices and mask aggregation at the server during training. Some works have considered static
pruning at initialization (i.e., before training). Diao et al. (2021) proposed HeteroFL, where the local
model parameters for each device are considered to be a subset of the learning model parameters.
Hong et al. (2022) proposed Split-Mix FL, where a large model is split into several small base sub-
networks according to the model width. Each device selects some of the base models for training. In
general, the efficiency of different pruning techniques for obtaining an appropriate masking vector
even in the centralized machine learning setting is still under investigation (Liu et al., 2022). Since
the pruned connections are no longer available in the model architecture, pruning at initialization
may inevitably degrade the performance of FL algorithms. Freezing method is another approach to
address the device heterogeneity issue. Sidahmed et al. (2021); Chen et al. (2021); Pfeiffer et al.
(2022) proposed different algorithms, where the masking vectors are used to freeze a portion of the
learning model for each device in FL. Hence, while the required computation and communication
resources can be reduced for each device, a more stable FL algorithm is obtained without changing
the learning model architecture. In this paper, we apply freezing method in FL. We leverage the
optimized masking vectors and fine-tuning to address both data and device heterogeneity issues.
Appendix A contains a full discussion of the related work.

3 PROBLEM SETTING

We consider one server and N edge devices. Each device n ∈ [N ] = {1, 2, . . . , N} has its own
set of local data samples Dn. In a supervised learning setting, each device aims to find a learning
model θn ∈ Rdθ for predicting the true label yn given the input xn, (xn, yn) ∈ Dn, where dθ
denotes the dimension of the learning model. Let fn(θn) represent the expected loss over the data
distribution of device n. We have fn(θn) = E(xn,yn)∼pnL(θn;xn, yn), where L(θn;xn, yn) is the
loss function that measures the prediction error of θn over data samples (xn, yn) ∈ Dn, and pn is
the distribution over Dn. Formally, the optimization problem min

θ

1
N

∑N
n=1 fn(θ) is solved in the

conventional FL. All our results can easily be extended to the weighted averaging case, where the
devices have different size of data samples. In this work, we study both data and device heterogeneity
issues using model personalization and masking vectors.

Model Personalization. In the heterogeneous data setting, the probability distribution pn varies
across the devices. Unlike conventional FL problems, to obtain a more personalized solution for
each device, the learning models θn, n ∈ [N ], are not equal to each other. Similar to FedBABU (Oh
et al., 2022), we decouple each learning model θn into a global representation model wg ∈ Rdw
and a device-specific head model ϕn ∈ Rdϕ , where dw and dϕ denote the dimensions of the global
model and local head model, respectively. We have dw+dϕ = dθ. To further improve accuracy after
training, we freeze the local head model parameters during training. In particular, before training,
ϕg is initialized randomly by the server to be used for initialization of all the devices’ local head
models. We have ϕn = ϕg , n ∈ [N ]. ϕn remains unchanged during training until the convergence
is reached for the global model wg . The global model is obtained by minimizing the objective
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function F ({wg,ϕg}) = 1
N

∑N
n=1 fn({wg,ϕn}) throughout all the communication rounds, where

the operator {., .} denotes the concatenation of the learning model parameters. Since ϕg and ϕn are
never updated during training, with some abuse of notation, we consider the objective function as
F (wg) =

1
N

∑N
n=1 fn(wg). After convergence of wg , each device n obtains its personalized local

head model ϕn by fine-tuning the learning model θn using its local data samples.

Masking Vectors. In the heterogeneous device setting, devices vary in their computational and
communication capabilities. We consider that in each communication round, the devices perform τ
local update iterations. When deploying the same local models on all the devices, some devices with
limited computational capability are not able to complete τ local update iterations and send their final
local models to the server for aggregation in a timely manner. To address the device heterogeneity
issue, masking vectors are used to freeze a part of the local model parameters by customization. A
masking vector mn ∈ {0, 1}dw is selected for each device n ∈ [N ] based on its computational
capability. During local update iterations, each device n only updates those parameters in the global
model that correspond to non-zero values of the masking vector mn. Other parameters, which
correspond to the elements of mn with zero values, are frozen during local updates. Note that in
FedBABU (Oh et al., 2022), all the elements of vector mn are equal to one for all devices n ∈ [N ].

Let wi
n(t) denote the local model of device n at the beginning of local update iteration i in com-

munication round t. At initialization (i.e., i = 1), we set w1
n(t) = wg(t). At local update iteration

i > 1, the local model of device n is updated using SGD as follows:
wi+1
n (t)← wi

n(t)− η(t)mn ⊙∇fn(wi
n(t), b

i
n(t)), i = 1, . . . , τ, (1)

where ⊙ denotes the element-wise product, η(t) is the learning rate, and bin(t) is the local batch
sample chosen uniformly at random from the local dataset Dn. After performing τ local update
iterations, each device n sends its final local model, i.e., wτ+1

n (t) to the server. We have

wτ+1
n (t) = wg(t)− η(t)mn ⊙

τ∑
i=1

∇fn(wi
n(t), b

i
n(t)). (2)

Algorithm 2 in Appendix B describes the DeviceLocalUpdate function based on (1) and (2). In the
aggregation step, we consider that the server aggregates the received final local models by taking the
masking vectors of the devices into account. The global model for the next communication round
can thus be determined through stable aggregation of unfrozen parameters, as follows:

wg(t+ 1) =
∑

n∈N (t)

kn ⊙wτ+1
n (t), (3)

where (kn)l = (mn)l∑
n′∈N(t) (mn′ )l

denotes the l-th element of vector kn. N (t) denotes the set of
devices participating in training in communication round t. Specifically, the server selects a fraction
c of N devices at random as participating devices in each communication round. For each device n,
vector kn is obtained as a normalized masking vector using the vectors mn, n ∈ N (t). Using kn in
(3) indicates that the server only aggregates the updated parameters from the participating devices.

4 THEORETICAL RESULTS ON THE CONVERGENCE RATE OF THE GLOBAL
MODEL

In this section, we analyze the convergence rate of the global model when masking vectors are
used by the devices. Without loss of generality, we focus on non-convex loss functions. We also
present the convergence results for strongly convex loss functions in Appendix C. In both cases, we
assume that the loss functions are smooth. For simplicity, we obtain our convergence results for the
full device participation scenario1 (i.e., c = 1, N (t) = [N ] for all t). The analysis relies on the
following assumptions, which are commonly used for obtaining the convergence rate of different
FL algorithms in the literature (Li et al., 2020b; Reddi et al., 2021; Amiri et al., 2022).
Assumption 1. The function fn(w), n ∈ [N ], is L-smooth and satisfies:∥∥∇fn(wi

n(t))
∥∥2 ≤ 2L

(
fn(w

i
n(t))− f∗n

)
, n ∈ [N ], i = 1, . . . , τ, ∀t, (4)

where f∗n denotes the minimum value of fn(w).
1Using the techniques presented in Li et al. (2020b); Karimireddy et al. (2020), the extension to the general

case (i.e., c ≤ 1) would be straightforward.
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Assumption 2. ∇fn(wi
n(t), b

i
n(t)) is an unbiased stochastic gradient of function fn(w). The vari-

ance of the masked stochastic gradients is bounded for each device n ∈ [N ]. We have

E
∥∥kn ⊙∇fn(wi

n(t), b
i
n(t))− kn ⊙∇fn(wi

n(t))
∥∥2 ≤ ξ2n, n ∈ [N ], i = 1, . . . , τ, ∀t. (5)

Assumption 3. The expected squared l2-norm of the masked stochastic gradients for all the devices
is uniformly bounded. We have

E
∥∥mn ⊙∇fn(wi

n(t), b
i
n(t))

∥∥2 ≤ G2, n ∈ [N ], i = 1, . . . , τ, ∀t. (6)

When the masking vectors are determined based on the computational capability of the devices, we
define the term γn = maxl (kn)l to quantify the degree of device heterogeneity in the network. Note
that in the full device participation scenario, 1

N ≤ γn ≤ 1, n ∈ [N ]. In addition, γn is inversely
proportional to the minimum non-zero element of the vector

∑N
n′=1 mn ⊙mn′ . Hence, larger γn

implies a higher degree of device heterogeneity for device n ∈ [N ]. We first present the following
lemma, which is derived using Theorem 3 in Fang et al. (1994). From Lemma 1, we can quantify
the impact of freezing the parameters by masking vectors on the convergence bound.
Lemma 1. The following inequality holds for any vectors x and z ∈ Rd, for which there exists
Q > 0 satisfying |minl (x⊙ z)l| ≤ Q, and for any vector y ∈ Rd:

⟨x,y ⊙ z⟩ ≤ max
l

(y)l ⟨x, z⟩+Q

(
dmax

l
(y)l −

d∑
l=1

(y)l

)
, (7)

where ⟨., .⟩ denotes the inner product operator in Rd.

We use Lemma 1 to prove the following theorem concerning the device heterogeneity effect on the
FL convergence bound. Devices with lower computational capability partially train the global model
due to the zero-valued elements in their masking vectors. We show that employing the masking
vectors to address the device heterogeneity issue in FL leads to a bias term in the convergence
bound. However, it does not affect the convergence rate.
Theorem 1. Under Assumptions 1−3, and for smooth and non-convex loss functions, if the total
number of communication rounds T is pre-defined and the learning rate η(t) is small enough such
that η(t) = η ≤ 1

LN2τ , we have

1

T

T∑
t=1

E∥∇F (wg(t))∥2 ≤
2

ητT
(F (wg(1))− F ∗) + LNτη

N∑
n=1

ξ2n

+ 2Ψ

N∑
n=1

(
dwγn −

dw∑
l=1

(kn)l

)
+ L2η2G2 (τ − 1)(2τ − 1)

6
, (8)

where Ψ is a constant satisfying
∣∣maxl

(
∇fn(wi

n(t))⊙∇F (wg(t))
)
l

∣∣ ≤ Ψ for all n ∈ [N ], i =
1, . . . , τ , and t = 1, . . . , T . F ∗ = F (w∗), where w∗ is the global optimal point. L, ξ2n, and G are
constants defined in Assumptions 1−3.

The proof for Lemma 1 and Theorem 1 can be found in Appendices D and E, respectively.

Remark 1. By employing the masking vectors in FL, the term
∑N
n=1

(
dwγn −

∑dw
l=1 (kn)l

)
ap-

pears on the right-hand side of (8). Since this term does not scale with the number of communication
rounds T , it is considered as a bias term, which remains as a residual in the convergence bound.
Hence, those FL algorithms, which use masking vectors to reduce the computational and communi-
cation costs for the devices, may converge to a local minimum of the objective function F (wg). In

PerFedMask, we design the masking vectors by minimizing
∑N
n=1

(
dwγn −

∑dw
l=1 (kn)l

)
to miti-

gate the performance degradation due to this bias term. In Appendix F, we present a simple example
to gain insight regarding the selection of masking vectors by minimizing the bias term.

5 OUR PROPOSED ALGORITHM

In this section, we propose a novel algorithm called PerFedMask, which aims to mitigate the perfor-
mance degradation caused by bias described in Remark 1 through: (1) systematically designing the
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Algorithm 1: Training Procedure of PerFedMask
1: Input: Local datasets Dn; maximum number of trainable parameters ψn, n ∈ [N ]; the number of local

epochs E; the number of local batches B; participation ratio c.
2: Initialize the learning rate η(1) and initialize randomly θg(1) : = {wg(1),ϕg}. # Model initialization
3: “Server Operation”
4: Select masking vector mn for each device n by solving Pmask. # Optimized masking using (9a)−(9d)
5: for each communication round t ∈ {1, . . . , T} do
6: N (t)← Random subset of max (cN, 1) devices. # Selection of participating devices
7: for each device n ∈ N (t) in parallel do
8: wτ+1

n (t) = DeviceLocalUpdate(wg(t),ϕg,mn, fn,Dn, η(t)). # Local updates using eqn. (1)
9: end for

10: wg(t+ 1) =
∑

n∈N (t) kn ⊙wτ+1
n (t). # Aggregation at the server using eqn. (3)

11: Update η(t).
12: end for
13: “Client Operation”
14: for each device n ∈ [N ] in parallel do
15: Fine-tune the learning model θn: = {wg(T + 1),ϕn} using training data samples Dn. # Fine-tuning
16: end for

masking vectors via an optimization framework, and (2) fine-tuning the local head models. First,
each device determines the maximum number of parameters which can be trained during local up-
date iterations based on its computational capability2. These values are sent to the server. The server
then determines the masking vector for each device before training.

Let ψn denote the maximum number of parameters that can be trained by device n ∈ [N ], where
ψn ≤ dw. Given ψn, the server determines the masking vector mn for each device n before
training by minimizing the bias term. Here, we present the formulation of layer-wise masking3,
which decides whether or not to freeze all the parameters in each layer of the global model. We
adopt layer-wise masking since most of the current machine learning frameworks such as PyTorch
(PyTorch, 2022) and TensorFlow (Abadi et al., 2016) run at the granularity of a full tensor, with no
APIs which can provide parameter freezing at a finer granularity. Also, by considering layer-wise
masking, the number of optimization variables can be reduced. Thus, the complexity of obtaining
the masking vectors can also be reduced accordingly. Let Λ and |Λ| denote the set and number of
layers in the global model, respectively. Let πj and |πj | denote the set and number of parameters
in layer j ∈ Λ, respectively. We define m̃n ∈ {0, 1}|Λ| as the layer-wise masking vector. If
(m̃n)j = 1, then all the elements (mn)l, l ∈ πj are equal to one. In PerFedMask, the following
optimization problem is solved by the server to obtain the masking vectors for the devices:

Pmask : minimize
m̃n, ϵn, n∈[N ]

N∑
n=1

dw max
j∈Λ

(k̃n)j −
∑
j′∈Λ

|πj′ |(k̃n)j′ + ϵn


subject to (k̃n)j =

(m̃n)j∑N
n′=1 (m̃n′)j

, j ∈ Λ, n ∈ [N ], (9a)∑
j∈Λ

|πj |(m̃n)j = ψn − ϵn, n ∈ [N ], (9b)

(m̃n)j ∈ {0, 1}, j ∈ Λ, n ∈ [N ], (9c)
ϵn ≥ 0, n ∈ [N ], (9d)

where ϵn is a slack variable, which prevents to train more than ψn parameters for each device n
in the layer-wise masking. Problem Pmask is a mixed-integer nonlinear program, which is NP-hard
and difficult to solve. In Appendix H, we show how to obtain a close-to-optimal solution by using
successive convex approximation (Shen et al., 2016) and MOSEK solver (MOSEK ApS, 2022).
Algorithm 1 summarizes the training procedure of PerFedMask.

2Using the curves similar to those in Fig. 3 in Appendix G, each device can determine its maximum number
of trainable parameters.

3Random layer-wise masking has been considered in Sidahmed et al. (2021); Pfeiffer et al. (2022).
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6 EXPERIMENTAL RESULTS

6.1 EXPERIMENT SETUP

Datasets and Model Architectures. We conduct our experiments on CIFAR-10 and CIFAR-100
image classification tasks4. Our experiments are performed with ResNet (PreResNet18) (He et al.,
2016) for CIFAR-10, and with MobileNet (Howard et al., 2017) for CIFAR-100. In both cases, we
set the number of devices to 100. The data samples are uniformly divided among the devices. Each
device has 450 training data samples, 50 validation data samples, and 100 test data samples. The
batch size is set to 50. To enable non-IID data partitioning among the devices, we distribute 3 and
10 classes per device for CIFAR-10 and CIFAR-100 datasets, respectively. The same classes are
considered in the training, validation, and test datasets.

Implementation Details. We denote the fraction of devices with the maximum computational capa-
bility by ν. That is, ν represents the ratio of devices which can completely update the entire global
model during the local update iterations. Those devices are able to train×1 parameters of the global
model. Since the remaining devices have lower computational capability, they should mask some
parts of the global model during the local update iterations based on their capabilities. Unless stated
otherwise, we set ν = 0.5. For all the experiments, the learning rate starts with 0.1 and is decayed
by a factor of 0.1 in communication round t ∈ { 12T,

3
4T}. Similar to FedBABU (Oh et al., 2022),

we fix the product of the local epochs E and the maximum number of communication rounds T to
320. After T communication rounds, we choose the model with the maximum validation accuracy
and perform 5 local update iterations for fine-tuning the learning model using each device’s local
training data samples. We perform the experiments using PyTorch library (PyTorch, 2022) in Python
3.7. We apply layer-wise masking in our experiments.

Baselines. We compare the performance of our proposed algorithm, PerFedMask, with the follow-
ing FL algorithms: FedBABU (Oh et al., 2022) and FedProx (Li et al., 2020a), which have been
proposed to tackle data heterogeneity; FedNova (Wang et al., 2020), which has been proposed to ad-
dress objective inconsistency problem; HeteroFL (Diao et al., 2021) and Split-Mix FL (Hong et al.,
2022), which have been proposed to tackle device heterogeneity in the non-IID data settings.

Performance Metrics. We consider the test accuracy as one of the performance metrics. Fine-
tuning steps are performed for PerFedMask and FedBABU algorithms to personalize the learning
model and obtain the local head model for each device. For fair comparison, the obtained learning
model has been also fine-tuned for each device in the other FL algorithms. Thus, we report the
test accuracy before and after fine-tuning. We also assess the average number of floating-point
operations (FLOPs) in each communication round for both the forward and backward propagation
paths to show the required computation for the algorithms. We use PyPAPI (PyPAPI, 2017) to
obtain the number of FLOPs. Since the average number of trainable parameters is equal to the
average number of parameters transmitted from the devices to the server in each communication
round, we report this number to show the communication cost of each FL algorithm.

6.2 BENCHMARK EXPERIMENTS

We consider a heterogeneous device setting, where half of the devices (i.e., devices with maximum
computational capability) perform four local epochs (i.e., E = 4). Due to the limited computational
capability, the remaining devices perform two local epochs for updating all the parameters. Using
PerFedMask, instead of considering different local epochs for the devices, we address the device
heterogeneity issue by freezing some parts of the global model for those devices with lower compu-
tational capability. For fair comparison, the number of frozen parameters are selected in a way such
that the considered algorithms have the same number of FLOPs for each device.

Performance Comparison with the Baselines. Table 1 shows the obtained test accuracy after
fine-tuning and the number of trainable parameters for CIFAR-10 and CIFAR-100 datasets 5. Our
observations are as follows: (1) our proposed algorithm, PerFedMask, has comparable performance

4We also use AlexNet on DomainNet dataset (Li et al., 2021) and provide the results in Appendix I to show
the performance under feature non-IID configuration.

5We show some of the training curves in Appendix J. Also, in Appendix K, we present additional statistics
for some of the results in Table 1.
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Table 1: Test accuracy after fine-tuning and number of trainable parameters of PerFedMask and the baseline
algorithms for CIFAR-10 and CIFAR-100 datasets

Test accuracy after fine-tuning
Dataset c PerFedMask (Ours) FedBABU FedProx FedNova HeteroFL Split-Mix FL FedAvg

CIFAR-10 1 88.43 88.20 84.96 84.26 87.33 85.56 84.99
0.1 83.60 84.27 74.55 71.88 73.34 77.76 71.19

CIFAR-100 1 72.40 69.01 64.63 65.24 68.65 65.95 65.27
0.1 67.47 66.32 59.36 60.42 65.87 62.35 59.12

Number of trainable parameters
Dataset PerFedMask (Ours) FedBABU FedProx FedNova HeteroFL Split-Mix FL FedAvg

CIFAR-10 6.138M 11.167M 11.172M 11.172M 5.674M 0.793M 11.172M
CIFAR-100 1.803M 3.207M 3.309M 3.309M 1.774M 0.223M 3.309M

to FedBABU and outperforms the other baselines in terms of test accuracy after fine-tuning. (2) By
increasing the number of devices participating in FL (i.e., by increasing c), a higher test accuracy can
be achieved. (3) PerFedMask, HeteroFL, and Split-Mix FL can provide lower number of trainable
parameters. Split-Mix FL has the lowest number of trainable parameters because it trains several
low-width base models instead of the original learning model. (4) Different number of local update
iterations for the devices may lead to the objective inconsistency problem. PerFedMask, HeteroFL,
and Split-Mix FL algorithms can address this problem by decreasing the number of FLOPs for the
less capable devices. Thus, the same number of local update iterations can be considered for all the
devices. Also, this problem is tackled in FedNova through modifying the optimizer. However, other
algorithms suffer from the objective inconsistency problem, which may degrade their performance.

Combining PerFedMask with HeteroFL and Split-Mix FL. Table 2 shows the performance re-
sults for PerFedMask and its combination with HeteroFL and Split-Mix FL algorithms. Table 2 also
shows the performance results for FedBABU, HeteroFL, and Split-Mix FL algorithms. The number
of FLOPs for forward and backward indicates the number of required computations in the forward
and backward propagation paths, respectively. In general, backpropagation dominates the computa-
tional cost during training of a learning model (Xu et al., 2022). In PerFedMask, by using masking
vectors, there is no need to compute the partial derivative of the objective function with respect to the
frozen parameters. Although PerFedMask has reduced the number of trainable parameters and the
backward FLOPs, it can still achieve higher test accuracy compared to other algorithms including
FedBABU. Since PerFedMask does not change the architecture of the learning model, it can easily
be combined with other FL algorithms. Table 2 shows that combining PerFedMask with Split-Mix
FL and HeteroFL algorithms can further reduce the number of FLOPs in the backward path and the
number of trainable parameters. This combination provides a higher test accuracy after fine-tuning
than Split-Mix FL and HeteroFL algorithms.

Table 2: Performance comparison on CIFAR-10 dataset when c = 1. Results for CIFAR-100 dataset can be
found in Appendix L.

Algorithm Test accuracy # of trainable parameters # of FLOPs
Before fine-tuning After fine-tuning Forward Backward

PerFedMask + Split-Mix FL 51.88 87.74 0.691M 0.178G 0.514G
PerFedMask + HeteroFL 69.44 87.79 5.473M 1.111G 1.721G

PerFedMask 70.14 88.43 6.138M 2.182G 2.697G
Split-Mix FL 57.96 85.56 0.793M 0.178G 0.541G

HeteroFL 62.58 87.33 5.674M 1.111G 1.749G
FedBABU 69.27 88.20 11.167M 2.182G 3.466G

6.3 ABLATION STUDIES

Effect of Fine-Tuning Steps. We investigate the impact of the number of fine-tuning steps on the
final test accuracy of PerFedMask and FedBABU 6. Fine-tuning steps equal to zero means the test
accuracy is obtained before fine-tuning. Also, since the number of batches for each device’s training
dataset is equal to 9, increasing the fine-tuning steps by one leads to 9 more local update iterations.
Results from Table 3 show that similar to FedBABU, PerFedMask can achieve better accuracy with

6We also investigate the effect of freezing the local head models in Appendix M.
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a small number of fine-tuning steps. This characteristic is important when fine-tuning is restricted
or costly for the devices.

Table 3: Performance according to fine-tuning steps when c = 1

Dataset Algorithm Fine-tuning steps
0 2 4 6 8 10

CIFAR-10 PerFedMask 70.14 88.78 88.69 88.35 88.25 88.30
FedBABU 69.27 88.63 88.38 88.43 88.12 87.92

CIFAR-100 PerFedMask 32.04 72.62 72.84 72.48 72.11 72.40
FedBABU 29.70 69.03 69.15 68.86 68.83 68.81

Effect of Increasing the Number of Devices with Maximum Computational Capability. We
investigate the impact of increasing ν on the performance of PerFedMask in Table 4. More devices
in the network are able to train the entire global model as ν increases. This leads to an increase in the
number of trainable parameters and number of backward FLOPs in PerFedMask. We can observe
that by increasing ν, the test accuracy before fine-tuning is improved. Note that PerFedMask can
provide a comparable test accuracy after fine-tuning even for ν = 0.2, when compared with the case
in which all devices have the maximum computational capability (i.e., ν = 1).

Table 4: Results of increasing ν for CIFAR-100 dataset when c = 1.

Algorithm ν
Test accuracy # of trainable parameters # of backward FLOPsBefore fine-tuning After fine-tuning

PerFedMask

0.2 29.29 72.07 0.941M 0.617G
0.4 32.31 74.33 1.518M 0.675G
0.6 32.79 72.82 2.095M 0.741G
0.8 33.59 72.64 2.647M 0.803G
1.0 34.73 73.76 3.207M 0.863G

Effect of Masking Vectors Design. In Table 5, we consider three masking approaches: in sequential
masking, the layers are masked sequentially; in random masking, the layers are masked randomly;
and in optimized masking, the layers are masked by solving problem Pmask. Optimized masking
minimizes the bias described in Remark 1. As shown in Table 5, optimized masking can provide
lower training loss and higher training and test accuracies. These results are compatible with our
theoretical analysis. As shown in Table 5, PerFedMask enhances FL performance before fine-tuning
by employing optimal masking vectors. The final test accuracy can then be improved by fine-tuning.

Table 5: Results of different approaches for masking vectors design for CIFAR-100 dataset
when c = 1 and ν = 0.2.

Design approach Bias Training loss Training accuracy Test accuracy before fine-tuning
Sequential masking 3.364M 2.324 50.11 27.02
Random masking 0.609M 1.706 64.40 28.88

Optimized masking 0.204M 1.648 66.63 29.84

7 CONCLUSION

In this work, we proposed a flexible and easy to implement personalized FL algorithm called PerFed-
Mask. We provided theoretical and empirical grounds to justify the utility of PerFedMask in het-
erogeneous data and device settings. In particular, PerFedMask employs (1) optimized masking
vectors obtained by minimizing the bias term in the convergence bound, and (2) fine-tuning. The
masking vectors are exploited to freeze some parts of the global model for each device based on its
computational capability. Fine-tuning is performed by each device after training to improve the final
test accuracy. When compared with some existing state-of-the-art FL algorithms, PerFedMask can
achieve higher test accuracy. It can also decrease the average number of trainable parameters and
the average number of FLOPs in each communication round without changing the learning model
architecture. A future direction is to consider freezing priority for different layers in the neural net-
work architecture. For example, in Frankle et al. (2021), it has been shown that batch normalization
layers in convolutional networks are important to be considered as the trainable parameters. Also,
the approach of masking vectors design in this work can be emulated in pruning methods.
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A RELATED WORK

FL Algorithms with non-IID Data. In FedAvg (McMahan et al., 2017), the edge devices perform
multiple local update iterations on their local models before sending them to the server for aggre-
gation. In this way, the communication cost can be reduced. When there is data heterogeneity,
conventional FL algorithms such as FedAvg may have slow and unstable convergence (Karimireddy
et al., 2020). To handle the case when the data is non-IID, some works (Li et al., 2020a; Karim-
ireddy et al., 2020) have introduced new optimization frameworks to obtain a more stable model
for the devices. Although the obtained model may still perform well on average across the devices,
some of the devices may not be satisfied with the obtained final accuracy (Collins et al., 2021). To
address this issue, more personalized models are required for the devices. The personalized models
can be obtained by using different methods such as meta-learning (Fallah et al., 2020), multi-task
learning (Marfoq et al., 2021), clustering (Mansour et al., 2020), and decomposition. In the decom-
position method, the learning model is decomposed into a global model and a device-specific head
model (Arivazhagan et al., 2019; Collins et al., 2021). In each communication round, the global
model is updated by the devices and is aggregated by the server, whereas the head model is updated
by each device but is not transmitted to the server. Oh et al. (2022) proposed FedBABU using the
decomposition method. To improve the personalization ability, in FedBABU, the local head model
parameters are frozen during training. After convergence to a global model, each device updates the
local head model parameters during the fine-tuning steps by using its local data samples.

FL Algorithms with Heterogeneous Devices. Given the disparities in devices’ hardware, it is cru-
cial to address device heterogeneity in FL. In general, this problem can be tackled by reducing the
computational complexity of model training based on the devices’ hardware capabilities. Lin et al.
(2020); Afonin & Karimireddy (2022) proposed FL algorithms using knowledge distillation, which
aim to generate compact models by transferring knowledge of a large model to smaller ones. Prun-
ing method, where a compact model for each device can be obtained by removing the parameters
with little impact on the performance of the original learning model, is another approach to accom-
modate device heterogeneity in FL. Due to the dynamic sparse training, pruning method may suffer
from instability in convergence for finding the sparse masking vectors, which are used for training
the sparse sub-networks at the devices. This issue can be resolved by consistent mask adjustment
procedure at the devices, at the expense of additional communication overhead (Jiang et al., 2022;
Babakniya et al., 2022; Bibikar et al., 2022). The ordered dropout technique has been proposed in
Horvath et al. (2021) to dynamically adapt the model size used by each device based on its capabil-
ities. Another pruning method that does not require additional communication cost is to use a fixed
masking vector for each device before training based on its computational capability. This would
result in training of the heterogeneous local models for the devices. In this regard, HeteroFL (Diao
et al., 2021) aims to facilitate efficient training and stable aggregation of devices’ local models.
However, the available local data samples at the devices may not be used efficiently in HeteroFL.
In particular, HeteroFL considers different model architectures as the local models for the devices.
Thereby, the available data samples at each device can be used only for training a specific model
architecture. In Split-Mix FL (Hong et al., 2022), based on its computational capability, each device
randomly selects some of the base models in each communication round to train them. After train-
ing, by using ensemble learning approach, each device mixes the selected base models to construct
its desired model size. The potential drawback of this approach is that none of the devices train the
original learning model.

Another line of research is related to the objective inconsistency problem in FL. Due to the differ-
ent size of the devices’ local dataset and their computational capability, some of the devices may
finish their local update iterations faster. To prevent the devices from being idle, Wang et al. (2020)
proposed to let those faster devices continue their local update iterations until the slowest device
finishes its local update. FedNova is proposed by Wang et al. (2020) to resolve the objective incon-
sistency problem due to different number of local update iterations. Another approach is to consider
the same number of local update iterations for all the devices. However, to enable all the devices to
finish their local update iterations in a timely manner, the required number of computations should
be adjusted for those devices with lower computational capabilities. Our proposed algorithm as well
as other FL algorithms which aim to adjust the required computations for each device based on its
computational capability can be employed to address the objective inconsistency problem. This part
is for aligning the last page of References. This part is for aligning the last page of References. This
part is for aligning the last page of References. This part is for aligning the last page of References.
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B LOCAL UPDATES AT DEVICES

Algorithm 2: Local Update Function
1: function DeviceLocalUpdate(wg,ϕg,m, f, D, η) # Local update iterations for each device
2: B ← Split local data samples D into B local batches.
3: i := 1, and wi ← wg .
4: for each local epoch e ∈ {1, . . . , E} do # The total number of local update iterations τ = E ×B
5: for each batch b ∈ B do
6: wi+1 ← wi − ηm⊙∇f(wi, b).
7: i := i+ 1.
8: end for
9: end for

10: Return wi

11: end function

C CONVERGENCE ANALYSIS FOR STRONGLY CONVEX LOSS FUNCTIONS

To show the convergence of PerFedMask for smooth and strongly convex loss functions, in addition
to Assumptions 1−3, we make the following assumption:

Assumption 4. fn(w), n ∈ [N ], is µ-strongly convex and satisfies:

fn(v) ≥ fn(w) + (v −w)T∇fn(w) +
µ

2
∥v −w∥2 , ∀v,w, n ∈ [N ]. (10)

To quantify the degree of data heterogeneity at each device n ∈ [N ], the term Γn = fn(w
∗)− f∗n is

defined (Li et al., 2020b). Let δ(t) = E∥wg(t)−w∗∥2. We first prove the following useful lemma.

Lemma 2. Under Assumptions 1−4, if the learning rate is small enough, i.e., η(t) ≤ 1
L(Nτ+1) , for

all t = 1, . . . , T , we have

δ(t+ 1) ≤ (1− q0 η(t)) δ(t) + q1 η(t) + q2 η
2(t), (11)

where

q0 ≜
1

2
µτ

N∑
n=1

γn, (12)

q1 ≜ 2τΥ
N∑
n=1

(
γn −

1

N

)
+ 2τΩ

N∑
n=1

(
dwγn −

dw∑
l=1

(kn)l

)
, (13)

q2 ≜ G2 τ(τ − 1)(2τ − 1)

6
(2 + µ)

N∑
n=1

γn + 2Lτ

N∑
n=1

γn (2 +Nτγn) Γn +Nτ2
N∑
n=1

ξ2n, (14)

and Ω and Υ should satisfy
∣∣minl

((
w∗ −wi

n(t)
)
⊙∇fn(wi

n(t))
)
l

∣∣ ≤ Ω, for all n ∈ [N ], i =

1, . . . , τ, t = 1, . . . , T and
∣∣minn∈[N ] (fn(wg(t))− fn(w∗))

∣∣ ≤ Υ, t = 1, . . . , T , respectively.

Proof. See Appendix N.

Using Lemma 2, we can state the following theorem for the convergence rate of smooth and strongly
convex loss functions:

Theorem 2. Given Assumptions 1−4, if we choose κ = 2L
q0

(Nτ + 1) and the learning rate η(t) =
2

q0(t+κ)
, under the full device participation scenario (i.e., c = 1), after T communication rounds,

we have

EF (wg(T ))− F ∗ ≤ Lq1
q0

+
L

2 (T + κ)

(
4q2
q20

+ (κ+ 1) δ(1)

)
. (15)
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Proof. See Appendix O.

Remark 2. The first term on the right-hand side of (15) appears in the convergence bound due
to the device heterogeneity. In particular, Theorem 2 shows that for q1 ̸= 0, the FL algorithm
converges to a local optimal solution at the rate of O(1/T ). This convergence rate is similar to the
results presented in Li et al. (2020b); Amiri et al. (2022), where device heterogeneity has not been
considered. Hence, using the masking vectors in FL do not degrade the convergence rate of FL.
Remark 3. The result in Theorem 2 shows that when q1 → 0, the FL algorithm converges to the
global optimal solution for the smooth and strongly convex functions. Based on (13), it is straight-
forward to verify that without device heterogeneity in the network (i.e., when all the devices have
the maximum computational capability and can update all the parameters of the global model), all
the elements of vector kn, n ∈ [N ] are equal to 1

N . Hence, in this case, we have γn = 1
N , and

q1 = 0. In general, based on (13), one way to reduce the bias incurred by the device heterogeneity
is to design the masking vectors by minimizing q1. For example, one can search for the masking
vectors, which minimize

∑N
n=1

(
dwγn −

∑dw
l=1 (kn)l

)
.

D PROOF OF LEMMA 1

Given vectors x, y, and z, we form diagonal matrices X , Y , and Z, respectively. Note that we
can write ⟨x,y ⊙ z⟩ as the form of the trace of matrices X , Y , and Z product, i.e., ⟨x,y ⊙ z⟩ =
Tr(XY Z). By using Theorem 3 in Fang et al. (1994), we have the following inequality:

Tr(XY Z) ≤ λ1(Y ) Tr(XZ)− λd(XZ) (dλ1(Y )− Tr(Y )) , (16)

where λ1(Y ) and λd(XZ) are the largest eigenvalue of matrix Y and the smallest eigenvalue of
matrix XZ, respectively. Since the considered matrices are diagonal, we have λ1(Y ) = maxl(y)l
and λd(XZ) = minl (x⊙ z)l. Hence, we have

⟨x,y ⊙ z⟩ ≤max
l

(y)l ⟨x, z⟩ −min
l

(x⊙ z)l

(
dmax

l
(y)l −

d∑
l=1

(y)l

)
. (17)

Since dmaxl(y)l−
∑d
l=1 (y)l ≥ 0, by considering minl (x⊙ z)l ≥ −Q, Lemma 1 is proved using

inequality (17).

E PROOF OF THEOREM 1

Considering the smoothness of fn(w), n ∈ [N ], in each communication round t ≥ 1, we have

EF (wg(t+ 1)) ≤

EF (wg(t)) + E ⟨wg(t+ 1)−wg(t),∇F (wg(t))⟩+
L

2
E ∥wg(t+ 1)−wg(t)∥2 . (18)

We first find an upper bound for ∥wg(t+ 1)−wg(t)∥2 as follows:

E ∥wg(t+ 1)−wg(t)∥2
(a)
= η2(t)E

∥∥∥∥∥
N∑
n=1

kn ⊙
τ∑
i=1

∇fn(wi
n(t), b

i
n(t))

∥∥∥∥∥
2

(b)
= η2(t)E

∥∥∥∥∥
N∑
n=1

τ∑
i=1

kn ⊙∇fn(wi
n(t), b

i
n(t))− kn ⊙∇fn(wi

n(t))

∥∥∥∥∥
2

︸ ︷︷ ︸
A1

+ η2(t)

∥∥∥∥∥
N∑
n=1

τ∑
i=1

kn ⊙∇fn(wi
n(t))

∥∥∥∥∥
2

︸ ︷︷ ︸
A2

, (19)

where equality (a) results from (2) and (3). Equality (b) is obtained via basic equality E ∥z∥2 =

E ∥z − Ez∥2 + ∥Ez∥2 for any random vector z.
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By using Assumption 2, we can obtain an upper bound of A1 as follows:

A1 = E

∥∥∥∥∥
N∑
n=1

τ∑
i=1

kn ⊙∇fn(wi
n(t), b

i
n(t))− kn ⊙∇fn(wi

n(t))

∥∥∥∥∥
2

≤ Nτ
N∑
n=1

τ∑
i=1

E
∥∥kn ⊙∇fn(wi

n(t), b
i
n(t))− kn ⊙∇fn(wi

n(t))
∥∥2

≤ Nτ2
N∑
n=1

ξ2n. (20)

By considering the convexity of ∥·∥2 and by using γn = maxl (kn)l, we can obtain an upper bound
of A2 as follows:

A2 =

∥∥∥∥∥
N∑
n=1

τ∑
i=1

kn ⊙∇fn(wi
n(t))

∥∥∥∥∥
2

≤ Nτ
N∑
n=1

τ∑
i=1

∥∥kn ⊙∇fn(wi
n(t))

∥∥2
≤ Nτ

N∑
n=1

τ∑
i=1

γ2n
∥∥∇fn(wi

n(t))
∥∥2. (21)

By combining (19), (20), and (21), we have the following inequality:

E ∥wg(t+ 1)−wg(t)∥2 ≤ Nτ2η2(t)
N∑
n=1

ξ2n +Nτη2(t)

N∑
n=1

τ∑
i=1

γ2n
∥∥∇fn(wi

n(t))
∥∥2. (22)

Now, we aim to obtain an upper bound of E ⟨wg(t+ 1)−wg(t),∇F (wg(t))⟩. We have
E ⟨wg(t+ 1)−wg(t),∇F (wg(t))⟩

(a)
= E

〈
−η(t)

N∑
n=1

τ∑
i=1

kn ⊙∇fn(wi
n(t), b

i
n(t)),∇F (wg(t))

〉
(b)
= η(t)E

N∑
n=1

τ∑
i=1

〈
kn ⊙∇fn(wi

n(t)),−∇F (wg(t))
〉

(c)
≤ η(t)E

N∑
n=1

τ∑
i=1

(−γn)
〈
∇fn(wi

n(t)),∇F (wg(t))
〉
+ η(t)τΨ

N∑
n=1

(
dwγn −

dw∑
l=1

(kn)l

)
(d)
≤ − η(t)

τ∑
i=1

E

〈
1

N

N∑
n=1

∇fn(wi
n(t)),∇F (wg(t))

〉
+ η(t)τΨ

N∑
n=1

(
dwγn −

dw∑
l=1

(kn)l

)
, (23)

where equality (a) results from (2) and (3). Equality (b) follows from E∇fn(wi
n(t), b

i
n(t))

= ∇fn(wi
n(t)). Inequality (c) holds by using Lemma 1. Inequality (d) follows from γn ≥ 1

N .

To find an upper bound for −E
〈

1
N

∑N
n=1∇fn(wi

n(t)),∇F (wg(t))
〉

, we first represent it as fol-
lows:

− E

〈
1

N

N∑
n=1

∇fn(wi
n(t)),∇F (wg(t))

〉

=
1

2
E

∥∥∥∥∥ 1

N

N∑
n=1

(
∇fn(wi

n(t))−∇fn(wg(t))
)∥∥∥∥∥

2

− 1

2
E

∥∥∥∥∥ 1

N

N∑
n=1

∇fn(wi
n(t))

∥∥∥∥∥
2

− 1

2
E ∥∇F (wg(t))∥2 . (24)
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Then, E
∥∥∥ 1
N

∑N
n=1

(
∇fn(wi

n(t))−∇fn(wg(t))
)∥∥∥2 is bounded as follows:

E

∥∥∥∥∥ 1

N

N∑
n=1

(
∇fn(wi

n(t))−∇fn(wg(t))
)∥∥∥∥∥

2
(a)
≤ 1

N

N∑
n=1

E
∥∥∇fn(wg(t))−∇fn(wi

n(t))
∥∥2

(b)
≤L

2

N

N∑
n=1

E
∥∥wg(t)−wi

n(t)
∥∥2, (25)

where inequality (a) results from the convexity of ∥·∥2. Inequality (b) results from Assumption 1.
Now, we aim to bound E

∥∥wg(t)−wi
n(t)

∥∥2 for i = 2, . . . , τ . By using (1), we have

E
∥∥wg(t)−wi

n(t)
∥∥2 = E

∥∥∥∥∥∥η(t)mn ⊙
i−1∑
j=1

∇fn(wj
n(t), b

j
n(t))

∥∥∥∥∥∥
2

≤ η2(t)(i− 1)

i−1∑
j=1

E
∥∥mn ⊙∇fn(wj

n(t), b
j
n(t))

∥∥2
≤ η2(t)(i− 1)2G2, (26)

where the last inequality results from Assumption 3. By combining (25) and (26), we have

E

∥∥∥∥∥ 1

N

N∑
n=1

(
∇fn(wi

n(t))−∇fn(wg(t))
)∥∥∥∥∥

2

≤L2η2(t)(i− 1)2G2. (27)

By combining (18) and (22)−(27), we have

EF (wg(t+ 1)) ≤ EF (wg(t)) +
L

2
Nτ2η2(t)

N∑
n=1

ξ2n + η(t)τΨ

N∑
n=1

(
dwγn −

dw∑
l=1

(kn)l

)

− η(t)τ

2
E ∥∇F (wg(t))∥2 + L2η3(t)G2 τ(τ − 1)(2τ − 1)

12

− η(t)

2

N∑
n=1

τ∑
i=1

(
1

N
− LNτγ2nη(t)

)∥∥∇fn(wi
n(t))

∥∥2. (28)

Since η(t) = η ≤ 1
LN2τ , we have −η(t)2

∑N
n=1

∑τ
i=1

(
1
N − LNτγ

2
nη(t)

) ∥∥∇fn(wi
n(t))

∥∥2 ≤ 0.
By rearranging the terms in (28), we obtain

E ∥∇F (wg(t))∥2 ≤
2

ητ
(EF (wg(t))− EF (wg(t+ 1))) + LNτη

N∑
n=1

ξ2n

+ 2Ψ

N∑
n=1

(
dwγn −

dw∑
l=1

(kn)l

)
+ L2η2G2 (τ − 1)(2τ − 1)

6
. (29)

Finally, we multiply both sides of (29) by 1
T and sum over t = 1, . . . , T . Then, Theorem 1 is

concluded by considering that the first term on the right-hand side of (29) is a telescoping series. We
have

2

ητT

T∑
t=0

(EF (wg(t))− EF (wg(t+ 1))) =
2

ητT
(F (wg(1))− EF (wg(T + 1)))

≤ 2

ητT
(F (wg(1))− F ∗), (30)

where the last inequality is obtained by considering that EF (wg(t+ 1)) ≥ F ∗.
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Figure 2: Illustration of masking vectors selection in a network with three devices. Device 3 has the maximum
computational capability to train ×1 parameters of the learning model. We consider different scenarios for
computational capability of devices 1 and 2. (a) Devices 1 and 2 can train ×0.25 parameters of the learning
model. (b) Devices 1 and 2 can train ×0.25 and ×0.5 parameters of the learning model, respectively. (c)
Devices 1 and 2 can train ×0.25 and ×0.75 parameters of the learning model, respectively. (d) Devices 1 and
2 can train ×0.5 parameters of the learning model. (e) Devices 1 and 2 can train ×0.5 and ×0.75 parameters
of the learning model, respectively. (f) Devices 1 and 2 can train ×0.75 parameters of the learning model. (g)
All three devices have the maximum computational capability.

F SELECTION OF MASKING VECTORS IN A TOY EXAMPLE

In a heterogeneous device setting, devices with lower computational capability partially train the
learning model. Those devices use masking vectors to freeze a portion of the learning model during
training based on their computational capability. As shown in Theorem 1, employing masking
vectors lead to a bias term in the convergence bound. In this section, we demonstrate how the bias
value is impacted by the design of masking vectors using a simple example. We consider three
devices. One device has the maximum computational capability. However, different scenarios are
considered for the computational capability of the other two devices. The devices aim to train a
model with four parameters. Hence, their masking vectors have four elements. Fig. 2 shows the
considered scenarios and the possible masking vectors selections, which may lead to different bias
values.

For each scenario and for each possible selection, Table 6 shows vector kn and the value of γn
for each device as well as the obtained bias value. For this example, the results in Table 6 illus-
trate that the bias value is minimized by freezing the same parameters for two devices with lower
computational capability, in case each parameter cannot be trained at least by one of those devices
(Figs. 2(a) and 2(b)). However, when each parameter can be trained at least by one of those less
capable devices, the bias value is minimized by freezing distinct parameters for the devices (Figs.
2(c)−2(f)). These results are compatible with the empirical results obtained by Pfeiffer et al. (2022)
and Yang et al. (2022), where random selection is used by the devices to prevent freezing of the
same parameters.
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Table 6: kn, γn, and the bias value for the possible masking vectors selections of the
scenarios shown in Fig. 2. The selection with the minimum bias value is chosen based
on Remark 1.

Scenario Possible selections kn γn Bias value

Fig. 2(a)

Selection 1 k1 = k2 = [ 13 , 0, 0, 0] γ1 = γ2 = 1
3 8

3k3 = [ 13 , 1, 1, 1] γ3 = 1

Selection 2
k1 = [ 12 , 0, 0, 0] γ1 = 1

2
4k2 = [0, 12 , 0, 0] γ2 = 1

2
k3 = [ 12 ,

1
2 , 1, 1] γ3 = 1

Fig. 2(b)
Selection 1

k1 = [ 13 , 0, 0, 0] γ1 = 1
3 10

3k2 = [ 13 ,
1
2 , 0, 0] γ2 = 1

2
k3 = [ 13 ,

1
2 , 1, 1] γ3 = 1

Selection 2
k1 = [ 12 , 0, 0, 0] γ1 = 1

2
4k2 = [0, 12 ,

1
2 , 0] γ2 = 1

2
k3 = [ 12 ,

1
2 ,

1
2 , 1] γ3 = 1

Fig. 2(c)
Selection 1

k1 = [ 13 , 0, 0, 0] γ1 = 1
3 10

3k2 = [ 13 ,
1
2 ,

1
2 , 0] γ2 = 1

2
k3 = [ 13 ,

1
2 ,

1
2 , 1] γ3 = 1

Selection 2
k1 = [ 12 , 0, 0, 0] γ1 = 1

2
2k2 = [0, 12 ,

1
2 ,

1
2 ] γ2 = 1

2
k3 = [ 12 ,

1
2 ,

1
2 ,

1
2 ] γ3 = 1

2

Fig. 2(d)

Selection 1 k1 = k2 = [ 13 ,
1
3 , 0, 0] γ1 = γ2 = 1

3 8
3k3 = [ 13 ,

1
3 , 1, 1] γ3 = 1

Selection 2
k1 = [ 12 ,

1
3 , 0, 0] γ1 = 1

2
4k2 = [0, 13 ,

1
2 , 0] γ2 = 1

2
k3 = [ 12 ,

1
3 ,

1
2 , 1] γ3 = 1

Selection 3
k1 = [ 12 ,

1
2 , 0, 0] γ1 = 1

2
2k2 = [0, 0, 12 ,

1
2 ] γ2 = 1

2
k3 = [ 12 ,

1
2 ,

1
2 ,

1
2 ] γ3 = 1

2

Fig. 2(e)
Selection 1

k1 = [ 13 ,
1
3 , 0, 0] γ1 = 1

3 10
3k2 = [ 13 ,

1
3 ,

1
2 , 0] γ2 = 1

2
k3 = [ 13 ,

1
3 ,

1
2 , 1] γ3 = 1

Selection 2
k1 = [ 12 ,

1
3 , 0, 0] γ1 = 1

2
2k2 = [0, 13 ,

1
2 ,

1
2 ] γ2 = 1

2
k3 = [ 12 ,

1
3 ,

1
2 ,

1
2 ] γ3 = 1

2

Fig. 2(f)

Selection 1 k1 = k2 = [ 13 ,
1
3 ,

1
3 , 0] γ1 = γ2 = 1

3 8
3k3 = [ 13 ,

1
3 ,

1
3 , 1] γ3 = 1

Selection 2
k1 = [ 12 ,

1
3 ,

1
3 , 0] γ1 = 1

2
2k2 = [0, 13 ,

1
3 ,

1
2 ] γ2 = 1

2
k3 = [ 12 ,

1
3 ,

1
3 ,

1
2 ] γ3 = 1

2

Fig. 2(g) k1 = k2 = k3 = [ 13 ,
1
3 ,

1
3 ,

1
3 ] γ1 = γ2 = γ3 = 1

3 0

The results in Table 6 also show that by increasing the computational capability of the devices,
the bias value can be decreased. In the extreme case that all three devices have the maximum
computational capability (i.e., Fig. 2(g)), the bias value is zero.

G EFFECT OF MASKING RATE ON THE COMPUTATIONS

By increasing the masking rate (i.e., 1 − ψn

dw
), each device can reduce the number of trainable

parameters and the number of FLOPs based on its computational capability. Fig. 3 shows the
reduction percentage7, which can be obtained for the number of trainable parameters and the number
of FLOPs versus the masking rate. For the results in Fig. 3, we have considered that a device
performs each local update iteration on a batch containing 50 data samples of CIFAR-10 and CIFAR-
100 datasets using ResNet (PreResNet18) and MobileNet, respectively.

7Reduction percentage is the percentage change in a value compared to its maximum value.
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Figure 3: Reduction percentage for the number of trainable parameters and number of FLOPs versus masking
rate for (a) ResNet (PreResNet18) and (b) MobileNet.

H SOLVING PROBLEM PMASK BY SCA

In this section, we first transform the non-convex constraints in optimization problem Pmask into
convex functions or a difference of two convex functions. Then, by using successive convex approx-
imation (SCA) method, we can obtain a suboptimal solution for problem Pmask in polynomial time.
We first rewrite constraint (9a) in the form of the following inequalities:

(k̃n)j ≤
(m̃n)j∑N

n′=1 (m̃n′)j
, j ∈ Λ, n ∈ [N ], (31a)

(k̃n)j ≥
(m̃n)j∑N

n′=1 (m̃n′)j
, j ∈ Λ, n ∈ [N ]. (31b)

Since (m̃n)j is a binary variable, the non-convex constraint (31b) can be expressed as the following
convex constraint:

(k̃n)j ≥
(m̃n)

2
j∑N

n′=1 (m̃n′)j
, j ∈ Λ, n ∈ [N ]. (32)

The non-convex constraint (31a) can be rewritten as follows:

(k̃n)j

N∑
n′=1

(m̃n′)j ≤ (m̃n)j , j ∈ Λ, n ∈ [N ]. (33)

Equality (k̃n)j
∑N
n′=1 (m̃n′)j = 1

2

((
(k̃n)j +

∑N
n′=1 (m̃n′)j

)2
− (k̃n)

2
j − (

∑N
n′=1 (m̃n′)j)

2

)
can be used to express the left-hand side of (33) as a difference of two convex functions. We have

1

2

((k̃n)j + N∑
n′=1

(m̃n′)j

)2

− (k̃n)
2
j − (

N∑
n′=1

(m̃n′)j)
2

 ≤ (m̃n)j , j ∈ Λ, n ∈ [N ]. (34)

Next, we relax the binary constraint (9c) in the form of the difference of two convex functions as
follows:

N∑
n=1

∑
j∈Λ

(m̃n)j −
N∑
n=1

∑
j∈Λ

(m̃n)
2
j ≤ 0, (35a)

0 ≤ (m̃n)j ≤ 1, j ∈ Λ, n ∈ [N ]. (35b)

Finally, we define the following functions:

Θ((m̃n)j) = (m̃n)
2
j , (36a)

ϑ((k̃n)j ,M̃j) = (k̃n)
2
j + (

N∑
n′=1

(m̃n′)j)
2, (36b)
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where vector M̃j = ((m̃n′)j , n
′ ∈ [N ]).

Algorithm 3 describes the SCA algorithm for solving problem Pmask. Let i denote the iteration
index. In Line 1, we initialize the maximum number of iterations imax. In Line 2, the decision
variables m̃

(1)
n and k̃

(1)
n , n ∈ [N ] are initialized in iteration i = 1 with a feasible solution of

problem Pmask. In Line 4, the optimal solution of problem Pmask-SCA (i.e., m̃∗
n and k̃∗

n, n ∈ [N ])
are determined. In Line 5, using m̃∗

n and k̃∗
n, we update m̃

(i+1)
n and k̃

(i+1)
n , n ∈ [N ] to be used for

obtaining the first-order approximations Θ̂((m̃n)j) and ϑ̂((k̃n)j ,M̃j) of functions Θ((m̃n)j) and
ϑ((k̃n)j ,M̃j), respectively. The iteration index is updated in Line 6. The steps within Lines 3 to
7 are repeated until the algorithm converges to a solution or we reach to imax. The convex problem
Pmask-SCA, which is solved in each iteration i, is as follows:

Pmask-SCA : minimize
m̃n, k̃n, ϵn, n∈[N ]

N∑
n=1

dw max
j

(k̃n)j −
∑
j′∈Λ

|πj′ |(k̃n)j′ + ϵn


subject to constraints (9b), (32), (35b), and (9d),

1

2

((k̃n)j + N∑
n′=1

(m̃n′)j

)2

− ϑ̂((k̃(i)
n )j ,M̃

(i)
j )

 ≤ (m̃n)j , j ∈ Λ, n ∈ [N ],

N∑
n=1

∑
j∈Λ

(m̃n)j −
N∑
n=1

∑
j∈Λ

Θ̂((m̃(i)
n )j) ≤ 0.

Algorithm 3: SCA Algorithm for Solving Problem Pmask

1: Set i := 1 and initialize the maximum number of iterations imax.
2: Initialize variables m̃(1)

n and k̃
(1)
n , n ∈ [N ].

3: Repeat
4: Determine the optimal solution m̃∗

n and k̃∗
n, n ∈ [N ] of problem Pmask-SCA.

5: Update variables m̃(i+1)
n := m̃∗

n and k̃
(i+1)
n := k̃∗

n, n ∈ [N ].
6: Set i := i+ 1.
7: Until i = imax or m̃n and k̃n, n ∈ [N ] converge.
8: Return m̃opt

n := m̃
(i)
n and k̃opt

n := k̃
(i)
n , n ∈ [N ].

I PERFORMANCE COMPARISON FOR DOMAINNET DATASET

Different from the considered class non-IID configuration for CIFAR-10 and CIFAR-100 datasets,
in this section, we evaluate the performance of our proposed algorithm under feature non-IID con-
figuration. We perform our experiment with AlexNet on DomainNet dataset. The dataset contains
images of six distinct domains including Clipart, Infograph, Painting, Quickdraw, Real, and Sketch.
We consider 30 devices in the network, and split each domain among 5 devices. We set the number
of communication rounds and the learning rate to be 100 and 0.01, respectively. Table 7 shows
the obtained test accuracy after fine-tuning and the number of trainable parameters for PerFedMask
compared to other baseline algorithms. The results in Table 7 indicate that PerFedMask can achieve
a higher test accuracy compared to HeteroFL and Split-Mix FL algorithms, while the number of
trainable parameters is much less than FedBABU, FedProx, FedNova, and FedAvg algorithms.

Table 7: Test accuracy after fine-tuning and number of trainable parameters of PerFed-
Mask and the baseline algorithms for DomainNet dataset

Test accuracy after fine-tuning
PerFedMask (Ours) FedBABU FedProx FedNova HeteroFL Split-Mix FL FedAvg

70.68 72.29 71.95 72.85 67.68 68.44 72.24
Number of trainable parameters

PerFedMask (Ours) FedBABU FedProx FedNova HeteroFL Split-Mix FL FedAvg
31.221M 57.022M 57.063M 57.063M 28.983M 4.058M 57.063M
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J COMPARISON OF TRAINING CURVES

This section includes some of the training curves for our experiments. Fig. 4 illustrates the train-
ing loss over communication rounds for PerFedMask and the baseline algorithms on CIFAR-100
and DomainNet datasets. In Fig. 4, we have considered the full device participation scenario. The
difference between the training loss of PerFedMask and FedBABU is the bias resulted by the de-
vice heterogeneity. Although we have minimized this bias through solving Pmask, it has not been
completely eliminated. Fine-tuning after training helps to improve the performance of PerFedMask.
When c = 0.1, Fig. 5 shows the evolution of the validation accuracy over communication rounds
for PerFedMask, FedBABU, FedAvg, and Split-Mix FL algorithms on CIFAR-10 and CIFAR-100
datasets.
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Figure 4: Training loss evolution over communication rounds for (a) CIFAR-100 and (b) DomainNet datasets.
c is set to 1.

(a) (b)

Figure 5: Validation accuracy evolution over communication rounds for (a) CIFAR-10 and (b) CIFAR-100
datasets. c is set to 0.1.
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Figure 6: Test accuracy after fine-tuning for (a) CIFAR-10 and (b) CIFAR-100 datasets. c is set to 0.1.
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L COMBINATION OF PERFEDMASK WITH HETEROFL AND SPLIT-MIX FL

Table 8: Performance comparison on CIFAR-100 dataset when c = 1

Algorithm Test accuracy # of trainable parameters # of FLOPs
Before fine-tuning After fine-tuning Forward Backward

PerFedMask + Split-Mix FL 29.66 70.78 0.204M 17.182M 0.122G
PerFedMask + HeteroFL 30.94 71.56 1.611M 0.122G 0.464G

PerFedMask 32.04 72.40 1.803M 0.220G 0.711G
Split-Mix FL 23.09 65.95 0.223M 17.182M 0.127G

HeteroFL 30.13 68.65 1.774M 0.122G 0.473G
FedBABU 29.70 69.01 3.207M 0.220G 0.863G

M EFFECT OF FREEZING THE LOCAL HEAD MODELS DURING TRAINING

In this section, we investigate the impact of freezing the local head models on the test accuracy of
PerFedMask. In particular, we compare the test accuracy of PerFedMask with (w/) and without
(w/o) freezing the local head models. In the w/o head freezing scenario, the learning model is not
decoupled into the global model and the local head model. Table 9 shows that the test accuracy of
PerFedMask is improved by keeping the local head models frozen during training.

Table 9: Test accuracy of PerFedMask with and without
freezing the local head models

PerFedMask CIFAR-10 dataset CIFAR-100 dataset
c = 0.1 c = 1 c = 0.1 c = 1

w/ head freezing 83.60 88.43 67.47 72.40
w/o head freezing 71.56 85.76 54.85 67.89

N PROOF OF LEMMA 2

We define two auxiliary sequences ḡ(t) =
∑N
n=1 kn ⊙

∑τ
i=1∇fn(wi

n(t)) and g(t) =
∑N
n=1

kn ⊙
∑τ
i=1∇fn(wi

n(t), b
i
n(t)). We have

E ∥wg(t+ 1)−w∗∥2 = E

∥∥∥∥∥
N∑
n=1

kn ⊙wτ+1
n (t)−w∗

∥∥∥∥∥
2

= E

∥∥∥∥∥
N∑
n=1

kn ⊙wg(t)− η(t)
N∑
n=1

kn ⊙
τ∑
i=1

∇fn(wi
n(t), b

i
n(t))−w∗

∥∥∥∥∥
2

= E ∥wg(t)− η(t)g(t)−w∗∥2

= E ∥wg(t)− η(t)g(t)−w∗ + η(t)ḡ(t)− η(t)ḡ(t)∥2

= E ∥wg(t)−w∗ − η(t)ḡ(t)∥2︸ ︷︷ ︸
A1

+ η2(t)E ∥g(t)− ḡ(t)∥2︸ ︷︷ ︸
A2

− 2η(t)E ⟨wg(t)−w∗ − η(t)ḡ(t), g(t)− ḡ(t)⟩︸ ︷︷ ︸
A3

. (37)

Since Eg(t) = ḡ(t), we have EA3 = 0. Next, we focus on bounding A1.

A1 = ∥wg(t)−w∗ − η(t)ḡ(t)∥2 = ∥wg(t)−w∗∥2 + η2(t) ∥ḡ(t)∥2︸ ︷︷ ︸
B1

−2η(t) ⟨wg(t)−w∗, ḡ(t)⟩︸ ︷︷ ︸
B2

.

(38)
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By considering the convexity of ∥·∥2 and by using Assumption 1, we can bound B1 as follows:

B1 = ∥ḡ(t)∥2 =

∥∥∥∥∥
N∑
n=1

τ∑
i=1

kn ⊙∇fn(wi
n(t))

∥∥∥∥∥
2

≤ Nτ
N∑
n=1

τ∑
i=1

∥∥kn ⊙∇fn(wi
n(t))

∥∥2
≤ Nτ

N∑
n=1

τ∑
i=1

γ2n
∥∥∇fn(wi

n(t))
∥∥2

≤ 2LNτ

N∑
n=1

τ∑
i=1

γ2n
(
fn(w

i
n(t))− f∗n

)
. (39)

Next, we aim to bound B2. We have

B2 =− 2η(t) ⟨wg(t)−w∗, ḡ(t)⟩

=− 2η(t)

〈
wg(t)−w∗,

N∑
n=1

τ∑
i=1

kn ⊙∇fn(wi
n(t))

〉

=− 2η(t)

N∑
n=1

τ∑
i=1

〈
wg(t)−wi

n(t) +wi
n(t)−w∗,kn ⊙∇fn(wi

n(t))
〉

= η(t)

N∑
n=1

τ∑
i=1

(−2)
〈
wg(t)−wi

n(t),kn ⊙∇fn(wi
n(t))

〉︸ ︷︷ ︸
C1

+ 2η(t)

N∑
n=1

τ∑
i=1

(−1)
〈
wi
n(t)−w∗,kn ⊙∇fn(wi

n(t))
〉︸ ︷︷ ︸

C2

. (40)

We first obtain an upper bound of C1. We have

C1 ≤ 2
∣∣〈wg(t)−wi

n(t),kn ⊙∇fn(wi
n(t))

〉∣∣
(a)
≤ 2γn

∥∥wg(t)−wi
n(t)

∥∥∥∥∇fn(wi
n(t))

∥∥
(b)
≤ γn
η(t)

∥∥wg(t)−wi
n(t)

∥∥2 + η(t)γn
∥∥∇fn(wi

n(t))
∥∥2

(c)
≤ γn
η(t)

∥∥wg(t)−wi
n(t)

∥∥2 + 2Lη(t)γn
(
fn(w

i
n(t))− f∗n

)
, (41)

where inequality (a) results from triangle and Hölder’s inequalities. Inequality (b) results from
the inequality of arithmetic and geometric means (AM-GM) inequality. For inequality (c), we use
Assumption 1.

Next, we obtain an upper bound of C2 by using Lemma 1. In particular, by considering x =
w∗ −wi

n(t), y = kn, and z = ∇fn(wi
n(t)) in Lemma 1, we can bound C2 as follows:

C2 ≤ γn
〈
w∗ −wi

n(t),∇fn(wi
n(t))

〉
+Ω

(
dwγn −

dw∑
l=1

(kn)l

)

≤− γn
(
fn(w

i
n(t))− fn(w∗)

)
+
µγn
2

(
−
∥∥wi

n(t)−w∗∥∥2)︸ ︷︷ ︸
D

+Ω

(
dwγn −

dw∑
l=1

(kn)l

)
,

(42)

where the last inequality results from Assumption 4. Now, we focus on bounding D. Considering
the inequality ∥x+ y∥2 ≤ 2 ∥x∥2+2 ∥y∥2 for any x, y ∈ Rd, and by replacing x with wi

n(t)−w∗
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and y with wg(t)−wi
n(t) we have

D ≤
∥∥wg(t)−wi

n(t)
∥∥2 − 1

2
∥wg(t)−w∗∥2 . (43)

By combining (38)−(43), we obtain

EA1 ≤

(
1− µη(t)τ

2

N∑
n=1

γn

)
E∥wg(t)−w∗∥2

+ (1 + µη(t))

N∑
n=1

τ∑
i=1

γn E
∥∥wg(t)−wi

n(t)
∥∥2

+ 2Lη2(t)

N∑
n=1

τ∑
i=1

(
Nτγ2n + γn

)
E
(
fn(w

i
n(t))− f∗n

)
− 2η(t)

N∑
n=1

τ∑
i=1

γn E
(
fn(w

i
n(t))− fn(w∗)

)
+ 2η(t)τΩ

N∑
n=1

(
dwγn −

dw∑
l=1

(kn)l

)
. (44)

By rearranging the terms in (44), we have

EA1 ≤

(
1− µη(t)τ

2

N∑
n=1

γn

)
E∥wg(t)−w∗∥2

+ (1 + µη(t))

N∑
n=1

τ∑
i=1

γn E
∥∥wg(t)−wi

n(t)
∥∥2

− 2η(t)

N∑
n=1

τ∑
i=1

γn (1− Lη(t) (Nτγn + 1))E
(
fn(w

i
n(t))− fn(w∗)

)
+ 2Lτη2(t)

N∑
n=1

(
Nτγ2n + γn

)
E(fn(w∗)− f∗n)

+ 2η(t)τΩ

N∑
n=1

(
dwγn −

dw∑
l=1

(kn)l

)
. (45)

Now, we aim to bound fn(wi
n(t))− fn(w∗) as follows:

fn(w
i
n(t))− fn(w∗) =

(
fn(w

i
n(t))− fn(wg(t))

)
+ (fn(wg(t))− fn(w∗))

(a)
≥
〈
∇fn(wg(t)),w

i
n(t)−wg(t)

〉
+ (fn(wg(t))− fn(w∗))

(b)
≥ − η(t)

2
∥∇fn(wg(t))∥2 −

1

2η(t)

∥∥wg(t)−wi
n(t)

∥∥2
+ (fn(wg(t))− fn(w∗))

(c)
≥− Lη(t) (fn(wg(t))− f∗n)−

1

2η(t)

∥∥wg(t)−wi
n(t)

∥∥2
+ (fn(wg(t))− fn(w∗)) , (46)

where inequality (a) results from the convexity of fn(w), inequality (b) is obtained by using Cauchy-
Schwarz and AM-GM inequalities, and inequality (c) is due to Assumption 1.
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By combining (26), (45), and (46), we have

EA1 ≤

(
1− µη(t)τ

2

N∑
n=1

γn

)
E∥wg(t)−w∗∥2

+ η2(t)G2 τ(τ − 1)(2τ − 1)

6

N∑
n=1

γn (2 + µη(t)− Lη(t) (Nτγn + 1))

− 2η(t)τ (1− Lη(t))
N∑
n=1

γn (1− Lη(t) (Nτγn + 1))E(fn(wg(t))− fn(w∗))

+ 2Lτη2(t)

N∑
n=1

γn (1 + (1− Lη(t)) (Nτγn + 1))E(fn(w∗)− f∗n)

+ 2η(t)τΩ

N∑
n=1

(
dwγn −

dw∑
l=1

(kn)l

)
. (47)

Lemma 3. For η(t) ≤ 1
L(Nτ+1) , for all t = 1, . . . , T , we have

− 2η(t)τ (1− Lη(t))
N∑
n=1

γn (1− Lη(t) (Nτγn + 1))E(fn(wg(t))− fn(w∗))

≤ 2η(t)τ (1− Lη(t))Υ
N∑
n=1

(
γn −

1

N

)
− Lη(t)

(
γn (Nτγn + 1)− 1

N
(τ + 1)

)
. (48)

Proof. See Appendix P.

Using Lemma 3, we can simplify (47) as follows:

EA1 ≤

(
1− 1

2
µτ

N∑
n=1

γn η(t)

)
E∥wg(t)−w∗∥2

+ η2(t)G2 τ(τ − 1)(2τ − 1)

6
(2 + µ)

N∑
n=1

γn

+ 2η(t)τΥ

N∑
n=1

(
γn −

1

N

)

+ 2Lτη2(t)

N∑
n=1

γn (2 +Nτγn) Γn

+ 2η(t)τΩ

N∑
n=1

(
dwγn −

dw∑
l=1

(kn)l

)
. (49)

Finally, we use (20) to bound EA2 in (37). Lemma 2 is concluded by combining (20), (37), and
(49).

O PROOF OF THEOREM 2

First, through induction, we show that for a diminishing stepsize η(t) = 2
q0(t+κ)

, we have δ(t) ≤
β(t)
t+κ , where β(t) = max{ 2q1q0 (t+ κ) + 4q2

q20
, (κ+ 1) δ(1)}. Note that the considered η(t) satisfies

the mentioned condition in Lemma 2. Moreover, the definition of β(t) ensures that the inequality
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holds for δ(1). Now, we assume that the inequality holds for t. We show that it also holds for t+ 1.
From Lemma 2, we have

δ(t+ 1) ≤ (1− q0 η(t)) δ(t) + q1 η(t) + q2 η
2(t)

≤
(
1− 2

t+ κ

)
β(t)

t+ κ
+

2q1
q0 (t+ κ)

+
4q2

q20 (t+ κ)
2

=
t+ κ− 1

(t+ κ)
2 β(t) +

2q0q1 (t+ κ) + 4q2

q20 (t+ κ)
2 − β(t)

(t+ κ)
2

≤ t+ κ− 1

(t+ κ)
2 β(t)

≤ t+ κ− 1

(t+ κ)
2 − 1

β(t)

≤ β(t)

t+ κ+ 1
. (50)

Finally, by the L-smoothness assumption for F , we have

EF (wg(T ))− F ∗ ≤ L

2
δ(T ) ≤ L

2

β(T )

T + κ
. (51)

From the definition of β(t), we have β(T ) ≤ 2q1
q0

(T + κ) + 4q2
q20

+ (κ+ 1) δ(1). Combining this
with (51) completes the proof of Theorem 2.

P PROOF OF LEMMA 3

First, we define two vectors x and y ∈ RN , where (x)n = γn (1− Lη(t) (Nτγn + 1)) and (y)n =
fn(wg(t))− fn(w∗), n ∈ [N ], respectively. Let X and Y , respectively, denote the corresponding
diagonal matrices of vectors x and y. By using Theorem 3 in Fang et al. (1994), we have the
following inequality:

Tr(XY ) ≥ λN (X) Tr(Y ) + λN (Y ) (Tr(X)−NλN (X)) , (52)
where λN (X) and λN (Y ) are the smallest eigenvalue of matrices X and Y , respectively. Since
X and Y are diagonal matrices, we have λN (X) = minn∈[N ] (x)n and λN (Y ) = minn∈[N ] (y)n.
By considering η(t) ≤ 1

L(Nτ+1) , all the elements of vector x including λN (X) are nonnegative.
Also, (x)n is a quadratic function with respect to γn. For 1

N ≤ γn ≤ 1, by considering that
η(t) ≤ 1

L(Nτ+1) , it can be verified that the minimum value of (x)n is obtained at γn = 1
N . Thus,

λN (X) is lower bounded as λN (X) ≥ 1
N (1− Lη(t) (τ + 1)). Hence, we have

− 2η(t)τ (1− Lη(t))
N∑
n=1

γn (1− Lη(t) (Nτγn + 1)) (fn(wg(t))− fn(w∗))

(a)
≤− 2η(t)τ (1− Lη(t))λN (X)

N∑
n=1

fn(wg(t))− fn(w∗)

− 2η(t)τ (1− Lη(t)) min
n∈[N ]

(fn(wg(t))− fn(w∗)) (Tr(X)−NλN (X))

(b)
≤ − 2η(t)τ (1− Lη(t))λN (X)N (F (wg(t))− F ∗)

+ 2η(t)τ (1− Lη(t))Υ (Tr(X)−NλN (X))

(c)
≤ 2η(t)τ (1− Lη(t))Υ

(
N∑
n=1

γn (1− Lη(t) (Nτγn + 1))− (1− Lη(t) (τ + 1))

)
, (53)

where for inequality (a), we use (52). We also use the fact that −2η(t)τ (1− Lη(t)) ≤ 0. Note
that since η(t) ≤ 1

L(Nτ+1) , ∀t, the quadratic function −2η(t)τ (1− Lη(t)) is always nonpositive.
Inequality (b) results from the definition of F (w). For inequality (c), since F (wg(t)) ≥ F ∗, we use
the fact that −2η(t)τ (1− Lη(t))λN (X)N (F (wg(t))− F ∗) ≤ 0. Finally, Lemma 3 is concluded
by using the obtained lower bound for λN (X) and by rearranging the terms in (53).
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