

SpatialThinker: Reinforcing 3D Reasoning in Multimodal LLMs via Spatial Rewards

Extended Abstract

- Multimodal large language models (MLLMs) have advanced rapidly in vision-language tasks, yet
- they remain weak in 3D spatial reasoning, which is essential for embodied AI applications such
- as robotics, navigation, and augmented reality. Existing spatial MLLMs often depend on massive
- datasets, explicit 3D inputs, or architectural modifications, and when reinforcement learning (RL)
- is applied, it typically uses sparse rewards that provide little guidance for grounded reasoning. We
- propose SPATIALTHINKER, a 3D-aware MLLM that learns to observe, localize, and reason about
- object relations through structured grounding and dense reward optimization.
- SPATIALTHINKER introduces two key contributions: (1) STVQA-7K, a high-quality dataset of 10 7.5K spatial VQA pairs generated from Visual Genome scene graphs, enriched with 34 additional
- spatial relations and aligned to localized subgraphs; and (2) a multi-objective dense spatial reward 11
- with lexicographic gating. The reward integrates four components aligned with human-like spatial 12
- reasoning stages: format (structured outputs with tags and valid JSON scene graphs), count (guides 13
- focus to task-relevant regions and mitigates reward hacking from excessive object predictions), 14
- 15 accuracy (final answer correctness), and spatial (CIoU-based bounding box supervision gated on
- correctness). Rewards are optimized via Group Relative Policy Optimization (GRPO) (Shao et al.,
- 2024; DeepSeek-AI et al., 2025), providing stable learning from dense signals without requiring 17
- critic networks. This design enforces a pipeline of observe \rightarrow localize \rightarrow think \rightarrow answer. 18
- We train SPATIALTHINKER on Qwen2.5-VL backbones (3B and 7B) using only RGB images and 19
- the 7K STVQA samples, without any supervised fine-tuning. Despite this minimal training, the 20
- models achieve substantial improvements over both supervised and sparse-RL baselines across six
- benchmarks: CV-Bench, 3DSRBench, MMVP, SpatialBench, and RealWorldQA. Table 1 summarizes 22
- performance on the major benchmarks. Compared to sparse RL training, dense spatial rewards nearly
- doubles the base-model gain (+6.5% vs. +3.6%), and matches or surpasses GPT-40 (+12.1% on
- 3DSRBench). These results showcase the effectiveness of combining spatial supervision with reward-25
- aligned reasoning in enabling robust 3D spatial understanding with limited data and advancing 26
- MLLMs towards human-level visual reasoning.

Model	3DSRBench		CV-Bench		BLINK Spatial Relative		Avg.
		2D	3D		Relation	Depth	
Proprietary Models							
GPT-40	44.3	75.8	83.0	79.4	82.5	78.2	80.4
Open-Source General MLLMs							
Qwen2.5-VL-3B	44.0	59.9	60.2	60.1	66.4	54.0	60.2
Qwen2.5-VL-7B	48.4	69.1	68.0	68.6	84.0	52.4	68.2
VLAA-Thinker-7B	52.2	60.8	60.3	60.6	81.2	71.0	76.1
LLaVA-NeXT-8B	48.4	62.2	65.3	63.8	-	-	-
Cambrian-1-8B	42.2	72.3	72	72.2	-	-	-
	Ope	n-Source Sp	atial MLLMs				
RoboPoint-13B	-	- 1	61.2	-	60.8	61.3	61.1
SpaceThinker-Qwen2.5-VL-3B	51.1	65.1	65.9	65.5	73.4	59.9	66.7
SpaceLLaVA-13B	42.0	-	68.5	-	72.7	62.9	67.8
SpatialBot-3B	41.1	-	69.1	-	67.8	67.7	67.8
Spatial-RGPT-7B w/ depth	48.4	-	60.7	-	65.7	82.3	74.0
	Method Con	nparison (Tr	ained on STV	(OA-7K)			
Owen2.5-VL-3B + SFT	50.8	53.9	68.4	61.2	65.0	66.9	66.0
Owen2.5-VL-3B + Vanilla GRPO	50.1	70.6	66.6	68.6	73.4	55.6	64.5
SpatialThinker-3B (Ours)	52.9	71.0	76.3	73.7	81.8	66.9	74.4
Qwen2.5-VL-7B + SFT	53.6	56.1	71.3	63.7	75.5	64.5	70.0
Qwen2.5-VL-7B + Vanilla GRPO	54.7	68.9	76.5	72.7	80.4	75.0	77.7
SpatialThinker-7B (Ours)	56.4	77.7	78. 7	78.2	86.0	72.6	79.3

Table 1: Performance over 2D & 3D Spatial Understanding Benchmarks across different model types.