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Abstract

The usage of deep neural networks in critical systems is limited by our ability
to guarantee their correct behavior. Runtime monitors are components aiming
to identify unsafe predictions before they can lead to catastrophic consequences.
Several recent works on runtime monitoring have focused on out-of-distribution
(OOD) detection, i.e., identifying inputs that are different from the training data. In
this work, we argue that OOD detection is not a well-suited framework to design
efficient runtime monitors and that it is more relevant to evaluate monitors based on
their ability to discard incorrect predictions. We discuss the conceptual differences
with OOD and conduct extensive experiments on popular datasets to show that:
1. good OOD results can give a false impression of safety, 2. comparison under the
OOD setting does not allow identifying the best monitor to detect errors.

1 Introduction

As deep neural networks (DNN) are being used for safety-critical tasks (self-driving cars [1],
drones [2]), improving their safety is of utmost importance. This work deals with runtime monitoring,
a promising research direction aiming to identify unsafe data encountered during inference. In
particular, we focus on the unsupervised setting, i.e., no unsafe data examples available to train the
monitor, meaning that one needs to fit a one-class classifier [3] on the DNN training dataset.

Many approaches have been proposed to tackle DNN monitoring. However, in the literature, they
are found under different names as they adopt different definitions of “unsafe data instances”. The
field of Out-Of-Distribution (OOD) detection aims at identifying input data that are far from the
training distribution [4; 5; 6; 7]. On the other hand, several works consider directly the problem of
identifying DNN errors [8; 9; 10; 11]. In this work, we name this second view Out-of-Model-Scope
(OMS) detection. In practice, the approaches to address OOD and OMS detection are not different
and follow the same workflow: they use the DNN training dataset to build a one-class classifier (the
monitor) to characterize safe data instances and use it to reject unsafe samples. These two paradigms
only differ in their objectives, and by extension in how new approaches are evaluated.

In this work, we claim that the goal of a DNN monitor is OMS detection, i.e., identifying errors
before they propagate through the system. We argue that OOD was designed as a proxy task for OMS
detection, based on the belief that what the DNN knows is equivalent to the information contained in
its training dataset. Hence, we first discuss the conceptual differences between OOD and OMS. Then,
we conduct experiments to determine whether OOD is a good proxy for OMS, i.e., whether the OMS
performance of a monitor can be correctly assessed under the OOD setting.
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2 Notations and definitions

Let 𝑇 be an ML task, defined by an oracle Ω, on a domain X, i.e., ∀𝑥 ∈ X, the ground-truth is Ω(𝑥).
This work mostly discusses classification, but could be extended to other tasks. Let 𝑓 be a DNN used
to solve 𝑇 , and let 𝑚 𝑓 be a monitor (one-class classifier) used to reject unsafe predictions of 𝑓 .

OMS setting We define the scope of 𝑓 , D 𝑓 , to be the set of data instances where 𝑓 is correct:
𝐷 𝑓 = {𝑥 ∈ X | 𝑓 (𝑥) = Ω(𝑥)}. Ideally, we want 𝑚 𝑓 to identify data points that lead to errors of
𝑓 . Hence, the perfect monitor for 𝑓 , noted 𝑚∗

𝑓
, is defined by ∀𝑥 ∈ X, 𝑚∗

𝑓
(𝑥) = 𝟙¬𝐷 𝑓

(𝑥), where
𝟙𝑆 is the indicator function of the set 𝑆. We call Out-of-Model-Scope (OMS) detection, the task
of designing a monitor that reproduces the behavior of 𝑚∗

𝑓
. It is defined with respect to a specific

model 𝑓 , as if another DNN 𝑓 ′ is used, the model scope will be different (D 𝑓 ′ ≠ D 𝑓 ), and so will
the optimal monitor (𝑚∗

𝑓 ′ ≠ 𝑚∗
𝑓
).

OOD setting In practice, 𝑓 is trained using a supervised dataset, i.e., a subset of 𝑛 data points in
X for which the ground truth is known: 𝐷train = {(𝑥𝑖 , 𝑦𝑖) | ∀𝑖 ∈ {1, ...𝑛} 𝑥𝑖 ∈ X, 𝑦𝑖 = Ω(𝑥𝑖)}. A
common practice for DNN monitoring is to define an in-distribution domain DID, that comprises all
data instances drawn from the same distribution as 𝐷train. The Out-Of-Distribution (OOD) detection
task aims to build a monitor 𝑚 to identify data instances that do not belong to DID, i.e., the perfect
OOD monitor (𝑚∗) is defined by ∀𝑥 ∈ X, 𝑚∗ (𝑥) = 𝟙¬DID (𝑥). The rationale behind OOD detection is
that DNNs trained on 𝐷train must be good for input data similar to 𝐷train (𝑥 ∈ DID), but should not
perform well on other data (𝑥 ∉ DID). Unlike OMS, the definition of OOD only depends on the task
and training dataset, i.e., it is independent of 𝑓 .

3 Related works

Conceptually, OOD and OMS detectors are not different, i.e., one-class classifiers fitted to 𝐷train. In
practice, they differ in the way they are evaluated experimentally.

OMS in the literature Several previous works have studied OMS detection, i.e., they developed
DNN monitors and assessed their performance based on their ability to detect errors of 𝑓 . Some rely
on monitoring activations of different layers of the DNN [8; 9; 11], while other use model assertion
to specify task-specific constraints [10].

OOD in the literature Our definition of OOD is common in the literature. However, the boundaries
of DID are fuzzy and there is no clear definition of whether a data point was drawn from the same
distribution as 𝐷train. To overcome this issue, most works consider that the test split associated with
𝐷train belongs to DID. Then, different approaches exist to construct OOD sets, and the monitors are
evaluated based on their ability to distinguish between the test set and the OOD set. In the literature,
three main concepts of “OODness” are used to build OOD datasets:

• Novelty A data point 𝑥 ∈ X is OOD if the ground-truth Ω(𝑥) is not among the predefined classes
handled by 𝑓 , i.e., 𝑓 cannot be correct. A large body of work was developed and evaluated in
this configuration. Several approaches used another dataset, with disjoint label classes, as the
OOD set [12; 13; 5; 14]. Another idea to build OOD sets is to remove data samples from certain
classes while training 𝑓 and 𝑚 𝑓 , and use them as OOD examples to test the monitor [15].

• Covariate shift OOD data instances have different characteristics than 𝐷train (changes in external
conditions, sensor failures, etc.), but with valid ground-truth. Such threats to DNN safety were
discussed extensively in [16]. Most works dealing with covariate shift detection have built OOD
sets by injecting different kinds of perturbations to test images [6; 7; 17; 18].

• Adversarial attack A data sample that was modified to make a DNN fail with high confidence.
The difference with covariate shift is in the malicious intent to generate imperceptible perturba-
tions. Several works have tested their monitors for adversarial attack detection [7; 17; 14; 19; 20].

We conclude this section by noting that some works have reported both OOD and OMS results [21; 22].
However, in both of these papers, OOD and OMS are viewed as separate problems. Here, we consider
OOD as a proxy for OMS, and we discuss whether both paradigms are useful for the field.
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4 Limitations of OOD detection

Figure 1: What is OOD? Images: CIFAR10 test,
predictions: ResNet-34.

In this work, we claim that a successful monitor
𝑚 𝑓 should reject errors of 𝑓 , and accept other
predictions (OMS setting). DNNs are usually
good on their training dataset, while their per-
formance decreases when data move away from
𝐷train [16]. This fact gave rise to the problem
of OOD detection, aiming to reject samples far
from the training distribution. Studying the alter-
nate OOD detection problem in place of OMS
detection presents several conceptual issues.

Definition of OOD The first issue with OOD
detection is that DID is not well-defined. For
example, in Figure 1 it is not clear how to set
a threshold on the perturbation factor to define
OODness. At a perturbation level of 2, the ac-
curacy of 𝑓 has dropped about 13%, but it can
still produce above 80% of correct predictions.
Hence, should the second column be considered
OOD? This limitation also applies to adversarial
examples, as different attacks lead to different levels of performance drop. For example, if we can
generate a few additional misclassifications by changing random pixels, is it an adversarial attack?
Regarding novelty detection, the problem is better defined: an image is OOD if its label is not among
the output classes handled by 𝑓 . However, it is not easy to decide whether a highly corrupted image
should hold its label: is the top right image of Figure 1 still a cat?

A less ambiguous way to define OOD is to use ideas from the field of DNN calibration [23]: a set
of images is OOD if the accuracy of 𝑓 falls below a fixed threshold on this set. This definition is
still threshold dependent, but it describes OODness unambiguously. However, under this definition,
OODness is a property of a set, not defined at the individual sample level, which is a different problem
than the one studied in most OOD detection works.

OOD does not always represent OMS Even if we had an unambiguous definition of DID, OOD
and OMS detection would still be distinct problems. Indeed, DID and D 𝑓 can differ in two ways:

• Model generalization The first difference is when input data are OOD but correctly classified
by 𝑓 (top-right image of Figure 1). The limits of DID are often defined by human programmers,
independently of the generalization capabilities of 𝑓 . For such cases, a good OOD monitor will
reject valid inputs (false positives), thus decreasing the availability of the model 𝑓 . For the special
case of novelty, this case does not exist as the model cannot be correct on novel data.

• In-distribution errors The second difference is when data samples that are similar to 𝐷train are
misclassified by 𝑓 (bottom-left image of Figure 1). Such cases can have catastrophic outcomes
for safety-critical applications, since if an OOD monitor accepts wrong predictions as long as
they are similar to 𝐷train, it also let hazardous predictions through the system (false negatives)
and decreases its safety. This problem is an issue even when considering novelty detection.

Switching to OMS The above discussion showed that it is hard to come up with an objective
definition of what OOD means, and that building good OOD monitors might not be sufficient to
ensure the safety of a system using a DNN. The good news is that such a definition is not necessary,
as we can simply use OMS as a generic setting for studying DNN monitoring. The OMS paradigm
is defined unambiguously and actually corresponds to what we want to achieve, i.e., reject wrong
predictions of 𝑓 . In practice, it is common to define a proxy task to address a more complex generic
task of interest. However, when the actual performance at the true task is easy to compute, we
should use it to evaluate the performance of new techniques. In our case, computing OMS detection
performance is easy as we have access to labeled datasets and we can compute the predictions of 𝑓 .
For these reasons, we argue that DNN monitors should be evaluated with respect to the OMS setting,
instead of the ambiguous OOD setting.
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(a) Distribution of the OMS recall and preci-
sion obtained by the optimal OOD detector
𝑚∗ across 27 OOD datasets and two DNNs
tested in our experiments.

(b) Wilcoxon test to compare recall (left) and precision (right) of
monitors across 54 datasets. The p-values are reported. Green:
row better than column, Red: column better than row, White: no
meaningful difference.

Figure 2: Experimental results.

5 Experimental validation

In this section, we conduct experiments on common OOD datasets from the literature, to see whether
analyzing OOD results can lead to misleading conclusions about the safety of the system.

5.1 Experiments description

Our experiments consist of 27 OOD datasets, 2 DNN architectures (54 OOD scenarios), and 6
monitoring approaches. We use three popular image datasets as ID: CIFAR10, CIFAR100, and
SVHN [24; 25]. For each ID dataset, the train split is used to fit the monitors, while the test split
serves as the ID set for evaluation. Each ID set is combined with 9 distinct OOD sets: three novelty,
three covariate shift, and three adversarial attacks. More details about the datasets can be found in
Appendix A.

For monitoring, we test two feature-based approaches: Mahalanobis (Maha) [14] and Outside-the-
Box (OtB) [15]. We use the last layer before classification as their data representation. We also use
four logit-based approaches: Max Softmax Probability (MSP) [21], Energy (Ene) [13], and ReAct
combined with both MSP (R-MSP) and Energy (R-Ene) [5]. Except for OtB, the techniques used in
our experiments require selecting a rejection threshold on the monitoring scores. This is a complex
question that is not studied here. Instead, we consider the optimal F1 threshold, as described by [26].

5.2 OOD can give a false sense of safety

Here, we want to answer the following question: if we manage to develop a perfect OOD detector
𝑚∗, can we guarantee that ( 𝑓 , 𝑚∗) is safe to use in critical applications?

Let’s suppose that we can build 𝑚∗, rejecting all OOD samples and accepting all ID samples (precision
and recall of 1 at OOD detection). In our experiments, we can simulate the predictions of 𝑚∗ using
the known ID/OOD labels. Then, we want to know how well 𝑚∗ performs the task of detecting OMS
samples. An OMS recall below one means that there exist ID data for which 𝑓 is erroneous. It is a
threat to the safety of the system. An OMS precision below one means that there exist OOD data
points for which 𝑓 is correct. It represents a decrease in the availability of the system. We conduct
this experiment for both DNN architectures, across the 27 OOD datasets. The distribution of the
OMS performances obtained for the different OOD types is reported in Figure 2a.

We can see that the OMS recall is not close to 1 for most of the experiments conducted. Even for
novelty, the median OMS recall of the 18 experiments is below 0.93. In other words, in most cases,
more than 7% of the errors of 𝑓 are not detected by the perfect OOD monitor 𝑚∗, which can lead
to catastrophic outcomes for safety-critical applications. These results show that, even if perfect
OOD detectors are developed, it will not allow us to guarantee the safety of critical systems using
ML. Indeed, an OOD recall of 1 does not guarantee the absence of prediction errors. Even worse,
reporting very good OOD results can be detrimental as it gives a false sense that the ( 𝑓 , 𝑚∗) system
is safe.

Regarding OMS precision, we first note that it is always 1 for novelty datasets. This is because
𝑓 cannot be correct for novel samples, by definition. For other OOD types, we acknowledge an
important drop in precision, i.e., an important proportion of correct predictions of 𝑓 on OOD data.
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5.3 OOD can be misleading for comparison

As explained in section 3, monitors are often compared using the OOD setting. Here, we want to
verify whether comparing monitors at the OOD task provides relevant insights into OMS performance.

To do this, we compare six monitors from the literature, and for each pair of monitors, we conduct
a Wilcoxon signed-rank test across the 54 OOD scenarios to determine whether one is better than
the other. The Wilcoxon test is a non-parametric statistical test that can be used to compare pairs of
classifiers across multiple datasets [27]. The results obtained are reported in figure 2b.

From these experiments, we can see that the comparison matrices obtained for OOD and OMS look
different. For example, OtB is clearly the most conservative approach (highest recall) when looking
at the OMS results, but not when considering OOD. On another note, the benefits of using ReAct for
monitoring are best seen in the OMS setting (MSP vs. R-MSP, Ene vs. R-Ene).

From these results, it appears that conducting OOD experiments is not a reliable way to compare
monitoring approaches regarding their ability to identify errors of 𝑓 .

6 Conclusion

If we want to use DNN in safety-critical applications, it is paramount to build efficient runtime moni-
tors, which can detect DNN errors from the system before they can have catastrophic consequences.
As of today, many research efforts are directed toward solving the problem of out-of-distribution
detection, which consists in identifying data samples that were drawn from a different distribution
than the DNN training set. In this paper, we discuss the limitations of this setting to enable the safe
usage of DNN in critical systems. First, the concept of OOD is not well-defined, which makes it
difficult to compare different OOD detection approaches. Second, even a perfect OOD detector can
have the undesirable property of discarding valid predictions of the DNN, and even worse, accepting
wrong predictions. Extensive experiments conducted on popular OOD detection datasets confirm that
these phenomena occur in practical scenarios. Furthermore, we show that the OOD setting cannot be
used to compare monitoring approaches accurately, as the best monitor for OOD is not always the
best one to detect DNN errors.

On the bright side, adapting current OOD research to these findings will not require drastic changes.
The out-of-model-scope (OMS) setting, defined above and discussed in several previous works, is
well-defined and perfectly aligned with the DNN monitoring objectives. In addition, most approaches
developed for OOD detection can be used for OMS without any modification, and OMS results can
be computed straightforwardly for most OOD datasets used in the literature. Hence, the take-home
message from this paper is that instead of evaluating new approaches on their ability to detect samples
from other data sources, the OOD detection research community should focus on the ability to detect
samples leading to erroneous DNN predictions. We also believe that it is a good idea to include OOD
samples in OMS evaluation datasets, which is rarely done in OMS papers.
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A Datasets used in our experiments

Our experiments consist of 27 OOD datasets, 2 DNN architectures (54 OOD scenarios), and 6
monitoring approaches.

We use three popular image datasets as ID: CIFAR10, CIFAR100, and SVHN [24; 25]. For each ID
dataset, the train split is used to fit the monitors, while the test split serves as the ID set for evaluation.
Each ID set is combined with 9 distinct OOD sets:

• Three novelty tasks – For CIFAR10 we use CIFAR100, SVHN, and LSUN [28] to represent
novel data. For CIFAR100 we use CIFAR10, SVHN, and LSUN. For SVHN we use
CIFAR10, LSUN, and TinyImageNet (subset of ImageNet [29]). With these choices, ID and
OOD classes never overlap.

• Three covariate shift tasks – For each ID dataset, we apply three image transformations from
the AugLy library [30]: Brightness (factor=3), Blur (radius=2), and Pixelization (ratio=0.5).

• Three adversarial attacks – For each ID dataset, we apply three adversarial attacks from
Torchattacks [31], with default parameters: FGSM, DeepFool, and PGD.

For each of these 27 OOD scenarios, we experiment with two DNN architectures: DenseNet and
ResNet. We use the pre-trained models from [14].
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