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Abstract

The usage of deep neural networks in critical systems is limited by our ability
to guarantee their correct behavior. Runtime monitors are components aiming
to identify unsafe predictions before they can lead to catastrophic consequences.
Several recent works on runtime monitoring have focused on out-of-distribution
(OOD) detection, i.e., identifying inputs that are different from the training data. In
this work, we argue that OOD detection is not a well-suited framework to design
efficient runtime monitors and that it is more relevant to evaluate monitors based on
their ability to discard incorrect predictions. We discuss the conceptual differences
with OOD and conduct extensive experiments on popular datasets to show that:
1. good OOD results can give a false impression of safety, 2. comparison under the
OOD setting does not allow identifying the best monitor to detect errors.

1 Introduction

As deep neural networks (DNN) are being used for safety-critical tasks (self-driving cars [1],
drones [2]), improving their safety is of utmost importance. This work deals with runtime monitoring,
a promising research direction aiming to identify unsafe data encountered during inference. In
particular, we focus on the unsupervised setting, i.e., no unsafe data examples available to train the
monitor, meaning that one needs to fit a one-class classifier [3] on the DNN training dataset.

Many approaches have been proposed to tackle DNN monitoring. However, in the literature, they
are found under different names as they adopt different definitions of “unsafe data instances”. The
field of Out-Of-Distribution (OOD) detection aims at identifying input data that are far from the
training distribution [4; 5; 6; 7]. On the other hand, several works consider directly the problem of
identifying DNN errors [8; 9; 10; 11]. In this work, we name this second view Out-of-Model-Scope
(OMS) detection. In practice, the approaches to address OOD and OMS detection are not different
and follow the same workflow: they use the DNN training dataset to build a one-class classifier (the
monitor) to characterize safe data instances and use it to reject unsafe samples. These two paradigms
only differ in their objectives, and by extension in how new approaches are evaluated.

In this work, we claim that the goal of a DNN monitor is OMS detection, i.e., identifying errors
before they propagate through the system. We argue that OOD was designed as a proxy task for OMS
detection, based on the belief that what the DNN knows is equivalent to the information contained in
its training dataset. Hence, we first discuss the conceptual differences between OOD and OMS. Then,
we conduct experiments to determine whether OOD is a good proxy for OMS, i.e., whether the OMS
performance of a monitor can be correctly assessed under the OOD setting.
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2 Notations and definitions

Let ) be an ML task, defined by an oracle Ω, on a domain X, i.e., 8G 2 X, the ground-truth is Ω„G”.
This work mostly discusses classification, but could be extended to other tasks. Let 5 be a DNN used
to solve ) , and let < 5 be a monitor (one-class classifier) used to reject unsafe predictions of 5 .

OMS setting We define the scope of 5 , D 5 , to be the set of data instances where 5 is correct:
� 5 = fG 2 X j 5 „G” = Ω„G”g. Ideally, we want < 5 to identify data points that lead to errors of
5 . Hence, the perfect monitor for 5 , noted <�

5
, is defined by 8G 2 X� <�

5
„G” = 𝟙:� 𝑓

„G”, where
𝟙( is the indicator function of the set (. We call Out-of-Model-Scope (OMS) detection, the task
of designing a monitor that reproduces the behavior of <�

5
. It is defined with respect to a specific

model 5 , as if another DNN 5 0 is used, the model scope will be different (D 5 0 ≠ D 5 ), and so will
the optimal monitor (<�

5 0 ≠ <
�
5
).

OOD setting In practice, 5 is trained using a supervised dataset, i.e., a subset of = data points in
X for which the ground truth is known: �train = f„G8 � H8” j 88 2 f1� ���=g G8 2 X� H8 = Ω„G8”g. A
common practice for DNN monitoring is to define an in-distribution domain DID, that comprises all
data instances drawn from the same distribution as �train. The Out-Of-Distribution (OOD) detection
task aims to build a monitor < to identify data instances that do not belong to DID, i.e., the perfect
OOD monitor (<�) is defined by 8G 2 X� <� „G” = 𝟙:DID „G”. The rationale behind OOD detection is
that DNNs trained on �train must be good for input data similar to �train (G 2 DID), but should not
perform well on other data (G ∉ DID). Unlike OMS, the definition of OOD only depends on the task
and training dataset, i.e., it is independent of 5 .

3 Related works

Conceptually, OOD and OMS detectors are not different, i.e., one-class classifiers fitted to �train. In
practice, they differ in the way they are evaluated experimentally.

OMS in the literature Several previous works have studied OMS detection, i.e., they developed
DNN monitors and assessed their performance based on their ability to detect errors of 5 . Some rely
on monitoring activations of different layers of the DNN [8; 9; 11], while other use model assertion
to specify task-specific constraints [10].

OOD in the literature Our definition of OOD is common in the literature. However, the boundaries
of DID are fuzzy and there is no clear definition of whether a data point was drawn from the same
distribution as �train. To overcome this issue, most works consider that the test split associated with
�train belongs to DID. Then, different approaches exist to construct OOD sets, and the monitors are
evaluated based on their ability to distinguish between the test set and the OOD set. In the literature,
three main concepts of “OODness” are used to build OOD datasets:

• Novelty A data point G 2 X is OOD if the ground-truth Ω„G” is not among the predefined classes
handled by 5 , i.e., 5 cannot be correct. A large body of work was developed and evaluated in
this configuration. Several approaches used another dataset, with disjoint label classes, as the
OOD set [12; 13; 5; 14]. Another idea to build OOD sets is to remove data samples from certain
classes while training 5 and < 5 , and use them as OOD examples to test the monitor [15].

• Covariate shift OOD data instances have different characteristics than �train (changes in external
conditions, sensor failures, etc.), but with valid ground-truth. Such threats to DNN safety were
discussed extensively in [16]. Most works dealing with covariate shift detection have built OOD
sets by injecting different kinds of perturbations to test images [6; 7; 17; 18].

• Adversarial attack A data sample that was modified to make a DNN fail with high confidence.
The difference with covariate shift is in the malicious intent to generate imperceptible perturba-
tions. Several works have tested their monitors for adversarial attack detection [7; 17; 14; 19; 20].

We conclude this section by noting that some works have reported both OOD and OMS results [21; 22].
However, in both of these papers, OOD and OMS are viewed as separate problems. Here, we consider
OOD as a proxy for OMS, and we discuss whether both paradigms are useful for the field.
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