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ABSTRACT

Graph Neural Networks (GNNs) achieve strong predictive performance but of-
fer limited transparency in their decision-making. Self-Interpretable GNNs (SI-
GNNs) address this by generating built-in explanations, yet their training objec-
tives are misaligned with evaluation criteria such as faithfulness. This raises two
key questions: (i) can faithfulness be explicitly optimized during training, and
(ii) does such optimization genuinely improve explanation quality? We show that
faithfulness is intrinsically tied to explanation self-consistency and can therefore
be optimized directly. Empirical analysis further reveals that self-inconsistency
predominantly occurs on unimportant features, linking it to redundancy-driven
explanation inconsistency observed in recent work and suggesting untapped po-
tential for improving explanation quality. Building on these insights, we introduce
a simple, model-agnostic self-consistency (SC) training strategy. Without chang-
ing architectures or pipelines, SC consistently improves explanation quality across
multiple dimensions and benchmarks, offering an effective and scalable pathway
to more trustworthy GNN explanations.

1 INTRODUCTION

Graph Neural Networks (GNNs) have achieved remarkable success across a wide range of tasks,
from social network analysis (Wu et al., 2022a) to molecular property prediction (Wang et al., 2022).
Despite their effectiveness, however, GNNs are often criticized as black boxes, which hinders their
adoption in high-stakes and scientific domains (Pfeifer et al., 2022; Rajput & Singh, 2022; Warmsley
et al., 2022). To address this issue, Self-Interpretable GNNs (SI-GNNs) (Velickovic et al., 2018; Lin
et al., 2020; Sui et al., 2022; Miao et al., 2022) have been proposed, which jointly learn predictions
and explanations in an end-to-end manner, making interpretability an intrinsic part of the model.
This design not only makes decision-making more transparent but also yields structural insights that
can facilitate causal discovery and scientific understanding.

Evaluating the quality of GNN explanations typically follows two paradigms (Agarwal et al., 2023).
The first is explanation accuracy (Ying et al., 2019), which compares model-generated subgraphs
against annotated ground-truth explanations. The second is faithfulness (Yuan et al., 2021), which
evaluates whether the explanation correctly highlights the input elements that are truly relevant to
the model’s prediction (Azzolin et al., 2025). Because faithfulness does not depend on ground-truth
annotations, it can be applied more broadly across datasets and tasks, and has therefore become a
widely adopted evaluation metric (Yuan et al., 2022). However, there remains a mismatch between
what we optimize and what we evaluate: SI-GNNs are trained with cross-entropy plus conciseness
regularization, yet they are evaluated by faithfulness.

This mismatch naturally raises two questions:
(i) Can faithfulness, as a conceptual property, be optimized during training?
(ii) Even if feasible, is it necessary—does it truly improve explanation quality?

To answer the first question, a common evaluation of faithfulness (Amara et al., 2022) is to feed the
identified explanation graph subset back into the model: if the prediction remains unchanged, the
explanation is deemed faithful. This procedure implicitly relies on the SI-GNN being self-consistent.
If the explanation is truly decisive, the SI-GNN should consistently highlight the same graph sub-
set upon re-use. Consistent explanations in turn lead to consistent predictions, thereby satisfying
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Figure 1: Self-inconsistency measured as the L1 difference (DIFF) between two explanations. Re-
sults are shown for GISST (Lin et al., 2020) and GSAT (Miao et al., 2022) across four benchmark
datasets: A = BA-2MOTIFS, B = MR, C = BENZENE, D = MUTAGENICITY. Within each panel,
UNIMP and IMP denote unimportant and important features, respectively.

the faithfulness criterion. This perspective suggests that faithfulness can indeed be optimized by
introducing an alignment loss that enforces agreement between successive explanations.

Answering the second question is more subtle. While faithfulness can be optimized, it is not obvious
whether doing so truly improves explanation quality. To investigate, we conduct an empirical study
and find that, without faithfulness-oriented training, the first-pass and second-pass explanations of
an SI-GNN can differ significantly. Using benchmark datasets with ground-truth explanations, we
further observe that self-inconsistency primarily arises from instability on features labeled as unim-
portant, while important features remain stable (Figure 1). This observation resonates with recent
findings (Tai et al., 2025) on explanation inconsistency across repeated training runs of the same
SI-GNN, where inconsistency was traced to redundancy—explainers irresponsibly assigning high
importance to unimportant features when budget allows. That work further showed that addressing
redundancy improves explanation quality. Since our study shows that self-inconsistency also con-
centrates on unimportant features, it suggests a potential connection: addressing self-inconsistency
may address redundancy as well, thereby improving explanation quality in a similar manner.

In this work, we propose to incorporate self-consistency into the training objective of SI-GNNs.
On top of the standard objectives, we add a self-consistency (SC) loss that minimizes discrepancies
between successive GNN explanations. This simple yet general addition requires no modifications
to the model architecture or training pipeline, and can be seamlessly integrated into existing SI-
GNNs. We show that SC training drives feature importance scores toward a small set of near-
fixed levels, while conciseness regularization governs which levels are selected. This interaction
reshapes the explainer’s behavior, resulting in more responsible and stable importance assignments.
Extensive experiments across representative SI-GNNs and benchmark datasets demonstrate that SC
consistently improves the trustworthiness of GNN explanations in terms of consistency, accuracy,
faithfulness, and informativeness. To facilitate reproducibility and further research, an anonymous
implementation is provided in the supplementary material.

2 PRELIMINARIES

2.1 SELF-INTERPRETABLE GNNS (SI-GNNS)

We first formalize the task and model setup. A graph G = (V, E) consists of a set of nodes V and a
set of edges E . In graph classification, a GNN can be decomposed into a GNN encoder hZ : G→ Rd

that maps G to a representation, and a classifier hŶ : Rd → Rc that produces the prediction, giving
f = hŶ ◦ hZ . A SI-GNN adds an explainer hGs

, yielding f = hŶ ◦ hZ ◦ hGs
, where hGs

selects
a graph subset Gs ⊆ G as the explanation. Following prior work (Tai et al., 2025), we focus on
structural features (edges) in the instance-level setting.
Definition 1 (Learning Objective). Given (G, Y ), the objective is to select a subset Gs of G that
maximizes the mutual information (MI) with the label while promoting explanation conciseness:

max
Gs⊆G

I(Gs;Y )− β ·R(Gs), (1)

where I(·; ·) denotes MI, R(Gs) is an conciseness regularizer, and β controls its strength. The form
of R(Gs) differs across SI-GNNs, and we review the most common ones below.
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Existing SI-GNNs can be broadly categorized into four groups—attention-based, causal-based, size-
constrained, and MI-constrained—depending on their subset selection strategy (Tai et al., 2025).

(1) Attention-based methods leverage attention mechanisms (Vaswani et al., 2017) to assign im-
portance scores directly, without explicit regularization to enforce explanation conciseness. A rep-
resentative example is GAT (Velickovic et al., 2018), which directly assigns importance scores to
edges via attention mechanisms. The model is trained solely with classification loss:

LGE = LCE(Y, Ŷ |Gs) (2)
where LCE is cross-entropy loss.

(2) Causal-based methods employ causal inference techniques (Pearl, 2014) to identify causal
patterns beyond spuriosity-prone statistical correlations. A representative example is CAL (Sui
et al., 2022), which employs disentanglement and intervention to identify causal edges:

LGE = LCE(Y, Ŷ |Gs) + β · DKL(Pθ(Ȳ |Ḡs)||Q(Ȳ )) + γ · LCE(Y, Ŷ
′|Gs ∪ Ḡ′

s), (3)
where β and γ are pre-defined hyperparameters, Ḡs = G \ Gs is the complement of Gs, and Ḡ′

s
represents the result of intervening on Ḡs (e.g., replacing its latent representations with those from
other batch samples). Q(Ȳ ) is often set to a uniform distribution.

(3) Size-constrained methods enforce explanation conciseness by penalizing the size or sparsity of
the selected subset. A representative example is GISST (Lin et al., 2020), which adds a sparsity loss
term to encourage concise and human-understandable explanations:

LGE = LCE(Y, Ŷ |Gs) + β · |Gs|
|G|

, (4)

where |Gs| and |G| denote the number of edges in the selected subset and the original graph.

(4) MI-constrained methods minimize the MI between the selected subset and the original graph,
providing an information-theoretic route to enforce explanation conciseness. A representative ex-
ample is GSAT (Miao et al., 2022), which minimizes the MI between Gs and G via KL divergence:

LGE = LCE(Y, Ŷ |Gs) + β · DKL

(
Pθ(Gs|G)||Q(Gs)

)
, (5)

where Q(Gs) is a Bernoulli distribution. Other SI-GNNs are discussed in Section A.

2.2 EXPLANATION REDUNDANCY

Recent work (Tai et al., 2025) has revealed that explanations produced by SI-GNNs are often incon-
sistent: when the same model is retrained with different random seeds, the explanations for a given
instance may vary substantially. Through systematic analysis, this inconsistency was attributed
to explanation redundancy, as current SI-GNNs impose insufficient conciseness constraints, leav-
ing excess budget that allows high importance scores to be irresponsibly assigned to unimportant
edges. For instance, in GAT no explicit regularization is enforced, making redundancy unavoid-
able in principle; CAL avoids false negatives (missing important edges) but does not penalize false
positives (including unimportant edges), thereby failing to discourage redundancy; GISST controls
subset size via a sparsity coefficient β, but this is typically set small to balance accuracy and con-
ciseness, weakening the constraint and allowing redundancy to persist; and GSAT faces the same
issue—although it theoretically minimizes MI, in practice its authors report that retaining 50–80%
of edges yields the best accuracy, which is far too many to eliminate redundancy.

This phenomenon can be formalized under a unified budget-constrained formulation:
max

Gs⊆G, |Gs|≤M
I(Gs;Y ), (6)

where M denotes the maximum allowed subset size (implicitly determined by R(Gs)). Define G∗
s

as the ground-truth explanation subset. When M ≥ |G∗
s|, there exist

∑M−|G∗
s |

n=0

(|G−G∗
s |

n

)
distinct

subsets that achieve the same maximum MI. This multiplicity of valid subsets makes it possible for
unimportant edges to be included without affecting prediction accuracy, thereby formalizing why
insufficient conciseness regularization naturally gives rise to redundancy in existing SI-GNNs.

While Tai et al. (2025) has focused on cross-model explanation inconsistency, our study reveals a
related form of instability—explanation self-inconsistency within a single SI-GNN—which likewise
occurs on unimportant edges. This motivates us to explicitly enforce self-consistency during training
to reduce explanation redundancy and thereby improve explanation quality.

3
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Figure 2: Overview of the SC training framework. A SI-GNN is first trained with the standard
loss (Section 2.1). The encoder is then frozen, and the explainer and classifier are fine-tuned with
an additional alignment loss that enforces the first-pass explanation G(1)

s (from G) to match the
second-pass explanation G(2)

s (from G
(1)
s ).

3 METHOD

3.1 SELF-CONSISTENCY TRAINING FRAMEWORK

Our framework consists of two steps. We begin by revisiting the workflow of a standard SI-GNN,
which forms the basis for the first step. A GNN encoder first updates node representations:

V = GNN(G). (7)

An explainer, typically a multilayer perceptron (MLP), then predicts edge importance scores:

wij = MLP([vi;vj ]), αij = σ(wij), (8)

where [·; ·] denotes vector concatenation and σ denotes the sigmoid function. Each edge eij is
included in the explanation subset Gs with probability αij , and we adopt the Gumbel–Sigmoid
trick (Jang et al., 2017) to enable differentiable sampling. The selected subset Gs is then processed
by the same GNN encoder and pooled into a graph-level embedding, which is finally passed to a
classifier MLP for prediction. Vanilla SI-GNNs are optimized using a combination of cross-entropy
and conciseness regularization (Section 2.1); see Section B for implementation details.

Step 1: Pretraining. We first train the SI-GNN with the standard objective until convergence,
and then freeze the GNN encoder. This ensures that representation learning is not disrupted by the
additional SC loss introduced later, so that SC loss only influences the explainer’s behavior.

Step 2: Self-Consistency Fine-Tuning. Given a graph G, the explainer produces an explanation
G

(1)
s . We then feed G(1)

s back into the model, obtaining a second explanation G(2)
s . If G(1)

s truly
captures the decisive structure, the explainer should reproduce it consistently (i.e., G(1)

s = G
(2)
s ). To

enforce this, we introduce a SC loss to minimize the discrepancy between successive explanations:

LSC = ∥G(1)
s −G(2)

s ∥. (9)

The final training objective is the combination of the standard SI-GNN loss and LSC:

LFT = LGE + η · LSC, (10)

where η is a pre-defined hyperparameter. The proposed two-step SC training framework (illustrated
in Figure 2) is simple yet general: it requires no modification to the model architecture or the train-
ing pipeline (i.e., the usual encoder–explainer–classifier optimization setup), and can be seamlessly
applied to a wide range of existing representative SI-GNNs.

Define the second-pass mapping on each edge score as:

T (α) = σ
(
g(α)

)
, α ∈ [0, 1], (11)

where g(·) denotes the explainer’s pre-activation on the second pass (obtained through the GNN
encoder and explainer), and σ is the sigmoid function. Intuitively, enforcing explanation self-
consistency is equivalent to requiring T (α) ≈ α, i.e., edge scores remain stable across passes.
We next formalize this idea through the notion of near fixed levels.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

(a) GISST (β=5e-2) (b) GISST (β=5e-1) (c) GSAT (β=5e-2) (d) GSAT (β=5e-1)

(e) GISST+SC (β=5e-2) (f) GISST+SC (β=5e-1) (g) GSAT+SC (β=5e-2) (h) GSAT+SC (β=5e-1)

Figure 3: Distributions of edge scores assigned to unimportant edges (defined by the dataset ground
truth) on BA-2MOTIFS dataset using GISST and GSAT. Each subplot shows the distribution of edge
scores for unimportant edges over training epochs (vertical axis).

3.2 NEAR FIXED LEVELS INDUCED BY SELF-CONSISTENCY

We formalize the concentration to a few levels without assuming the specific form of g(·).
Definition 2 (Near fixed level). Given tolerance ε ∈ (0, 1), α ∈ [0, 1] is an ε-near fixed level of T
if |T (α)− α| ≤ ε. We denote the set by Sε = {α : |T (α)− α| ≤ ε}.

Window condition. For any candidate level a∗ ∈ (0, 1), the near fixed condition is equivalent to:

|T (a∗)− a∗| ≤ ε ⇐⇒ g(a∗) ∈
[
logit(a∗ − ε), logit(a∗ + ε)

]
, (12)

where logit(p) = ln p
1−p denotes the logit function. Thus, achieving self-consistency requires the

explainer’s pre-activation g(a∗) to fall inside a logit window around a∗.

Window size. The width of this admissible window is:

∆g(a
∗, ε) = logit(a∗ + ε)− logit(a∗ − ε) ≈ 2ε

a∗(1− a∗)
, (ε small). (13)

For interior points a∗ ∈ (0, 1), the window is finite, and hitting such levels depends on model archi-
tecture and optimization trajectory. When a∗ → 0 or a∗ → 1, the two-sided window degenerates
into a one-sided threshold:

near 1 : g(a∗) ≥ τ(ε), near 0 : g(a∗) ≤ −τ(ε), (14)

where τ(ε) = ln 1−ε
ε . These half-space conditions correspond to the flat saturation regions of the

sigmoid, making 0/1 relatively easier to achieve than interior levels.

Below, we analyze from a gradient perspective how, with adequately strong conciseness regulariza-
tion (CR), SC can improve explanation quality.

3.3 INTERACTION WITH CONCISENESS REGULARIZATION

Consider the joint training loss:

LFT = LCE + β ·R(Gs) + η · LSC. (15)

Let αij denote the importance score of edge eij . The gradient w.r.t. αij is computed as:

∂L
∂αij

≈ ∂LCE

∂αij︸ ︷︷ ︸
classification

+ β · ∂R(Gs)

∂αij︸ ︷︷ ︸
conciseness

+ η · ∂LSC

∂αij︸ ︷︷ ︸
stability

. (16)
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Table 1: Experimental results on GISST and GSAT. Bold numbers indicate improvements over the
raw baselines. Best, and second-best results are highlighted in different colors.

Method
BA-2MOTIFS 3MR BENZENE MUTAGENICITY

↓ SHD (%) ↑ AUC (%) ↓ SHD (%) ↑ AUC (%) ↓ SHD (%) ↑ AUC (%) ↓ SHD (%) ↑ AUC (%)

GISST 10.44±4.41 99.32±0.36 9.44±2.24 97.00±0.77 16.06±6.57 84.38±2.71 12.65±3.18 98.12±0.39
GISST+EE 4.99±1.48 99.59±0.16 5.20±0.72 98.25±0.21 8.55±2.79 91.38±0.96 6.21±1.20 98.96±0.16
GISST+SC 3.48±2.20 99.87±0.05 5.47±3.39 98.39±0.88 7.19±2.62 90.07±1.56 2.51±1.02 98.30±0.54

GISST+SC+EE 1.52±1.03 99.90±0.02 3.05±1.22 99.25±0.02 4.14±0.82 92.20±0.43 1.44±0.38 98.96±0.17
GSAT 4.58±1.81 98.44±0.61 12.35±3.55 98.38±0.31 6.93±2.75 90.66±0.89 10.08±4.58 99.01±0.31

GSAT+EE 2.10±0.67 98.80±0.16 5.79±1.07 99.16±0.03 3.25±1.09 92.18±0.59 4.70±1.60 99.36±0.05
GSAT+SC 2.73±1.02 99.30±0.12 6.67±3.73 98.91±0.29 2.32±0.62 92.80±0.36 2.38±0.84 99.38±0.05

GSAT+SC+EE 1.19±0.52 99.35±0.03 4.00±0.38 99.39±0.01 1.14±0.26 93.53±0.11 1.06±0.42 99.41±0.01

↓ FID (%) ↑ ACC (%) ↓ FID (%) ↑ ACC (%) ↓ FID (%) ↑ ACC (%) ↓ FID (%) ↑ ACC (%)

GISST 0.50±0.92 95.50±12.52 1.90±1.01 97.30±1.31 2.07±0.62 91.12±0.62 1.72±1.09 89.53±0.99
GISST+EE – 100.00±0.00 – 98.25±0.21 – 92.16±0.24 – 90.36±0.70
GISST+SC 0.00±0.00 99.80±0.60 0.00±0.00 99.65±0.00 0.97±0.59 92.57±0.44 0.61±0.54 91.18±1.07

GISST+SC+EE – 100.00±0.00 – 99.65±0.00 – 93.24±0.19 – 92.11±0.45
GSAT 0.00±0.00 100.00±0.00 0.90±0.28 98.55±0.80 1.80±0.84 91.48±0.87 1.11±0.61 92.43±1.00

GSAT+EE – 100.00±0.00 – 99.15±0.24 – 92.17±0.28 – 93.00±0.44
GSAT+SC 0.00±0.00 100.00±0.00 0.31±0.29 99.55±0.16 0.74±0.14 92.31±0.32 0.17±0.23 93.48±0.48

GSAT+SC+EE – 100.00±0.00 – 99.65±0.00 – 92.61±0.18 – 93.76±0.37

The three gradient components play different roles: the first term pushes important edges upward
(toward 1) because they are needed for prediction; the second term depends on the specific form of
CR: GISST encourages sparsity (αij → 0), whereas GSAT encourages independence (αij → 0.5);
the third term stabilizes scores by pulling them toward near-fixed levels.

As a result, when β is weak, CR barely influences edge scores. Important edges are driven to 1 by
the classification loss, while unimportant edges can freely occupy any feasible near-fixed level under
SC; When β is moderately strong, CR actively suppresses unimportant edges: under GISST they are
pushed toward 0, while under GSAT they converge toward 0.5. Important edges remain near 1, as
the classification term dominates their gradients. This regime achieves the best explanation quality,
since CR and SC jointly drive unimportant edges toward low and stable importance scores (Figure 3).
When β is strong, CR overwhelms classification: in GISST both important and unimportant edges
collapse near 0, while in GSAT they collapse near 0.5. Consequently, explanation quality degrades,
as important edges can no longer be distinguished from unimportant ones (Figure 14 in Section D.1).

Importantly, SC shifts the effect of CR from instance-wise allocation on individual edges to a collec-
tive regularization across all edges. This prevents unimportant edges from individually consuming
the budget (which would cause redundancy) and yields more trustworthy explanations.

4 EXPERIMENTS

Datasets. Following prior work (Tai et al., 2025), we evaluate on four benchmark datasets: the syn-
thetic dataset BA-2MOTIFS (Luo et al., 2020) and three real-world molecular datasets—3MR (Rao
et al., 2022), BENZENE Morris et al. (2020), and MUTAGENICITY (Morris et al., 2020).

Baselines. We implement SC on four representative SI-GNN backbones mentioned in Section 2.1.
In addition, we compare against Explanation Ensemble (EE) (Tai et al., 2025), a post-hoc strategy
designed to mitigate redundancy and improve explanation quality.

Metrics. We adopt four widely used metrics. Soft Structural Hamming Distance (SHD) measures
explanation consistency, ROC-AUC (AUC) quantifies explanation accuracy, classification Accuracy
(ACC) reflects informativeness for downstream prediction, and Fidelity- (FID) evaluates faithful-
ness. Further details about experimental settings are provided in Section C.

4.1 EFFECTIVENESS ON CR-BASED SI-GNNS

As discussed in Section 3.3, the effectiveness of SC depends on an appropriate strength of CR. We
therefore first evaluate SC on two representative SI-GNNs with CR, GISST and GSAT. The results

6
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(a) BA-2MOTIFS (b) MR (c) BENZENE (d) MUTAG

(e) BA-2MOTIFS (+SC) (f) MR (+SC) (g) BENZENE (+SC) (h) MUTAG (+SC)

Figure 4: Distributions of edge scores assigned to important and unimportant edges (defined by the
dataset ground truth) across datasets using GISST. The first row shows vanilla SI-GNNs, while the
second row shows models trained with SC. Results for GSAT are provided in Figure 15.

0.0 0.2 0.4 0.6 0.8 1.0

(a) BA-2MOTIFS

0.0 0.2 0.4 0.6 0.8 1.0

(b) MR

0.0 0.2 0.4 0.6 0.8 1.0

(c) BENZENE

0.0 0.2 0.4 0.6 0.8 1.0

(d) MUTAG

0.0 0.2 0.4 0.6 0.8 1.0

(e) BA-2MOTIFS (+SC)

0.0 0.2 0.4 0.6 0.8 1.0

(f) MR (+SC)

0.0 0.2 0.4 0.6 0.8 1.0

(g) BENZENE (+SC)

0.0 0.2 0.4 0.6 0.8 1.0

(h) MUTAG (+SC)

Figure 5: Unimportant edge weights across 10 GISST runs (GSAT results in Figure 16).

Model Input

Ground Truth

Raw 1: AUC 0.92

+SC 1: AUC 0.97

Raw 2: AUC 0.98

+SC 2: AUC 0.97

Raw 3: AUC 0.98

+SC 3: AUC 0.97

Raw 4: AUC 0.84

+SC 4: AUC 1.00

Raw 5: AUC 0.94

+SC 5: AUC 0.96

Figure 6: Explanations generated by five independently trained models (GISST vs. GISST+SC).

are summarized in Table 1. We draw three key observations: (i) SC improves explanation quality
in all cases. Compared to the vanilla SI-GNN, SC consistently enhances explanation consistency
(SHD), accuracy (AUC), faithfulness (FID), and informativeness (ACC). (ii) SC outperforms EE
in most cases. Despite EE’s ability to mitigate redundancy, SC achieves better performance while
being more efficient (∼5x faster) and more general (compatible with all standard evaluation metrics).
This highlights SC as an appealing alternative pathway for addressing redundancy. (iii) SC and
EE are complementary. When combined, SC+EE yields further gains over either strategy alone,
suggesting that SC and EE tackle redundancy from different, reinforcing perspectives.

To better understand how SC improves explanation quality, we complement the main results with
visualizations and case studies. Figure 4 shows the distributions of edge scores for important and
unimportant edges across four datasets with β = 0.05. Consistent with our analysis in Section 3.2,
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BA-2MOTIFS (GISST) MR (GISST) BENZENE (GISST) MUTAG (GISST)

Raw: G(1)
s

Raw: G(2)
s

+SC: G(1)
s

+SC: G(2)
s

Figure 7: PCA visualization of explanation embeddings. Each line connects two successive repre-
sentations of the same instance; shorter lines indicate better stability (GSAT results in Figure 17).

Table 2: Pairwise similarity between embeddings of G(1)
s and G(2)

s across 10 runs. Higher cosine
(COS) similarity and lower L1 distance indicate better self-consistency.

Method
BA-2MOTIFS MR BENZENE MUTAGENICITY

↑ COS (%) ↓ L1 (%) ↑ COS (%) ↓ L1 (%) ↑ COS (%) ↓ L1 (%) ↑ COS (%) ↓ L1 (%)

GISST 99.68±0.38 16.87±8.30 95.81±6.90 51.01±32.81 99.11±1.63 33.23±30.76 98.79±2.56 48.18±45.07
GISST+SC 99.98±0.07 1.84±5.69 99.92±0.52 2.83±8.84 99.80±1.26 7.96±18.82 99.96±0.14 5.93±15.41

GSAT 98.87±1.56 23.82±12.05 95.57±10.52 12.35±12.99 99.15±1.63 29.99±17.60 99.66±0.65 19.84±16.43
GSAT+SC 98.71±2.18 17.09±14.31 98.65±4.92 6.30±9.94 99.66±1.23 9.59±11.68 99.94±0.19 5.71±6.79

Table 3: Experimental results on GAT and CAL. Bold numbers indicate improvements over the raw
baselines. Best and second-best results are highlighted in different colors.

Method
BA-2MOTIFS MR BENZENE MUTAGENICITY

↓ SHD (%) ↑ AUC (%) ↓ SHD (%) ↑ AUC (%) ↓ SHD (%) ↑ AUC (%) ↓ SHD (%) ↑ AUC (%)

GAT 10.41±4.37 99.31±0.35 14.04±2.05 97.25±0.67 14.28±5.76 83.51±2.24 11.85±7.47 91.71±6.00
GAT+SC 16.63±15.21 99.14±2.15 8.30±3.31 97.66±1.00 19.43±9.54 85.13±5.09 0.04±0.05 81.79±12.31

GAT+CR+SC 3.48±2.20 99.87±0.05 5.47±3.39 98.39±0.88 7.19±2.62 90.07±1.56 2.51±1.02 98.30±0.54
CAL 11.40±4.04 98.64±1.33 14.51±4.33 96.25±1.59 21.25±8.91 77.64±3.05 21.82±11.15 96.39±1.39

CAL+SC 17.54±15.31 98.80±2.41 9.08±3.54 97.23±0.49 11.32±7.90 88.74±3.06 0.01±0.01 96.52±2.07
CAL+CR+SC 1.90±1.54 98.90±2.44 7.92±2.40 97.64±0.76 6.25±2.07 89.87±0.98 2.78±1.52 97.93±0.46

↓ FID (%) ↑ ACC (%) ↓ FID (%) ↑ ACC (%) ↓ FID (%) ↑ ACC (%) ↓ FID (%) ↑ ACC (%)

GAT 2.50±7.50 97.10±8.70 2.63±1.93 96.54±1.46 2.06±0.65 91.60±0.66 0.37±0.53 92.97±0.78
GAT+SC 0.00±0.00 100.00±0.00 0.10±0.22 99.55±0.16 0.82±0.61 92.46±0.32 0.00±0.00 93.65±0.77

GAT+CR+SC 0.00±0.00 100.00±0.00 0.00±0.00 99.65±0.00 0.97±0.59 92.57±0.44 0.61±0.54 91.18±1.07

CAL 17.10±17.21 91.90±11.68 8.17±2.52 94.22±2.11 4.97±3.44 84.31±5.66 2.06±1.14 91.22±1.37
CAL+SC 0.00±0.00 100.00±0.00 1.56±0.76 97.82±0.97 2.45±0.92 91.77±0.45 0.03±0.10 93.11±0.70

CAL+CR+SC 0.00±0.00 100.00±0.00 5.02±5.86 98.27±0.93 3.11±1.11 91.49±0.54 4.22±1.20 90.88±0.71

SC drives important edges toward 1 while pushing unimportant edges toward other low, near-fixed
levels, resulting in more stable assignments. Figure 5 shows that the collective allocation induced
by SC is stable: under the same conciseness regularization, score assignments remain similar across
runs, yielding consistent explanations. A case study on the BENZENE dataset (Figure 6) further
illustrates that, after SC training, the explainer assigns importance scores more responsibly. Com-
plementary results for GSAT are provided in Section D.1.

Since SC explicitly reduces discrepancies between successive explanations, it naturally lowers FID:
consistent explanations yield consistent representations and predictions. Figure 7 shows PCA plots
where SC produces visibly shorter connections between successive runs, and Table 2 confirms with
higher cosine similarity and lower L1 distance. To further validate effectiveness and rule out con-
founds such as extended training time (pretraining the GNN encoder and fine-tuning the explainer
and classifier), we include additional experiments in Section D.2.

4.2 EFFECTIVENESS ON NON-CR-BASED SI-GNNS

As discussed in Section 2.2, GAT and CAL lack explicit conciseness constraints. In this setting, ap-
plying SC alone may cause unimportant edges to drift toward high scores (e.g., Figures 12e and 12h
and Figure 13h in Section D.1), which instead degrades explanation quality. Table 3 confirms this:
for instance, GAT+SC’s AUC drops on BA-2MOTIFS and MUTAGENICITY. When CR is added,

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0 5e-2 1e-1 5e-1
0.00

0.25

0.50

0.75

1.00

Ed
ge

 S
co

re

(a) BA-2MOTIFS

0 5e-2 1e-1 5e-1
0.00

0.25

0.50

0.75

1.00

Ed
ge

 S
co

re

(b) MR

0 5e-2 1e-1 5e-1

0.00

0.25

0.50

0.75

1.00

Ed
ge

 S
co

re

(c) BENZENE

0 5e-2 1e-1 5e-1
0.00

0.25

0.50

0.75

1.00

Ed
ge

 S
co

re

Unimportant
Important

(d) MUTAG

Figure 8: Edge scores under different values of β using GISST (GSAT results in Figure 18).
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Figure 9: Edge scores under different values of η using GISST (GSAT results in Figure 19).

SC improves explanation quality across all datasets in 28 out of 32 cases. Importantly, without CR
the degradation can be severe (e.g., SHD increases by 6% and AUC drops by 10%), whereas with
CR even the few unfavorable cases show only marginal gaps (1–2%). This contrast highlights that
CR provides a stable foundation on which SC can consistently enhance explanation quality.

4.3 PARAMETER SENSITIVITY

Figures 8 and 9 analyze the effect of the two hyperparameters β and η. Consistent with our analysis
in Section 3.3, β can influence the selection of near-fixed levels. For example, in Figure 8a, when
β = 0, even unimportant edges may be pushed toward 1; as β increases, their scores shift toward 0,
leading to a clearer separation between important and unimportant edges. In practice, β is selected
by maximizing validation accuracy and adjusted through heuristic checks—e.g., whether importance
scores are sufficiently separated to yield informative explanations. As a result, β typically lies in a
suitable range, and our strategy can be directly applied without additional tuning.

Compared to β, our method is less sensitive to η. As η increases, unimportant edges that would
otherwise receive high scores are gradually suppressed toward lower values, while important ones
remain unaffected; even very large η yield relatively stable results. This may be due to freezing the
encoder, which prevents SC from perturbing the representation space. Moreover, since SC primarily
targets redundant edges (Figure 1), its optimization rarely conflicts with the main training objec-
tive. We defer a more detailed discussion to Section E. Notably, η is the only additional parameter
introduced by our strategy, yet its low sensitivity makes the approach readily applicable in practice.

5 CONCLUSION

In this work, we discussed the fundamental mismatch between the training objectives of SI-GNNs
and the faithfulness criteria by which they are evaluated. We showed that faithfulness is inherently
tied to explanation self-consistency, and that enforcing self-consistency during training can serve as
a direct and principled way to optimize faithfulness. Our analysis revealed that self-inconsistency
arises mainly on unimportant edges, linking it to redundancy and motivating a simple yet effective
solution SC. Extensive experiments across diverse benchmarks demonstrated that SC consistently
improves explanation consistency, accuracy, faithfulness, and informativeness, while remaining easy
to apply in practice. In future work, we plan to extend SC from graph benchmarks to AI4Science
domains, where trustworthy explanations are crucial for advancing scientific discovery.
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ETHICS STATEMENT

This work uses only publicly available benchmark datasets for graph explanation tasks. No hu-
man subjects, personally identifiable information, or sensitive data are involved. Our work aims
to improve explanation quality, which we believe has positive implications for transparency and
trustworthiness in AI systems.

REPRODUCIBILITY STATEMENT

We have made every effort to ensure reproducibility of our results. All datasets used in this work
are publicly available benchmark datasets for graph explanation tasks. The details of training pro-
cedures, model architectures, and hyperparameter settings are provided in Sections B and C. Each
experimental result is averaged over 10 independent runs to ensure reliability. An anonymous imple-
mentation of our method, along with training scripts and pre-trained model checkpoints, is included
in the supplementary material.
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APPENDIX

A RELATED WORK

Self-Interpretable GNNs (SI-GNNs) are designed to generate explanations as an intrinsic part of
their prediction process (Ji et al., 2025). By coupling interpretation with prediction, they aim
to produce explanations that are more faithful to the model’s decision-making than post-hoc ap-
proaches (Ying et al., 2019; Luo et al., 2020; Pope et al., 2019; Yuan et al., 2021; Zhang et al., 2022;
Chen et al., 2024; Luo et al., 2024). A typical design pattern involves two stages: (i) selecting a crit-
ical graph subset, often through soft or hard masks over edges or nodes, to serve as the explanation;
and (ii) making the final prediction based solely on this explanatory subset.

Existing approaches differ mainly in how they extract the explanatory subgraph (Tai et al., 2025).
Attention-based approaches (Velickovic et al., 2018; Knyazev et al., 2019; Lu & Li, 2020) directly
assign importance scores via attention mechanisms without explicit constraints on conciseness.
Causal-learning methods (Wu et al., 2022b; Sui et al., 2022) employ disentanglement and inter-
ventions (Pearl, 2014) to isolate causal factors. Size-constrained methods (Luo et al., 2024; Lin
et al., 2020) encourage concise explanations by penalizing subset size or sparsity. Mutual informa-
tion (MI)-constrained methods (Yu et al., 2021; 2022; Miao et al., 2022; Seo et al., 2023) minimize
the MI between the explanatory subset and the full graph to enforce conciseness.

Our work is complementary to these directions: instead of introducing new subset selection strate-
gies, we focus on enforcing self-consistency during training. This provides a simple, model-agnostic
way to directly optimize faithfulness and enhance explanation quality across different SI-GNNs.

Beyond the SI-GNNs discussed above, two recent studies provide relevant perspectives for our work.
Azzolin et al. (2025) questioned the reliability of faithfulness itself, showing that good faithfulness
scores do not necessarily imply high-quality explanations. Their observation directly inspired our
second research question—whether explicitly optimizing faithfulness can genuinely improve expla-
nation quality—and motivated us to adopt a broader evaluation that considers explanation consis-
tency, accuracy, faithfulness, and informativeness together. Tai et al. (2025) investigated explana-
tion inconsistency across repeated training runs of the same SI-GNN and traced it to explanation
redundancy, i.e., the tendency of explainers to irresponsibly assign high importance to unimportant
edges when budget allows. Our study corroborates their findings and further shows that redundancy
also underlies a related form of instability—self-inconsistency within a single SI-GNN. Inspired by
these insights, we hypothesized that mitigating self-inconsistency should also mitigate redundancy,
and thereby improve explanation quality—a link already established in Tai et al. (2025).

Our experiments confirm this hypothesis: under certain conditions, self-consistency training indeed
improves explanation quality. More broadly, our work enriches the characterization of redundancy
by revealing its manifestation as self-inconsistency within a single SI-GNN, and further provides a
new perspective for mitigation through a simple, efficient, and model-agnostic training strategy.

B SI-GNN PIPELINES

The generic pipeline of SI-GNNs can be described as follows. A GNN encoder first computes node
embeddings:

V = GNN(G). (17)

An explainer module (typically an MLP) then estimates edge importance scores from the embed-
dings of incident nodes:

wij = MLP([vi;vj ]), αij = σ(wij), (18)

where [vi;vj ] denotes concatenation and σ is the sigmoid. Each edge eij is included in the explana-
tory subgraph Gs with probability αij , yielding the factorized distribution:

P(Gs) =
∏

eij∈E
Bern(αij). (19)
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To enable differentiable sampling during training, we follow Miao et al. (2022); Luo et al. (2024)
and employ the Gumbel–Sigmoid trick (Jang et al., 2017):

P(eij)← σ((ln ϵ− ln(1− ϵ) + wij)/τ), (20)

with ϵ ∼ Uniform(0, 1) and temperature τ . At inference, the score αij is used directly.

The sampled subgraph Gs is processed by the same encoder to obtain a graph-level embedding:

zs = POOL(GNN(Gs)), (21)

where POOL is a permutation-invariant readout (e.g., sum, mean, or max). A classifier MLP finally
maps zs to the prediction:

Ŷ = MLP(zs). (22)

The training objectives follow Section 2.1. Note that CAL differs from the other three SI-GNNs
in how it handles the explanatory subset. While Equation (21) describes the standard formulation
where Gs is reused as input to the encoder, CAL does not reuse Gs in this way. More specifically,
CAL has three classifiers corresponding to the three terms in Equation (3): (1) the first classifier
takes Gs as input; (2) the second classifier takes Ḡs as input; (3) the third classifier takes Gs∪ Ḡ′

s as
input. During training, CAL applies intervention to Ḡs, but no intervention is applied at inference
time. Therefore, the third classifier actually receives the full graph G at inference, and its output is
used as CAL’s final prediction.

Remark on SC Training. While the generic SI-GNN pipeline employs the Gumbel–Sigmoid trick
during training to enable differentiable sampling, we make a slight modification for SC training.
Specifically, when constructing the paired subgraphs G(1)

s and G(2)
s used in the SC loss, we bypass

the stochastic sampling step and instead use the deterministic edge scores to form G
(1)
s and G(2)

s .
This design avoids the additional randomness introduced by Gumbel noise, which would otherwise
confound the SC alignment. At inference, we use αij as the final importance scores, the same as
prior work Miao et al. (2022).

C EXPERIMENTAL SETTINGS

Baselines. We evaluate our method on four representative SI-GNNs, each reflecting a different
design principle: GAT (Velickovic et al., 2018), GISST (Lin et al., 2020), CAL (Sui et al., 2022), and
GSAT (Miao et al., 2022). All baselines are re-implemented under a unified training framework to
ensure comparability (Tai et al., 2025). Specifically, GAT is trained with the standard classification
loss. GISST combines classification with a sparsity regularizer, omitting the entropy term since
Gumbel sampling already produces near-binary masks (Tai et al., 2025). CAL follows its original 3-
classifier formulation, but for stability we replace its 1-layer classifiers with 3-layer MLPs, applying
this change consistently across all baselines.

In addition, we compare against Explanation Ensemble (EE), a post-hoc strategy designed to mit-
igate redundancy and improve explanation quality (Tai et al., 2025). For each SI-GNN type, we
train 10 models with different random seeds. EE is then constructed within each type by ensembling
five models. This choice is dictated by the SHD metric: computing SHD requires two independent
ensembles, and using more than five models would force reuse across ensembles, undermining the
validity of the comparison.

Metrics. We adopt four metrics, each probing a distinct aspect of explanation quality.

Consistency (edge-level). To measure explanation stability, we follow Tai et al. (2025) and com-
pute the Structural Hamming Distance (SHD) (Tsamardinos et al., 2006) across runs with different
random seeds:

SHD(eij) =
2

N(N − 1)

∑
1≤p<q≤N

∣∣α(p)
ij − α

(q)
ij

∣∣, (23)

where N is the number of runs. Unlike prior work that thresholds edge weights (e.g., at 0.5), we
compute SHD directly on continuous scores, avoiding arbitrary cutoffs that can strongly bias results.
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Accuracy (instance-level). Following Wu et al. (2022b); Miao et al. (2022); Rao et al. (2022), we
use ROC-AUC (AUC) to evaluate whether annotated ground-truth edges receive higher importance
than irrelevant ones. AUC is particularly useful for detecting redundancy, but its reliability depends
on the reliability of the ground-truth annotations. As verified in Tai et al. (2025), the datasets we use
align well with the model’s decision rationale, ensuring valid evaluations.

Faithfulness (instance-level). Faithfulness evaluates whether the selected subgraph Gs preserves the
model’s decision (Yuan et al., 2022). We adopt Fidelity− (FID−), which we simply denote as FID
in the main text, defined as:

FID−(G,Gs) = 1− 1
(
c(f(Gs)) = c(f(G))

)
, (24)

where c(·) is the predicted class. An alternative is Fidelity+ (FID+), which checks whether removing
Gs changes the prediction:

FID+(G,Gs) = 1− 1
(
c(f(G \Gs)) = c(f(G))

)
, (25)

However, for SI-GNNs, FID+ confounds explanation quality with distribution-shift generalization,
since G \ Gs is never used to train the GNN encoder. Therefore, we report FID− in the main text,
while including FID+ results in Section D.2 for completeness.

Informativeness (instance-level). Finally, we report classification Accuracy (ACC) (Wu et al.,
2022b; Miao et al., 2022; Amara et al., 2022). While not a direct metric of explanation quality,
ACC serves as a sanity check: if the explanations are informative, predictive performance should be
preserved when restricted to explanatory subsets.

Implementations. We follow the setup described in prior work (Tai et al., 2025) and adopt a 2-layer
GIN (Xu et al., 2019) encoder (hidden sizes 64, 64) with a dropout rate of 0.3. The explainer is a
3-layer MLP (hidden sizes 256, 64, 1) with a dropout rate of 0.5 for predicting edge weights, and
the classifier is a 3-layer MLP (hidden sizes 64, 64, 1) for final predictions. Hyperparameters are
tuned on validation sets: learning rate from {0.01, 0.005, 0.001, 0.0005, 0.0001}, and regularization
coefficients (e.g., β, γ) from {0.01, 0.05, 0.1, 0.5, 1, 5, 10, 50, 100}, guided primarily by classifi-
cation accuracy with additional heuristics on explanation conciseness. All experiments are repeated
10 times with different random seeds to ensure reliability. Implementations are based on PyTorch
and training is performed with the Adam optimizer (Kingma & Ba, 2015).

Because our method follows a two-stage training scheme, we directly use the checkpoints1 released
by Tai et al. (2025) as the outcome of the first stage. On top of these, we fine-tune the explainer
and classifier for 100 epochs while keeping the GNN encoder frozen. All hyperparameters are
kept identical to those in Tai et al. (2025), with the only additional hyperparameter being the SC
coefficient η, which we set to 1 for all experiments. For BA-2MOTIFS, we found that the β setting
reported by Tai et al. (2025) (5e-2) yields relatively weak conciseness constraints; we therefore also
consider a stronger β (5e-1). For GAT, the +CR variant corresponds to GISST, while CAL+CR
follows the same implementation as GISST.

D MORE EXPERIMENTS

For completeness, we provide additional experimental results in this section. We divide the presen-
tation into two parts:

• Complementary results. These are experiments already discussed in the main text, where we
reported only a subset of results due to space limitations.

• New experiments. Beyond the main text, we conduct further evaluations to give a more com-
prehensive assessment of our method. These additional experiments serve to validate robustness,
generality, and provide deeper insights into the behavior of SC.

D.1 COMPLEMENTARY RESULTS

Figure 10–Figure 13 present complementary results on all four classes of SI-GNNs, where we ex-
plicitly track the evolution of edge scores assigned to unimportant edges during training with SC. For

1https://github.com/ICDM-UESTC/TrustworthyExplanation/releases/tag/
archive
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(a) BA-2MOTIFS (b) MR (c) BENZENE (d) MUTAG

(e) BA-2MOTIFS (+SC) (f) MR (+SC) (g) BENZENE (+SC) (h) MUTAG (+SC)

Figure 10: Distributions of edge scores assigned to unimportant edges (defined by the dataset ground
truth) across datasets using GISST. The first row shows vanilla SI-GNNs, while the second row
shows models trained with SC. Each subplot shows the distribution of edge scores for unimportant
edges over training epochs (vertical axis).

(a) BA-2MOTIFS (b) MR (c) BENZENE (d) MUTAG

(e) BA-2MOTIFS (+SC) (f) MR (+SC) (g) BENZENE (+SC) (h) MUTAG (+SC)

Figure 11: Distributions of edge scores assigned to unimportant edges across datasets using GSAT.
Plotting convention follows Figure 10.

(a) BA-2MOTIFS (b) MR (c) BENZENE (d) MUTAG

(e) BA-2MOTIFS (+SC) (f) MR (+SC) (g) BENZENE (+SC) (h) MUTAG (+SC)

Figure 12: Distributions of edge scores assigned to unimportant edges across datasets using GAT.
Plotting convention follows Figure 10.
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(a) BA-2MOTIFS (b) MR (c) BENZENE (d) MUTAG

(e) BA-2MOTIFS (+SC) (f) MR (+SC) (g) BENZENE (+SC) (h) MUTAG (+SC)

Figure 13: Distributions of edge scores assigned to unimportant edges across datasets using CAL.
Plotting convention follows Figure 10.

(a) GISST (UNIMP) (b) GISST+SC (UNIMP) (c) GSAT (UNIMP) (d) GSAT+SC (UNIMP)

(e) GISST (IMP) (f) GISST+SC (IMP) (g) GSAT (IMP) (h) GSAT+SC (IMP)

Figure 14: Impact of excessively strong CR regularization on BA-2MOTIFS with GISST and GSAT.
The top row shows the distributions of edge scores for unimportant edges (UNIMP), and the bottom
row shows those for important edges (IMP). When β is overly large, CR collapses both important
and unimportant edges (toward 0 in GISST and 0.5 in GSAT).

GISST and GSAT, we observe that unimportant edges converge toward stable low-score near fixed
points. In contrast, for GAT and CAL, which lack CR regularization, applying SC alone may instead
push uninformative edges toward arbitrarily high scores (e.g., Figures 12e and 12h and Figure 13h).

Figure 14 illustrates the impact of excessively strong CR regularization. When β is too large (5e0
for GISST and 5e1 for GSAT), CR dominates the training dynamics: in GISST both important
and unimportant edges collapse near 0, while in GSAT they collapse around 0.5. Without SC, the
distributional shape of edge scores is already distorted; consequently, applying SC merely forces
these distorted scores to concentrate further. This highlights that SC is effective only when the CR
strength is set within a reasonable range, where the underlying separation between important and
unimportant edges is still preserved.

Figure 15 extends the scatter plot analysis of Figure 4 to GSAT. We observe a similar effect as in
GISST: with SC training, important edges are consistently driven toward high scores (near 1), while
unimportant edges converge to lower, near-fixed levels. This separation reduces variance across
runs and yields more stable and interpretable assignments, demonstrating that the effect of SC is not
limited to size-constrained regularization but generalizes to MI-constrained models like GSAT.

Figure 16 presents the ridge plots for GSAT, complementing the GISST results in the main text
(Figure 5). We again find that, without SC, the importance scores of uninformative edges fluctu-
ate substantially across runs, reflecting the instability (irresponsibility) of the explainer. In con-
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(a) BA-2MOTIFS (b) MR (c) BENZENE (d) MUTAG

(e) BA-2MOTIFS (+SC) (f) MR (+SC) (g) BENZENE (+SC) (h) MUTAG (+SC)

Figure 15: Distributions of edge scores assigned to important and unimportant edges across datasets
using GSAT. Plotting convention follows Figure 4.

0.0 0.2 0.4 0.6 0.8 1.0

(a) BA-2MOTIFS

0.0 0.2 0.4 0.6 0.8 1.0

(b) MR

0.0 0.2 0.4 0.6 0.8 1.0

(c) BENZENE

0.0 0.2 0.4 0.6 0.8 1.0

(d) MUTAG

0.0 0.2 0.4 0.6 0.8 1.0

(e) BA-2MOTIFS (+SC)

0.0 0.2 0.4 0.6 0.8 1.0

(f) MR (+SC)

0.0 0.2 0.4 0.6 0.8 1.0

(g) BENZENE (+SC)

0.0 0.2 0.4 0.6 0.8 1.0

(h) MUTAG (+SC)

Figure 16: Unimportant edge weights across 10 GSAT runs.

trast, SC encourages these scores to concentrate around stable, low values, making their allocation
consistent across different seeds. This confirms that the stabilizing effect of SC generalizes from
size-constrained to MI-constrained SI-GNNs.

Figure 17 provides a complementary visualization for GSAT. As with the results reported in the main
text, we observe that SC training substantially reduces the distance between successive explanation
embeddings, leading to shorter connections in the PCA space. This result confirms that the stability
benefit of SC generalizes beyond size-constrained SI-GNNs to MI-constrained SI-GNNs. Together
with the quantitative similarity results in Table 2, these visualizations highlight that SC consistently
enhances explanation faithfulness across different SI-GNNs.

Figures 18 and 19 complement the GISST results in the main text by showing the sensitivity of
GSAT to the two hyperparameters β and η. Consistent with our earlier analysis, β governs the
separation between important and unimportant edges by determining their selected near-fixed levels.
Compared to β, η exhibits greater stability, as it generally pushes unimportant edges toward low
values while preserving high scores for important ones. These results confirm that our conclusions
about parameter sensitivity generalize across both size-constrained and MI-constrained SI-GNNs.
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BA-2MOTIFS (GSAT) MR (GSAT) BENZENE (GSAT) MUTAG (GSAT)

Raw: G(1)
s

Raw: G(2)
s

+SC: G(1)
s

+SC: G(2)
s

Figure 17: PCA visualization of explanation embeddings for GSAT. Each line connects two succes-
sive representations of the same instance; shorter lines indicate higher stability.
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Figure 18: Edge scores under different values of β using GSAT.
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Figure 19: Edge scores under different values of η using GSAT.

Table 4: Fidelity evaluation on four SI-GNNs. Bold indicate improvements over the raw baselines.

Method
BA-2MOTIFS MR BENZENE MUTAGENICITY

↓ FID− (%) ↑ FID+ (%) ↓ FID− (%) ↑ FID+ (%) ↓ FID− (%) ↑ FID+ (%) ↓ FID− (%) ↑ FID+ (%)

GISST 0.50±0.92 42.60±13.82 1.90±1.01 40.83±1.33 2.07±0.62 52.99±2.03 1.72±1.09 8.68±2.98
GISST+SC 0.00±0.00 52.60±3.29 0.00±0.00 39.20±0.62 0.97±0.59 55.35±0.88 0.61±0.54 40.24±1.94

GSAT 0.00±0.00 46.40±6.65 0.90±0.28 36.12±3.92 1.80±0.84 42.90±10.18 1.11±0.61 2.30±1.90
GSAT+SC 0.00±0.00 48.20±11.13 0.31±0.29 39.41±0.55 0.74±0.14 28.58±12.25 0.17±0.23 0.74±0.50

GAT 2.50±7.50 27.40±15.96 2.63±1.93 41.04±1.19 2.06±0.65 48.83±7.39 0.37±0.53 0.98±0.73
GAT+SC 0.00±0.00 36.30±24.17 0.21±0.35 38.62±1.04 0.80±0.37 54.96±1.20 0.00±0.00 0.00±0.00
GAT+CR+SC 0.00±0.00 52.60±3.29 0.00±0.00 39.20±0.62 0.97±0.59 55.35±0.88 0.61±0.54 40.24±1.94

CAL 17.10±17.21 36.60±8.82 8.17±2.52 33.67±5.86 4.97±3.44 41.15±8.54 2.06±1.14 5.00±8.18
CAL+SC 0.00±0.00 38.30±24.09 1.56±0.76 39.38±0.80 2.45±0.92 55.21±0.96 0.03±0.10 0.10±0.30
CAL+CR+SC 0.00±0.00 52.90±3.96 5.02±5.86 39.90±0.83 3.11±1.11 56.08±1.20 4.22±1.20 40.44±4.05

D.2 NEW EXPERIMENTS

D.2.1 FIDELITY EVALUATION

For completeness, we also report results under Fidelity+ (FID+), the other widely-used measure
of faithfulness that evaluates whether removing the explanatory subgraph Gs changes the model’s
prediction. Unlike FID−, which directly measures whether Gs alone suffices for the prediction,
FID+ inherently mixes explanation quality with the encoder’s ability to generalize under distribution
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shift. Since SI-GNN encoders are never trained on G \Gs, their representations on such inputs can
be unreliable. This confound often obscures the actual contribution of the explainer. As shown in
Table 4, our method with SC consistently improves over baselines on FID−, but the advantage on
FID+ is less clear. This outcome is expected: SC is explicitly designed to enforce self-consistency
on Gs, which directly aligns with FID− but not with FID+. However, poor encoder generalization
on G \ Gs can significantly influence FID+. Therefore, while we provide FID+ for completeness,
our main text focuses on FID− together with other complementary metrics (consistency, accuracy,
informativeness) for a more reliable and comprehensive assessment of explanation quality.

D.2.2 DOES SC SIMPLY BENEFIT FROM LONGER TRAINING?

Since our framework adopts a two-stage design—first training the GNN encoder and then fine-
tuning the explainer and classifier with the encoder frozen—one might suspect that the observed
improvements come simply from longer training rather than SC itself. To rule this out, we conduct an
ablation where we fix the encoder and fine-tune only the explainer and classifier under two settings:
η = 0 (two-stage training without SC) and η = 1 (two-stage training with SC).

As shown in Table 5, fine-tuning without SC does not consistently improve explanation quality;
in some cases it even degrades performance (e.g., GSAT on BA-2MOTIFS, where AUC drops by
13%). This indicates that extended training alone is insufficient for achieving better explanations.
While fixing the encoder and fine-tuning the explainer and classifier can sometimes provide modest
gains, this is not due to additional training epochs (our experiments show models already converge
well before 100 epochs), but more likely because fixing the encoder avoids feature drift from joint
optimization and thereby stabilizes training. By contrast, once SC is introduced, explanation qual-
ity consistently improves across all datasets and metrics, outperforming not only the corresponding
vanilla SI-GNNs but also, in most cases, their counterparts trained without SC loss. This demon-
strates the unique value of SC training: it makes the explainer more responsible in assigning impor-
tance scores, leading to more stable and higher-quality explanations.

Such a two-stage training scheme is not incidental but grounded in our motivation: explanation
redundancy mainly arises because the explainer, when given sufficient budget, tends to behave irre-
sponsibly. Therefore, SC loss only influences the explainer. The classifier is fine-tuned alongside
the explainer because shifts in the explainer’s behavior may alter the feature distribution of the graph
representation, requiring the classifier to adapt correspondingly.

Remark on Efficiency. Compared to vanilla SI-GNNs, our two-stage framework introduces moder-
ate additional training overhead (roughly doubling the training time) but yields substantial gains in
explanation quality. Relative to EE—the first community-proposed solution for improving explana-
tion quality—our method is significantly more efficient: since EE ensembles K = 5 independently
trained models, our approach requires only 1/K (i.e., ∼20%) of the memory or runtime cost at
inference, while also avoiding the need to train multiple models.

Taken together, these results show that SC goes beyond faithfulness optimization: it provides a more
efficient and effective mechanism than EE for mitigating redundancy, while also complementing
EE—together they achieve better performance than either alone—and ultimately offers a scalable
pathway to more trustworthy GNN explanations.

D.2.3 ABLATION: SHOULD THE ENCODER BE FROZEN DURING SC FINE-TUNING?

Our SC training framework freezes the GNN encoder during the fine-tuning stage (Step 2), so that
the SC loss affects only the explainer (and the classifier that depends on its outputs). To examine
whether this design choice is necessary, we evaluate four alternative configurations. These variants
differ in (i) whether the encoder is fully or partially trainable during Step 2, and (ii) whether gradients
from the SC loss are allowed to update the encoder. For clarity, we denote these settings as S1–S4:

• S1: Joint training, SC updates the encoder. The encoder, explainer, and classifier are all
trainable, and the SC loss backpropagates through the entire encoder.

• S2: Joint training, SC does not update the encoder. The encoder is trainable under the
standard SI-GNN objective, but gradients from the SC loss are blocked before reaching the
encoder.
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Table 5: Experimental results on GISST and GSAT (with different η). Notation (bold, color) follows
the same convention as Table 1.

Method
BA-2MOTIFS 3MR BENZENE MUTAGENICITY

↓ SHD (%) ↑ AUC (%) ↓ SHD (%) ↑ AUC (%) ↓ SHD (%) ↑ AUC (%) ↓ SHD (%) ↑ AUC (%)

GISST 10.44±4.41 99.32±0.36 9.44±2.24 97.00±0.77 16.06±6.57 84.38±2.71 12.65±3.18 98.12±0 .39
GISST+EE 4.99±1.48 99.59±0.16 5.20±0.72 98.25±0.21 8.55±2.79 91.38±0.96 6.21±1.20 98.96±0 .16

GISST+SC (η=0) 8.46±3.48 99.26±0.49 13.01±3.02 98.72±0.35 8.30±2.39 88.72±1.25 9.68±2.34 97.04±0 .74
GISST+SC+EE (η=0) 4.02±1.21 99.01±0.27 7.34±1.09 99.18±0.01 4.71±0.88 91.75±0.50 5.28±1.20 98.59±0 .16

GISST+SC (η=1) 3.48±2.20 99.87±0.05 5.47±3.39 98.39±0.88 7.19±2.62 90.07±1.56 2.51±1.02 98.30±0 .54
GISST+SC+EE (η=1) 1.52±1.03 99.90±0.02 3.05±1.22 99.25±0.02 4.14±0.82 92.20±0.43 1.44±0.38 98.96±0 .17

GSAT 4.58±1.81 98.44±0.61 12.35±3.55 98.38±0.31 6.93±2.75 90.66±0.89 10.08±4.58 99.01±0 .31
GSAT+EE 2.10±0.67 98.80±0.16 5.79±1.07 99.16±0.03 3.25±1.09 92.18±0.59 4.70±1.60 99.36±0 .05

GSAT+SC (η=0) 5.03±1.78 85.22±4.26 9.52±2.82 99.17±0.23 5.30±0.90 92.79±0.47 6.71±0.65 99.04±0 .33
GSAT+SC+EE (η=0) 2.25±0.88 86.33±3.54 4.48±1.17 99.42±0.01 2.49±0.31 93.60±0.13 3.03±0.29 99.29±0 .08

GSAT+SC (η=1) 2.73±1.02 99.30±0.12 6.67±3.73 98.91±0.29 2.32±0.62 92.80±0.36 2.38±0.84 99.38±0 .05
GSAT+SC+EE (η=1) 1.19±0.52 99.35±0.03 4.00±0.38 99.39±0.04 1.14±0.26 93.53±0.11 1.06±0.42 99.41±0 .01

↓ FID (%) ↑ ACC (%) ↓ FID (%) ↑ ACC (%) ↓ FID (%) ↑ ACC (%) ↓ FID (%) ↑ ACC (%)

GISST 0.50±0.92 95.50±12.52 1.90±1.01 97.30±1.31 2.07±0.62 91.12±0.62 1.72±1.09 89.53±0 .99
GISST+EE – 100.00±0.00 – 98.25±0.21 – 92.16±0.24 – 90.36±0 .70

GISST+SC (η=0) 0.10±0.30 99.90±0.30 1.14±1.71 99.65±0.00 1.82±0.43 92.33±0.45 1.45±0.48 92.43±1 .03
GISST+SC+EE (η=0) – 100.00±0.00 – 99.65±0.00 – 92.81±0.18 – 93.39±0 .47

GISST+SC (η=1) 0.00±0.00 99.80±0.60 0.00±0.00 99.65±0.00 0.97±0.59 92.57±0.44 0.61±0.54 91.18±1 .07
GISST+SC+EE (η=1) – 100.00±0.00 – 99.65±0.00 – 93.24±0.19 – 92.11±0 .45

GSAT 0.00±0.00 100.00±0.00 0.90±0.28 98.55±0.80 1.80±0.84 91.48±0.87 1.11±0.61 92.43±1 .00
GSAT+EE – 100.00±0.00 – 99.15±0.24 – 92.17±0.28 – 93.00±0 .44

GSAT+SC (η=0) 0.80±1.78 100.00±0.00 0.55±0.23 99.07±0.41 1.38±0.26 92.88±0.23 0.98±0.57 93.14±0 .79
GSAT+SC+EE (η=0) – 100.00±0.00 – 99.65±0.00 – 93.19±0.15 – 93.88±0 .31

GSAT+SC (η=1) 0.00±0.00 100.00±0.00 0.31±0.29 99.55±0.16 0.74±0.14 92.31±0.32 0.17±0.23 93.48±0 .48
GSAT+SC+EE (η=1) – 100.00±0.00 – 99.65±0.00 – 92.61±0.18 – 93.76±0 .37

Table 6: Experimental results on GISST and GSAT (with different training strategies). Notation
(bold, color) follows the same convention as Table 1.

Method
BA-2MOTIFS 3MR BENZENE MUTAGENICITY

↓ SHD (%) ↑ AUC (%) ↓ SHD (%) ↑ AUC (%) ↓ SHD (%) ↑ AUC (%) ↓ SHD (%) ↑ AUC (%)

GISST 10.44±4.41 99.32±0.36 9.44±2.24 97.00±0.77 16.06±6.57 84.38±2.71 12.65±3.18 98.12±0 .39
GISST+SC (S1) 7.71±6.14 99.31±0.45 15.55±6.33 95.38±1.51 19.33±5.43 73.59±7.69 8.58±4.01 97.30±0.67
GISST+SC (S2) 3.68±1.49 99.64±0.23 9.76±3.49 96.59±0.78 14.18±4.91 80.78±3.05 9.12±2.86 98.44±0.47
GISST+SC (S3) 8.28±10.61 99.61±0.89 12.11±3.13 97.60±0.48 10.91±2.66 81.83±2.54 7.69±3.96 97.91±0.42
GISST+SC (S4) 3.10±2.07 99.89±0.03 5.71±1.41 98.76±0.30 7.01±1.82 88.37±1.99 2.79±0.97 98.69±0.46

GISST+SC 3.48±2.20 99.87±0.05 5.47±3.39 98.39±0.88 7.19±2.62 90.07±1.56 2.51±1.02 98.30±0 .54
GSAT 4.58±1.81 98.44±0.61 12.35±3.55 98.38±0.31 6.93±2.75 90.66±0.89 10.08±4.58 99.01±0 .31

GSAT+SC (S1) 3.73±1.51 98.96±0.38 7.94±3.63 97.81±0.54 5.21±3.59 90.34±1.02 4.20±2.01 98.95±0.57
GSAT+SC (S2) 2.32±0.84 99.13±0.33 7.60±3.65 97.53±0.60 4.31±1.78 90.97±1.03 4.77±2.78 99.29±0.11
GSAT+SC (S3) 2.53±1.03 99.08±0.19 6.01±3.91 98.69±0.23 3.19±0.74 90.78±0.73 3.88±2.48 99.16±0.18
GSAT+SC (S4) 1.84±0.77 99.32±0.26 6.21±3.46 98.95±0.27 2.65±0.58 92.65±0.36 4.39±4.32 99.20±0.08

GSAT+SC 2.73±1.02 99.30±0.12 6.67±3.73 98.91±0.29 2.32±0.62 92.80±0.36 2.38±0.84 99.38±0 .05

↓ FID (%) ↑ ACC (%) ↓ FID (%) ↑ ACC (%) ↓ FID (%) ↑ ACC (%) ↓ FID (%) ↑ ACC (%)

GISST 0.50±0.92 95.50±12.52 1.90±1.01 97.30±1.31 2.07±0.62 91.12±0.62 1.72±1.09 89.53±0 .99
GISST+SC (S1) 0.30±0.46 99.50±0.50 1.38±0.74 97.85±0.94 1.61±0.53 90.32±0.93 0.81±0.38 90.54±1.56
GISST+SC (S2) 0.20±0.40 99.90±0.30 1.28±0.31 98.24±0.57 1.67±0.59 90.66±1.37 1.15±0.66 89.49±1.16
GISST+SC (S3) 0.00±0.00 100.00±0.00 1.00±0.36 98.44±0.79 1.13±0.49 92.21±0.23 0.61±0.77 90.27±0.84
GISST+SC (S4) 0.00±0.00 100.00±0.00 0.45±0.49 99.27±0.42 1.66±0.47 92.45±0.36 0.68±0.64 90.78±1.50

GISST+SC 0.00±0.00 99.80±0.60 0.00±0.00 99.65±0.00 0.97±0.59 92.57±0.44 0.61±0.54 91.18±1 .07
GSAT 0.00±0.00 100.00±0.00 0.90±0.28 98.55±0.80 1.80±0.84 91.48±0.87 1.11±0.61 92.43±1.00

GSAT+SC (S1) 0.50±0.50 99.60±0.49 0.76±0.40 98.34±0.46 1.19±0.47 92.03±0.53 0.17±0.23 92.53±1.17
GSAT+SC (S2) 0.40±0.49 99.60±0.49 1.00±0.57 98.10±0.52 1.08±0.17 92.36±0.37 0.24±0.30 92.87±0.87
GSAT+SC (S3) 0.10±0.00 99.90±0.30 0.03±0.10 99.62±0.10 1.03±0.35 92.83±0.54 0.17±0.23 93.11±0.88
GSAT+SC (S4) 0.00±0.00 100.00±0.00 0.10±0.16 99.62±0.10 1.05±0.19 92.45±0.36 0.20±0.22 93.24±0.83

GSAT+SC 0.00±0.00 100.00±0.00 0.31±0.29 99.55±0.16 0.74±0.14 92.31±0.32 0.17±0.23 93.48±0 .48

• S3: Last encoder layer trainable, SC updates the encoder. Only the last encoder layer
is unfrozen, and the SC loss is allowed to update this layer.

• S4: Last encoder layer trainable, SC does not update the encoder. The last encoder
layer participates in standard SI-GNN optimization, while the SC loss remains restricted to
the explainer.
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Figure 20: Self-inconsistency measured as the L1 difference (DIFF) between two explanations after
SC training. Plotting convention follows Figure 1.

Results in Table 6 provide the following practical guidance: (1) Do not allow the SC loss to update
the encoder. (2) Do not fully unfreeze the encoder during SC fine-tuning. (3) We suggest freezing
the encoder, which yields the most stable performance in practice.

E PRACTICAL CONSIDERATIONS OF THE SC COEFFICIENT

This section provides a deeper discussion of the coefficient η introduced by the SC loss. We address
two aspects. First, in Section E.1, we show that incorporating SC does not alter the optimal explana-
tory subset, but instead reshapes the optimization landscape by discouraging redundant solutions.
Second, in Section E.2, we analyze how to select η in practice: by deriving upper bounds on the
expected SC loss, we can restrict its search space during training, and we further report empirical
findings that a simple choice η = 1 already works well across all datasets.

E.1 PRESERVATION OF OPTIMAL EXPLANATIONS

Recall the original SI-GNN objective (Tai et al., 2025):

max
Gs⊆G, |Gs|≤M

I(Gs;Y ), (26)

where M is the budget and G∗
s denotes the ground-truth explanatory subset.

With SC, the augmented training objective becomes:

max
G

(1)
s ⊆G, G

(2)
s ⊆G, |G(1)

s |≤M, ∥G(1)
s −G

(2)
s ∥≤ε

I(G(1)
s ;Y ), (27)

where G(2)
s is the explanation induced by feeding G(1)

s back into the model.

Since Figure 1 demonstrates that only unimportant edges exhibit self-inconsistency while impor-
tant edges are inherently stable, it follows that the ground-truth explanation G∗

s must also be
self-consistent. Therefore, G∗

s remains a feasible solution under the SC-augmented objective and
achieves the same maximum MI as in the original one. In other words, SC does not alter the optimal
explanation but reshapes the optimization landscape by discouraging redundant subsets that exploit
unimportant edges. For comparison, we present the results after SC training in Figure 20.

E.2 PRACTICAL GUIDELINES

The SC coefficient η is the only additional hyperparameter introduced by our framework. During
training, its search range can be guided by analyzing the expected value of the SC loss. Recall that
the augmented objective (for GISST and GSAT) is:

LFT = LCE + β ·R(Gs) + η · LSC. (28)

The following result provides a theoretical upper bound on the expected self-consistency error.

Proposition 1. Let θ, ϕ, and ψ denote the parameters of the GNN encoder (fixed), explainer, and
classifier, respectively. Define ÊD as the empirical expectation over a set of samples D. Let ϕ∗ =
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argminϕ ÊD [LFT(G; θ, ϕ, ψ)], and ϕ̃ denotes any perfectly self-consistent solution that satisfy ϕ̃ =

argminϕ ÊD

[
LSC(G

(1)
s , G

(2)
s ; θ, ϕ)

]
. Then, we have:

ÊD

[
LSC(G

(1)
s , G(2)

s ; θ, ϕ∗)
]
≤ logC +Ω

λ
, (29)

where C is the number of label types, and Ω is the maximum value of β ·R(Gs).

Proof. Since ϕ∗ is the minimizer of ÊD [LFT(G; θ, ϕ, ψ)], we have:

ÊD

[
LGE(G; θ, ϕ

∗, ψ) + λ · LSC(G
(1)
s , G(2)

s ; θ, ϕ∗)
]

≤ ÊD

[
LGE(G; θ, ϕ̃, ψ) + λ · LSC(G

(1)
s , G(2)

s ; θ, ϕ̃)
]
. (30)

Since LSC(G
(1)
s , G

(2)
s ; θ, ϕ̃) = 0, we have:

ÊD

[
LGE(G; θ, ϕ

∗, ψ) + λ · LSC(G
(1)
s , G(2)

s ; θ, ϕ∗)
]
≤ ÊD

[
LGE(G; θ, ϕ̃, ψ)

]
. (31)

Due to the non-negative property of LGE, the above inequality can be further simplified:

ÊD

[
LGE(G; θ, ϕ

∗, ψ) + λ · LSC(G
(1)
s , G(2)

s ; θ, ϕ∗)
]
≤ ÊD

[
LGE(G; θ, ϕ̃, ψ)

]
(32)

ÊD

[
λ · LSC(G

(1)
s , G(2)

s ; θ, ϕ∗)
]
≤ ÊD

[
LGE(G; θ, ϕ̃, ψ)− LGE(G; θ, ϕ

∗, ψ)
]

(33)

ÊD

[
λ · LSC(G

(1)
s , G(2)

s ; θ, ϕ∗)
]
≤ ÊD

[
LGE(G; θ, ϕ̃, ψ)

]
(34)

ÊD

[
LSC(G

(1)
s , G(2)

s ; θ, ϕ∗)
]
≤ ÊD

[
LGE(G; θ, ϕ̃, ψ)

λ

]
. (35)

Suppose the number of samples in different classes is the same. The worst-case for the GNN ex-
plainer happens when it discards all edges relevant to the label, but preserves all irrelevant edges.
Under such circumstances, we have a perfectly self-consistent explainer but the downstream classi-
fier cannot obtain any information from it. Thus, we have:

LGE = LCE + β ·R(Gs) ≤ logC + β ·R(Gs). (36)

Substituting Equation (36) into Equation (35), we can get:

ÊD

[
LSC(G

(1)
s , G(2)

s ; θ, ϕ∗)
]
≤ logC +Ω

λ
, (37)

where Ω is the maximum value of β ·R(Gs).

For GISST that uses the sparsity loss, the worst case is:

max
Gs

β ·R(Gs) = β · |Gs|
|G|
≤ β. (38)

Thus, for GISST, we have:

ÊD

[
LSC(G

(1)
s , G(2)

s ; θ, ϕ∗)
]
≤ logC + β

λ
. (39)

For GSAT that uses KL divergence to constrain Gs, the worst case is:

max
Gs

β ·R(Gs) =
β

|G|
∑

αij∈E
αij log

αij

r
+ (1− αij) log

1− αij

1− r

≤ β ·max
αij

[
αij log

αij

r
+ (1− αij) log

1− αij

1− r

]
, (40)
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where r ∈ [0, 1] is a hyperparameter controlling the conciseness of the GNN explanation. To cal-
culate the maximum value of Equation (40), we need to calculate the first and second derivatives of
p(·). Setting the derivative equal to zero, we solve α(1−r)

r(1−α) = 1, which yields α = r. The second
derivative 1

α(1−α) is always positive, indicating that the function attains a local minimum at α = r

and maximum at end points. So the maximum value is: β ·max(log( 1r ), log(
1

1−r )). Thus, for GSAT,
we have:

ÊD

[
LSC(G

(1)
s , G(2)

s ; θ, ϕ∗)
]
≤

logC + β ·max(log( 1r ), log(
1

1−r ))

λ
. (41)

In practice, r will not be set too large or too small—too small r means that most edges will be
discarded, which makes the training process unstable, and r that is too large cannot provide valuable
explanations. In our experiments, we set r = 0.5, so we have: λ ≤ logC+β·log 2

δ .

Given the tolerance factor δ, we first formalize a candidate set S(λ), λ ∈ (0, logC+Ω
δ ]. Then we

select λ from S(λ) based on validation performance. In our experiments, we find that λ = 1 already
yields good enough results on all datasets.

F THE USE OF LARGE LANGUAGE MODELS

ChatGPT 5 were used as an assistive tool during the preparation of this paper. Their role was lim-
ited to improving the clarity and readability of the text (e.g., language polishing) and checking the
presentation of mathematical derivations. All research ideas, methodological designs, experiments,
analyses, and conclusions were solely developed and validated by the authors, who take full respon-
sibility for the content of this work.
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