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Abstract

Due to their remarkable performance, general-
purpose multimodal pre-trained language mod-
els have gained widespread adoption for Doc-
ument Understanding tasks. The majority of
pre-trained language models rely on serialized
text, extracted using either Optical Character
Recognition (OCR) or PDF parsing. How-
ever, accurately determining the reading order
of visually-rich documents (VrDs) is challeng-
ing, potentially affecting the accuracy of the
extracted text and leading to sub-optimal per-
formance in downstream tasks. For informa-
tion extraction tasks, where entity recognition
is commonly framed as a sequence-labeling
task, incorrect reading order can hinder entity
labeling. In this work, we avoid reading or-
der issues by discarding sequential position in-
formation. Based on the intuition that layout
contains the information for correct reading or-
der, we present Layout2Pos — a shallow Trans-
former designed to generate position embed-
dings from layout. Incorporated into a BART
architecture, our approach demonstrates com-
petitiveness with models dependent on reading
order across three benchmark datasets for in-
formation extraction. We also show that eval-
uating models using a reading order different
from the one seen during training can result in
substantial performance drops, thereby high-
lighting the importance of not relying on the
reading order of documents.

1 Introduction

The organization of textual content in a specific
layout is crucial for conveying information, hold-
ing significant importance across various written
materials, including business documents, scholarly
papers, and news articles. In particular, layout de-
termines the sequence in which text is intended to
be read or processed within a document, i.e., the
reading order. A well-designed reading order en-
sures that readers can follow the logical flow and

structure of information and comprehend the in-
tended meaning of the text. However, defining a
proper reading order is non-trivial due to the com-
plexity of document layouts, which may include
elements such as tables and multiple columns.
When language or information extraction mod-
els are trained with a reading order that aligns
with human understanding, they learn to capture
the relationships between words, sentences, and
paragraphs. Hence, reading order is crucial for
models to perform well. Most pre-training meth-
ods for Document Understanding rely on serialized
text, where either an Optical Character Recognition
(OCR) engine or a PDF parser is used to extract text.
However, due to the variety of layout formats, most
OCR engines and PDF parsers struggle to provide
accurate reading orders, introducing serialization
errors. Serialization errors, i.e., noise that may
arise during text extraction, such as misinterpreta-
tions or omissions, can impact the accuracy of the
extracted text and, therefore, affect the entire text
processing pipeline. Without an accurate reading
order, models may misinterpret the relationships
between different parts of the text. This poses a
substantial challenge in Document Understanding,
where document layouts can be complex.
Specifically, in information extraction tasks from
visually-rich documents (VrDs), also referred to as
visual information extraction, the primary goal'
is to identify entities of predefined semantic types
(e.g., names, dates, addresses). In this context,
performance is notably impacted by serialization
errors. Following the classic settings of NLP, the
task is commonly framed as a sequence-labeling
problem. This approach involves labeling each to-
ken using a tagging scheme, such as BIO-tagging
(Ramshaw and Marcus, 1999), and leveraging these
tags to identify entities. A sequence labeling-based

' Additionally, the task extends to classifying the relation-
ships between these recognized entities (relation extraction).
In this work, we do not focus on this task.



approach operates under the assumption that each
identified segment of an entity forms a continuous
sequence of words within the input. While this
assumption is valid for plain texts, it may not hold
for real-world documents, where OCR systems or
PDF parsers might not correctly organize text (e.g.,
an entity might be split into non-continuous frag-
ments). Such disordered input disrupts the BIO-
tagging scheme, preventing the models from accu-
rately identifying entities.

On the other hand, layout inherently encapsu-
lates the correct reading order of documents by
visually organizing content in a structured man-
ner. A well-designed layout guides the reader’s
natural progression from one section to another,
ensuring logical information flow. Therefore, un-
derstanding the layout provides essential cues for
determining the correct reading order. Yet, existing
pre-training methods for Document Understanding
often neglect this aspect, opting to oversimplify the
integration of layout by, e.g., adding it as an extra
input embedding (Xu et al., 2020b).

We focus on mitigating serialization errors by
entirely discarding sequential position information.
We introduce Layout2Pos, a shallow Transformer
designed to generate position embeddings from the
document layout. Our endeavor is twofold: from a
practical standpoint, we aim to enhance the robust-
ness of models to reading order changes, crucial
for real-world applications; from a theoretical per-
spective, we demonstrate that it is feasible to dis-
card sequential position information without com-
promising overall performance. We integrate this
module into a sequence-to-sequence framework.
To train the model, the language modeling task is
coupled with a pre-training strategy designed to
instill the model with the ability to learn the read-
ing order from layout information. This integration
eliminates the reliance on reading order and en-
ables the generation of values that are not explicitly
present in the input. We demonstrate the benefits
of our approach for visual information extraction
tasks, showcasing competitive performance to mod-
els that depend on reading order.

2 Related Work

Multimodal Pre-trained Language Models To
process VrDs in document understanding tasks,
various approaches have proposed to incorporate
layout information into language models, lever-
aging the modeling capabilities of Transformers

(Vaswani et al., 2017). LayoutLM (Xu et al.,
2020b) is the first to encode layout information
with learned 2D position embeddings obtained
from word bounding boxes. Extending the con-
cept of relative position bias (Raffel et al., 2020) to
the 2D scenario, LayoutLMv2 (Xu et al., 2020a)
builds upon LayoutLM by adding bias terms to the
attention scores, encoding the 2D relative position
of tokens with respect to each other. DocFormer
(Appalaraju et al., 2021) facilitates the correlation
between text and images by sharing learned spa-
tial embeddings across modalities. However, these
methods rely on an OCR-induced reading order,
which may not align with human reading patterns.
Rather than treating layout information as an extra
feature, we leverage it to learn position embed-
dings, removing the need for sequential position
information obtained through OCR.

Addressing Reading Order Issues To address
serialization errors, automatic word reordering
techniques can be employed. ERNIE-Layout (Peng
et al., 2022) uses an in-house document layout anal-
ysis toolkit that provides an appropriate reading
order based on the spatial distribution of words,
pictures, and tables. Enhanced with this knowl-
edge, the token sequence can be rearranged in a
way that aligns better with human reading patterns
compared to the raster-scan order, which rearranges
tokens from the top-left to the bottom-right corner.
LayoutReader (Wang et al., 2021) is a sequence-
to-sequence model, employing LayoutLM as its
encoder, that generates the reading order of docu-
ments and improves the line ordering capabilities
of OCR engines. XYLayoutLM (Gu et al., 2022)
introduces an augmentation algorithm based on
XY Cut (Ha et al., 1995) to generate a series of
proper reading orders for training. Additionally, it
adaptively generates position embeddings based on
input lengths using dilated convolutions to extract
local layouts. Token Path Prediction (Zhang et al.,
2023) frames visual information extraction tasks
as the prediction of token paths within a complete
directed graph of tokens, using a prediction head
compatible with Transformer-based language mod-
els. Our approach shares a similar module-based
structure, while introducing more robust 1D posi-
tion encodings learned from the spatial position of
tokens in the document page.

Generative Methods for Information Extraction
Unlike sequence labeling approaches that entirely
depend on the content extracted via OCR, gener-



ative models can generate text without being re-
stricted by the document’s content or its reading
order, enabling them to potentially correct OCR-
induced errors. Sage et al. (2020) represent the
information to be extracted as a sequence of to-
kens in the XML language. They employ a re-
current encoder-decoder architecture to generate
XML representations, using pointer-generator net-
works (See et al., 2017) to allow the model to dy-
namically decide whether to generate a word from
its vocabulary or copy it directly from the docu-
ment. Townsend et al. (2021) use a Transformer
language model trained on database records to gen-
erate JSON-like representation of the extracted in-
formation. In close relation to our work, TILT
Powalski et al. (2021) is a Transformer encoder-
decoder model enhanced with layout and visual
information, specifically designed for information
extraction tasks from VrDs. Instead of relying on
OCR for text extraction, Donut (Kim et al., 2022)
uses a Transformer visual encoder to extract fea-
tures from a document image. A textual Trans-
former decoder is then used to map these features
to a desired structured format, such as JSON, for
visual information extraction tasks. In contrast to
Donut, our method does not rely on visual features,
offering better computational efficiency when var-
ious information extraction tasks are conducted
or/and complex documents are processed. Our ap-
proach eliminates dependence on OCR-induced
reading order by leveraging the spatial position of
tokens on the page.

3 Preliminary Experiments: OCR
Serialization Errors

To gauge the extent of OCR-induced serialization
errors, we conduct preliminary experiments com-
paring the annotated ground-truth reading order
against the reading orders produced by 1) Tesseract
OCR (Kay, 2007), a widely-used OCR engine, and
2) DocTR (Mindee, 2021), an OCR engine based
on deep learning models. The goal is to assess the
alignment of the reading order produced via OCR
with the actual human reading patterns.

We use a subset of 100 documents from the Read-
ingBank (Wang et al., 2021) dataset. ReadingBank
is a benchmark dataset for reading order detection
that includes high-quality reading order annota-
tions which capture the correct sequence of words
as visually presented in the documents. Upon ex-
amination of the samples and discerning patterns

Layout Type
Plain Lists Multi- Tables
column
Tesseract OCR  78.71  72.75 61.43 36.97
DocTR 86.83 77.83 82.54 66.11
Layout2Pos 9944 9745 94.29 88.60

Table 1: Accuracy (in %) obtained by each OCR engine,
for each document layout type. Our model, Layout2Pos,
is described in Section 4.2. Best results are reported in
bold.

that appear most frequently, we have identified four
prevalent document layout types: plain layout, lists,
multicolumn layout, and fables. We provide exam-
ples in Section A of the Appendix.

Tesseract OCR and DocTR are employed to ex-
tract and serialize text from the documents. The
reading orders produced are compared against the
ground-truth for discrepancies. Specifically, we
evaluate accuracy by comparing, for each word in
the ground-truth sequence, the actual next word
with the one predicted by each OCR engine. We
compute the accuracy obtained by each system for
each specific layout type. Results are reported in
Table 1. Additionally, we include the results ob-
tained by our approach, Layout2Pos. Our findings
indicate that both OCR engines face increased dif-
ficulty in reconstructing the correct reading order
as the document layout becomes more complex.”
Our approach exhibits a similar trend, although
to a significantly lesser degree. Furthermore, it
demonstrates higher accuracy for each document
type compared to both OCR engines.

4 Reconstructing Positional Information
from 2D Positions

Building on the insights gained from the previous
experiment, retrieving the correct reading order is
a significant challenge for OCR engines. We argue
that it is possible to retrieve the correct reading
order by leveraging document layout. To address
this, we propose Layout2Pos, a transformer-based
module that does not rely on the reading order
generated by OCR, and learns position embeddings
solely from the spatial positions of tokens.

4.1 Encoding Layout Information

To encode layout information, we use 1) bounding
box information, 2) 2D relative positions, and 3)
*This difficulty in accurately predicting the next word is

further attributed to the OCR engines’ misinterpretation of
certain words.



a novel method based on line and column relative
positions.

Encoding Bounding Box Information The spa-
tial position of a token is represented by its bound-
ing box in the document page image, denoted as
(zo, Y0, 1,Y1), Where (zo,yp) and (z1,y;) cor-
respond to the coordinates of the top-left and
bottom-right corners, respectively. Following Lay-
outLMv2, we discretize and normalize these coor-
dinates to integers within the range of [0, ..., 1000].
Four embedding tables are employed to encode spa-
tial positions: LE; and LE, for the coordinate axes
(z and y), and LE,, and LE,, for the bounding box
size (width and height). In line with LayoutLMv2,
the final layout embedding £ € R of a token,
whose bounding box is (xg, yo, 1, y1), is defined
as follows (|| denotes concatenation):

£ = LE,(z0) || LE,(y0)

| LEz(21) || LEy(y1)
|| LEy (21 — o)

| LEL(y1 — %o),

Leveraging 2D Relative Positions LayoutL.Mv2
encodes spatial relative positions as bias terms
added to the attention scores to explicitly capture
the spatial relationship between tokens. Follow-
ing LayoutLMv2, for each pair of bounding boxes
((z0s Yo, 1, Y1), (0, Y0, 71, Y1) ), we compute the
horizontal distance x(, — z( between the left edge
of each box and the vertical distance y; — y; be-
tween the bottom edge of each box. In addition,
we provide additional insights into the spatial re-
lationships of tokens by computing the horizontal
distance x} — x( between the right edge of one box
and the left edge of the other, indicating informa-
tion about the combined length. Furthermore, we
calculate the horizontal distance 2} — x; between
the right edge of each box, providing information
about the length of the second token in the pair.

ey

Incorporating Line and Column Relative Posi-
tions Understanding the relative positions within
columns provides information about the sequential
structure of the document, aiding in distinguishing
between different parts of the document. On the
other hand, the relative positions within lines is
valuable for documents with multicolumn layouts,
offering insights into the spatial arrangement of text
across columns. Hence, for each bounding box, we
identify other bounding boxes that share the same
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Figure 1: Layout2Pos Architecture.
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line/column. This is determined by whether the
horizontal/vertical line passing through the center
of the box intersects with the other bounding boxes.
If there is an intersection, the boxes are considered
to be on the same line/column. For each token %;,
we determine its positions p() (i) and p(®) (i) within
its corresponding line and column, using a left-to-
right order for lines and a top-to-bottom order for
columns. Then, we compute the relative sequential
distance 4! ; and 67, between elements within each
line and column. If they do not belong to the same
line or column, the distance is set to co.

Suppose qf and k:f denote the query and key pro-
jections obtained from the layout embedding £; of
token i. Let b(2P=) p(2Dy) p) and ) be the
horizontal, vertical, line, and column relative posi-
tion biases, respectively. In Layout2Pos, attention
is re-defined as:
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4.2 Learning 1D Position Embeddings from
Layout Information

Given a sequence of layout embeddings derived
from token bounding box coordinates, as defined
by Equation 1, Layout2Pos employs a stack of
Transformer layers to contextualize the sequence.
The outputs of the last layer, £;, serve as position
embeddings, i.e., p; = £;. The objective is for



these embeddings (p1,- -+ ,py) to carry informa-
tion regarding the reading order. To accomplish
this, we build a simple classifier on top of these em-
beddings, designed to compute alignment scores
between each token:

Ay = (piWY) (Pj Wk) - 3)
We assume that the attention matrix A carries infor-
mation about the reading order, i.e., A;; represents
the probability that the j-th token follows the i-th
token. Let IN be the ground-truth binary matrix ob-
tained from the ground-truth reading order, where
NN;; equals 1 if token at position j is the next token
after token at position ¢ in the sequence, and 0 other-
wise. We define the Next Token Position Prediction
strategy, which consists in using the attention ma-
trix A to predict the next token of each token in the
sequence (next token matrix). The corresponding
cross-entropy loss is defined as follows:

1 n n
Lnrpp = - Z Z Njj log (softmax;(A.;))

i=1 j=1

“)
As such, Layout2Pos can be trained to capture the
relationship between layout and reading order® by
ensuring that the attention matrix A derived from
the computed position embeddings carries infor-
mation about the next token for each token in the
sequence. The architecture of Layout2Pos is de-
picted in Figure 1.

4.3 Integrating Layout2Pos into a
Sequence-to-Sequence Framework

Layout2Pos can be integrated into any language
model, removing the reliance on sequential posi-
tion information. This is achieved by substitut-
ing the traditional position encodings derived from
OCR by Layout2Pos’ position embeddings. Specif-
ically, we integrate Layout2Pos into a Transformer
encoder-decoder architecture, as illustrated in Fig-
ure 2. The sequence of position embeddings, ob-
tained by Layout2Pos, is added to the sequence of
token embeddings. The resulting sequence is input
to the bidirectional encoder.

Corruption Loss Layout2Pos is trained together
with the encoder-decoder model. While Lay-
out2Pos learns to predict the subsequent token

31t is noteworthy that a global reading order is unnecessary;
there is no requirement to establish an order between two

words that belong to segments that have no relation to each
other.

of each token based on layout information, the
encoder-decoder follows a pre-training approach
similar to BART (Lewis et al., 2019). The model is
trained to reconstruct the original input sequence
from a corrupted version (denoising). Sequences
are corrupted by randomly replacing text spans
with a single mask token (fext infilling) and per-
muting sentences (sequence permutation). The cor-
rupted sequence is encoded using the bidirectional
encoder, and the autoregressive decoder is trained
to reconstruct the original sequence. The final loss
is expressed as follows:

L= £NTPP + EDenoising- (5)

We refer to the overall model as

BART+Layout2Pos.

Inference for Information Extraction Tasks To
determine how the model predicts the next token
of the sequence for information extraction tasks,
we employ a customized variant of beam search
to generate tokens while minimizing repetitions,
therefore enhancing the coherence of the generated
sequences. In this modified version, the gener-
ated tokens, if present in the source sequence, are
constrained not to occur more frequently than in
the original source. This constraint is enforced by
keeping count of the number of occurrences of each
token in the source sequence within the target se-
quence, masking the corresponding logit when the
maximum occurrence is reached and redistributing
the probability mass over the valid tokens.

5 Experiments

For reproducibility purposes, we will make the
models implementation, along with the fine-tuning
and evaluation scripts, publicly available.

5.1 Data

Pre-training Data Following a common practice
in the field of Document Understanding, we collect
data from the IIT-CDIP collection (Lewis et al.,
2006) to build our pre-training dataset. IIT-CDIP
consists of around 11 million scanned document
page images of various types and layouts, including
news articles, scientific reports, handwritten mate-
rials, and more. We select over 7 million document
images from the collection to build our pre-training
dataset, allocating over 18k for validation, another
18k for testing, and the remaining images for train-
ing. To extract text and bounding boxes from the
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Figure 2: Architecture of Layout2Pos integrated into a BART model, i.e., BART+Layout2Pos. The input consists of
two components: a sequence of tokens and the corresponding sequence of token bounding box coordinates.

documents, we use DocTR (Mindee, 2021). Due
to potential serialization errors induced by DocTR,
and given that the Next Token Position Prediction
task requires documents with proper reading or-
ders, IIT-CDIP is only used for training models in
language modeling tasks (i.e., denoising).

To enable Layout2Pos to effectively learn the
correct reading order of documents, we use the
500k documents from ReadingBank (Wang et al.,
2021).* These documents are serialized and anno-
tated with high-quality reading order annotations,
serving as the training data for both Next Token
Position Prediction and language modeling tasks.

In cases where a word is split into multiple to-
kens, approaches based on word-level bounding
boxes typically assign the word’s bounding box
to all the tokens within that word. However, this
approach is inefficient for Next Token Position Pre-
diction, given that tokens within the same word
would share identical layout embeddings, hence
hindering accurate predictions of the next token.
Therefore, we approximate token-level bounding
boxes by dividing each word-level bounding box
by the number of characters in the word.

Data for Visual Information Extraction We
evaluate our approach on visual information extrac-
tion tasks, where the goal is to extract semantic en-
tities from VrDs, based on a set of pre-defined keys.
This evaluation is conducted using three benchmark
for visual information extraction, each covering
different document types: FUNSD (Jaume et al.,
2019), SROIE (Huang et al., 2019), and CORD
(Park et al., 2019). For each dataset, we use the
reading order provided. To maintain consistency

“For further insights into the validation of this choice, see
Section E of the Appendix.

with pre-training data, we employ approximated
token-level bounding boxes. We provide examples
in Section C of the Appendix.

FUNSD (Jaume et al., 2019) is a form under-
standing dataset with 199 real, noisy and scanned
forms where each sample is a list of form entities.
There are three keys for which values have to be ex-
tracted: question, answer, and header. The dataset
is split into 149 samples for training and 50 for test.

SROIE (v1l) (Huang et al., 2019) is another
receipt understanding dataset comprising 973
scanned receipts written in English. The task in-
volves extracting entities for four keys: fotal, date,
company, and address. The dataset is partitioned
into 626 samples for training and 347 for test.

CORD (v1) (Park et al., 2019) is a receipt under-
standing dataset containing 1,000 scanned Indone-
sian receipts with 30 keys categorized into four
superclasses: menu, subtotal, total, and void. Fol-
lowing the katanaml/cord’ dataset repository, we
exclude keys with very few occurrences, resulting
in 22 keys grouped into three superclasses. The
dataset is divided into 800 examples for training,
100 for validation, and 100 for test.

5.2 Experimental Settings

For full implementation details, see Section D of
the Appendix.

Baselines We compare our approach with
BART+2D, a layout-augmented BART model
which relies on position embeddings derived from
OCR-induced positions. These position embed-
dings are calculated using embedding tables and
are subsequently added to textual features. Layout

Shttps://huggingface.co/datasets/katanaml/cord
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embeddings, computed from bounding boxes using
Equation 1, are incorporated to the resulting embed-
dings to construct the input embeddings. Following
LayoutLMv2, BART+2D encodes spatial relative
positions as bias terms added to the attention scores.
BART+2D follows the same training and inference
procedures as BART+Layout2Pos.

Additionally, we report the performance of two
layout-aware encoder-only models: 1) LayoutLM
and 2) LayoutLMv2-no-visual, a variant of Lay-
outL.Mv2 that discards visual information to ensure
a fair comparison with our approach.

Pre-training Layout2Pos is composed of 2 lay-
ers with 12 attention heads and a hidden size
of 768.° The final attention calculation, respon-
sible for computing the next token matrix, in-
volves a single attention head. Following the
BART base model, both the encoder and decoder
in BART+Layout2Pos and BART+2D are com-
prised of 6 layers, each with 12 attention heads
and a hidden size of 768. BART+Layout2Pos
comprises a total of 156M parameters, whereas
BART+2D consists of approximately 140M param-
eters. Both models are trained from scratch on
IIT-CDIP+ReadingBank for 10 epochs. We use a
maximum sequence length of 512.

For LayoutLLM, we use the microsoft/layoutlm-
base-uncased checkpoint with 113M parameters,
without any additional pre-training. Following the
base architecture of LayoutLMv2, LayoutLMv2-
no-visual is composed of a 12-layer Transformer
encoder with 12 attention heads and a hidden size
of 768, amounting to 110M parameters. The model
is also pre-trained from scratch for 10 epochs
on IIT-CDIP+ReadingBank, using Masked Visual
Language Modeling (MVLM) (Xu et al., 2020b),
a pre-training task that extends Masked Language
Modeling (MLM) with layout information. The
maximum sequence length is set to 512.

5.3 Visual Information Extraction

Sequence-labeling approaches We employ Lay-
outLM and LayoutLMv2-no-visual as sequence
labeling methods. We use the BIO (Beginning, In-
side, Outside) tagging format (Ramshaw and Mar-
cus, 1999) as the labeling scheme to tag tokens
based on both their entity and their position within
that entity. For every dataset, the maximum se-
quence length is set to 512. Both models are fine-

SFor further information regarding the validation of this
architecture, see Section E of the Appendix.

tuned for 100 epochs on FUNSD, and 20 epochs
on SROIE and CORD.

Sequence-to-sequence models We frame visual
information extraction as a sequence-to-sequence
problem, wherein the document serves as the in-
put, and the output consists of a series of extracted
entities paired with their corresponding keys. For
all three datasets, we set the maximum source se-
quence length to 512. Documents that exceed this
length are split into contiguous sequences of 512 to-
kens each. For each input sequence, we formulate
a target sequence containing the pairs of entities-
keys to be extracted from the input sequence. The
structure of the target sequences is defined such
that each entity is followed by a colon and its corre-
sponding key, with pairs separated by a line break.
The arrangement of the pairs aligns with the order
in which the corresponding entities appear in the
document, i.e., the provided reading order.

The pairs of generated and ground-truth (entity,
key) are compared to compute precision, recall,
and F1 score. To provide further insights into the
model’s errors, additional metrics are defined. To
measure how often the model produces content
that is not grounded in the input, the hallucination
rate is defined as the percentage of entities gen-
erated by the model that do not match with any
text in the input sequence. The repetition rate is
the percentage of generated entities that are part
of the ground-truth entities but are repeated more
frequently than their occurrences in the ground-
truth target sequence, quantifying the frequency
with which the model repeats entities. The wrong
label rate represents the proportion of generated
entities present in the ground-truth but mislabeled
by the model, and measures how often the model
generates the right entities but mislabels them. The
omission rate denotes the proportion of ground-
truth entities that were not generated by the model,
providing insights into how often the model omits
entities. Lastly, the non-entity rate is the percent-
age of generated entities that, in the ground-truth,
correspond to the category "Other". This metric
assesses the frequency with which the model cat-
egorizes a text as an entity when it should not be
considered as such (discarding hallucinations).

6 Results and Discussion

Table 2 reports the performance of all four mod-
els on FUNSD, SROIE, and CORD. We find that
our sequence-to-sequence models achieve perfor-
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LayoutLM (Xu et al., 2020b) 7591 80.54 78.16
Original LayoutLMv2-no-visual 78.58 8149 80.01
FUNSD BART+2D 83.74 86.55 8512 267 132 4576 39.06 1.19
BART+Layout2Pos 80.62 80.10 80.36 256 5.50 2288 57.11 3.96
Shuffled BART+2D 77.82 82.16 7993 2.89 215 4837 3468 325
LayoutLM (Xu et al., 2020b) 90.74 9395 92.32
Original LayoutLMv2-no-visual 93.20 93.88 93.54
SROIE BART+2D 9346 9373 93.60 0.00 029 0.00 18.11 2.64
BART+Layout2Pos 9320 93.80 93,50 0.00 058 029 17.03 343
Shuffled BART+2D 80.58 6633 73.13 266 146 041 7334 572
LayoutLM (Xu et al., 2020b) 9391 95.11 9451
Original LayoutLMv2-no-visual 93.14 94.89 94.00
CORD BART+2D 9597 9481 9539 233 000 528 19.06 033
BART+Layout2Pos 9456 9271 93.62 099 437 540 2283 040
Shuffled  BART+2D 9146 87.54 8946 453 083 265 3572 042

Table 2: Model performance (in %) on FUNSD, SROIE, and CORD, reported for 1) the original reading order and
2) three shuffled orders (averaged). Best F1 scores for each dataset/reading order are reported in bold.

mance that is comparable or even superior to
sequence-labeling approaches. This suggests that
the sequence-to-sequence approach can match the
effectiveness of traditional sequence labeling meth-
ods, offering an alternative that is not constrained
by the document’s content and reading order. On
SROIE, BART+Layout2Pos performs on par with
its counterpart fed with sequential position infor-
mation, BART+2D. This suggests that Layout2Pos
effectively leverages layout information to gener-
ate meaningful position embeddings on SROIE,
implying that the reading order provided by OCR
is no longer necessary. However, on the other two
datasets, BART+Layout2Pos demonstrates lower
performance than BART+2D, with a slight under-
performance on CORD and a more notable dispar-
ity on FUNSD. Additionally, we find that the major-
ity of errors arise from either omitted or mislabeled
entities. Overall, both models rarely hallucinate,
repeat entities, or identify a text as an entity when
it should not be considered as such.

To measure the impact of reading order on mod-
els dependent on it, we evaluate BART+2D on test
documents with shuffled reading orders. For ev-
ery test dataset, the reading order of each docu-
ment is shuffled such that words belonging to the
same entity remain grouped together. This process
is repeated three times, generating three shuffled
test sets for every original test dataset. BART+2D,

fine-tuned using the reading order provided by the
dataset, is then evaluated on each of the shuffled
test sets. The resulting scores are then averaged
and reported in Table 2. Results show that altering
the reading order, even while ensuring that words
belonging to the same entities are kept together,
leads to a significant performance decline. Specif-
ically, there is a F1-score drop of 5.19 and 5.93
for FUNSD and CORD, respectively, and a notable
decrease of 20.84 for SROIE. This highlights the
significance of developing methods robust to varia-
tions in reading order.

7 Conclusion

To derive position embeddings solely from layout
information and avoid reading order issues, we
propose Layout2Pos—a Transformer-based mod-
ule that learns the sequential relationships between
tokens in a document. We conduct experiments
on three benchmarks datasets for visual informa-
tion extraction, demonstrating the effectiveness of
our approach in leveraging layout information to
produce meaningful position embeddings. Fur-
thermore, we showcase the significant impact of
variations in reading order on models that rely on
sequential position information, encouraging re-
search on reading order-independent methods for
document understanding tasks.



8 Limitations

In our sequence-to-sequence approach, any ar-
rangement of key-value pairs is deemed valid.
However, language models trained with teacher
forcing tend to favor a single correct output, po-
tentially penalizing valid responses with different
entity orders. For future work, we will investigate
permutation invariant losses to foster robustness to
variation in entity orders.

While our current model evaluations have pro-
vided valuable insights, they are limited by their
focus on relatively simple datasets and documents
of shorter length. Additionally, our analyses have
been confined to English language texts. Recogniz-
ing these limitations, we plan to enhance the gener-
alizability by including more complex datasets, par-
ticularly those featuring longer documents (Gral-
inski et al., 2020).
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A Preliminary Experiments: OCR
Serialization Errors

We categorize the 100 documents from the Read-
ingBank subset into four prevalent document layout
types: plain layout, lists, multicolumn layout, and
tables. We provide examples in Figure 3.

B Pre-training Data

IIT-CDIP is made available under the terms of a
custom license,” while ReadingBank is protected
by Apache 2.0 license.

C Data for Visual Information Extraction

FUNSD is licensed under a custom (non-
commercial) license.® CORD is made available
under the terms of the Creative Commons Attri-
bution 4.0 International License. The license in-
formation for SROIE is currently unavailable or
undisclosed.

In Figure 4, we provide an example of source
documents from FUNSD, SROIE, and CORD,
along with their corresponding target sequences.

D Implementation Details

Models were implemented in Python using Py-
Torch® (Paszke et al., 2017) and Hugging Face'’
(Wolf et al., 2019) librairies.

D.1 Pre-training

Experiments were ran using Nvidia Titan RTX with
25GB.

Pre-training Encoder-Decoder Models The
documents are tokenized using the tokenizer of the
base variant of BART (bart-base) shared through
the Hugging Face Model Hub. The training spans
10 epochs, amounting to 500k optimization steps,
including 59k steps for warmup. For each model,
we select the checkpoint with the best validation
loss. We use a maximum sequence length of 512, a
batch size of 80, and a learning rate of 1e~* which
is linearly decayed. Following BART, we mask
30% of tokens in each sequence (with span lengths
drawn from a Poisson distribution where A = 3)
and permute all sentences.

Thttps://www. industrydocuments.ucsf.edu/help/
copyright/

8https: //guillaumejaume.github.io/FUNSD/work/

9Licensed under BSD 3-Clause License.

'OLicensed under Apache License 2.0
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Figure 3: Examples of documents for each layout cate-
gory, arranged from the simplest to the most complex.
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‘COURT:: QUESTION
[ JUDGE:: QUESTION

95216828
a662omg

‘Asbestos: ANSWER
(CASENAME:QUESTION
[ LORILLARD ENTITIES:: QUESTION

DATE FILED: : QUESTION

DATE SERVED: : QUESTION

CASE TYPE:: QUESTION
[ PLAINTIFF COUNSEL:: QUESTION

LORILLARD COUNSEL:: QUESTION

“TRIAL DATE:: QUESTION

Chaber 101 California Street, Suite 2200 San Francisco,

Wartnick, Chaber, Harowitz, Smith & Tigerman Madelyn J
California 94111415 986- 5566 : ANSWER

August 3, 1998 : ANSWER
Covzstosanswer )
Lorillard Tobacco Company : ANSWER

‘Wanda G. Robinson and Carroll Robinson v Raybestos-
Manhattan, et al.: ANSWER
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(c) CORD

Figure 4: Example document from FUNSD (a), SROIE
(b), and CORD (c), accompanied by their corresponding
target sequences that include the entities to be extracted
paired with their corresponding keys. Best viewed in

color.



Number of Layers  Pre-training Dataset ~ Accuracy (%)
1 T-CDIP 67.10
1 ReadingBank 89.37
2 ReadingBank 95.86

Table 3: Accuracy (in %) in predicting the next token
for pairs sourced from ReadingBank, which were not
used for pre-training. Selected pairs are considered
"difficult”", meaning that the tokens are positioned on
different lines.

Pre-training Encoder-only Models The doc-
uments are tokenized using the tokenizer of
microsoft/layoutlm-base-uncased. =We use the
Adam optimizer with weight decay fix (Loshchilov
and Hutter, 2017), a weight decay of 0.01 and
(B1,P2) = (0.9,0.999). We use a batch size of
80, and linear decay of the learning rate, which
we set to le . Following BERT (Devlin et al.,
2018), we mask 15% of the text tokens in MVLM,
among which 80% are replaced by a special token
[MASK], 10% are replaced by a random token, and
10% remains the same.

D.2 Visual Information Extraction

Sequence-labeling approaches The learning
rate is set to Se-5 for both LayoutLM and
LayoutL.Mv2-no-visual, on all datasets.

Sequence-to-sequence Models We compute
statistics on the lengths of target sequences and
establish the maximum target length to be greater
than the 3rd quartile. In the case of FUNSD, we
truncate target sequences at 768 tokens. As for
SROIE and CORD, the maximum target sequence
length is set to 96 and 512 tokens, respectively.
BART+Layout2Pos (BART+2D) is fine-tuned for
100 (100), 40 (40), and 20 (50) epochs on FUNSD,
SROIE, and CORD, respectively. The learning rate
is set to Se-5 for all models and datasets. During
inference, we set the number of beams to 8. Preci-
sion, recall, and F1 scores are computed using the
seqeval package (Nakayama, 2018).

E Next Token Position Prediction

We evaluate the performance of Layout2Pos by
computing the accuracy of Next Token Position
Prediction. This evaluation is conducted on a set
of pairs of consecutive tokens derived from 100
examples from ReadingBank, which were not used
in the pre-training phase. Specifically, we curated
pairs categorized as "difficult", where the tokens
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are positioned on different lines, making a raster-
scan approach ineffective. This choice demands the
model to leverage layout information to accurately
predict the next token in these scenarios.

In these experiments, we exclusively train and
evaluate Layout2Pos, omitting the encoder-decoder
architecture. For each token, we compute accuracy
by comparing the position of its subsequent token
with the position of the token associated with the
highest logit according to Layout2Pos. We vary the
number of layers and the pre-training dataset used.

Performance is reported in Table 3. Notably, pre-
training Layout2Pos on ReadingBank compared
to IIT-CDIP yields an increase of over 22% in
accuracy. Additionally, our results indicate that
augmenting the number of layers in Layout2Pos
results in a notable increase of over 6% in accuracy.
These results highlight the significance of using
documents with accurate reading orders and con-
textualizing layout information to create position
embeddings able to capture the reading order of
documents.
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