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Abstract

Due to their remarkable performance, general-001
purpose multimodal pre-trained language mod-002
els have gained widespread adoption for Doc-003
ument Understanding tasks. The majority of004
pre-trained language models rely on serialized005
text, extracted using either Optical Character006
Recognition (OCR) or PDF parsing. How-007
ever, accurately determining the reading order008
of visually-rich documents (VrDs) is challeng-009
ing, potentially affecting the accuracy of the010
extracted text and leading to sub-optimal per-011
formance in downstream tasks. For informa-012
tion extraction tasks, where entity recognition013
is commonly framed as a sequence-labeling014
task, incorrect reading order can hinder entity015
labeling. In this work, we avoid reading or-016
der issues by discarding sequential position in-017
formation. Based on the intuition that layout018
contains the information for correct reading or-019
der, we present Layout2Pos – a shallow Trans-020
former designed to generate position embed-021
dings from layout. Incorporated into a BART022
architecture, our approach demonstrates com-023
petitiveness with models dependent on reading024
order across three benchmark datasets for in-025
formation extraction. We also show that eval-026
uating models using a reading order different027
from the one seen during training can result in028
substantial performance drops, thereby high-029
lighting the importance of not relying on the030
reading order of documents.031

1 Introduction032

The organization of textual content in a specific033

layout is crucial for conveying information, hold-034

ing significant importance across various written035

materials, including business documents, scholarly036

papers, and news articles. In particular, layout de-037

termines the sequence in which text is intended to038

be read or processed within a document, i.e., the039

reading order. A well-designed reading order en-040

sures that readers can follow the logical flow and041

structure of information and comprehend the in- 042

tended meaning of the text. However, defining a 043

proper reading order is non-trivial due to the com- 044

plexity of document layouts, which may include 045

elements such as tables and multiple columns. 046

When language or information extraction mod- 047

els are trained with a reading order that aligns 048

with human understanding, they learn to capture 049

the relationships between words, sentences, and 050

paragraphs. Hence, reading order is crucial for 051

models to perform well. Most pre-training meth- 052

ods for Document Understanding rely on serialized 053

text, where either an Optical Character Recognition 054

(OCR) engine or a PDF parser is used to extract text. 055

However, due to the variety of layout formats, most 056

OCR engines and PDF parsers struggle to provide 057

accurate reading orders, introducing serialization 058

errors. Serialization errors, i.e., noise that may 059

arise during text extraction, such as misinterpreta- 060

tions or omissions, can impact the accuracy of the 061

extracted text and, therefore, affect the entire text 062

processing pipeline. Without an accurate reading 063

order, models may misinterpret the relationships 064

between different parts of the text. This poses a 065

substantial challenge in Document Understanding, 066

where document layouts can be complex. 067

Specifically, in information extraction tasks from 068

visually-rich documents (VrDs), also referred to as 069

visual information extraction, the primary goal1 070

is to identify entities of predefined semantic types 071

(e.g., names, dates, addresses). In this context, 072

performance is notably impacted by serialization 073

errors. Following the classic settings of NLP, the 074

task is commonly framed as a sequence-labeling 075

problem. This approach involves labeling each to- 076

ken using a tagging scheme, such as BIO-tagging 077

(Ramshaw and Marcus, 1999), and leveraging these 078

tags to identify entities. A sequence labeling-based 079

1Additionally, the task extends to classifying the relation-
ships between these recognized entities (relation extraction).
In this work, we do not focus on this task.
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approach operates under the assumption that each080

identified segment of an entity forms a continuous081

sequence of words within the input. While this082

assumption is valid for plain texts, it may not hold083

for real-world documents, where OCR systems or084

PDF parsers might not correctly organize text (e.g.,085

an entity might be split into non-continuous frag-086

ments). Such disordered input disrupts the BIO-087

tagging scheme, preventing the models from accu-088

rately identifying entities.089

On the other hand, layout inherently encapsu-090

lates the correct reading order of documents by091

visually organizing content in a structured man-092

ner. A well-designed layout guides the reader’s093

natural progression from one section to another,094

ensuring logical information flow. Therefore, un-095

derstanding the layout provides essential cues for096

determining the correct reading order. Yet, existing097

pre-training methods for Document Understanding098

often neglect this aspect, opting to oversimplify the099

integration of layout by, e.g., adding it as an extra100

input embedding (Xu et al., 2020b).101

We focus on mitigating serialization errors by102

entirely discarding sequential position information.103

We introduce Layout2Pos, a shallow Transformer104

designed to generate position embeddings from the105

document layout. Our endeavor is twofold: from a106

practical standpoint, we aim to enhance the robust-107

ness of models to reading order changes, crucial108

for real-world applications; from a theoretical per-109

spective, we demonstrate that it is feasible to dis-110

card sequential position information without com-111

promising overall performance. We integrate this112

module into a sequence-to-sequence framework.113

To train the model, the language modeling task is114

coupled with a pre-training strategy designed to115

instill the model with the ability to learn the read-116

ing order from layout information. This integration117

eliminates the reliance on reading order and en-118

ables the generation of values that are not explicitly119

present in the input. We demonstrate the benefits120

of our approach for visual information extraction121

tasks, showcasing competitive performance to mod-122

els that depend on reading order.123

2 Related Work124

Multimodal Pre-trained Language Models To125

process VrDs in document understanding tasks,126

various approaches have proposed to incorporate127

layout information into language models, lever-128

aging the modeling capabilities of Transformers129

(Vaswani et al., 2017). LayoutLM (Xu et al., 130

2020b) is the first to encode layout information 131

with learned 2D position embeddings obtained 132

from word bounding boxes. Extending the con- 133

cept of relative position bias (Raffel et al., 2020) to 134

the 2D scenario, LayoutLMv2 (Xu et al., 2020a) 135

builds upon LayoutLM by adding bias terms to the 136

attention scores, encoding the 2D relative position 137

of tokens with respect to each other. DocFormer 138

(Appalaraju et al., 2021) facilitates the correlation 139

between text and images by sharing learned spa- 140

tial embeddings across modalities. However, these 141

methods rely on an OCR-induced reading order, 142

which may not align with human reading patterns. 143

Rather than treating layout information as an extra 144

feature, we leverage it to learn position embed- 145

dings, removing the need for sequential position 146

information obtained through OCR. 147

Addressing Reading Order Issues To address 148

serialization errors, automatic word reordering 149

techniques can be employed. ERNIE-Layout (Peng 150

et al., 2022) uses an in-house document layout anal- 151

ysis toolkit that provides an appropriate reading 152

order based on the spatial distribution of words, 153

pictures, and tables. Enhanced with this knowl- 154

edge, the token sequence can be rearranged in a 155

way that aligns better with human reading patterns 156

compared to the raster-scan order, which rearranges 157

tokens from the top-left to the bottom-right corner. 158

LayoutReader (Wang et al., 2021) is a sequence- 159

to-sequence model, employing LayoutLM as its 160

encoder, that generates the reading order of docu- 161

ments and improves the line ordering capabilities 162

of OCR engines. XYLayoutLM (Gu et al., 2022) 163

introduces an augmentation algorithm based on 164

XY Cut (Ha et al., 1995) to generate a series of 165

proper reading orders for training. Additionally, it 166

adaptively generates position embeddings based on 167

input lengths using dilated convolutions to extract 168

local layouts. Token Path Prediction (Zhang et al., 169

2023) frames visual information extraction tasks 170

as the prediction of token paths within a complete 171

directed graph of tokens, using a prediction head 172

compatible with Transformer-based language mod- 173

els. Our approach shares a similar module-based 174

structure, while introducing more robust 1D posi- 175

tion encodings learned from the spatial position of 176

tokens in the document page. 177

Generative Methods for Information Extraction 178

Unlike sequence labeling approaches that entirely 179

depend on the content extracted via OCR, gener- 180
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ative models can generate text without being re-181

stricted by the document’s content or its reading182

order, enabling them to potentially correct OCR-183

induced errors. Sage et al. (2020) represent the184

information to be extracted as a sequence of to-185

kens in the XML language. They employ a re-186

current encoder-decoder architecture to generate187

XML representations, using pointer-generator net-188

works (See et al., 2017) to allow the model to dy-189

namically decide whether to generate a word from190

its vocabulary or copy it directly from the docu-191

ment. Townsend et al. (2021) use a Transformer192

language model trained on database records to gen-193

erate JSON-like representation of the extracted in-194

formation. In close relation to our work, TILT195

Powalski et al. (2021) is a Transformer encoder-196

decoder model enhanced with layout and visual197

information, specifically designed for information198

extraction tasks from VrDs. Instead of relying on199

OCR for text extraction, Donut (Kim et al., 2022)200

uses a Transformer visual encoder to extract fea-201

tures from a document image. A textual Trans-202

former decoder is then used to map these features203

to a desired structured format, such as JSON, for204

visual information extraction tasks. In contrast to205

Donut, our method does not rely on visual features,206

offering better computational efficiency when var-207

ious information extraction tasks are conducted208

or/and complex documents are processed. Our ap-209

proach eliminates dependence on OCR-induced210

reading order by leveraging the spatial position of211

tokens on the page.212

3 Preliminary Experiments: OCR213

Serialization Errors214

To gauge the extent of OCR-induced serialization215

errors, we conduct preliminary experiments com-216

paring the annotated ground-truth reading order217

against the reading orders produced by 1) Tesseract218

OCR (Kay, 2007), a widely-used OCR engine, and219

2) DocTR (Mindee, 2021), an OCR engine based220

on deep learning models. The goal is to assess the221

alignment of the reading order produced via OCR222

with the actual human reading patterns.223

We use a subset of 100 documents from the Read-224

ingBank (Wang et al., 2021) dataset. ReadingBank225

is a benchmark dataset for reading order detection226

that includes high-quality reading order annota-227

tions which capture the correct sequence of words228

as visually presented in the documents. Upon ex-229

amination of the samples and discerning patterns230

Layout Type
Plain Lists Multi- Tables

column

Tesseract OCR 78.71 72.75 61.43 36.97
DocTR 86.83 77.83 82.54 66.11
Layout2Pos 99.44 97.45 94.29 88.60

Table 1: Accuracy (in %) obtained by each OCR engine,
for each document layout type. Our model, Layout2Pos,
is described in Section 4.2. Best results are reported in
bold.

that appear most frequently, we have identified four 231

prevalent document layout types: plain layout, lists, 232

multicolumn layout, and tables. We provide exam- 233

ples in Section A of the Appendix. 234

Tesseract OCR and DocTR are employed to ex- 235

tract and serialize text from the documents. The 236

reading orders produced are compared against the 237

ground-truth for discrepancies. Specifically, we 238

evaluate accuracy by comparing, for each word in 239

the ground-truth sequence, the actual next word 240

with the one predicted by each OCR engine. We 241

compute the accuracy obtained by each system for 242

each specific layout type. Results are reported in 243

Table 1. Additionally, we include the results ob- 244

tained by our approach, Layout2Pos. Our findings 245

indicate that both OCR engines face increased dif- 246

ficulty in reconstructing the correct reading order 247

as the document layout becomes more complex.2 248

Our approach exhibits a similar trend, although 249

to a significantly lesser degree. Furthermore, it 250

demonstrates higher accuracy for each document 251

type compared to both OCR engines. 252

4 Reconstructing Positional Information 253

from 2D Positions 254

Building on the insights gained from the previous 255

experiment, retrieving the correct reading order is 256

a significant challenge for OCR engines. We argue 257

that it is possible to retrieve the correct reading 258

order by leveraging document layout. To address 259

this, we propose Layout2Pos, a transformer-based 260

module that does not rely on the reading order 261

generated by OCR, and learns position embeddings 262

solely from the spatial positions of tokens. 263

4.1 Encoding Layout Information 264

To encode layout information, we use 1) bounding 265

box information, 2) 2D relative positions, and 3) 266

2This difficulty in accurately predicting the next word is
further attributed to the OCR engines’ misinterpretation of
certain words.
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a novel method based on line and column relative267

positions.268

Encoding Bounding Box Information The spa-269

tial position of a token is represented by its bound-270

ing box in the document page image, denoted as271

(x0, y0, x1, y1), where (x0, y0) and (x1, y1) cor-272

respond to the coordinates of the top-left and273

bottom-right corners, respectively. Following Lay-274

outLMv2, we discretize and normalize these coor-275

dinates to integers within the range of [0, ..., 1000].276

Four embedding tables are employed to encode spa-277

tial positions: LEx and LEy for the coordinate axes278

(x and y), and LEw and LEh for the bounding box279

size (width and height). In line with LayoutLMv2,280

the final layout embedding ℓ ∈ Rd of a token,281

whose bounding box is (x0, y0, x1, y1), is defined282

as follows (∥ denotes concatenation):283

ℓ = LEx(x0) ∥ LEy(y0)

∥ LEx(x1) ∥ LEy(y1)

∥ LEw(x1 − x0)

∥ LEh(y1 − y0),

(1)284

Leveraging 2D Relative Positions LayoutLMv2285

encodes spatial relative positions as bias terms286

added to the attention scores to explicitly capture287

the spatial relationship between tokens. Follow-288

ing LayoutLMv2, for each pair of bounding boxes289

((x0, y0, x1, y1), (x
′
0, y

′
0, x

′
1, y

′
1)), we compute the290

horizontal distance x′0 − x0 between the left edge291

of each box and the vertical distance y′1 − y1 be-292

tween the bottom edge of each box. In addition,293

we provide additional insights into the spatial re-294

lationships of tokens by computing the horizontal295

distance x′1−x0 between the right edge of one box296

and the left edge of the other, indicating informa-297

tion about the combined length. Furthermore, we298

calculate the horizontal distance x′1 − x1 between299

the right edge of each box, providing information300

about the length of the second token in the pair.301

Incorporating Line and Column Relative Posi-302

tions Understanding the relative positions within303

columns provides information about the sequential304

structure of the document, aiding in distinguishing305

between different parts of the document. On the306

other hand, the relative positions within lines is307

valuable for documents with multicolumn layouts,308

offering insights into the spatial arrangement of text309

across columns. Hence, for each bounding box, we310

identify other bounding boxes that share the same311

bbox1 bbox2 bbox3 bbox4 bbox5

p1 p2 p3 p4

KQ

Layout 
Embeddings

Transformer Layers
With modified self-attention

1D Position
Embeddings

Ground-truth 
Next Token 
Matrix

Bounding boxes

l1 l2 l3 l4 l5

1 2 3 4 5

p5

Positions

Predicted
Next Token 
Attention scores

Figure 1: Layout2Pos Architecture.

line/column. This is determined by whether the 312

horizontal/vertical line passing through the center 313

of the box intersects with the other bounding boxes. 314

If there is an intersection, the boxes are considered 315

to be on the same line/column. For each token ti, 316

we determine its positions p(l)(i) and p(c)(i) within 317

its corresponding line and column, using a left-to- 318

right order for lines and a top-to-bottom order for 319

columns. Then, we compute the relative sequential 320

distance δlij and δcij between elements within each 321

line and column. If they do not belong to the same 322

line or column, the distance is set to ∞. 323

Suppose qℓi and kℓ
i denote the query and key pro- 324

jections obtained from the layout embedding ℓi of 325

token i. Let b(2Dx), b(2Dy), b(l), and b(c) be the 326

horizontal, vertical, line, and column relative posi- 327

tion biases, respectively. In Layout2Pos, attention 328

is re-defined as: 329

αij =
1√
d

(
qℓi · kℓ

j

)
+ b

(2Dx)

x
(j)
0 −x

(i)
0

+ b
(2Dy)

y
(j)
1 −y

(i)
1

+ b
(2Dx)

x
(j)
1 −x

(i)
0

+ b
(2Dx)

x
(j)
1 −x

(i)
1

+ b
(l)

δlij
+ b

(c)
δcij

(2)

330

4.2 Learning 1D Position Embeddings from 331

Layout Information 332

Given a sequence of layout embeddings derived 333

from token bounding box coordinates, as defined 334

by Equation 1, Layout2Pos employs a stack of 335

Transformer layers to contextualize the sequence. 336

The outputs of the last layer, ℓi, serve as position 337

embeddings, i.e., pi = ℓi. The objective is for 338
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these embeddings (p1, · · · ,pn) to carry informa-339

tion regarding the reading order. To accomplish340

this, we build a simple classifier on top of these em-341

beddings, designed to compute alignment scores342

between each token:343

Aij = (piW
q)
(
pjW

k
)
. (3)344

We assume that the attention matrix A carries infor-345

mation about the reading order, i.e., Aij represents346

the probability that the j-th token follows the i-th347

token. Let N be the ground-truth binary matrix ob-348

tained from the ground-truth reading order, where349

Nij equals 1 if token at position j is the next token350

after token at position i in the sequence, and 0 other-351

wise. We define the Next Token Position Prediction352

strategy, which consists in using the attention ma-353

trix A to predict the next token of each token in the354

sequence (next token matrix). The corresponding355

cross-entropy loss is defined as follows:356

LNTPP = − 1

n

n∑
i=1

n∑
j=1

Nij log (softmaxi(A·j))

(4)357

As such, Layout2Pos can be trained to capture the358

relationship between layout and reading order3 by359

ensuring that the attention matrix A derived from360

the computed position embeddings carries infor-361

mation about the next token for each token in the362

sequence. The architecture of Layout2Pos is de-363

picted in Figure 1.364

4.3 Integrating Layout2Pos into a365

Sequence-to-Sequence Framework366

Layout2Pos can be integrated into any language367

model, removing the reliance on sequential posi-368

tion information. This is achieved by substitut-369

ing the traditional position encodings derived from370

OCR by Layout2Pos’ position embeddings. Specif-371

ically, we integrate Layout2Pos into a Transformer372

encoder-decoder architecture, as illustrated in Fig-373

ure 2. The sequence of position embeddings, ob-374

tained by Layout2Pos, is added to the sequence of375

token embeddings. The resulting sequence is input376

to the bidirectional encoder.377

Corruption Loss Layout2Pos is trained together378

with the encoder-decoder model. While Lay-379

out2Pos learns to predict the subsequent token380

3It is noteworthy that a global reading order is unnecessary;
there is no requirement to establish an order between two
words that belong to segments that have no relation to each
other.

of each token based on layout information, the 381

encoder-decoder follows a pre-training approach 382

similar to BART (Lewis et al., 2019). The model is 383

trained to reconstruct the original input sequence 384

from a corrupted version (denoising). Sequences 385

are corrupted by randomly replacing text spans 386

with a single mask token (text infilling) and per- 387

muting sentences (sequence permutation). The cor- 388

rupted sequence is encoded using the bidirectional 389

encoder, and the autoregressive decoder is trained 390

to reconstruct the original sequence. The final loss 391

is expressed as follows: 392

L = LNTPP + LDenoising. (5) 393

We refer to the overall model as 394

BART+Layout2Pos. 395

Inference for Information Extraction Tasks To 396

determine how the model predicts the next token 397

of the sequence for information extraction tasks, 398

we employ a customized variant of beam search 399

to generate tokens while minimizing repetitions, 400

therefore enhancing the coherence of the generated 401

sequences. In this modified version, the gener- 402

ated tokens, if present in the source sequence, are 403

constrained not to occur more frequently than in 404

the original source. This constraint is enforced by 405

keeping count of the number of occurrences of each 406

token in the source sequence within the target se- 407

quence, masking the corresponding logit when the 408

maximum occurrence is reached and redistributing 409

the probability mass over the valid tokens. 410

5 Experiments 411

For reproducibility purposes, we will make the 412

models implementation, along with the fine-tuning 413

and evaluation scripts, publicly available. 414

5.1 Data 415

Pre-training Data Following a common practice 416

in the field of Document Understanding, we collect 417

data from the IIT-CDIP collection (Lewis et al., 418

2006) to build our pre-training dataset. IIT-CDIP 419

consists of around 11 million scanned document 420

page images of various types and layouts, including 421

news articles, scientific reports, handwritten mate- 422

rials, and more. We select over 7 million document 423

images from the collection to build our pre-training 424

dataset, allocating over 18k for validation, another 425

18k for testing, and the remaining images for train- 426

ing. To extract text and bounding boxes from the 427
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Figure 2: Architecture of Layout2Pos integrated into a BART model, i.e., BART+Layout2Pos. The input consists of
two components: a sequence of tokens and the corresponding sequence of token bounding box coordinates.

documents, we use DocTR (Mindee, 2021). Due428

to potential serialization errors induced by DocTR,429

and given that the Next Token Position Prediction430

task requires documents with proper reading or-431

ders, IIT-CDIP is only used for training models in432

language modeling tasks (i.e., denoising).433

To enable Layout2Pos to effectively learn the434

correct reading order of documents, we use the435

500k documents from ReadingBank (Wang et al.,436

2021).4 These documents are serialized and anno-437

tated with high-quality reading order annotations,438

serving as the training data for both Next Token439

Position Prediction and language modeling tasks.440

In cases where a word is split into multiple to-441

kens, approaches based on word-level bounding442

boxes typically assign the word’s bounding box443

to all the tokens within that word. However, this444

approach is inefficient for Next Token Position Pre-445

diction, given that tokens within the same word446

would share identical layout embeddings, hence447

hindering accurate predictions of the next token.448

Therefore, we approximate token-level bounding449

boxes by dividing each word-level bounding box450

by the number of characters in the word.451

Data for Visual Information Extraction We452

evaluate our approach on visual information extrac-453

tion tasks, where the goal is to extract semantic en-454

tities from VrDs, based on a set of pre-defined keys.455

This evaluation is conducted using three benchmark456

for visual information extraction, each covering457

different document types: FUNSD (Jaume et al.,458

2019), SROIE (Huang et al., 2019), and CORD459

(Park et al., 2019). For each dataset, we use the460

reading order provided. To maintain consistency461

4For further insights into the validation of this choice, see
Section E of the Appendix.

with pre-training data, we employ approximated 462

token-level bounding boxes. We provide examples 463

in Section C of the Appendix. 464

FUNSD (Jaume et al., 2019) is a form under- 465

standing dataset with 199 real, noisy and scanned 466

forms where each sample is a list of form entities. 467

There are three keys for which values have to be ex- 468

tracted: question, answer, and header. The dataset 469

is split into 149 samples for training and 50 for test. 470

SROIE (v1) (Huang et al., 2019) is another 471

receipt understanding dataset comprising 973 472

scanned receipts written in English. The task in- 473

volves extracting entities for four keys: total, date, 474

company, and address. The dataset is partitioned 475

into 626 samples for training and 347 for test. 476

CORD (v1) (Park et al., 2019) is a receipt under- 477

standing dataset containing 1,000 scanned Indone- 478

sian receipts with 30 keys categorized into four 479

superclasses: menu, subtotal, total, and void. Fol- 480

lowing the katanaml/cord5 dataset repository, we 481

exclude keys with very few occurrences, resulting 482

in 22 keys grouped into three superclasses. The 483

dataset is divided into 800 examples for training, 484

100 for validation, and 100 for test. 485

5.2 Experimental Settings 486

For full implementation details, see Section D of 487

the Appendix. 488

Baselines We compare our approach with 489

BART+2D, a layout-augmented BART model 490

which relies on position embeddings derived from 491

OCR-induced positions. These position embed- 492

dings are calculated using embedding tables and 493

are subsequently added to textual features. Layout 494

5https://huggingface.co/datasets/katanaml/cord
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embeddings, computed from bounding boxes using495

Equation 1, are incorporated to the resulting embed-496

dings to construct the input embeddings. Following497

LayoutLMv2, BART+2D encodes spatial relative498

positions as bias terms added to the attention scores.499

BART+2D follows the same training and inference500

procedures as BART+Layout2Pos.501

Additionally, we report the performance of two502

layout-aware encoder-only models: 1) LayoutLM503

and 2) LayoutLMv2-no-visual, a variant of Lay-504

outLMv2 that discards visual information to ensure505

a fair comparison with our approach.506

Pre-training Layout2Pos is composed of 2 lay-507

ers with 12 attention heads and a hidden size508

of 768.6 The final attention calculation, respon-509

sible for computing the next token matrix, in-510

volves a single attention head. Following the511

BART base model, both the encoder and decoder512

in BART+Layout2Pos and BART+2D are com-513

prised of 6 layers, each with 12 attention heads514

and a hidden size of 768. BART+Layout2Pos515

comprises a total of 156M parameters, whereas516

BART+2D consists of approximately 140M param-517

eters. Both models are trained from scratch on518

IIT-CDIP+ReadingBank for 10 epochs. We use a519

maximum sequence length of 512.520

For LayoutLM, we use the microsoft/layoutlm-521

base-uncased checkpoint with 113M parameters,522

without any additional pre-training. Following the523

base architecture of LayoutLMv2, LayoutLMv2-524

no-visual is composed of a 12-layer Transformer525

encoder with 12 attention heads and a hidden size526

of 768, amounting to 110M parameters. The model527

is also pre-trained from scratch for 10 epochs528

on IIT-CDIP+ReadingBank, using Masked Visual529

Language Modeling (MVLM) (Xu et al., 2020b),530

a pre-training task that extends Masked Language531

Modeling (MLM) with layout information. The532

maximum sequence length is set to 512.533

5.3 Visual Information Extraction534

Sequence-labeling approaches We employ Lay-535

outLM and LayoutLMv2-no-visual as sequence536

labeling methods. We use the BIO (Beginning, In-537

side, Outside) tagging format (Ramshaw and Mar-538

cus, 1999) as the labeling scheme to tag tokens539

based on both their entity and their position within540

that entity. For every dataset, the maximum se-541

quence length is set to 512. Both models are fine-542

6For further information regarding the validation of this
architecture, see Section E of the Appendix.

tuned for 100 epochs on FUNSD, and 20 epochs 543

on SROIE and CORD. 544

Sequence-to-sequence models We frame visual 545

information extraction as a sequence-to-sequence 546

problem, wherein the document serves as the in- 547

put, and the output consists of a series of extracted 548

entities paired with their corresponding keys. For 549

all three datasets, we set the maximum source se- 550

quence length to 512. Documents that exceed this 551

length are split into contiguous sequences of 512 to- 552

kens each. For each input sequence, we formulate 553

a target sequence containing the pairs of entities- 554

keys to be extracted from the input sequence. The 555

structure of the target sequences is defined such 556

that each entity is followed by a colon and its corre- 557

sponding key, with pairs separated by a line break. 558

The arrangement of the pairs aligns with the order 559

in which the corresponding entities appear in the 560

document, i.e., the provided reading order. 561

The pairs of generated and ground-truth (entity, 562

key) are compared to compute precision, recall, 563

and F1 score. To provide further insights into the 564

model’s errors, additional metrics are defined. To 565

measure how often the model produces content 566

that is not grounded in the input, the hallucination 567

rate is defined as the percentage of entities gen- 568

erated by the model that do not match with any 569

text in the input sequence. The repetition rate is 570

the percentage of generated entities that are part 571

of the ground-truth entities but are repeated more 572

frequently than their occurrences in the ground- 573

truth target sequence, quantifying the frequency 574

with which the model repeats entities. The wrong 575

label rate represents the proportion of generated 576

entities present in the ground-truth but mislabeled 577

by the model, and measures how often the model 578

generates the right entities but mislabels them. The 579

omission rate denotes the proportion of ground- 580

truth entities that were not generated by the model, 581

providing insights into how often the model omits 582

entities. Lastly, the non-entity rate is the percent- 583

age of generated entities that, in the ground-truth, 584

correspond to the category "Other". This metric 585

assesses the frequency with which the model cat- 586

egorizes a text as an entity when it should not be 587

considered as such (discarding hallucinations). 588

6 Results and Discussion 589

Table 2 reports the performance of all four mod- 590

els on FUNSD, SROIE, and CORD. We find that 591

our sequence-to-sequence models achieve perfor- 592

7



Rate

Dataset
Reading
Order Model Prec. Rec. F1 R

epetition

H
allucination

W
rong

L
abel

O
m

ission

N
on-entity

FUNSD
Original

LayoutLM (Xu et al., 2020b) 75.91 80.54 78.16
LayoutLMv2-no-visual 78.58 81.49 80.01
BART+2D 83.74 86.55 85.12 2.67 1.32 45.76 39.06 1.19
BART+Layout2Pos 80.62 80.10 80.36 2.56 5.50 22.88 57.11 3.96

Shuffled BART+2D 77.82 82.16 79.93 2.89 2.15 48.37 34.68 3.25

SROIE
Original

LayoutLM (Xu et al., 2020b) 90.74 93.95 92.32
LayoutLMv2-no-visual 93.20 93.88 93.54
BART+2D 93.46 93.73 93.60 0.00 0.29 0.00 18.11 2.64
BART+Layout2Pos 93.20 93.80 93.50 0.00 0.58 0.29 17.03 3.43

Shuffled BART+2D 80.58 66.33 73.13 2.66 1.46 0.41 73.34 5.72

CORD
Original

LayoutLM (Xu et al., 2020b) 93.91 95.11 94.51
LayoutLMv2-no-visual 93.14 94.89 94.00
BART+2D 95.97 94.81 95.39 2.33 0.00 5.28 19.06 0.33
BART+Layout2Pos 94.56 92.71 93.62 0.99 4.37 5.40 22.83 0.40

Shuffled BART+2D 91.46 87.54 89.46 4.53 0.83 26.5 35.72 0.42

Table 2: Model performance (in %) on FUNSD, SROIE, and CORD, reported for 1) the original reading order and
2) three shuffled orders (averaged). Best F1 scores for each dataset/reading order are reported in bold.

mance that is comparable or even superior to593

sequence-labeling approaches. This suggests that594

the sequence-to-sequence approach can match the595

effectiveness of traditional sequence labeling meth-596

ods, offering an alternative that is not constrained597

by the document’s content and reading order. On598

SROIE, BART+Layout2Pos performs on par with599

its counterpart fed with sequential position infor-600

mation, BART+2D. This suggests that Layout2Pos601

effectively leverages layout information to gener-602

ate meaningful position embeddings on SROIE,603

implying that the reading order provided by OCR604

is no longer necessary. However, on the other two605

datasets, BART+Layout2Pos demonstrates lower606

performance than BART+2D, with a slight under-607

performance on CORD and a more notable dispar-608

ity on FUNSD. Additionally, we find that the major-609

ity of errors arise from either omitted or mislabeled610

entities. Overall, both models rarely hallucinate,611

repeat entities, or identify a text as an entity when612

it should not be considered as such.613

To measure the impact of reading order on mod-614

els dependent on it, we evaluate BART+2D on test615

documents with shuffled reading orders. For ev-616

ery test dataset, the reading order of each docu-617

ment is shuffled such that words belonging to the618

same entity remain grouped together. This process619

is repeated three times, generating three shuffled620

test sets for every original test dataset. BART+2D,621

fine-tuned using the reading order provided by the 622

dataset, is then evaluated on each of the shuffled 623

test sets. The resulting scores are then averaged 624

and reported in Table 2. Results show that altering 625

the reading order, even while ensuring that words 626

belonging to the same entities are kept together, 627

leads to a significant performance decline. Specif- 628

ically, there is a F1-score drop of 5.19 and 5.93 629

for FUNSD and CORD, respectively, and a notable 630

decrease of 20.84 for SROIE. This highlights the 631

significance of developing methods robust to varia- 632

tions in reading order. 633

7 Conclusion 634

To derive position embeddings solely from layout 635

information and avoid reading order issues, we 636

propose Layout2Pos—a Transformer-based mod- 637

ule that learns the sequential relationships between 638

tokens in a document. We conduct experiments 639

on three benchmarks datasets for visual informa- 640

tion extraction, demonstrating the effectiveness of 641

our approach in leveraging layout information to 642

produce meaningful position embeddings. Fur- 643

thermore, we showcase the significant impact of 644

variations in reading order on models that rely on 645

sequential position information, encouraging re- 646

search on reading order-independent methods for 647

document understanding tasks. 648
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8 Limitations649

In our sequence-to-sequence approach, any ar-650

rangement of key-value pairs is deemed valid.651

However, language models trained with teacher652

forcing tend to favor a single correct output, po-653

tentially penalizing valid responses with different654

entity orders. For future work, we will investigate655

permutation invariant losses to foster robustness to656

variation in entity orders.657

While our current model evaluations have pro-658

vided valuable insights, they are limited by their659

focus on relatively simple datasets and documents660

of shorter length. Additionally, our analyses have661

been confined to English language texts. Recogniz-662

ing these limitations, we plan to enhance the gener-663

alizability by including more complex datasets, par-664

ticularly those featuring longer documents (Gral-665

iński et al., 2020).666
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A Preliminary Experiments: OCR 809

Serialization Errors 810

We categorize the 100 documents from the Read- 811

ingBank subset into four prevalent document layout 812

types: plain layout, lists, multicolumn layout, and 813

tables. We provide examples in Figure 3. 814

B Pre-training Data 815

IIT-CDIP is made available under the terms of a 816

custom license,7 while ReadingBank is protected 817

by Apache 2.0 license. 818

C Data for Visual Information Extraction 819

FUNSD is licensed under a custom (non- 820

commercial) license.8 CORD is made available 821

under the terms of the Creative Commons Attri- 822

bution 4.0 International License. The license in- 823

formation for SROIE is currently unavailable or 824

undisclosed. 825

In Figure 4, we provide an example of source 826

documents from FUNSD, SROIE, and CORD, 827

along with their corresponding target sequences. 828

D Implementation Details 829

Models were implemented in Python using Py- 830

Torch9 (Paszke et al., 2017) and Hugging Face10 831

(Wolf et al., 2019) librairies. 832

D.1 Pre-training 833

Experiments were ran using Nvidia Titan RTX with 834

25GB. 835

Pre-training Encoder-Decoder Models The 836

documents are tokenized using the tokenizer of the 837

base variant of BART (bart-base) shared through 838

the Hugging Face Model Hub. The training spans 839

10 epochs, amounting to 500k optimization steps, 840

including 59k steps for warmup. For each model, 841

we select the checkpoint with the best validation 842

loss. We use a maximum sequence length of 512, a 843

batch size of 80, and a learning rate of 1e−4 which 844

is linearly decayed. Following BART, we mask 845

30% of tokens in each sequence (with span lengths 846

drawn from a Poisson distribution where λ = 3) 847

and permute all sentences. 848

7https://www.industrydocuments.ucsf.edu/help/
copyright/

8https://guillaumejaume.github.io/FUNSD/work/
9Licensed under BSD 3-Clause License.

10Licensed under Apache License 2.0

10

http://arxiv.org/abs/2108.11591
http://arxiv.org/abs/2108.11591
http://arxiv.org/abs/2108.11591
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(a) Plain

(b) List

(c) Multicolumn

(d) Table

Figure 3: Examples of documents for each layout cate-
gory, arranged from the simplest to the most complex.

COURT: : QUESTION 

JUDGE: : QUESTION 

Asbestos : ANSWER 

CASE FORM : HEADER 

CASE NAME: : QUESTION 

LORILLARD ENTITIES: : QUESTION 

DATE FILED: : QUESTION 

DATE SERVED: : QUESTION 

CASE TYPE: : QUESTION 

PLAINTIFF COUNSEL: : QUESTION 

LORILLARD COUNSEL: : QUESTION 

TRIAL DATE: : QUESTION 

Wartnick, Chaber, Harowitz, Smith & Tigerman Madelyn J. 
Chaber 101 California Street, Suite 2200 San Francisco, 
California 94111 415 986- 5566 : ANSWER 

July 23, 1998 : ANSWER 

August 3, 1998 : ANSWER 

Lorillard Tobacco Company : ANSWER 

San Francisco Superior Court - No. 996378 : ANSWER 

Wanda G. Robinson and Carroll Robinson v Raybestos- 
Manhattan, et al. : ANSWER 

(a) FUNSD

COMPANY

ADDRESS

DATE

TOTAL 193.00 : TOTAL 

OJC MARKETING SDN 
BHD : COMPANY

NO 2 & 4, JALAN BAYU 
4, BANDAR SERI 
ALAM, 81750 MASAI, 
JOHOR : ADDRESS 

15/01/2019 : DATE 

(b) SROIE
TAX 5.455 : SUB_TOTAL.TAX_PRICE 

TOTAL 60.000 : TOTAL.TOTAL_PRICE 

(Qty 2.00 : TOTAL.MENUQTY_CNT 

EDC CIMB NIAGA No: xx7730 60.000 : TOTAL.CREDITCARDPRICE 

901016 : MENU.NUM 

-TICKET CP : MENU.NM 

2 : MENU.CNT 

60.000 : MENU.PRICE 

Subtotal 60.000 : SUB_TOTAL.SUBTOTAL_PRICE 

TOTAL DISC $ -60.000 : SUB_TOTAL.DISCOUNT_PRICE 

N/A : TOTAL.CHANGEPRICE 

N/A : TOTAL.MENUTYPE_CNT 

N/A : SUB_TOTAL.SERVICE_PRICE 

N/A : MENU.UNITPRICE 

N/A : TOTAL.EMONEYPRICE 

N/A : SUB_TOTAL.ETC 

N/A : MENU.SUB_CNT 

N/A : TOTAL.TOTAL_ETC 

N/A : MENU.SUB_NM 

N/A : MENU.SUB_PRICE 

N/A : TOTAL.CASHPRICE 

N/A : MENU.DISCOUNTPRICE 

(c) CORD

Figure 4: Example document from FUNSD (a), SROIE
(b), and CORD (c), accompanied by their corresponding
target sequences that include the entities to be extracted
paired with their corresponding keys. Best viewed in
color.
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Number of Layers Pre-training Dataset Accuracy (%)

1 IIT-CDIP 67.10
1 ReadingBank 89.37
2 ReadingBank 95.86

Table 3: Accuracy (in %) in predicting the next token
for pairs sourced from ReadingBank, which were not
used for pre-training. Selected pairs are considered
"difficult", meaning that the tokens are positioned on
different lines.

Pre-training Encoder-only Models The doc-849

uments are tokenized using the tokenizer of850

microsoft/layoutlm-base-uncased. We use the851

Adam optimizer with weight decay fix (Loshchilov852

and Hutter, 2017), a weight decay of 0.01 and853

(β1, β2) = (0.9, 0.999). We use a batch size of854

80, and linear decay of the learning rate, which855

we set to 1e−4. Following BERT (Devlin et al.,856

2018), we mask 15% of the text tokens in MVLM,857

among which 80% are replaced by a special token858

[MASK], 10% are replaced by a random token, and859

10% remains the same.860

D.2 Visual Information Extraction861

Sequence-labeling approaches The learning862

rate is set to 5e-5 for both LayoutLM and863

LayoutLMv2-no-visual, on all datasets.864

Sequence-to-sequence Models We compute865

statistics on the lengths of target sequences and866

establish the maximum target length to be greater867

than the 3rd quartile. In the case of FUNSD, we868

truncate target sequences at 768 tokens. As for869

SROIE and CORD, the maximum target sequence870

length is set to 96 and 512 tokens, respectively.871

BART+Layout2Pos (BART+2D) is fine-tuned for872

100 (100), 40 (40), and 20 (50) epochs on FUNSD,873

SROIE, and CORD, respectively. The learning rate874

is set to 5e-5 for all models and datasets. During875

inference, we set the number of beams to 8. Preci-876

sion, recall, and F1 scores are computed using the877

seqeval package (Nakayama, 2018).878

E Next Token Position Prediction879

We evaluate the performance of Layout2Pos by880

computing the accuracy of Next Token Position881

Prediction. This evaluation is conducted on a set882

of pairs of consecutive tokens derived from 100883

examples from ReadingBank, which were not used884

in the pre-training phase. Specifically, we curated885

pairs categorized as "difficult", where the tokens886

are positioned on different lines, making a raster- 887

scan approach ineffective. This choice demands the 888

model to leverage layout information to accurately 889

predict the next token in these scenarios. 890

In these experiments, we exclusively train and 891

evaluate Layout2Pos, omitting the encoder-decoder 892

architecture. For each token, we compute accuracy 893

by comparing the position of its subsequent token 894

with the position of the token associated with the 895

highest logit according to Layout2Pos. We vary the 896

number of layers and the pre-training dataset used. 897

Performance is reported in Table 3. Notably, pre- 898

training Layout2Pos on ReadingBank compared 899

to IIT-CDIP yields an increase of over 22% in 900

accuracy. Additionally, our results indicate that 901

augmenting the number of layers in Layout2Pos 902

results in a notable increase of over 6% in accuracy. 903

These results highlight the significance of using 904

documents with accurate reading orders and con- 905

textualizing layout information to create position 906

embeddings able to capture the reading order of 907

documents. 908
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