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Abstract001

Visual Question Answering (VQA) requires002
reasoning across visual and textual modalities,003
yet Large Vision-Language Models (LVLMs)004
often lack integrated commonsense knowledge,005
limiting their robustness in real-world scenar-006
ios. To address this, we introduce MAGIC-007
VQA, a novel framework that enhances VQA008
by systematically integrating commonsense009
knowledge with LVLMs. MAGIC-VQA em-010
ploys a three-stage process: (1) Explicit Knowl-011
edge Integration from external sources, (2) By-012
Type Post-Processing for contextual refinement,013
and (3) Implicit Knowledge Augmentation us-014
ing a Graph Neural Network (GNN) for struc-015
tured reasoning. While GNNs bring greater016
depth to structured inference, they enable su-017
perior relational inference beyond LVLMs.018
MAGIC-VQA bridges a key gap by unify-019
ing commonsensse knowledge with LVLM-020
driven reasoning, eliminating the need for ex-021
tensive pre-training or complex prompt tuning.022
Our framework achieves state-of-the-art per-023
formance on benchmark datasets, significantly024
improving commonsense reasoning in VQA.025

1 Introduction026

Visual Question Answering (VQA) (Antol et al.,027

2015; Goyal et al., 2017; Yue et al., 2024) is028

a complex task requiring models to understand029

the interaction between visual inputs and textual030

queries. In recent years, Large Vision-Language031

Models (LVLMs) (Dai et al., 2023; Xue et al., 2024;032

Wang et al., 2024b; Chen et al., 2023, 2024b; Liu033

et al., 2024b; Li et al., 2024; OpenAI, 2024b; Gem-034

ini Team, 2024) have made substantial progress035

in VQA through extensive pre-training on massive036

image-text datasets and instruction tuning. These037

models excel at object-level visual recognition and038

semantic understanding, capturing attributes such039

as spatial relationships and contextual details.040

Nevertheless, LVLMs often face challenges041

on questions requiring commonsense reason-042

ing—particularly those hinging on implicit con- 043

textual cues or everyday world knowledge (Zhou 044

et al., 2023; Ye et al.; Li et al., 2023b)1. To over- 045

come this limitation and improve the performance 046

on commmonsense VQA, different methods have 047

been explored. For example, Multimodal retrieval- 048

augmented generation leverages dense retrieval to 049

inject external multimodal information into the 050

generation process, thereby enhancing the factual 051

grounding of LVLMs (Lin and Byrne, 2022; Hu 052

et al., 2023). Multimodal prompt tuning harnesses 053

the model’s innate commonsense knowledge by 054

carefully crafting prompts that combine visual and 055

textual cues from representative samples, guiding 056

LVLMs to leverage their internal reasoning for 057

context-rich answers (Wei et al., 2022; Zhang et al., 058

2023). However, static prompt design usually lacks 059

the dynamic adaptability required for novel scenar- 060

ios, resulting in limited generalization to unseen 061

or diverse inputs. Additionally, graph-based ap- 062

proaches utilize Graph Neural Networks (GNNs) 063

to incorporate structured commonsense knowledge 064

(Ravi et al., 2023; Wang et al., 2022), which sur- 065

passes the limitations of purely parametric LVLMs, 066

enabling models to capture explicit and implicit 067

knowledge connections via structured graphs. 068

However, a key missing component in existing 069

works is the effective integration of commonsense 070

knowledge with LVLMs while addressing their in- 071

herent shortcomings. Prior approaches either rely 072

on static retrieval that indiscriminately injects input- 073

unaware noisy knowledge or graph-based augmen- 074

tation that overlooks the dynamic interplay between 075

external and innate knowledge. Our work seeks 076

to fill this gap by proposing a unified framework 077

that systematically combines dynamic, contextu- 078

ally aligned commonsense integration with struc- 079

tured graph-based reasoning to robustly filter and 080

1The sample illustrations can be found in Section 6 and
Appendix.
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incorporate relevant commonsense knowledge.081

In this paper, we introduce MAGIC-VQA, a082

novel framework designed to enhance VQA mod-083

els by effectively integrating commonsense knowl-084

edge with LVLMs. MAGIC-VQA is built upon a085

three-stage process that not only improves reason-086

ing capabilities but also mitigates the complexity087

associated with large-scale pre-training and inef-088

ficient prompt-based approaches. First, explicit089

Commonsense Knowledge Integration extracts rel-090

evant knowledge triples from external sources, es-091

tablishing a reliable reasoning foundation. Sec-092

ondly, by-Type Commonsense Knowledge Post-093

processing refines these triples based on input-094

specific needs, ensuring contextual relevance. Fi-095

nally, implicit Commonsense Knowledge Augmen-096

tation constructs a heterogeneous multimodal graph097

processed by a GNN to capture intricate relation-098

ships, providing structured reasoning beyond what099

LVLMs alone can infer. By integrating explicit100

and implicit commonsense knowledge on top of101

LVLMs, MAGIC-VQA addresses both the limita-102

tions of previous approaches and the missing com-103

ponent in existing works. Our main contributions104

are as follows:105

1. We propose MAGIC-VQA, a novel end-106

to-end framework that systematically inte-107

grates both explicit and implicit commonsense108

knowledge into VQA through, without exten-109

sive pre-training or intricate prompt tuning.110

2. MAGIC-VQA employs a three-stage111

pipeline—explicit commonsense integration,112

by-type post-processing, and graph-based113

implicit augmentation-that dynamically114

extracts and filters commonsense knowledge115

in an input-aware manner, and leverages a116

GNN-based structured reasoning mechanism.117

3. We conduct extensive evaluations across mul-118

tiple VQA benchmarks, demonstrating robust119

improvement in commonsense understanding120

reasoning for VQA, surpassing existing mod-121

els in both knowledge grounding and infer-122

ence accuracy.123

2 Related Work124

2.1 VLPM and LVLMs on VQA125

Vision-Language Pretrained Models (VLPMs) like126

ViLBERT (Su et al., 2019), ALBEF (Li et al., 2021)127

and VILT (Kim et al., 2021) have advanced Vi-128

sual Question Answering (VQA) by improving129

the alignment between visual and textual modali- 130

ties in the last few years. Recently, Large Vision- 131

Language Models (LVLMs) like InstructBLIP (Dai 132

et al., 2023), LLaVA (Liu et al., 2024b),GPT4o 133

(OpenAI, 2024b) and Gemini1.5 (Gemini Team, 134

2024) further push the boundary of VQA with 135

strong in-context learning capability through ex- 136

tensive pre-training and instruction-tuning on large- 137

scale image-text datasets. However, these models 138

still face challenges with questions requiring com- 139

monsense knowledge that is intuitive and straight- 140

forward for humans, such as reasoning based on 141

implicit contextual cues or general world knowl- 142

edge (Ye et al., 2023; Wang et al., 2023; Chen et al., 143

2024a; Yang et al., 2024). The resource-intensive 144

nature of these models further makes it infeasible 145

to train a model from scratch specifically for en- 146

hanced commonsense understanding. 147

2.2 Commonsense Knowledge Integration for 148

Visual Question Answering 149

Several studies have highlighted the critical role 150

of commonsense knowledge integration in enhanc- 151

ing the performance of VLPMs and LVLMs on 152

VQA tasks (Wu et al., 2022; Zhang et al., 2022; 153

Ding et al., 2022; Wang et al., 2024c). These meth- 154

ods can be classified into two approaches: explicit 155

commonsense knowledge integration and implicit 156

commonsense knowledge integration. 157

1) Explicit commonsense knowledge integration 158

directly incorporates external commonsense knowl- 159

edge into model training through instruction tun- 160

ing or prompt tuning. For example, VLC-BERT 161

(Ravi et al., 2023) encodes the contextualized com- 162

monsense knowledge of the question phrases as 163

additional textual features and integrates with ob- 164

ject visual features to fine-tune the VL-BERT (Su 165

et al., 2019). MM-CoT (Zhang et al., 2023), T- 166

SciQ (Wang et al., 2024a) and KAM-CoT (Mondal 167

et al., 2024) fine-tune models on commonsense- 168

augmented Chain-of-Thought (CoT) data to en- 169

hance their reasoning processes. However, these 170

methods suffer from static commonsense integra- 171

tion without dynamic filtering to adjust to varying 172

input contexts, resulting in potential noise that im- 173

pedes nuanced reasoning. 174

2) Implicit Commonsense Knowledge Integra- 175

tion focuses on distilling knowledge from a teacher 176

to a student model without directly incorporating 177

external datasets. For example, (Dai et al., 2022) 178

distill knowledge from the dual-stream VLP model 179

CLIP (Radford et al., 2021) into BART (Lewis, 180
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KG Size Main Coverage Key Relations

ConceptNet 8M PE IsA, UsedFor
ATOMIC 877K EC, SI xWant, oEffect
ATOMIC2020 1.33M PE, EC, SI 23 relation types

Table 1: Comparison of three commonsense knowledge
graphs. ’PE’ refers to physical entity-related common-
sense, ’EC’ to event-centered related commonsense, and
’SI’ to social interaction-related commonsense.

2019), achieving strong zero-shot performance on181

VQA. Park et al. (2024) proposed a novel method182

to distill knowledge from LLMs focusing on spe-183

cific image regions, then guiding the LLM to infer184

commonsense knowledge about those areas. These185

methods often overlook the structured interplay186

among visual, textual, and commonsense cues, lim-187

iting their ability to perform nuanced reasoning.188

3 MAGIC-VQA189

MAGIC-VQA employs a three-stage process to in-190

tegrate commonsense knowledge into LVLMs, as191

in Figure 1. (1) Explicit Commonsense Knowledge192

Retrieval extracts relevant triples from an exter-193

nal knowledge graph. (2) By-Type Commonsense194

Knowledge Post-processing refines these triples,195

aligning them with dataset-specific distributions196

and assigning relevance levels. (3) Implicit Com-197

monsense Knowledge Augmentation constructs a198

multimodal graph processed by a GNN to generate199

confidence scores. These scores, along with the re-200

fined triples with relevance level, image, and ques-201

tion, form a comprehensive input to the LVLMs for202

robust commonsense-grounded inference.203

3.1 Explicit Commonsense Knowledge204

Integration205

We begin by integrating explicit commonsense206

knowledge into LVLM for each input modality.207

Given a dataset sample consisting of an image I208

and an associated question Q, we first generate an209

image caption C using BLIP2 (Li et al., 2023a)210

as additional contextual information. Next, we en-211

code the inputs {I,Q,C} into a shared embedding212

space, obtaining representations fI , fQ, and fC213

using the same model.214

We adopt ATOMIC2020 (Hwang et al., 2021) as215

our external knowledge source because of its broad216

coverage of physical-entity (PE), event-centered217

(EC), and social-interaction (SI) relations, as shown218

in Table 1. Spanning 1.33 million triplets and 23219

relation types, it offers a more balanced scope than220

either ConceptNet (Speer et al., 2017) or the earlier 221

ATOMIC (Sap et al., 2019), making it especially 222

relevant for everyday objects, actions, and social 223

contexts encountered in VQA. These 23 relations 224

fall into three groups: (1) Physical Entity (PE): ob- 225

ject properties and functions like “paper is made of 226

cellulose”. (2) Event-Centered (EC): situational 227

sequences or events, such as “X eats breakfast” 228

typically happening before “X goes to work.” (3) 229

Social Interaction (SI): human interactions, inten- 230

tions and emotions, such as “PersonX gives a gift,” 231

leading to “PersonY feels appreciated.” The com- 232

plete list of relations within each group is covered 233

in Appendix C. 234

To retrieve relevant commonsense knowl- 235

edge,we encode the head and tail entities of all 236

ATOMIC2020 candidates using the same BLIP2 237

model, then compute cosine similarities between 238

these entity embeddings and input embeddings 239

f ∈ {fI , fQ, fC}. We select the top K triplets 240

with the highest cosine similarity scores per input 241

embedding f . This ensures only the contextually 242

pertinent commonsense knowledge is retained, pro- 243

viding a solid foundation for the subsequent refine- 244

ment and integration stages. 245

3.2 By-type Commonsense Knowledge 246

Post-Processing 247

After acquiring an initial pool of commonsense 248

triplets, we further refine them through a by-type 249

post-processing stage, ensuring each of them is 250

both tailored to each dataset’s specific needs and 251

contextually aligned. This stage involves two main 252

steps: (1) By-type Commonsense Knowledge Fil- 253

tering, and (2) Relevance Level Assignment. 254

By-type Commonsense Knowledge Filtering 255

customizes the selection of retrieved triplets by 256

matching the desired commonsense type distri- 257

bution for each dataset. As discovered in Fig- 258

ure 3, each dataset benefits from a distinct mix 259

of commonsense types. We first discard triplets 260

with similarity scores below a threshold τ . Let 261

T = {CS-PE, CS-EC, CS-SI} represent the com- 262

monsense types, with each type t allocated a tar- 263

get proportion pt. We then select kt = ⌊pt × k⌋ 264

triplets from each type t with the highest similarity 265

scores, ensuring the final set reflects the dataset’s 266

recommended distribution of commonsense knowl- 267

edge. Details on these ratios are in Section 4.2. 268

Relevance Level Assignment further assign a 269

qualitative relevance level to each filtered triplet 270

based on its cosine similarity score with the input 271
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Figure 1: The proposed MAGIC-VQA Framework Architecture, which includes diverse approaches to integrate
commonsense knowledge to Visual Question Answering. The detailed description of each step - 1) Explicit
Commonsense Knowledge Retrieval, 2) By-Type Post-processing, 3) Implicit Commonsense Augmentation - is
aligned with the subsection titles under Section 3.

sample, assisting the model in prioritizing most272

meaningful knowledge during reasoning. For each273

input source f ∈ {fI , fQ, fC}, we first aggregate274

all cosine similarity scores Sf = {s(f)j } of the se-275

lected triplets. We compute the mean µf and stan-276

dard deviation σf of these scores for each dataset:277

µf =
1

Nf

Nf∑
j=1

s
(f)
j (1)278

279

σf =

√√√√√ 1

Nf

Nf∑
j=1

(
s
(f)
j − µf

)2
(2)280

where Nf represents the total number of selected281

triplets for that input source f . As the scores have282

a roughly normal distribution, we apply dynamic283

thresholding that uses mean µf and standard devia-284

tion σf to assign each triplet a relevance level:285

L(s
(f)
j ) =



High if s(f)j ≥ µf +
σf

2

Medium if µf − σf

2 ≤ s
(f)
j ,

and s
(f)
j < µf +

σf

2

Low if s(f)j < µf − σf

2

(3)286

Detailed distribution of the similarity score for each287

dataset is provided in Appendix 12.288

3.3 Implicit Commonsense Knowledge 289

Augmentation 290

While explicit retrieval yields relevant common- 291

sense triplets, an implicit augmentation step allows 292

these triplets to be more deeply integrated into the 293

reasoning process. We construct a heterogeneous 294

graph Gn = {V,E} where each input node (im- 295

age I , question Q, and caption C) is interconnected 296

and also linked to k additional commonsense nodes. 297

These commonsense nodes are derived by flatten- 298

ing filtered commonsense triplets from Section 3.2, 299

thereby converting each triplet into a short natural- 300

language sentence for more straightforward integra- 301

tion2. Edges between nodes are constructed based 302

on cosine similarity scores between their embed- 303

dings, highlighting the semantic relevance between 304

each pair of nodes. The graph is then processed 305

using a two-layer Graph Convolutional Network 306

(GCN) to iteratively update node embeddings: 307

H(l+1) = ρ
(
ÃH(l)Wl

)
(4) 308

where ρ is a nonlinear activation function and Ã is 309

the normalized adjacency matrix. The node embed- 310

dings H(2) are pooled to form a unified graph rep- 311

resentation for each sample, which is then passed 312

2We apply a rule-based triplets flatten mechanism covered
in Appendix C
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Figure 2: The comparison among VQA datasets. We
selected one dataset from each of three groups. We
modified the figure from (Yue et al., 2024).

through a Multi-Layer Perceptron (MLP) to pro-313

duce a confidence score over candidate answers.314

These confidence scores provide a commonsense-315

augmented signal to the LVLM, enabling it to prior-316

itize answers grounded in relevant knowledge and317

improving inference reliability.318

3.4 Commonsense Grounded Inference319

In the final inference stage, we combine all pro-320

cessed elements—original inputs (I,Q,C), refined321

commonsense triplets (with assigned relevance lev-322

els) and GNN-generated confidence scores—into a323

unified input structure for inference with LVLMs3.324

By fusing explicit and implicit commonsense325

knowledge with visual and textual signals, the326

LVLMs can reason effectively about nuanced re-327

lationships, delivering answers better aligned with328

real-world understanding.329

4 Experiment330

4.1 Dataset331

We evaluated MAGIC-VQA on three representative332

VQA benchmarks of diverse complexity and depth333

as highlighted in Figure 2.334

ScienceQA (Lu et al., 2022) comprises over335

21,000 multiple-choice questions from elementary336

and middle school curricula in natural, social, and337

language science. It tests factual and procedural un-338

derstanding, requiring integration of commonsense339

about the physical world and scientific phenomena.340

We select only samples with image contexts.341

TextVQA (Singh et al., 2019) contains over342

45,000 questions grounded in 28,000 real-world343

images with embedded text like signs and labels. It344

3A complete input example is provided in Appendix G

demands OCR to extract textual elements and inte- 345

grate them with everyday commonsense provided 346

in the context to interpret them within the visual 347

scene. We use its validation set for our evaluation. 348

MMMU (Yue et al., 2024) consists of 11,550 349

college-level questions spanning diverse disci- 350

plines. It features challenging image types such as 351

medical diagnosis, music sheets and so on, which 352

goes beyond the everyday commonsense under- 353

standing emphasized in ScienceQA and TextVQA. 354

We choose its validation set to evaluate our model. 355

Figure 3: The distribution of categories of common-
sense knowledge. CS-PE refers to physical entity-
related commonsense, CS-EC to event-centered related
commonsense, and CS-SI to social interaction-related
commonsense.

4.2 Commonsense Knowledge Distribution 356

To tailor the commonsense knowledge to each 357

dataset’s specific reasoning requirements, we ana- 358

lyze the distribution of commonsense types across 359

each dataset using GPT4 (OpenAI, 2024a)4. As 360

Figure 3 suggests, ScienceQA requires more Phys- 361

ical Entity (CS-PE) knowledge, possibly due to 362

its focus on factual and procedural scientific con- 363

cepts. Meanwhile, TextVQA, which often in- 364

volves contextual understanding in images, ben- 365

efits more from Event-Centered (CS-EC) knowl- 366

edge. MMMU, however, requires a balanced mix 367

of Physical Entity, Event-Centered, and Social In- 368

teraction (CS-SI) commonsense due to its multi- 369

disciplinary nature. As a result, we set the by-type 370

filtering ratio of {CS-PE:CS-EC:CS-SI} mentioned 371

in Section 3.2 as {0.7:0.15:0.15} in ScienceQA, 372

{0.2:0.6:0.2} in TextVQA,{0.33:0.33:0.33} in 373

MMMU dataset. 374

4The prompt template is in Appendix H
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Table 2: Performance comparison under four configurations: (1) None: Inputs with no additional commonsense
knowledge. (2) CS Sources: Inputs enriched with commonsense knowledge from different sources. including
question (CS-Q), image (CS-I), and image caption (CS-C). (3) CS Categories: Inputs enriched with commonsense
knowledge from different categories, including Physical Entities (CS-PE), Event-Centered (CS-EC), and Social
Interaction (CS-SI). (4) All CS: Inputs enriched with all source-based and category-based commonsense.

Models None CS Sources CS Categories All CSCS-Q CS-I CS-C CS-PE CS-EC CS-SI
ScienceQAIMG

LLaVA1.6 67.50 68.83 71.56 70.35 71.12 69.01 70.83 72.30
BLIP3 70.00 71.56 73.88 72.97 74.03 71.57 71.05 74.30

InternVL2 71.99 72.58 74.37 73.91 74.56 73.09 73.21 74.62
Qwen2VL 71.39 72.21 74.83 71.86 74.22 72.03 72.57 75.95

GPT4o-mini 76.45 77.34 79.83 77.17 79.63 77.52 78.87 81.22
TextVQAval

LLaVA1.6 62.30 63.55 64.82 64.23 64.77 65.05 64.89 65.20
BLIP3 67.80 68.49 69.64 68.29 69.12 69.64 69.24 69.80

InternVL2 73.21 74.06 75.19 74.81 74.60 75.01 74.82 75.30
Qwen2VL 75.30 76.07 77.63 77.05 76.57 78.02 76.85 78.90

GPT4o-mini 78.98 79.34 81.25 80.63 80.93 81.51 81.22 82.13
MMMUval

LLaVA1.6 48.38 49.27 53.52 49.85 52.03 52.57 53.10 54.30
BLIP3 41.31 42.54 45.89 42.19 44.12 46.03 45.89 47.60

InternVL2 51.00 52.17 55.48 54.21 54.23 52.67 53.50 55.80
Qwen2VL 51.10 52.69 55.89 54.83 53.60 54.57 54.10 57.42

GPT4o-mini 55.89 56.53 58.79 56.21 58.12 57.57 57.89 60.87

4.3 Baselines, Metric, and Implementations375

The selected baselines are four open source state-376

of-the-art LVLMs: LLaVA-1.6 (Liu et al., 2024a),377

XGen-MM (BLIP-3) (Xue et al., 2024), InternVL2378

(Chen et al., 2024b), Qwen2VL (Wang et al.,379

2024b), and one proprietary model, GPT4o-mini380

(OpenAI, 2024b). These LVLMs are selected for381

their outstanding zero-shot performance in VQA382

tasks. Details of each baseline model are in Ap-383

pendix D. We adopt accuracy as the evaluation met-384

ric following prior works (Singh et al., 2019; Lu385

et al., 2022; Yue et al., 2024). All experiments are386

conducted with and without the proposed MAGIC-387

VQA under a zero-shot setup. More implementa-388

tion details are in Appendix E.389

5 Results390

5.1 Explicit Commonsense Knowledge391

We evaluated the explicit integration of common-392

sense knowledge triplets by systematically testing393

four configurations of: (1) None: Inputs with no394

additional commonsense; (2) CS Sources: Inputs395

augmented with commonsense from questions, im-396

ages, or captions; (3) CS Categories: Inputs aug-397

mented with commonsense grouped by category398

(Physical Entities, Event-Centered, Social Interac-399

tion); and (4) All CS: Inputs augmented with all 400

retrieved commonsense 5. As in Table 2, integrat- 401

ing explicit commonsense consistently improves 402

performance across all baselines and three datasets. 403

For instance, on ScienceQA, GPT-4O’s accuracy 404

rises from 76.45% (None) to 81.22% (All CS), and 405

Qwen2VL improves from 51.10% to 57.42% on 406

MMMU under the same setup. Examining the 407

effect of source-based commonsense reveals that 408

image-driven knowledge (CS-I) typically provides 409

the largest gains. For example, LLaVA1.6 on 410

MMMU jumps from 48.38% to 53.52% with CS-I, 411

surpassing the minor improvements from CS-Q or 412

CS-C. This suggests that leveraging image-aligned 413

commonsense offers more grounded cues for infer- 414

ence. However, category-based commonsense (CS- 415

PE, CS-EC, and CS-SI) exhibits dataset-dependent 416

effectiveness. On ScienceQA, CS-PE is most bene- 417

ficial, while on TextVQA, CS-EC dominates, and 418

MMMU shows a more balanced pattern. These 419

results align with our earlier commonsense dis- 420

tribution analysis in Section 4.2, highlighting the 421

importance of tailoring knowledge retrieval to the 422

dataset’s unique characteristics. 423

5Each experiment is tested with a fixed number of k = 6
to maintain a fair comparison.
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Model Ex-CS Im-CS Performance

CS Rel Conf SQA MMMU TVQA

Qwen2VL ✗ ✗ ✗ 71.39 51.10 75.30

Qwen2VL ✓ ✗ ✗ 75.11 56.00 78.50

Qwen2VL ✗ ✗ ✓ 72.88 53.41 76.42

Qwen2VL ✓ ✓ ✗ 75.95 57.42 78.90

Qwen2VL ✓ ✗ ✓ 76.42 57.21 79.10

Qwen2VL ✓ ✓ ✓ 77.12 58.72 79.80

GPT4o-mini ✗ ✗ ✗ 76.45 55.89 78.98

GPT4o-mini ✓ ✗ ✗ 80.07 59.30 81.73

GPT4o-mini ✗ ✗ ✓ 77.02 57.64 79.55

GPT4o-mini ✓ ✓ ✗ 81.22 60.87 82.13

GPT4o-mini ✓ ✗ ✓ 80.94 60.25 82.50

GPT4o-mini ✓ ✓ ✓ 82.50 61.03 83.37

Table 3: Quantitative analysis on the effect of each
component of MAGIC-VQA on the model performance.
The "Ex-CS" (CS and Rel) denotes explicit common-
sense knowledge inclusion (All-CS in Section 5.1),
while "Im-CS" ( Conf ) denote implicit commonsense
inclusion. Green check (✓) denotes the inclusion of a
component, and red cross (✗) denotes exclusion.

5.2 Implicit Commonsense Knowledge424

We next examined the effect of implicit com-425

monsense knowledge augmentation as outlined426

in Section 3.3 using two representative LVLMs,427

Qwen2VL andGPT4o-mini. We also include re-428

sults from explicit commonsense knowledge in-429

tegration (All-CS in Section 5.1). As Table 3430

suggests, while the implicit commonsense knowl-431

edge Conf does not contribute as significantly432

as explicit commonsense knowledge (Ex-CS), it433

nonetheless provides complementary information434

that enhances overall performance. Incorporating435

only Conf with Qwen2VL improves the MMMU436

accuracy from 51.10% to 53.41%, and withGPT4o-437

mini, the accuracy increases from 55.89% to438

57.64%. We also observe that adding Rel notably439

improves results across all three datasets. Further-440

more, combining implicit and explicit common-441

sense yields the highest overall performance, in-442

dicating that implicit augmentation complements443

explicit knowledge by capturing additional nuances444

and context that explicit methods alone may miss.445

Further detailed qualitative analysis is provided in446

Section 6 and the Appendix B.447

(a) ScienceQA

(b) TextVQA

(c) MMMU

Figure 4: Subcategory-level accuracy on (a) ScienceQA,
(b) TextVQA, and (c) MMMU for Qwen2VL (left)
andGPT4o-mini (right) under three conditions: Without
CS, With EX-CS and With All-CS.

5.3 Break Down Results 448

We compare performance on specific subcategories 449

within each selected dataset using Qwen2VL and 450

GPT4o-mini in order to analyze the effects of com- 451

monsense knowledge augmentation in Figure 4. 452

Across all datasets and subcategories, incorporat- 453

ing commonsense significantly improves the accu- 454

racy. Each dataset features distinct subcategories 455

that would benefit from varying aspects of com- 456

monsense reasoning. 457

First, ScienceQA in Figure 4a, commonsense 458

augmentation yields notable improvements, partic- 459

ularly in language-related subcategories, reflecting 460

the value of context-sensitive reasoning. TextVQA 461

in Figure 4b, categories involving concrete objects, 462

such as ‘uniform’ and ‘books’, benefit more signifi- 463

cantly from commonsense augmentation compared 464

to abstract categories like ‘persons’, indicating that 465

concrete objects allow for more precise retrieval of 466
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relevant commonsense knowledge. For MMMU467

in Figure 4c, commonsense augmentation bene-468

fits easy-level questions, closely tied to everyday469

knowledge, while struggles with hard-levels that470

demand complex reasoning beyond commonsense.471

5.4 Further Ablation Studies472

Beyond our primary experiments, we conducted473

additional ablation studies to further analyze the474

impact of various design choices and methodolog-475

ical components. The detailed results for these476

studies are available in Appendix A. Firstly, as in477

Appendix A.1, we examined the effect of varying478

the selection ratio of different commonsense knowl-479

edge types—CS-PE, CS-EC, and CS-SI—when in-480

tegrated with Qwen2VL on the ScienceQA. This481

analysis helps to determine how the balance of dif-482

ferent types of commonsense knowledge influences483

model performance. Secondly, in Appendix A.2,484

we investigated the impact of incorporating differ-485

ent numbers of commonsense knowledge triplets486

using both Qwen2VL and GPT4o-mini. This study487

aims to assess whether increasing the number of488

commonsense knowledge triplets enhances reason-489

ing capabilities or if there is a saturation point be-490

yond which performance gains plateau. Thirdly,491

Appendix A.3 presents the effect of diverse sim-492

ilarity metrics by comparing Manhattan, Cosine,493

and Euclidean Distance when applied with GPT4o-494

mini, providing insights into how different similar-495

ity measures affect retrieval effectiveness. Finally,496

as presented in Appendix A.4, we conducted an497

evaluation of VLPM-style fine-tuning by compar-498

ing our proposed approach with methods that dis-499

till implicit commonsense knowledge using graph-500

bassed techniques into compact VLPMs, such as501

ViLT and ALBEF. This comparison highlights the502

advantages of our method in effectively integrating503

commonsense reasoning within smaller VLPMs504

while maintaining performance efficiency.505

6 Qualitative Analysis506

Figure 5 compares MAGIC-VQA with GPT4o and507

Qwen2VL, demonstrating how our framework ef-508

fectively integrates both explicit and implicit com-509

monsense knowledge for enhanced visual ques-510

tion answering. As illustrated in Figure 5a, while511

GPT4o struggles to deduce the complete answer512

(big buff ale) to input query, MAGIC-VQA suc-513

cessfully incorporate contextual knowledge, such514

as “Person X owns the tap sells beer” and “bever-515

(a) TextVQA example (b) ScienceQA example

Figure 5: Comparison of results of commonsense
knowledge-injected MAGIC-VQA (ours) and original
GPT4o-mini and Qwen2VL across different datasets, in-
cluding TextVQA and ScienceQA. Each example high-
lights the question-based and image-based explicit com-
monsense knowledge. Example in ScienceQA is also
injected with implicit commonsense knowledge.

age dispenser used as a beer tap in a bar,” linking 516

beer consumption, tap functionality, and beverage 517

machines with the input question to arrive at the 518

correct answer. In Figure 5b, while Qwen2VL in- 519

correctly identifies the colony as North Carolina, 520

our MAGIC-VQA addresses this limitation by inte- 521

grating explicit image-based commonsense knowl- 522

edge about Virginia’s location, historical turnpikes, 523

and wildlife, correctly concluding that the answer 524

is Virginia. Confidence scores derived from im- 525

plicit commonsense knowledge further reinforce 526

the evidence for the final accurate prediction. Ad- 527

ditional case studies are shown in Appendix B. 528

7 Conclusion 529

This paper introduced MAGIC-VQA, a novel 530

framework integrating commonsense knowl- 531

edge into VQA to address the limitations 532

of existing LVLMs. MAGIC-VQA’s three- 533

stage process—knowledge retrieval, common- 534

sense post-processing, and GNN-based augmen- 535

tation—enables nuanced reasoning without exten- 536

sive pre-training or complex prompt tuning. Eval- 537

uations on ScienceQA, TextVQA, and MMMU 538

demonstrate significant improvements in tasks re- 539

quiring advanced reasoning. This framework estab- 540

lishes a robust approach for bridging raw visual in- 541

puts with high-level reasoning, offering scalable en- 542

hancements for VQA. We hope this work inspires 543

further research into structured commonsense rea- 544

soning for complex multimodal challenges. 545
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Limitation546

While the MAGIC-VQA framework demonstrates547

significant improvement, it currently relies on ex-548

ternal knowledge graphs, such as ATOMIC2020549

and predefined commonsense categories, which550

may limit its adaptability to diverse and unforeseen551

domains. Additionally, real-world VQA scenarios552

often involve noisy or ambiguous inputs that may553

not always align with the structured assumption of554

the commonsense knowledge graph. To address555

these limitations, we plan to extend our approach556

by developing and incorporating a more diverse557

and extensive range of multimodal commonsense558

knowledge sources. Expanding the scope of knowl-559

edge representation will enhance multimodal un-560

derstanding and learning ability and help us handle561

more multimodal reasoning tasks.562
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A Additional Experiment Results796

A.1 Ratio of Commonsense Knowledge Type797

Figure 6: Effect of the ratio of commonsense knowl-
edge categories on Qwen2VL. The three categories of
explicit commonsense knowledge include social inter-
actions (CS-SI), physical entities (CS-PE), and event-
based relations (CS-EC).

To determine the optimal ratio of commonsense798

knowledge types, we conduct an experiment to an-799

alyze how varying distributions of CS-PE, CS-EC,800

and CS-SI knowledge triplets impact the perfor-801

mance of Qwen2-VL on the ScienceQA dataset.802

Figure 6 indicates that the model achieves its high-803

est accuracy of 75.11% with a 4:1:1 ratio, which804

places greater emphasis on CS-PE knowledge. Ad-805

ditionally, distributions favoring CS-PE triplets806

consistently result in improved performance. For807

example, a 3:1:2 ratio achieves an accuracy of808

74.73%. In contrast, ratios prioritizing CS-EC or809

CS-SI, such as 1:2:3 or 1:3:2, yield lower accura-810

cies of 72.56% and 72.41%, respectively. These811

results suggest that CS-PE is the most essential812

commonsense knowledge type for the ScienceQA,813

aligning with its focus on physical concepts and814

entities as discussed in Section 5.1. Notably, the815

4:1:1 ratio closely mirrors the inherent distribution816

of commonsense knowledge in ScienceQA in Fig-817

ure 3. This alignment suggests that tailoring the818

balance of commonsense knowledge to match the819

dataset’s inherent characteristics, as demonstrated820

by our approach, leads to the most significant per-821

formance improvements.822

A.2 Number of Knowledge Triplets823

To optimize the integration of explicit common-824

sense knowledge into our model while minimizing825

the risk of introducing excessive noise, we inves-826

(a) Qwen2VL (b) GPT4o-mini

Figure 7: Effect of number of knowledge triplets k:
Comparison between Qwen2VL andGPT4o-mini.

tigate how varying the number of retrieved com- 827

monsense triplets k impacts performance. We vary 828

k from 0 to 10, incrementally increasing the num- 829

ber of triplets provided to Qwen2VL andGPT4o- 830

mini and measuring the corresponding accuracy. 831

In Figure 7, the models achieve optimal perfor- 832

mance when k = 6 triplets are incorporated. Uti- 833

lizing fewer than k = 6 appears insufficient to 834

provide the contextual information for efficient rea- 835

soning, while exceeding k = 6 triplets includes 836

irrelevant or redundant information, diminishing 837

performance. Therefore, using k = 6 represents 838

the optimal balance/sweet spot for enriching the 839

model with necessary knowledge while focusing 840

on pertinent information. 841

A.3 Effect of Similarity Metric 842

We further conduct an ablation study to evaluate 843

the effect of different retrieval metrics on explicit 844

commonsense knowledge retrieval across different 845

datasets and input sources using GPT4-O model. 846

We explore the performance of three retrieval met- 847

rics: Cosine Distance, Manhattan Distance, and 848

Euclidean Distance to understand their influence 849

on retrieval efficacy across these datasets and input 850

types. 851

As suggested on the right Figure 8, the perfor- 852

mance trends reveal notable differences in retrieval 853

effectiveness depending on the metric and dataset. 854

For ScienceQA, Manhattan Distance achieves the 855

highest scores. Meanwhile, the MMMU dataset 856

shows relatively low and uniform scores across all 857

metrics, suggesting that this dataset’s retrieval per- 858

formance is less sensitive to the choice of metric, 859

potentially due to the diversity and complexity of 860

MMMU’s multimodal inputs. 861

When comparing retrieval metrics across differ- 862

ent input sources, we observe further variations. 863
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Figure 8: Comparison of accuracy across three datasets
(ScienceQA, TextVQA, MMMU) using different dis-
tance metrics (Cosine, Manhattan, Euclidean) for ex-
plicit commonsense retrieval (Left). The right panel
illustrates the performance of these metrics across dif-
ferent input sources (Question, Image, Caption) within
the ScienceQA dataset.

For question-based retrieval, Manhattan Distance864

consistently yields higher performance scores, in-865

dicating that the absolute differences in feature866

spaces may be more informative for question-867

centric retrieval. In contrast, image-based and868

caption-based retrieval achieves the highest scores869

with Cosine Distance, suggesting that angle-based870

similarity is more effective for capturing visual871

context in the knowledge graph.872

A.4 VLPM-Style Fine-Tuning Results873

We further perform VLPM-style fine-tuning to in-874

vestigate the effectiveness of implicit multimodal875

commonsense in MAGIC-VQA framework. Table876

4 presents a quantitative analysis of the impact of877

different input nodes—image (I), question (Q), and878

generated caption text (C)—on the performance of879

two baseline models (VILT and ALBEF) in VLPM-880

style fine-tuning. Each node type corresponds to881

a specific input modality, and when removed, the882

original embeddings from the pre-trained models883

are used instead of GCN-trained node embeddings.884

It is found that including all nodes consistently885

yields the best outcomes, underscoring the comple-886

mentary contributions of visual, textual and caption887

inputs multimodal reasoning.888

Notably, the question node proves to be the most889

crucial across all nodes. For example, ALBEF’s890

accuracy on ScienceQA declines from 68.33% to891

57.42% when the question node is excluded, high-892

lighting its essential role in guiding the model’s893

attention toward relevant aspects of the image and894

improving reasoning. On the other hand, the image895

node also plays a significant role in performance.896

Visual inputs provide critical scene-level informa-897

tion, enabling models to capture object attributes898

Model I Q C SQA MMMU TextVQA

ViLT - - - 56.14 23.04 41.49

MAGIC-VQA(V iLT ) ✗ ✓ ✓ 60.53 20.12 40.13

MAGIC-VQA(V iLT ) ✓ ✗ ✓ 53.32 14.28 32.24

MAGIC-VQA(V iLT ) ✓ ✓ ✗ 63.45 22.37 43.98

MAGIC-VQA(V iLT ) ✓ ✓ ✓ 65.41 23.35 44.12

ALBEF - - - 59.12 25.38 39.27

MAGIC-VQA(ALBEF ) ✗ ✓ ✓ 61.24 24.43 37.28

MAGIC-VQA(ALBEF ) ✓ ✗ ✓ 57.42 17.21 28.42

MAGIC-VQA(ALBEF ) ✓ ✓ ✗ 66.79 26.91 42.88

MAGIC-VQA(ALBEF ) ✓ ✓ ✓ 68.33 27.32 43.25

Table 4: Combined Results with Multimodal Contribu-
tions. The green checkmarks (✓) denote the inclusion
of a component, while the red crosses (✗) denote its
exclusion.

(a) The case from MMMU.

(b) The case from ScienceQA.

Figure 9: Visualisations of MAGIC-VQA results on the
MMMU and ScienceQA datasets, showcasing the role
of image-based commonsense knowledge in deriving
correct answers. This highlights the cases when image-
based commonsense knowledge is more influential in
finding the answer.

and spatial relationships, which cannot be fully 899

compensated by text-based inputs alone. 900

B Additional Case Studies 901

We summarize different qualitative analysis case 902

studies in three types: 1) The cases when the image- 903

based explicit commonsense knowledge plays an 904

essential role (Figure 9), 2) The cases when implicit 905

commonsense-based confidence plays an essential 906

role (Figure 10), and 3) the cases when by-type 907

commonsense knowledge post-processing plays an 908

important role (Figure 11). 909

13



(a) The case from MMMU.

(b) The case from MMMU.

Figure 10: Visualisation of MAGIC-VQA results on
MMMU datasets. This highlights the cases when im-
plicit commonsense-based confidence plays an essential
role.

(a) The ScienceQA case when CS-PE is influential

(b) The ScienceQA case when CS-SI is influential

(c) The TextVQA case when CS-PE is influential

Figure 11: Visualisation of MAGIC-VQA results on
ScienceQA and TextVQA datasets. This highlights
the cases when by-type commonsense knowledge post-
processing plays an important role

C Commonsense Relation910

Transformation Table911

We use "Someone", "Someone’s" to replace the912

"PersonX", "PersonX’s" and "Another", "Another913

Relation Transformed Format

Physical-Entity
ObjectUse is used for
AtLocation is at
MadeUpOf is made up of
HasProperty can be
CapableOf is capable of
Desires desires
NotDesires does not desire

Event-Centered
IsAfter occurs after
HasSubEvent has sub-event
IsBefore occurs before
HinderedBy is hindered by
Causes causes
xReason is because someone
isFilledBy is filled by

Social-Interaction
xNeed then someone needs
xAttr then someone has attributes
xEffect then someone has the effect
xReact then someone reacts with
xWant then someone wants
xIntent then someone intends
oEffect then the effect on another is
oReact then another reacts with
oWant then another one wants

Table 5: Transformation template of commonsense rela-
tions into natural language phrases

one’s" to replace "PersonY", "PersonY’s" sepa- 914

rately, in the heads and tails of the Atomic2020 915

triplets to enhance clarity and coherence in 916

commonsense-grounded inference. 917

D Baselines 918

• LLaVA-1.6 (LLaVA-Next) (Li et al., 2024): 919

is an open-source Large Multimodal Model 920

(LMM) designed for enhanced visual and con- 921

versational understanding built upon LLaVA 922

(Liu et al., 2024b). It supports higher input 923

resolutions (up to 672x672 pixels) for finer 924

visual detail recognition and incorporates im- 925

proved visual instruction tuning for better rea- 926

soning and OCR capabilities. LLaVA 1.6 is 927

highly efficient, using fewer than 1 million vi- 928

sual instruction tuning samples and a stream- 929

lined training process. Its versatility enables 930

it to handle a wide range of applications, from 931

image and text-based tasks to complex mul- 932

timodal interactions, all while maintaining a 933

minimalist and data-efficient design. We use 934

llava-v1.6-mistral-7b-hf checkpoints for zero- 935

shot testing. 936

• InternVL2 (Chen et al., 2024b): is a state- 937
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of-the-art multimodal large model developed938

by OpenGVLab. It integrates image, video,939

text, speech, and 3D data, supporting over940

100 tasks with exceptional performance across941

benchmarks. InternVL2 leverages a progres-942

sive alignment training strategy and have943

achieved outstanding results in complex mul-944

timodal understanding tasks, rivaling leading945

commercial closed-source models like GPT-946

4V (OpenAI, 2024a). It introduces innova-947

tions like vector linking for diverse outputs. It948

also has parameter sizes ranging from 1B to949

76B optimized for efficiency, which delivers950

high performance even on limited resources.951

We use InternVL2-8B-hf checkpoints for zero-952

shot testing.953

• xGen-MM(BLIP-3) (Xue et al., 2024): is a954

cutting-edge framework for Large Multimodal955

Models (LMMs) developed by Salesforce AI956

Research. It features a modular architecture957

with a scalable vision token sampler and a958

pre-trained language model, optimized for di-959

verse multimodal tasks such as image cap-960

tioning, visual question answering, and OCR.961

It simplifies training objectives with a uni-962

fied auto-regressive loss and incorporates post-963

training techniques like Direct Preference Op-964

timization (DPO) and safety fine-tuning to965

improve truthfulness and mitigate harmful be-966

haviors. We use xgen-mm-phi3-mini-instruct-967

r-v1 checkpoints for zero-shot testing.968

• Qwen2-VL (Wang et al., 2024b): is a cutting-969

edge vision-language model designed with a970

robust technical architecture to process multi-971

modal inputs efficiently. It integrates a 675M-972

parameter Vision Transformer (ViT) enhanced973

with a Naive Dynamic Resolution mechanism,974

enabling adaptive encoding of images and975

videos into variable-length visual tokens to976

capture detail at multiple scales. To align spa-977

tial and temporal information, the model em-978

ploys Multimodal Rotary Position Embedding979

(M-RoPE), decomposing positional informa-980

tion into temporal, height, and width dimen-981

sions. It also leverages dynamic sequence982

lengths and efficient parallelism techniques,983

allowing for deployment in sizes of 2B, 7B,984

and 72B parameters. We use Qwen2-VL-7B-985

Instruct checkpoints for zero-shot testing.986

• GPT-4o (OpenAI, 2024b): is an advanced987

autoregressive model that processes and gen- 988

erates multimodal content, including text, im- 989

ages, audio, and video, using a unified neural 990

network architecture. It offers significant en- 991

hancements in vision and audio understand- 992

ing, multilingual text generation, and opera- 993

tional efficiency. The model’s training incor- 994

porates diverse public and proprietary datasets 995

across modalities, with rigorous post-training 996

alignment to ensure safety and mitigate risks 997

such as bias, misinformation, and unautho- 998

rized content generation. We use gpt-4o-2024- 999

08-06 checkpoints for zero-shot testing. 1000

E Implementation Details 1001

We set K = 30 to retrieve explicit commonsense 1002

knowledge. For by-type commonsense knowledge 1003

processing, we configure ε = 0.1 and k = 6 1004

to effectively integrate rich commonsense knowl- 1005

edge while minimizing the introduction of exces- 1006

sive noise. For implicit commonsense confidence 1007

augmentation, we follow the default setup in Kipf 1008

and Welling (2017) to explore a standard two-layer 1009

GCN. The dimension of the hidden size is set to 1010

be 256 and 512, each followed by a dropout layer 1011

with the rate to be 0.4. To train the teacher model, 1012

we explore batch size to be 64, learning rate to be 1013

1e-5 and epoch to be 30 with early stopping for 1014

all models and datasets. There is a global average 1015

pooling layer and a output layer using the softmax 1016

function after the last GCN layer. 1017

All experiments are conducted on a worksta- 1018

tion equipped with one A100 GPU with 40 GB 1019

of VRAM. We utilize PyTorch 1.10.0 for model 1020

training and the HuggingFace Transformers library 1021

for accessing pre-trained models. Our code was 1022

written in Python 3.8, and CUDA 11.2 was used 1023

for GPU acceleration. 1024

F Retrieved Commonsense Triplet Cosine 1025

Similarity Distribution 1026

Figure 12 depicts the cosine similarity distribution 1027

of the retrieved triplets of each input source across 1028

all three datasets. 1029

G Concrete Example of Input Prompt 1030

We further include a concrete prompt example of 1031

our MAGIC-VQA framework. as demonstrated 1032

in in Table 6, the input sample is augmented with 1033

both explicit and implicit commonsense knowledge 1034

providing the background information. We ask the 1035
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(a) ScienceQA

(b) TextVQA

(c) MMMU

Figure 12: Overall cosine similarity distributions for three input sources within each dataset. The first column
represents the cosine similarity distribution of retrieved triplets for input question. The second column represents the
cosine similarity distribution of retrieved triplets for input image. The third column represents the cosine similarity
distribution of retrieved triplets for input caption.

model to first generate the rational then answer the1036

question.1037

H Commonsense Category Analysis1038

Prompt Format1039

To analyze the commonsense knowledge distribu-1040

tion within each selected dataset, we provide the1041

following prompt template to classify each sam-1042

ple to their most relevant commonsense knowledge 1043

(CS-PE, CS-EC, CS-SI) covered in Table 7. 1044
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Background

You are an advanced Vision-Language Model assistant designed to answer multiple-choice questions
based on a given image. Your task is to select the most appropriate option from the provided
answer choices. You are given an input image, a question related to the image, the image caption,
multiple-choice answer options, and both explicit and implicit commonsense knowledge.

Explicit commonsense knowledge consists of statements related to the input, categorized as image-
related commonsense, question-related commonsense, and caption-related commonsense. Implicit
commonsense knowledge includes the relevance level (e.g., highly relevant, relevant, less relevant)
assigned to each explicit commonsense statement and the confidence of each candidate option, where
higher values indicate a greater likelihood of being correct.

Your objective is to integrate the explicit and implicit commonsense knowledge with the provided
information to generate a step-by-step reasoning. Based on this rationale, you will select the most
appropriate answer from the given options.

Input Information

Image:

Question: Which of these oceans does the prime meridian intersect?
Caption: An image of a world map with labeled continents and oceans.
Options:

A. "the Atlantic Ocean"
B. "the Indian Ocean"
C. "the Pacific Ocean"

Explicit Commonsense Knowledge

Image-Related Commonsense:
- The Atlantic Ocean is at the western hemisphere. (Highly Relevant)
- A world traveler is capable of crossing many time zones. (Relevant)

Question-Related Commonsense:
- A traveler is capable of crossing geographical borders. (Highly Relevant)
- Someone who is far from home might want to measure the distance. (Less Relevant)

Caption-Related Commonsense:
- The Atlantic Ocean is used for separating continents. (Highly Relevant)
- If someone sees the ocean, they might think of traveling to it. (Relevant)

Implicit Commonsense Knowledge (Confidence for Each Option)
A: 0.6
B: 0.05
C: 0.35

Rationale:

Answer:
Table 6: A concrete example of the input prompt
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Prompt Template for Commonsense Cate-
gory Classification
Instructions:
You are an expert in commonsense reasoning
and knowledge representation. Your task is
to classify each sample into one of three com-
monsense categories:
1. Physical-Entity Commonsense (CS-PE):
Knowledge about physical objects, their prop-
erties, uses, locations, and physical attributes.
This includes understanding what things are
made of, typical or atypical uses, and physical
characteristics.
2. Event-Centered Commonsense (CS-
EC): Knowledge about events, including their
causes, effects, prerequisites, sequences, and
hindrances. This encompasses understanding
how events are related in time and causality.
3. Social-Interaction Commonsense (CS-
SI): Knowledge about social behaviors, men-
tal states, interactions, and interpersonal dy-
namics. This involves understanding inten-
tions, emotional reactions, and attributes in
social contexts.
Sample:

• Image: < ImageCaption >

• Question: < Question >

• Choices: < Options >

• Answer: < Answer >

Reasoning Steps:
Please first examine the question and answer
choices, along with the image caption, to iden-
tify the main focus of the sample. Then pro-
vide a step-by-step reasoning on how specific
elements of the sample align with the poten-
tial commonsense category. Then assign the
appropriate commonsense category (CS-PE,
CS-EC, or CS-SI) based on the provided ra-
tionale.
Classification:

Table 7: Prompt Template for Classifying Samples into
Commonsense Categories
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