
Optimal Fair Learning Robust to
Adversarial Distribution Shift

Anonymous Author(s)
Affiliation
Address
email

Abstract

Previous work in fair machine learning has characterised the Fair Bayes Optimal1

Classifier (BOC) on a given distribution for both deterministic and randomized2

classifiers. We study the robustness of the Fair BOC to adversarial noise in the3

data distribution. Kearns and Li [1988] implies that the accuracy of the determin-4

istic BOC without any fairness constraints is robust (Lipschitz) to malicious noise5

in the data distribution. We demonstrate that their robustness guarantee breaks6

down when we add fairness constraints. Hence, we consider the randomized Fair7

BOC, and our central result is that its accuracy is robust to malicious noise in the8

data distribution. Our robustness result applies to various fairness constraints—9

Demographic Parity, Equal Opportunity, Predictive Equality. Beyond robustness,10

we demonstrate that randomization leads to better accuracy and efficiency. How-11

ever, we show that the randomized Fair BOC is nearly-deterministic, and gives12

randomized predictions on at most one data point, hence availing numerous bene-13

fits of randomness, while using very little of it.14

1 Introduction15

The effectiveness of machine learning models has resulted in improved efficiency across multiple16

domains but has also raised concerns about their fairness and possible amplification of biases in17

their training data [Barocas et al., 2019]. When machine learning models are used to make de-18

cisions that skew the distribution of important economic resources or reinforce stereotypes, they19

compound disparities to cause social and economic harm. Fair classification has been an important20

topic of research, and binary fair classification where the model makes yes/no decisions algorithmi-21

cally is a simple yet challenging setting to study foundational questions in optimal fair classification22

[Menon and Williamson, 2018b]. In group-fair classification, each data point has certain sensitive23

attributes indicating the demographic group(s) to which it belongs (e.g., race, gender). Popular no-24

tions of group-fairness such as statistical or demographic parity, equal opportunity, equalized odds,25

and predictive parity are all motivated by the binary fair classification setting. Demographic parity26

prescribes the positivity rates to be equal across different groups (e.g., race, gender), whereas equal27

opportunity prescribes the true positive rates to be equal across different groups [Dwork et al., 2012,28

Hardt et al., 2016]. Previous work has looked at various trade-offs between accuracy and fairness as29

well as the difficulty in satisfying multiple fairness constraints simultaneously [Celis et al., 2020].30

Previous work has also mathematically characterized the Fair Bayes Optimal Classifier (BOC),31

namely, the optimal deterministic classifiers for maximizing accuracy subject to group-fairness con-32

straints based such as demographic parity and equal opportunity [Menon and Williamson, 2018a,33

Chzhen et al., 2019, Celis et al., 2021, Zeng et al., 2022]. Pre-processing or re-weighing for training34

data imbalances, in-processing by fairness-constrained training loss, and post-processing a model’s35

predictions for balanced outcomes are three known ways to realize fair and accurate classifiers in36

practice [Kamiran and Calders, 2012, Agarwal et al., 2018, Barocas et al., 2019].37
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Biased or corrupted training data is a primary cause of unfairness in model predictions or outcomes.38

Moreover, robustness of a machine learning model under bias or corruption in the data distribution39

has been a more pragmatic concern that predates the research on fair machine learning. Learning40

robust classifiers is important because training and test distributions are not always identical and41

the training data may contain noise and malicious corruptions during data collection, curation, and42

annotation. Robustness of fair classifiers under bias/shift in the data distribution is a well studied43

issue in fair machine learning literature. Akpinar et al. [2022] empirically study the robustness of44

BOC and Fair BOC on synthetic data distributions and provide a sandbox tool for stress-testing fair45

classifiers. Sharma et al. [2023] and Ghosh et al. empirically study robustness of fair classifiers46

under data bias on semi-synthetic real-world datasets (i.e., real-world datasets with synthetically47

injected bias/shift). In both these papers, Exponentiated Gradient Reduction (EGR) or ExpGrad48

[Agarwal et al., 2018] stands out for its better robustness under data bias/shift, and it is inherently a49

randomized classifier.50

A particularly compelling and illustrative practical example for fair binary classification with mali-51

ciously corrupted training data is that of hate speech classifiers. Hate speech classifiers are known52

to exhibit biases against the same vulnerable demographics they were supposed to protect in online53

forums. For example, text in African American English (AAE) has higher likelihood of being mis-54

reported as hate speech and even proper mentions of group identifiers such as ‘gay’ or ‘black’ get55

misreported as toxic or prejudiced. Moreover, the training data taken from online forums that is used56

to train hate speech classifiers contains societal biases of novice human annotators as well as mali-57

cious attempts made to bypass existing classifiers or filters used in data collections and annotation58

process [Davani et al., 2023, Davidson, 2023]. Maliciously corrupted training data makes it diffi-59

cult to train fair hate speech classifiers with robust accuracy and fairness guarantees that would be60

retained after real-world deployment [Davani et al., 2023, Davidson, 2023, Hartvigsen et al., 2022,61

Harris et al., 2022].62

Classification under malicious noise is a theoretically challenging direction on its own, even without63

any fairness constraints. Balcan and Haghtalab [2020] survey research directions that originate64

from the work of Kearns and Li [1988], but focus on the hardness of learning linear classifiers65

under malicious noise and recent results that get around it. Unlike previous works on learning from66

malicious noise that consider any hypothesis class or a specific one such as linear classifiers, we67

consider the hypothesis class of all binary classifiers, deterministic as well as randomized. Although68

previous work in fair machine learning has extensively studied the Fair BOC and fair pre-/in-/post-69

processing methods to achieve best possible fairness-accuracy trade-offs, their fairness and accuracy70

guarantees may not hold when training data is biased or contaminated and does not match test data.71

Adversarial or unknown bias in data makes it important to study the robustness of fairness and72

accuracy guarantees of the Fair BOC.73

The seminal work of Kearns and Li [1988] shows the robustness (of accuracy) to malicious noise of74

any deterministic hypothesis class (without fairness constraints) in terms of a Lipschitz condition,75

i.e., given two similar distributions, the accuracy of the optimal classifier on each distribution is also76

similar. In particular, their robustness guarantee also carries over to the deterministic BOC. In con-77

trast, more recent findings by Konstantinov and Lampert [2022] reveal a concerning vulnerability:78

incorporating fairness constraints can render certain deterministic hypothesis classes non-robust to79

adversarial noise. This gap in understanding necessitates an investigation into the robustness of Fair80

BOC’s under adversarial distribution shift, which in turn is the focus of this paper.81

1.1 Overview of Our Results82

We summarize our key contributions.83

• We demonstrate in Claim 1 (Section 3.1) that the deterministic Fair BOC is not robust to84

adversarial noise, corroborating Konstantinov and Lampert [2022].85

Our main results prove the robustness of randomized Fair BOC’s.86

• We prove in Theorems 1 (Section 3.2), 2 and 3 (Section 4) that the accuracy of the ran-87

domized Fair BOC is robust to malicious noise across three popular fairness notions (De-88

mographic Parity, Equal Opportunity, and Predictive Equality). This robustness is charac-89
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terized by a (local) Lipschitz property, where the Lipschitz constant depends on the distri-90

bution [Yang et al., 2020].91

• Toward this end, we first prove in Claims 2, 3, and 7 (Sections 3.2 and 4) that a fixed hy-92

pothesis maintains comparable accuracy and fairness across two similar distributions. This,93

however, does not imply our main results since the Fair BOC may change significantly for94

neighboring distributions. We establish the Lipschitz property using a more sophisticated95

analysis of the specific structure of the randomized Fair BOC.96

In addition to robustness, randomization confers multiple advantages.97

• Claim 1 demonstrates that the Randomized Fair BOC can outperform its deterministic98

counterpart in accuracy by 0.5 − ϵ (for any ϵ > 0). We complement this with a tight-99

ness result in Claim 6 (Appendix B).100

• The Randomized Fair BOC can be computed in polynomial time, whereas we prove in101

Claim 5 (Appendix B) that computing the deterministic Fair BOC is NP-complete.102

Randomization is a very natural and useful resource for fairness as ties are often broken by a random103

coin toss. However, when it brings arbitrariness to critical decisions, it needs to be used judiciously104

and sparingly [Creel and Hellman, 2021, Rosenblatt and Witter, 2024, Cooper et al., 2024]. A key105

property of the randomized Fair BOC is that it is nearly deterministic, being randomized at most on106

a single point in the domain and deterministic elsewhere. Thus, in a sense, we have the best of both107

worlds, preserving the benefits of randomization, while using very little of it.108

We present the problem formulation in Section 2. More detailed comparison with most relevant109

previous work is given in Appendix A, and we conclude in Section 5.110

2 Problem Formulation111

We are given a discrete distribution P over X ×Z×Y , where Z = {A,D} represents the protected112

group membership (A denotes the advantaged group, and D denotes the disadvantaged group)1, X113

represents all the other features, and Y = {0, 1} represents the binary label set (we adopt the stan-114

dard convention of associating the label 1 with success or acceptance). A randomized classification115

rule f is a function f : X ×Z → [0, 1], where f(x, z) denotes the probability of a feature vector or116

instance (x, z) ∈ X ×Z being mapped to 1. A deterministic classifier is defined similarly, however117

the output of f(x, z) is restricted to {0, 1}. We consider the standard 0-1 loss function ℓ0−1
2, whose118

expected value is given by L(f,P) = E[ℓ0−1(f)] = Pr[f(X,Z) ̸= Y ], where the probability is119

over (X,Z, Y ) ∼ P3. As is standard, we define accuracy as Acc(f,P) = 1− L(f,P).120

In a fairness-aware learning problem, we want to find an accurate classifier on a given distribution121

that also satisfies some fairness constraints. Our work considers 3 of the most popular notions of122

fairness (Demographic Parity, Equal Opportunity, Predictive Equality). We present our proofs for123

Demographic Parity in the main body, and defer the proofs of the other 2 notions to Appendix 4. We124

state the Demographic Parity definition below [Dwork et al., 2012].125

Definition 1 (Demographic Parity). Denote the selection rate for group z by rz(f,P) =126

Pr[f(X,Z) = 1 | Z = z]. f satisfies Demographic Parity4 if the selection rates are equal across127

both groups, i.e., rA(f,P) = rD(f,P). We quantify the unfairness of f as the difference in selection128

rates across groups , i.e., UnfDP(f,P) = |rA(f,P)− rD(f,P)|.129

1Our results also hold when there are multiple groups, but for ease of exposition, we restrict our analysis to
the case of 2 groups.

2Using the same proof techniques, our results also hold for the more general loss function ℓα, known in
literature as cost-sensitive risk [Menon and Williamson, 2018b], that assigns a weight α to False Positive
errors, and a weight (1− α) to False Negative errors. However, for simplicity, we restrict our analysis here to
ℓ0−1.

3Henceforth, all probabilities will be over (X,Z, Y ) ∼ P , unless explicitly stated.
4Classifiers satisfying DP will be often be referred to as DP-fair.
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2.1 Fair Bayes Optimal Classifier130

Given a distribution P , the optimal (accuracy-maximizing) classifier f∗ (the BOC) is given by131

f∗(x, z) = T 1
2
(Pr[Y = 1 | X = x, Z = z]), where Tγ(β) is the threshold function that out-132

puts 1 if β ≥ γ, and 0 otherwise. We call the term β in the expression above the score or success133

probability of a point (x, z), and formally define it below.134

Definition 2 (Score). The score S of a point (x, z) is the probability that it has label 1, i.e., S(x, z) =135

Pr[Y = 1 | (X = x, Z = z)].136

The BOC basically accepts a point if its score is ≥ 1
2 , and rejects it otherwise. Note that the BOC137

as described above is deterministic, and allowing for randomized classifiers will not provide any138

increase in accuracy. However, when fairness constraints are involved, the picture is more compli-139

cated, and it turns out that allowing for randomization actually can lead to a big jump in accuracy.140

To see how randomized Fair BOC’s can improve the accuracy of their deterministic counterparts, let141

us look at an example from Agarwal and Deshpande [2022].142

Example 1 (Accuracy jump in Randomized Fair BOC’s). Consider the following distribution P5143

over X ×Z×Y , where X = {x1, x2} (P,S(x, z) = (p, q) denotes that P(x, z) = p, and S(x, z) =144

q).145

P,S(x1, A) = (0.5, 0.75) P,S(x1, D) = (0.25, 0.5)

P,S(x2, A) = (0, 0) P,S(x2, D) = (0.25, 0)

There are only 2 deterministic classifiers satisfying DP, either the constant 1 classifier f1, or the146

constant 0 classifier f0, with L(f1) = L(f0) = 1
2 . On the other hand, consider the following147

randomized classifier f , where f(x1, A) =
1
2 , f(x1, D) = 1, f(x2, A) = f(x2, D) = 0. It is easy148

to see that f satisfies DP, and L(f) = 3
8 , hence improving over the accuracy of the deterministic149

DP-fair BOC’s f0 and f1.150

Given a distribution P , Agarwal and Deshpande [2022] characterize the DP-Fair BOC (the optimal151

classifier subject to DP constraints) on a given distribution, which we now describe. We first present152

some of their terminology.153

Definition 3 (Cell). Consider a randomized partition of the feature space X × Z into multiple154

disjoint components. We call these components cells, and denote a cell by C.155

One can also define the score of a cell, in the same way as we had defind the score of a point.156

We have already seen the BOC that thresholds based on scores. Randomized classifiers give us the157

ability to threshold by probability mass, instead of just thresholding by scores. To explain this better,158

we introduce the notion of group-wise sorted cells.159

Definition 4 (Group-wise Sorted Cells). Define Cz =
⋃

x∈X
Cx,z , where the component cells of CA160

and CD are arranged in descending order of scores S. If two or more cells from the same group have161

the same score, any ordering within them is acceptable.162

By Cz(t), denote the topmost cells of Cz comprising of t fraction of the total probability mass of163

Cz . Note that this may involve splitting a cell into 2 parts randomly. For example, in Example 1,164

CA( 12 ) would involve splitting Cx1,A into two equal parts randomly. However, in the deterministic165

setting, only CA(0) and CA(1) are defined, and not CA( 12 ). By T̃t, we denote the mass threshold166

classifier that accepts exactly Cz(t) for z ∈ Z . In Example 1, the randomized classifier f is the167

mass-threshold classifier T̃ 1
2

.168

Definition 5 (Score Boundaries). Consider the component cells of groupwise sorted CA and CD.169

Then, the score boundaries denote the set I = IA ∪ ID, where Iz consists of all the boundary170

points between component cells in Cz .171

Definition 6 (Merged Cells). Consider any ri ∈ I in sorted order, and define a merged cell Ci as172

Ci = A(T̃ri) − A(T̃ri−), where A(f) denotes the instances accepted by f , and ri− denotes the173

element in I preceding ri.174

5Note that specifying a distribution over X × Z × Y is equivalent to specifying a distribution over X × Z
along with the scores for every instance (x, z) ∈ X × Z .
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Characterization Given a distribution P over X × Z × Y , the DP-Fair BOC fDP
P is given by175

the mass-threshold classifier T̃r′ , where r′ = ri ∈ I is the unique i such that S(Ci) ≥ 0.5, and176

S(Ci+) < 0.5, where ri+ denotes the element in I after ri. Note that the DP-Fair BOC needs177

to use randomization on at most one cell in the whole domain, since the candidate r′ values lie in178

I. Hence, to evaluate the Fair BOC, instead of considering the hypothesis class of all randomized179

classifiers, it is sufficient to consider the hypothesis class of classifiers that are randomized on at180

most one element in the domain.181

Figure 1: If the feature space X × Z has cardinality n, then the hypothesis class of all randomized
classifiers H is the hypercube [0, 1]n. Similarly, the hypothesis class of all deterministic classifiers
is {0, 1}n. A fairness criterion is a linear constraint (this may not be true of all fairness criteria,
but is true of the well-known ones that we study in this paper), which can be represented by a
hyperplane F . Also, accuracy A is a linear objective, implying that the Fair BOC is the point in
H ∩ F maximizing A. We illustrate this in 3-dimensions here.

3 Robustness to Adversarial Distribution Shift182

We study the robustness of the DP-Fair BOC to adversarial distribution shift. We show that given 2183

similar distributions P,P ′ (similarity measured by TV distance), the accuracy of the DP-Fair BOC184

on the respective distributions is similar (satisfies local Lipschitzness). Note that DP-Fair BOC in the185

deterministic case does not exhibit such a robustness property, as we demonstrate in the following186

example.187

3.1 Non-Robustness of the Deterministic Fair BOC188

Claim 1 (Non-Robustness of Deterministic Fair BOC’s). Given ϵ > 0, there exist P,P ′ with189

TV (P,P ′) ≤ ϵ, such that the deterministic DP-Fair BOC’s f, f ′ on P,P ′, respectively, satisfy190

|Acc(f,P)− Acc(f ′,P ′)| ≥ Ω(1).191

Proof. Consider the following distribution P , with X = {x1, x2}.192

P,S(x1, A) = (0.25, 1) P,S(x1, D) = (0.25, 1)

P,S(x2, A) = (0.25, 0) P,S(x2, D) = (0.25, 0)

Consider the (deterministic) classifier f , with f(x1, A) = f(x1, D) = 1, f(x2, A) = f(x2, D) = 0.193

It is easy to see that f satisfies DP, and Acc(f) = 1, implying that f is the DP-Fair BOC in both194

the deterministic and randomized settings. Consider the neighboring distribution P ′ as follows, for195

small ϵ.196

P ′,S(x1, A) = (0.25, 1) P ′,S(x1, D) = (0.25 + ϵ, 1)

P ′,S(x2, A) = (0.25, 0) P ′,S(x2, D) = (0.25− ϵ, 0)

There are only 2 deterministic classifiers satisfying DP, either the constant 1 classifier f1, or the197

constant 0 classifier f0, with L(f1) = 1
2 + ϵ, and L(f0) = 1

2 − ϵ, implying that f1 is the DP-Fair198

BOC in the deterministic setting. Hence, the difference in accuracy of the deterministic DP-Fair199

BOC on arbitrarily close P,P ′ is almost 0.5, demonstrating the non-robustness of deterministic200

classifiers to distribution shift.201
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3.2 Robustness of the Randomized Fair BOC202

Now we state our main result.203

Theorem 1 (Robustness of DP-Fair BOC). Given distributions P,P ′ with TV (P,P ′) = ϵ, we have204 ∣∣Acc(fDP
P ,P)− Acc(fDP

P′ ,P ′)
∣∣ ≤ ϵ

(
1 +

max (P(A),P ′(A))

min(P(A),P ′(A))
+

max (P(D),P ′(D))

min(P(D),P ′(D))

)
.

Remark. Note that the Lipschitz constant will blow up if the masses of either group becomes very205

small. Similar terms in the denominator will naturally feature in all our bounds. As such, robustness206

is not satisfied at such extremal points.207

We first state Lemmas 1 and 2, and Claim 2 that will help us prove Theorem 1. We defer their208

proofs to Appendix B. Lemma 1 shows that one can decompose a transition from distribution P209

to distribution P ′ with distance ϵ into a sequence of elementary transitions from Pi−1 to Pi with210

distance ϵi such that ϵ =
∑

i ϵi and for every i, the only difference between Pi−1 and Pi is that mass211

is transferred from exactly one element of the domain to another.212

Lemma 1 (Decomposition into Elementary Transitions). Given distributions P,P ′ with213

TV (P,P ′) = ϵ, there exist distributions P0,P1, . . . ,Pn (for some n, with P = P0, P ′ = Pn),214

such that the following two conditions hold:215

1. Decomposability: TV (Pi−1,Pi) = ϵi,
∑n

i=1 ϵi = ϵ, and in the transition Pi−1 → Pi, ϵi216

mass moves from some instance ai to some bi (ai, bi ∈ X × Z , all other elements remain217

constant).218

2. Monotonicity: If P(A) ≤ P ′(A), then for every 1 ≤ i < n, Pi(A) ≤ Pi+1(A) and219

Pi(D) ≥ Pi+1(D); otherwise, Pi(A) ≥ Pi+1(A) and Pi(D) ≤ Pi+1(D).220

Claim 2 roughly states that given 2 similar distributions P,P ′, the accuracy and DP-unfairness of221

any fixed hypothesis is similar on both P,P ′. Such a property is useful when we want a guarantee222

that if we train a classifier on the corrupted distribution P ′, the performance of the classifier on the223

actual distribution P will be similar to that on P ′.224

Claim 2 (Accuracy, DP Shift for Fixed Hypothesis). Given distributions P,P ′, such that225

TV (P,P ′) ≤ ϵ, any hypothesis f satisfies the following two properties:226

1. |Acc(f,P)− Acc(f,P ′)| ≤ ϵ.227

2. |UnfDP(f,P)− UnfDP(f,P ′)| ≤ ϵ
(

1
min(P(A),P′(A)) +

1
min(P(D),P′(D))

)
228

We also use Lemma 2 for our main result .229

Lemma 2. Given any P, f , and P ′, f ′ such that TV (P,P ′) = ϵ, if f ′(q) differs from f(q) by230

∆f(q) (and is identical elsewhere), then231

|Acc(f,P)− Acc(f ′,P ′)| ≤ |P(q)(2S(q)− 1)∆f(q)|+ ϵ.

Now move on to the proof of our main theorem.232

Proof of Theorem 1. Armed with these lemmas, we first establish the claim of the theorem for the233

special case where the transition from P to P ′ is elementary in that the only difference between234

the two distributions is that there are two elements a and b that have ϵ more mass and ϵ less mass,235

respectively, in P as compared to P ′ (all other elements have the same mass in the two distributions).236

At the end, we invoke Lemma 1 and transitivity to establish the general theorem statement.237

Consider the transfer of ϵ mass from a to b in a continuous manner. During this process, either the238

cell corresponding to element a will monotonically increase in score or monotonically decrease in239

score6. The same holds for the cell corresponding to element b. The scores of all other cells will240

remain the same. In the following argument, we assume that the score of the cell of a decreases241

6In case the cell corresponding to a has score of 0 or 1, it’s score will remain unchanged, and this case is
trivially covered by our argument.
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monotonically and that of b increases monotonically. All of the arguments are analogous for the242

remaining three cases.243

We break down the ϵ mass transfer into smaller increments. At any point, let P̃ be the distribution at244

the start of this increment (so, P̃ = P initially) and P̃ ′ be the distribution at the end of this increment245

(so, P̃ ′ = P ′ finally). For an incremental mass transfer, we analyze how the DP BOC changes from246

fDP
P̃ to fDP

P̃′ . Since the mass transfer is from element a to b, it follows that both P̃(A) and P̃ ′(A) lie247

between P(A) and P ′(A) while both P̃(D) and P̃ ′(D) lie between P(D) and P ′(D). We consider248

the largest mass transfer δϵ until one of the two following events occur.249

1. Equal-score event: The cell of a has the same score as the adjacent cell lower in the sorted250

order or the cell of b has the same score as the adjacent cell higher in the sorted order.251

2. Threshold event: The score of a merged cell containing a or b becomes exactly 0.5.252

Bounding the accuracy change for δϵ: Note that by the choice of δϵ, during the transfer δϵ, all253

the cells remain in the same order in both groups; furthermore, all masses and scores of all cells254

other than the ones containing a or b remain the same during the transfer. By part 2 of Claim 2,255

δUnfDP =
∣∣∣UnfDP(f

DP
P̃ , P̃)− UnfDP(f

DP
P̃ , P̃ ′)

∣∣∣
≤ δϵ

(
1

min(P̃(A), P̃ ′(A))
+

1

min(P̃(D), P̃ ′(D))

)
≤ δϵ

(
1

min(P(A),P ′(A))
+

1

min(P(D),P ′(D))

)

Since UnfDP(f
DP
P̃ , P̃) = 0, we know that δUnfDP = UnfDP(f

DP
P̃ , P̃ ′) =

∣∣∣rA(fDP
P̃ , P̃)− rD(fDP

P̃ , P̃ ′)
∣∣∣.256

Consider the cell q that is split in the middle by the threshold corresponding to fDP
P̃ (for now, assume257

q ∈ D). Since neither the equal-score event nor the 0.5-score event occur, we see that after the258

transition, the boundary of fDP
P̃ intersecting q is δUnfDP away from the boundary in group A. To259

modify fDP
P̃ → fDP

P̃′ , we therefore need to move to move the boundary at q by δUnfDP so that the260

boundaries in both groups align and DP is satisfied (the classifier remains the same apart from its261

action on q). The change in function value on element q, which we denote by |∆f(q)|, is bounded262

by δUnfDP
P̃(D)

P̃(q)
, after scaling (since P̃(D)δUnfDP = |∆f(q)| P̃(q)). At the end of the δϵ mass263

transfer, by Lemma 2, the change in accuracy of the optimal fair classifier is given by264 ∣∣∣Acc(fDP
P̃ , P̃)− Acc(fDP

P̃′ , P̃ ′)
∣∣∣ ≤ ∣∣∣P̃(q)(2S(q)− 1)∆f(q)

∣∣∣+ δϵ

≤ δϵ

(
1 +

P̃(D) |(2S(q)− 1)|
min(P̃(A), P̃ ′(A))

+
P̃(D) |(2S(q)− 1)|
min(P̃(D), P̃ ′(D))

)

≤ δϵ

(
1 +

max (P(D),P ′(D))

min(P(A),P ′(A))
+

max (P(D),P ′(D))

min(P(D),P ′(D))

)
,

where the last inequality follows from the facts that |(2S(q)− 1)| ≤ 1, P̃(A) and P̃ ′(A) both lie265

between P(A) and P ′(A) and P̃(D) and P̃ ′(D) both lie between P(D) and P ′(D).266

In Appendix B.4, we derive a better upper bound on |(2S(q)− 1)| and derive the following:267 ∣∣∣Acc(fDP
P̃ , P̃)− Acc(fDP

P̃′ , P̃ ′)
∣∣∣ ≤ δϵ

(
1 +

max (P(A),P ′(A))

min(P(A),P ′(A))
+

max (P(A),P ′(A))

min(P(D),P ′(D))

)
.

Putting the two upper bounds together yields the following:268 ∣∣∣Acc(fDP
P̃ , P̃)− Acc(fDP

P̃′ , P̃ ′)
∣∣∣ ≤ δϵ

(
1 +

max (P(A),P ′(A))

min(P(A),P ′(A))
+

max (P(D),P ′(D))

min(P(D),P ′(D))

)
.
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Handling the equal-score and threshold events: We now describe how to handle the two events.269

1. Equal-score event: If the cell of a has the same score as the adjacent cell lower in the sorted270

order, then we swap the two cells so that the cell of a is lower in the order. Similarly, if the271

cell of b has the same score as the adjacent cell higher in the order, then we swap the two272

cells so that the cell of b is higher in the order. We update the classifier f and note that this273

change has no impact on the accuracy of f .274

2. Threshold event: The score of a merged cell containing a or b becomes exactly 0.5. We275

include the merged cell in the classifier f , again without changing accuracy.276

Thus, in a sense, between any two occurrences of these events, the change in accuracy is bounded277

by an amount proportional to the mass transfer; when we reach these occurrences, the mass transfer278

is paused, the BOC changes without any change in accuracy. Furthermore, at every occurrence of279

the event, one of these three events happen: the cell containing a moves down in the order, the cell280

containing b moves up in the order, or an additional merged cell is placed above the threshold. Since281

the number of times these events can occur is upper bounded by the number of cells in the two282

groups, this process is finite. Therefore, adding over all the δϵ mass transfers, we obtain the desired283

upper bound on the change in accuracy between the BOC’s for P and P ′.284

ϵ

(
1 +

max (P(A),P ′(A))

min(P(A),P ′(A))
+

max (P(D),P ′(D))

min(P(D),P ′(D))

)
.

From elementary to arbitrary: Consider a general transition of distance ϵ from P to P ′. We285

invoke Lemma 1 to obtain intermediate distributions {Pi} with TV (Pi−1,Pi) = ϵi satisfying the286

decomposability and monotonocity properties. We apply the above proof for each elementary tran-287

sition Pi−1 → Pi of mass ϵi. For accuracy, we derive288 ∣∣Acc(fDP
P ,P)− Acc(fDP

P′ ,P ′)
∣∣ ≤∑

i

∣∣∣Acc(fDP
Pi−1

,Pi−1)− Acc(fDPPi,Pi)
∣∣∣

≤
∑
i

ϵi

(
1 +

max(Pi−1(A),Pi(A))

min(Pi−1(A),Pi(A))
+

max(Pi−1(D),Pi(D))

min(Pi−1(D),Pi(D))

)
≤
∑
i

ϵi

(
1 +

max(P(A),P ′(A))

min(P(A),P ′(A))
+

max(P(D),P ′(D))

min(P(D),P ′(D))

)
= ϵ

(
1 +

max(P(A),P ′(A))

min(P(A),P ′(A))
+

max(P(D),P ′(D))

min(P(D),P ′(D))

)
,

where the third inequality follows from monotonocity and the last equation follows from decompos-289

ability. This completes the proof of the theorem.290

We now state the following corollary, which follows from Claim 2 and Theorem 1. It roughly states291

that given 2 closeby distributions P,P ′, the accuracy of the respective DP-Fair BOC’s is similar on292

P . Such a property is useful when we want a guarantee that intuitively says that if we train on the293

corrupted distribution P ′, we get a similar outcome to what we would have gotten had we trained294

on the true distribution P .295

Corollary 1. Given distributions P,P ′ with TV (P,P ′) = ϵ, we have296 ∣∣Acc(fDP
P ,P)− Acc(fDP

P′ ,P)
∣∣ ≤ ϵ

(
2 +

max (P(A),P ′(A))

min(P(A),P ′(A))
+

max (P(D),P ′(D))

min(P(D),P ′(D))

)
.

4 Equal Opportunity and Predictive Equality297

Earlier, we presented results for Demographic Parity. Our results also extend to the popular fairness298

notions of Equal Opportunity and Predictive Equality [Hardt et al., 2016, Barocas et al., 2019]. We299

state the results here, and defer the proofs to Appendix C. We first define the fairness notions.300
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Definition 7 (Equal TPR, or Equal Opportunity). Denote the true positive rate of f on group z by301

TPRz(f,P) = Pr[f(X,Z) = 1 | Y = 1, Z = z].

f satisfies Equal Opportunity if the true positive rates are equal for both groups, i.e. TPRA(f,P) =302

TPRD(f,P). We quantify the unfairness of f as the difference in true positive rates across groups ,303

i.e.,304

UnfEO(f,P) = |TPRA(f,P)− TPRD(f,P)|.

Definition 8 (Equal FPR, or Predictive Equality). Denote the false positive rate of of f on group z305

by306

FPRz(f,P) = Pr[f(X,Z) = 1 | Y = 0, Z = z].

f satisfies Predictive Equality if the false positive rates are equal for both groups, i.e. FPRA(f,P) =307

FPRD(f,P). We quantify the unfairness of f as the difference in false positive rates across groups308

, i.e.,309

UnfPE(f,P) = |FPRA(f,P)− FPRD(f,P)|.

Remark. Classifiers satisfying these notions of fairness will be referred to as EO-fair, and PE-fair310

respectively. The results for PE follow using the same proof techniques as that of EO (since we can311

just reverse the roles of the labels 0 and 1 in EO to get results for PE). We state the analogous results312

for PE in Appendix C.3. In addition, previous work has also considered equal False Negative rate313

(FNR) and equal True Negative rate (TNR) as notions of fairness. Obtaining equal TPR is equivalent314

to obtaining equal FNR, and obtaining equal TNR is equivalent to obtaining equal FPR, and hence315

results for these notions of fairness also follow.316

We now state the results for EO.317

Claim 3 (EO Shift for a Fixed Hypothesis). Given distributions P,P ′, with TV (P,P ′) ≤ ϵ, and318

any hypothesis f , it holds that319

|UnfEO(f,P)− UnfEO(f,P ′)| ≤ ϵ

(
1

min(P(A, 1),P ′(A, 1))
+

1

min(P(D, 1),P ′(D, 1))

)
,

where fEO
P , fEO

P′ are the EO-Fair BOC’s on P,P ′ respectively.320

Theorem 2 (Robustness of EO-Fair BOC). Given distributions P,P ′, such that TV (P,P ′) = ϵ,321

we have that322 ∣∣Acc(fEO
P ,P)− Acc(fEO

P′ ,P ′)
∣∣ ≤ ϵ

(
1 + 2max(P(1),P ′(1))

(
1

min(P(A, 1),P ′(A, 1))
+

1

min(P(D, 1),P ′(D, 1))

))
,

where fEO
P , fEO

P′ are the EO-Fair BOC’s on P,P ′ respectively.323

Corollary 2. Given distributions P,P ′, such that TV (P,P ′) = ϵ, we have that324 ∣∣Acc(fEO
P ,P)− Acc(fEO

P′ ,P)
∣∣ ≤ 2ϵ

(
1 + max(P(1),P ′(1))

(
1

min(P(A, 1),P ′(A, 1))
+

1

min(P(D, 1),P ′(D, 1))

))
,

where fEO
P , fEO

P′ are the EO-Fair BOC’s on P,P ′ respectively.325

5 Conclusion326

Our findings collectively advance the theoretical understanding of fairness and robustness in adver-327

sarially noisy environments, providing a solid foundation for future research. Some directions for328

further work include extending our results for binary classification to multi-class classification, and329

regression. Another direction could be to look at relaxed or approximate versions of the fairness no-330

tions we considered. One could even look at other popular notions of fairness, or satisfying multiple331

fairness notions simultaneously. It would also be valuable to experimentally validate our theoreti-332

cal claims. In addition, note that our results hold for adversarial noise, but it might be possible to333

strengthen the bounds if the noise came from a particular distribution.334
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A Comparison with Related Work414

We now present detailed comparison with relevant previous work. In Blum et al. [2024], they aim to415

avoid the non-robustness phenomena highlighted in Konstantinov and Lampert [2022], as follows.416

Given any deterministic hypothesis class H, and distributions P,P ′ with TV (P,P ′) = ϵ, they417

construct a randomized closure of H called PQ(H). Denote by f, f ′ the optimal classifiers (subject418

to DP constraints) on P,P ′ restricted to H, PQ(H) respectively. They show that this satisfies a419

one-directional Lipschitzness constraint, i.e., Acc(f ′,P ′) ≥ Acc(f,P) − O(ϵ). They also show420

analogous results for EO and PE. Our setup has some key differences. We do not consider any421

arbitrary H, but the BOC setting which includes all deterministic classifiers (and the 1-skeleton of422

their convex closure). More crucially, our robustness guarantee is stronger, as their Lipschitzness423

guarantee is only one-directional. In addition, in most cases, their output hypothesis incorporates424

a lot of randomness, outputting a randomized decision on all elements in the domain, whereas our425

output hypothesis is randomized on at most one element.426

In the concurrent work of Xian and Zhao [2024], the sensitivity analysis (Theorem 3.1) bounds the427

drop in accuracy of the optimal fair classifier under a shift in distribution, for the multiclass and428
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multigroup setting, focusing on continuous domains. However, their sensitivity analysis only holds429

for either a shift in the label distribution, or in the group membership distribution, whereas our430

robustness guarantee works for adversarial distribution shifts. Adversarial or arbitrary distribution431

shifts are strictly more general than label/covariate shifts, and moreover, they cannot be simulated432

by any combination of label/covariate shifts. In addition, in their sensitivity analysis (Theorem 3.1,433

2nd result), the change in accuracy due to group distribution shift, is a constant independent of the434

amount of distribution shift (in the case of perfect fairness). We prove a stronger Lipschitzness435

guarantee, where the excess risk goes to 0 as distance between the distributions becomes arbitrarily436

small. Furthermore, they do not provide a description of the Randomized Fair BOC in the case437

of discrete domains, whereas we provide a complete characterization of the same, show that it is438

minimally random. In addition, our algorithm (to output the Fair BOC on a distribution) is very439

simple and efficient, running in O(|X | log(|X |)) time, while their algorithm solves a large linear440

program with O(|X |) constraints in O(|X |) variables, requiring a much higher complexity.441

Chen et al. [2024] contains a similar sensitivity analysis as Xian and Zhao [2024], for the same set-442

ting except binary group and binary class. Unlike us, they do not deal with adversarial distributions443

shifts, but only label distribution shifts and/or group distribution shifts. In addition, our setups are444

fundamentally different, theirs being the continuous case, and ours being the discrete case. More-445

over, their sensitivity analysis (Theorem 2) is looser, and has an extra additive error term, unlike446

ours and that of Xian and Zhao [2024]. Besides, they do not deal with the case of perfect fairness,447

and require δ > 0. Chen et al. [2022] also consider fairness under distribution shift. Their result is448

fundamentally different, and essentially shows that the fairness of a fixed hypothesis class on two449

similar distributions is similar. This is essentially what we show in Claims 2/3/7, however, they only450

deal with label and covariate shifts, while we tackle the more general case of adversarial distribution451

shifts.452

B Missing Results from Section 3453

B.1 Non-Robustness of the Deterministic Fair BOC (approximate fairness)454

We show through the example below that the non-robustness phenomenon highlighted in Claim 1455

also holds when we only require approximate fairness7. In particular, this can hold in the case where456

sensitive group populations are highly imbalanced, for example when the mass of group A is much457

larger than the mass of group D, i.e., P (A) ≫ P (D). We set δ = 0.25, and slightly modify the458

example in Claim 1, where we skew the probability mass towards Group A (in Claim 1, the group459

masses are balanced).460

Claim 4 (Non-Robustness of Deterministic Fair BOC (approximate fairness)). There exist distri-461

butions P,P ′ with TV (P,P ′) = ϵ, such that the deterministic DP-Fair BOC’s f, f ′ on P,P ′,462

respectively, satisfies |Acc(f,P)− Acc(f ′,P ′)| ≥ Ω(1).463

Proof. Consider a distribution P, where P, S(x1, A) = (0.4, 1) — P, S(x1, D) = (0.1, 1) —464

P, S(x2, A) = (0.4, 0) — P, S(x2, D) = (0.1, 0) Consider the (deterministic) classifier f , with465

f(x1, A) = f(x1, D) = 1, f(x2, A) = f(x2, D) = 0. f satisfies DP, and Acc(f) = 1. Consider466

the neighboring distribution P ′ differing only on (x1, D), (x2, D), as follows.467

P ′, S(x1, D) = (0.1 + 0.05, 1) — P ′, S(x2, D) = (0.1− 0.05, 0)468

If we apply f on P ′, it does not satisfy approximate DP for any δ < 0.25, even though TV (P, P ′) is469

small (0.05). There are only 2 deterministic classifiers satisfying approximate DP for any δ < 0.25,470

either the constant 1 classifier f1, or the constant 0 classifier f0, with Acc(f1) = 1/2 + 0.05, and471

Acc(f0) = 1/2−0.05. Hence, the difference in accuracy of the deterministic (approximate) DP-Fair472

BOC on closeby P, P ′ is almost 0.5, demonstrating non-robustness.473

B.2 NP-Completeness of Deterministic Fair Bayes Optimal Classifiers474

Claim 5 (NP-Completeness of Deterministic DP-Fair BOC). Given a distribution P , the problem475

of computing the deterministic DP-Fair BOC is NP-complete.476

7We define a δ-approximately fair classifier as follows, “If r denotes selection rate, a classifier f is δ-
approximately DP-fair if |r(f,A)− r(f,D)| < δ”.
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Proof. We formalize the deterministic DP-Fair BOC decision problem as follows: Given a proba-477

bility distribution P and a score function S over a domain X × Z and an accuracy α, determine478

whether there exists a deterministic fair classifier with accuracy at least α.479

It is easy to see that the above problem is is in NP since one can guess the 0-1 classification for each480

item in the domain and check in polynomial time that the resulting classifier is fair and satisfies the481

accuracy bound by verifying two linear inequalities. We now show that the problem is NP-hard via482

a polynomial-time reduction from the NP-complete Partition problem, which we state below.483

Partition problem: Given a set S of n positive integers a1, a2, . . . , an summing to 2s, determine484

whether there exists a subset of S that sums to s.485

The reduction from Partition to the deterministic DP-Fair BOC problem is as follows. Given an486

instance I of Partition, we create an instance I ′ of the deterministic DP-fair BOC problem. Instance487

I ′ has n + 2 items—(x1, A) with mass 1/4 and score 1, item (x2, A) with mass 1/4 and score 0,488

and then n items (yi, D) with mass ai/(4s) and score 0.5—and ask whether there is a deterministic489

DP-Fair classifier with accuracy α ≥ 3/4. It is clear that there are at most 3 kinds of deterministic490

DP-fair classifiers: (i) the all-0 classifier that classifies all items as 0, (ii) the all-1 classifier that491

classifies all items as 1, and (iii) if and only f I is a yes-instance with S partitioned into S1 and S2492

of equal sums, then the classifier that accepts exactly one of (x1, A) or (x2, A) and accepts all items493

in (yi, D) with ai ∈ S1 and rejecting all items in (yi, D) with ai ∈ S2. The first two classifiers have494

accuracy 1/2 while the third, if it exists, has accuracy 3/4 if (x1, A) is accepted and less than 3/4495

otherwise. Thus, there exists a deterministic Fair BOC for instance I ′ with 3/4 accuracy if and only496

if I is a yes-instance for the Partition problem. Clearly, the reduction is of time polynomial in the497

size of the deterministic DP-Fair BOC instance, thus establishing its NP-completeness.498

Since determining the existence of a deterministic DP-fair classifier with accuracy at least 3/4 is NP-499

complete it follows immediately that finding a deterministic DP-Fair BOC is also NP-complete.500

B.3 Maximal Accuracy Gain for Randomized Classifiers501

Consider the example in Claim 1, and consider the following randomized classifier f ′, where502

f ′(x1, A) = f ′(x1, D) = 1, f ′(x2, A) = 4ϵ, f ′(x2, D) = 0.

It is easy to see that f ′ satisfies DP on P ′, and Acc(f ′) = 1 − ϵ. Hence, the randomized DP-fair503

BOC improves over the accuracy of its deterministic counterpart by 0.5 − 2ϵ, where ϵ > 0 can be504

made arbitrarily small (so the gain in accuracy approaches 0.5). In the following claim, we argue505

that this example is tight, i.e., we cannot hope to achieve an improvement over 0.5.506

Claim 6 (Bound in Accuracy Gain for Randomized classifiers). Given any distribution P , the dif-507

ference in accuracy of the Randomized and Deterministic DP-Fair BOC’s on P is strictly lesser than508

0.5.509

Proof. Note that the constant classifiers f0, f1 always satisfy DP, and Acc(f0) = 1 − Acc(f1).510

Hence, the minimum accuracy of the optimal DP-fair deterministic classifier is 0.5. The maximum511

accuracy of its randomized counterpart is bounded by 1, hence bounding the difference in accuracy512

by 0.5. It suffices to show that these 2 events cannot occur simultaneously. Note that if some513

classifier has perfect accuracy, then all cells in the domain have score of either 0 or 1. In particular,514

this also holds if the optimal DP-fair randomized classifier has accuracy 1. However, observe that if515

we randomize over any cell with score of 0(1), we are accepting (rejecting) a part of it, leading to a516

loss in accuracy. This implies that any classifier with accuracy 1 has to be deterministic, concluding517

our proof.518

B.4 Completion of the Robustness Analysis for Demographic Parity519

In this section, we present the argument that was deferred in the proof of Theorem 1. This argument520

concerns a better upper bound on |2S(q)− 1| than the vacuous bound of 1, where q is the element521

that is split by the threshold corresponding to the classifier f . Notice that since by assumption, f522

splits q in the middle, we know that there is a portion of q that is rejected. Hence, the weighted523

score of a merged cell involving q (say Cq) has score below the threshold of 0.5. Let Cq contain524

some element t from group A. We are able to bound the score of S(q) by the following chain of525
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inequalities.526

S(Cq) ≤ 0.5 =⇒ S(q)P(D) + S(t)P(A) ≤ 0.5 (P(D) + P(A))

=⇒ S(q)P(D) ≤ 0.5 (P(D) + P(A))

=⇒ 2S(q)− 1 ≤ P(A)

P(D)
(1)

Since f splits q in the middle, there is also a portion of q that is accepted. Hence, the weighted527

score of a merged cell involving q (say Cq) has score above the threshold of 0.5. Let Cq contain528

some element t from group A. We are able to bound the score of S(q) by the following chain of529

inequalities.530

S(Cq) ≥ 0.5 =⇒ S(q)P(D) + S(t)P(A) ≥ 0.5 (P(D) + P(A))

=⇒ S(q)P(D) + P(A) ≥ 0.5 (P(D) + P(A))

=⇒ S(q)P(D) ≥ 0.5 (P(D)− P(A))

=⇒ 2S(q)− 1 ≥ −P(A)

P(D)
(2)

Combining Equations 1 and 2, we get531

|2S(q)− 1| ≤ P(A)

P(D)
(3)

Using Equation 3, we get that532 ∣∣∣Acc(fDP
P̃ , P̃)− Acc(fDP

P̃′ , P̃ ′)
∣∣∣ ≤ δϵ

(
1

min(P̃(A), P̃ ′(A))
+

1

min(P̃(D), P̃ ′(D))

)
P̃(D)

P̃(A)

P̃(D)
+ δϵ

= δϵ

(
1

min(P̃(A), P̃ ′(A))
+

1

min(P̃(D), P̃ ′(D))

)
P̃(A) + δϵ

≤ δϵ

(
1 +

max (P(A),P ′(A))

min(P(A),P ′(A))
+

max (P(A),P ′(A))

min(P(D),P ′(D))

)
(4)

The last equation follows by monotonicity. This completes the missing argument in the proof of533

Theorem 1.534

B.5 Proof of Lemma 1535

Proof. We will prove the desired claim for n equal to number of elements q for which P(q) ̸= P(q′).536

Our proof is by induction on n. For the base case, we have n = 0, in which case P = P ′ and the537

claim trivially holds. For the induction step, let a be an element such that P(a) ̸= P ′(a). Suppose538

P(a) > P ′(a) and a is in group A; the arguments for the other scenarios are analogous. We consider539

two cases. The first case is when there exists b ∈ A such that P(b) < P ′(b). We define P̃ as the540

same as P except that541

P̃(a) = P(a)−min{P(a)− P ′(a),P ′(b)− P(b)}
P̃(b) = P(b) + min{P(a)− P ′(a),P(b)− P ′(b)}.

Note that either P̃(a) = P ′(a) or P̃(b) = P ′(b), which implies that the number of elements for542

which P̃ and P ′ differ is less than n. Furthermore, P(A) = P̃(A) and P(D) = P̃(D). By543

induction, there exist a sequence of m < n distributions P̃ = P0,P1, . . . ,Pm = P ′ satisfying the544

decomposability and monotonicity properties. Appending the elementary transition P → P̃ to the545

above sequence yields the desired sequence for P and P ′ with the decomposability and monotonicity546

properties.547

The second case is when there does not exist any b ∈ A such that P(b) < P ′(b). So, we have548

P(A) > P ′(A). Furthermore, there exists b ∈ D such that P(b) < P ′(b). We define P̃ in549

the same way as for the first case. Again, we have that either P̃(a) = P ′(a) or P̃(b) = P ′(b),550

which implies that the number of elements for which P̃ and P ′ differ is less than n. Furthermore,551

P(A) > P̃(A) and P(D) < P̃(D). By induction, there exist a sequence of m < n distributions552

P̃ = P0,P1, . . . ,Pm = P ′ satisfying the decomposability and monotonicity properties. Again,553

appending the elementary transition P → P̃ to the above sequence yields the desired sequence for554

P and P ′ with the decomposability and monotonicity properties.555
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B.6 Proof of Claim 2556

Proof. We first establish the desired statements for the special case where the transition from P557

to P ′ is elementary in that the only difference between the two distributions is that there are two558

elements a and b that have ϵ more mass and ϵ less mass, respectively, in P as compared to P ′ (all559

other elements have the same mass in the two distributions). At the end, we invoke Lemma 1 and560

transitivity to establish the general claim.561

Accuracy: Divide the domain into 4 parts based on whether a point falls in categories TP,FP,TN,562

or FN according to f . Denote the probability mass of elements in category E under f by P(E).563

We know that Acc(f,P) = P(TP ∪ TN). Doing a simple case by case analysis, we observe that564

in the worst case, a belongs to TP ∪ TN, and b belongs to FP ∪ FN. This transition leads to a loss565

in accuracy of ϵ, i.e., Acc(f,P ′) = Acc(f,P) − ϵ. We note that it is enough to consider a loss in566

accuracy, since we can reverse the roles of the distributions and use the same argument for gain as567

that for loss.568

Demographic Parity: First we notice the following569

|UnfDP(f,P)− UnfDP(f,P ′)| = ||rA(f,P)− rD(f,P)| − |rA(f,P ′)− rD(f,P ′)||
≤ |(rA(f,P)− rD(f,P))− (rA(f,P ′)− rD(f,P ′))|

(Triangle inequality)

= |(rA(f,P)− rA(f,P ′)) + (rD(f,P ′)− rD(f,P))|
≤ |rA(f,P)− rA(f,P ′)|+ |rD(f,P ′)− rD(f,P)| (5)

The above argument breaks up the change in unfairness into two terms: (i) ∆rA ≜570

|rA(f,P)− rA(f,P ′)|, which is the difference in selection rates of f for P , and P ′ on A and (ii)571

∆rD ≜ |rD(f,P)− rD(f,P ′)|, which is the difference in selection rates of f for P and P ′ on D.572

We proceed to bound ∆rA, and an identical argument can be used to bound ∆rD. In our argument,573

we divide the domain into 4 parts based on the group membership and labeling according to f . Let574

the probability mass of elements in group z with label y under classifier f be denoted by P(z, fy).575

If a, b lie in the same group z then P(A) remains unchanged, and it is easy to see that the maximum576

value of ∆rA is ϵ
P(A) , when P ′(A, f1) = P(A, f1) ± ϵ. In case a ∈ A, and b ∈ D, then P ′(A) =577

P(A) − ϵ. We know that P ′(A) = P ′(A, f1) + P ′(A, f0). Either a lies completely in (A, f1),578

completely in (A, f0), or in both (if we are randomizing over the cell containing a). We first consider579

the first case, where P ′(A, f1) = P(A, f1)− ϵ.580

|rA(f,P)− rA(f,P ′)| =
∣∣∣∣P(A, f1)

P(A)
− P(A, f1)− ϵ

P(A)− ϵ

∣∣∣∣
=

∣∣∣∣P(A)ϵ− P(A, f1)ϵ

P(A) (P(A)− ϵ)

∣∣∣∣
≤ ϵ

∣∣∣∣ 1

P(A)− ϵ

∣∣∣∣
≤ ϵ

(
1

min(P(A),P ′(A))

)
We now consider the second case, where P ′(A, f0) = P(A, f0)− ϵ.581

|rA(f,P)− rA(f,P ′)| =
∣∣∣∣P(A, f1)

P(A)
− P(A, f1)

P(A)− ϵ

∣∣∣∣
=

∣∣∣∣ P(A, f1)ϵ

P(A) (P(A)− ϵ)

∣∣∣∣
≤ ϵ

∣∣∣∣ 1

P(A)− ϵ

∣∣∣∣
≤ ϵ

(
1

min(P(A),P ′(A))

)
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It is easy to see that in the third case, where a lies in both (A, f1) and (A, f0), ∆rA is bounded by582

the max value of ∆rA of cases 1 and 2.583

Here we argued for when A loses mass. Using symmetry, we can similarly argue the case where A584

gains mass, i.e., a ∈ D, and b ∈ A, leading to P ′(A) = P(A) + ϵ. Hence, we conclude that585

|rA(f,P)− rA(f,P ′)| ≤ ϵ

(
1

min(P(A),P ′(A))

)
(6)

Also, here we argued for group A, and an identical argument for D shows that586

|rD(f,P)− rD(f,P ′)| ≤ ϵ

(
1

min(P(D),P ′(D)

)
(7)

Plugging Equations 6 and 7 into Equation 5, we get that587

|UnfDP(f,P)− UnfDP(f,P ′)| ≤

ϵ

(
1

min(P(A),P ′(A))

)
+ ϵ

(
1

min(P(D),P ′(D))

)
From elementary to arbitrary: Consider a general transition of distance ϵ from P to P ′. We588

invoke Lemma 1 to obtain intermediate distributions {Pi} with TV (Pi−1,Pi) = ϵi satisfying the589

decomposability and monotonocity properties. We apply the above proof for each elementary tran-590

sition Pi−1 → Pi of mass ϵi. For accuracy, we derive591

|Acc(f,P)− Acc(f,P ′)| ≤
∑
i

|Acc(f,Pi−1)− Acc(f,Pi)|

≤
∑
i

ϵi

= ϵ.

For Demographic Parity, we derive592

|UnfDP(f,P)− UnfDP(f,P ′)| ≤
∑
i

|UnfDP(f,Pi−1)− UnfDP(f,Pi)|

≤
∑
i

ϵi

(
1

min(Pi−1(A),Pi(A))
+

1

min(Pi−1(D),Pi(D))

)
≤
∑
i

ϵi

(
1

min(P(A),P ′(A))
+

1

min(P(D),P ′(D))

)
= ϵ

(
1

min(P(A),P ′(A))
+

1

min(P(D),P ′(D))

)
,

where the second inequality follows from monotonocity and the last equation follows from decom-593

posability. This completes the proof of the claim.594

B.7 Proof of Lemma 2595

Proof. The contribution to accuracy of an element q is given by596

P(q)S(q)f(q) + P(q)(1− S(q))(1− f(q)) = 2P(q)S(q)f(q) + P(q)− P(q)S(q)− P(q)f(q)

If P changes by ϵ and f(q) changes by ∆f(q) (and remains constant elsewhere), then we can split597

the process into two parts: (i) f(q) changes by ∆f(q) (and remains constant elsewhere) while P598

remains constant, and (ii) P changes by ϵ while f remains constant. We consider each of the parts.599

If P remains fixed, and f(q) changes by ∆f(q) to give f ′(q), then change in accuracy on q (and600

also overall accuracy) is given by601

|2P(q)S(q)∆f(q)− P(q)∆f(q)| = |P(q)(2S(q)− 1)∆f(q)|

If P changes by ϵ, and f ′ remains constant, then by Claim 2 the change in accuracy is bounded by602

ϵ. Thus, the total change in accuracy is bounded as follows.603

|Acc(f,P)− Acc(f ′,P ′)| ≤ |P(q)(2S(q)− 1)∆f(q)|+ ϵ.

604
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C Equal Opportunity and Predictive Equality (continued)605

C.1 Fair Bayes Optimal Classifier606

When discussing the DP-Fair BOC, we considered mass-threshold classifiers T̃t, that select Cz(t),607

and reject Cz − Cz(t), for both z = A, and z = D. T̃t applies the same threshold t to both groups A608

and D. In this section, we consider groupwise mass-threshold classifiers T̃tA,tD that apply different609

thresholds tA and tD to groups A and D respectively.610

Denote the True Positive rate of a classifier f restricted to a cell C by TPR(f(C)). Given r ∈ (0, 1],611

there is a unique classifier T̃tA,tD , such that TPR(T̃tA,tD (CA)) = TPR(T̃tA,tD (CD)) = r. Denote612

this classifier by fr. Given r = 0, T̃tA,tD need not be unique as there could exist cells with score613

1. In that case, we define f0 to be the unique groupwise mass-threshold classifier accepting exactly614

the cells with score 1. Denote the groupwise thresholds of fr by rA and rD respectively, i.e., fr =615

T̃rA,rD . We now introduce some terminology, before detailing the EO-Fair BOC as characterized in616

Agarwal and Deshpande [2022].617

Definition 9 (TP-Boundaries). Recall the set of score-boundaries I. We then define the set of TP-618

boundaries ITP as619

ITP = {r | rA ∈ I, or rD ∈ I},
ITP essentially consists of all the true positive rates r, such that, the corresponding groupwise620

threshold classifier fr = T̃rA,rD has a threshold at a point in the set of score boundaries I.621

As with DP, we define the notion of a merged cell, but notice that it differs from the notion of merged622

cell in the case of DP.623

Definition 10 (Merged cell (EO)). Consider ri ∈ ITP , and define a merged cell Ci, where624

Ci = A(fri)−A(fri−),

where ri− denotes the element in ITP preceding ri.625

Characterization Given a distribution P over X ×Z × Y , the EO-Fair BOC fEO
P is given by the626

mass-threshold classifier is given by the group wise mass-threshold classifier fr′ , where r′ = ri ∈ I627

is the unique i such that S(Ci) ≥ 0.5, and S(Ci+) < 0.5, where ri+ denotes the element in ITP628

after ri.629

C.2 Robustness to Adversarial Distribution Shift630

We study the robustness of the EO-Fair BOC to adversarial distribution shift. We show that given631

two similar distributions P,P ′, the accuracy of the EO-Fair BOC on the respective distributions632

is similar (satisfies local Lipschitzness). Before proving the main result (Theorem 2), we prove633

Claim 3, which analyzes the change in unfairness, with respect to EO, of a fixed classifier due to a634

distribution shift. Such a property is useful when we want a guarantee that if we train a classifier on635

the corrupted distribution P ′, the performance of the classifier on the actual distribution P will be636

similar to that on P ′.637

Proof of Claim 3. As in the proof of Claim 2, it follows from Lemma 1 and transitivity that it is638

enough to prove the statement of the claim for elementary transitions. We consider a transition639

a → b of mass ϵ. We first derive640

|UnfEO(f,P)− UnfEO(f,P ′)| = ||TPRA(f,P)− TPRD(f,P)| − |TPRA(f,P ′)− TPRD(f,P ′)||
≤ |(TPRA(f,P)− TPRD(f,P))− (TPRA(f,P ′)− TPRD(f,P ′))|

(Triangle inequality)

= |(TPRA(f,P)− TPRA(f,P ′)) + (TPRD(f,P ′)− TPRD(f,P))|
≤ |TPRA(f,P)− TPRA(f,P ′)|+ |TPRD(f,P ′)− TPRD(f,P)|

(8)

This breaks up the change in unfairness into two terms, which correspond to the difference in true641

positive rates of f for P and P ′ on A,D respectively (denoted by ∆TPRA,∆TPRD). Divide the642
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domain into 8 parts based on the group membership and whether a point falls in TP,FP,TN, or FN643

according to f . Denote the probability mass of elements in group z in category E under f by P(Ez).644

We know that P(A) = P(A, 1) + P(A, 0) = (P(TPA) + P(FNA)) + (P(TNA) + P(FPA)).645

We proceed to bound ∆TPRA, and an identical argument can be used to bound ∆TPRD. If a, b lie646

in P(A, 1), it remains unchanged, and it is easy to see that the maximum value of ∆TPRA is ϵ
P(A,1) ,647

when P ′(TPA) = P(TPA) ± ϵ. In case a ∈ (A, 1), and b /∈ (A, 1), then P ′(A, 1) = P(A, 1) − ϵ.648

We know that P ′(A, 1) = P ′(TPA) + P ′(FNA). Either a lies completely in TPA, completely in649

FNA, or in both (if we are randomizing over the cell containing a). We first consider the first case,650

where P ′(TPA) = P(TPA)− ϵ.651

|TPRA(f,P)− TPRA(f,P ′)| =
∣∣∣∣P(TPA)

P(A, 1)
− P(TPA)− ϵ

P(A, 1)− ϵ

∣∣∣∣
=

∣∣∣∣P(TPA)P(A, 1)− P(TPA)ϵ− P(TPA)P(A, 1) + P(A, 1)ϵ

P(A, 1) (P(A, 1)− ϵ)

∣∣∣∣
=

∣∣∣∣ P(A, 1)ϵ− P(TPA)ϵ

P(A, 1) (P(A, 1)− ϵ)

∣∣∣∣
= ϵ

∣∣∣∣ P(FNA)

P(A, 1) (P(A, 1)− ϵ)

∣∣∣∣
≤ ϵ

∣∣∣∣ 1

P(A, 1)− ϵ

∣∣∣∣
= ϵ

∣∣∣∣ 1

P ′(A, 1)

∣∣∣∣
≤ ϵ

(
1

min(P(A, 1),P ′(A, 1))

)
We now consider the second case, where P ′(FNA) = P(FNA)− ϵ.652

|TPRA(f,P)− TPRA(f,P ′)| =
∣∣∣∣P(TPA)

P(A)
− P ′(TPA)

P ′(A, 1)

∣∣∣∣
=

∣∣∣∣P(TPA)

P(A, 1)
− P(TPA)

P(A, 1)− ϵ

∣∣∣∣
=

∣∣∣∣P(TPA)P(A, 1)− P(TPA)ϵ− P(TPA)P(A, 1)

P(A, 1) (P(A, 1)− ϵ)

∣∣∣∣
=

∣∣∣∣ P(TPA)ϵ

P(A, 1) (P(A, 1)− ϵ)

∣∣∣∣
≤ ϵ

∣∣∣∣ 1

P(A, 1)− ϵ

∣∣∣∣
= ϵ

∣∣∣∣ 1

P ′(A, 1)

∣∣∣∣
≤ ϵ

(
1

min(P(A, 1),P ′(A, 1))

)
(9)

It is easy to see that in the third case, where a lies in both TPA and FNA, ∆TPRA is bounded by the653

max value of ∆TPRA of cases 1 and 2.654

Here we argued for when (A, 1) loses mass. We can similarly argue the case where (A, 1) gains655

mass, giving us an identical bound. Also, here we argued for group A, and an identical argument for656

D shows that657

|TPRA(f,P)− TPRA(f,P ′)| ≤ ϵ

(
1

min(P(D, 1),P ′(D, 1))

)
(10)

Plugging Equations 9 and 10 into Equation 8, we get that658

|UnfEO(f,P)− UnfEO(f,P ′)| ≤ ϵ

(
1

min(P(D, 1),P ′(D, 1))

)
+ ϵ

(
1

min(P(D, 1),P ′(D, 1))

)
659
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Now we prove our main result (Theorem 2).660

Proof of Theorem 2. Following the proof of Theorem 1, by Lemma 1 and transitivity, it suffices to661

show the theorem statement for the case where the transition from P to P ′ is elementary in that the662

only difference between the two distributions is that there are two elements a and b that have ϵ more663

mass and ϵ less mass, respectively, in P as compared to P ′ (all other elements have the same mass664

in the two distributions). So, in the remainder of the proof, we only consider elementary transitions.665

Consider the transfer of ϵ mass from a to b in a continuous manner. During this process, either the666

cell corresponding to element a will monotonically increase in score or monotonically decrease in667

score8. The same holds for the cell corresponding to element b. The scores of all other cells will668

remain the same. In the following argument, we assume that the score of the cell of a decreases669

monotonically and that of b increases monotonically. All of the arguments are analogous for the670

remaining three cases.671

Let f denote the EO-fair BOC for the current distribution P at any instant in this mass transfer672

process ending in distribution P ′. As the mass transfer proceeds, we analyze how the EO-fair BOC673

changes from fEO
P to fEO

P′ . We consider the largest mass transfer δϵ until one of the two following674

events occur.675

1. Equal-score event: The cell of a has the same score as the adjacent cell lower in the sorted676

order or the cell of b has the same score as the adjacent cell higher in the sorted order.677

2. Threshold event: The score of a merged cell containing a or b becomes exactly 0.5.678

Note that by the choice of δϵ, during the transfer δϵ, all the cells remain in the same order in both679

groups; furthermore, all masses and scores of all cells other than the ones containing a or b remain680

the same during the transfer. By Claim 3,681

δUnfEO =
∣∣UnfEO(f

EO
P ,P)− UnfEO(f

EO
P ,P ′)

∣∣
≤ δϵ

(
1

P(A, 1)
+

1

P(D, 1)

)
.

Since UnfEO(f
EO
P (P)) = 0, we know that δUnfEO = UnfEO(f

EO
P ,P ′) =682 ∣∣TPRA(f

EO
P ,P ′)− TPRD(fEO

P ,P ′)
∣∣. Consider the cell q that is split by the threshold corre-683

sponding to f (for now, assume q ∈ D). Since neither the equal-score event nor the 0.5-score684

event occur, we see that after the transition, fEO
P has δUnfEO difference in TPR between groups.685

To modify fEO
P → fEO

P′ , we therefore need to move to move the boundary at q so that TPR in both686

groups align and EO is satisfied (the classifier f remains the same apart from its action on q).687

The change in function (|∆f(q)|) of element q is bounded by δUnfEO
P(D,1)
S(q)P(q) , after scaling (since688

P(D, 1)δUnfEO = |∆f(q)| P(q)S(q)). If f ′ denotes the EO-Fair BOC for the distribution at the689

end of the δϵ mass transfer (just prior to any of the two events), then by Lemma 2, the change in690

accuracy of the optimal fair classifier is bounded by691

|Acc(f,P)− Acc(f ′,P ′)| ≤ |P(q)(2S(q)− 1)∆f(q)|+ δϵ

≤ δϵ

(
1

min(P(A, 1),P ′(A, 1))
+

1

min(P(D, 1),P ′(D, 1))

)
P(D, 1) |(2S(q)− 1)|

S(q)
(11)

≤ δϵ

(
1

min(P(A, 1),P ′(A, 1))
+

1

min(P(D, 1),P ′(D, 1))

)
P(D)

S(q)
+ δϵ,

(12)

where the last equation follows by monotonicity. Note that 1
S(q) can potentially blow up, and we692

would like to bound it. Notice that since by assumption, f splits q in the middle, we know that there693

is a portion of q that is accepted. Hence, the weighted score of a merged cell involving q (say Cq) has694

8In case the cell corresponding to a has score of 0 or 1, it’s score will remain unchanged, and this case is
trivially covered by our argument.
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score above the threshold of 0.5. Let Cq contain some element t from group A, and denote length695

of group z in Cq by lz . Since the TPR of both components are equal, we know that696

P(A)lAS(t)
P(A, 1)

=
P(D)lDS(q)

P(D, 1)
(13)

Also, since S(Cq) ≥ 0.5, we know that697

P(A)lAS(t) + P(D)lDS(q) ≥ P(A)lA + P(D)lD
2

(14)

Combining Equations 13, and 14, and after a bunch of simplification, we get that698

1

S(q)
≤ 2P(1)

P(D, 1)
− P(A, 1)

P(D, 1)S(t)
(15)

≤ 2P(1)

P(D, 1)
(16)

Where the second equation follows because S(t) ≥ 0. Plugging Equation 16 into Equation 12, we699

get that700

|Acc(f,P)− Acc(f ′,P ′)| ≤ δϵ

(
1

min(P(A, 1),P ′(A, 1))
+

1

min(P(D, 1),P ′(D, 1))

)
2P(1) + δϵ

≤ δϵ

(
1

min(P(A, 1),P ′(A, 1))
+

1

min(P(D, 1),P ′(D, 1))

)
2max(P(1),P ′(1)) + δϵ

(monotonicity)

The handling of the equal-score and threshold events is identical to that in the proof of Theorem 1.701

We repeat here for convenience.702

1. Equal-score event: If the cell of a has the same score as the adjacent cell lower in the sorted703

order, then we swap the two cells so that the cell of a is lower in the order. Similarly, if the704

cell of b has the same score as the adjacent cell higher in the order, then we swap the two705

cells so that the cell of b is higher in the order. We update the classifier f and note that this706

change has no impact on the accuracy of f .707

2. Threshold event: The score of a merged cell containing a or b becomes exactly 0.5. We708

include the merged cell in the classifier f , again without changing accuracy.709

Thus, between any two occurrences of these events, the change in accuracy is bounded by an amount710

proportional to the mass transfer; when we reach these occurrences, the mass transfer is paused, the711

BOC changes without any change in accuracy. Furthermore, at every occurrence of the event, one of712

these three events happen: the cell containing a moves down in the order, the cell containing b moves713

up in the order, or an additional merged cell is placed above the threshold. Since the number of times714

these events can occur is upper bounded by the number of cells in the two groups, this process is715

finite. Therefore, adding over all the δϵ mass transfers, we obtain the desired bound on the change716

in accuracy between the BOC’s for P and P ′, thus completing the proof of the theorem.717

C.3 Predictive Equality718

We can obtain analogous results for Predictive Equality from the same proof techniques as that of719

Equal Opportunity (since we can just reverse the roles of the labels 0 and 1 in EO to get results for720

PE). Hence, we only discuss the proofs for EO, and state the analogous results for PE below without721

proof.722

Claim 7 (PE Shift for a Fixed Hypothesis). Given distributions P,P ′, such that TV (P,P ′) ≤ ϵ,723

and any hypothesis f , it holds that724

|UnfPE(f,P)− UnfPE(f,P ′)| ≤ ϵ

(
1

min(P(A, 0),P ′(A, 0))
+

1

min(P(D, 0),P ′(D, 0))

)
.
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Theorem 3 (Robustness of PE-Fair BOC). Given distributions P,P ′, such that TV (P,P ′) = ϵ, we725

have that726 ∣∣Acc(fPE
P ,P)− Acc(fPE

P′ ,P ′)
∣∣ ≤ ϵ

(
1 + 2max(P(0),P ′(0))

(
1

min(P(A, 0),P ′(A, 0))
+

1

min(P(D, 0),P ′(D, 0))

))
,

where fPE
P , fPE

P′ are the PE-Fair BOC’s on P,P ′ respectively.727

Corollary 3. Given distributions P,P ′, such that TV (P,P ′) = ϵ, we have that728 ∣∣Acc(fPE
P ,P)− Acc(fPE

P′ ,P)
∣∣ ≤ 2ϵ

(
1 + max(P(0),P ′(0))

(
1

min(P(A, 0),P ′(A, 0))
+

1

min(P(D, 0),P ′(D, 0))

))
,

where fEO
P , fEO

P′ are the EO-Fair BOC’s on P,P ′ respectively729
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