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Abstract

Previous work in fair machine learning has characterised the Fair Bayes Optimal
Classifier (BOC) on a given distribution for both deterministic and randomized
classifiers. We study the robustness of the Fair BOC to adversarial noise in the
data distribution. [Kearns and Li| [1988] implies that the accuracy of the determin-
istic BOC without any fairness constraints is robust (Lipschitz) to malicious noise
in the data distribution. We demonstrate that their robustness guarantee breaks
down when we add fairness constraints. Hence, we consider the randomized Fair
BOC, and our central result is that its accuracy is robust to malicious noise in the
data distribution. Our robustness result applies to various fairness constraints—
Demographic Parity, Equal Opportunity, Predictive Equality. Beyond robustness,
we demonstrate that randomization leads to better accuracy and efficiency. How-
ever, we show that the randomized Fair BOC is nearly-deterministic, and gives
randomized predictions on at most one data point, hence availing numerous bene-
fits of randomness, while using very little of it.

1 Introduction

The effectiveness of machine learning models has resulted in improved efficiency across multiple
domains but has also raised concerns about their fairness and possible amplification of biases in
their training data [Barocas et al., [2019]. When machine learning models are used to make de-
cisions that skew the distribution of important economic resources or reinforce stereotypes, they
compound disparities to cause social and economic harm. Fair classification has been an important
topic of research, and binary fair classification where the model makes yes/no decisions algorithmi-
cally is a simple yet challenging setting to study foundational questions in optimal fair classification
[Menon and Williamson, 2018b]]. In group-fair classification, each data point has certain sensitive
attributes indicating the demographic group(s) to which it belongs (e.g., race, gender). Popular no-
tions of group-fairness such as statistical or demographic parity, equal opportunity, equalized odds,
and predictive parity are all motivated by the binary fair classification setting. Demographic parity
prescribes the positivity rates to be equal across different groups (e.g., race, gender), whereas equal
opportunity prescribes the true positive rates to be equal across different groups [Dwork et al.,[2012}
Hardt et al.l |2016]]. Previous work has looked at various trade-offs between accuracy and fairness as
well as the difficulty in satisfying multiple fairness constraints simultaneously [Celis et al., [2020].
Previous work has also mathematically characterized the Fair Bayes Optimal Classifier (BOC),
namely, the optimal deterministic classifiers for maximizing accuracy subject to group-fairness con-
straints based such as demographic parity and equal opportunity [Menon and Williamson, 2018a,
Chzhen et al.| 2019} Celis et al.| 2021} Zeng et al.| 2022]. Pre-processing or re-weighing for training
data imbalances, in-processing by fairness-constrained training loss, and post-processing a model’s
predictions for balanced outcomes are three known ways to realize fair and accurate classifiers in
practice [Kamiran and Calders, 2012} |Agarwal et al., 2018} |Barocas et al., 2019].
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Biased or corrupted training data is a primary cause of unfairness in model predictions or outcomes.
Moreover, robustness of a machine learning model under bias or corruption in the data distribution
has been a more pragmatic concern that predates the research on fair machine learning. Learning
robust classifiers is important because training and test distributions are not always identical and
the training data may contain noise and malicious corruptions during data collection, curation, and
annotation. Robustness of fair classifiers under bias/shift in the data distribution is a well studied
issue in fair machine learning literature. |Akpinar et al.| [2022] empirically study the robustness of
BOC and Fair BOC on synthetic data distributions and provide a sandbox tool for stress-testing fair
classifiers. Sharma et al.[[2023]] and |Ghosh et al.| empirically study robustness of fair classifiers
under data bias on semi-synthetic real-world datasets (i.e., real-world datasets with synthetically
injected bias/shift). In both these papers, Exponentiated Gradient Reduction (EGR) or ExpGrad
[Agarwal et al.,[2018]] stands out for its better robustness under data bias/shift, and it is inherently a
randomized classifier.

A particularly compelling and illustrative practical example for fair binary classification with mali-
ciously corrupted training data is that of hate speech classifiers. Hate speech classifiers are known
to exhibit biases against the same vulnerable demographics they were supposed to protect in online
forums. For example, text in African American English (AAE) has higher likelihood of being mis-
reported as hate speech and even proper mentions of group identifiers such as ‘gay’ or ‘black’ get
misreported as toxic or prejudiced. Moreover, the training data taken from online forums that is used
to train hate speech classifiers contains societal biases of novice human annotators as well as mali-
cious attempts made to bypass existing classifiers or filters used in data collections and annotation
process [Davani et al., 2023| [Davidson, |2023]]. Maliciously corrupted training data makes it diffi-
cult to train fair hate speech classifiers with robust accuracy and fairness guarantees that would be
retained after real-world deployment [Davani et al., [2023| [Davidson| 2023} [Hartvigsen et al.,[2022]
Harris et al., [2022].

Classification under malicious noise is a theoretically challenging direction on its own, even without
any fairness constraints. [Balcan and Haghtalab| [2020]] survey research directions that originate
from the work of [Kearns and Li| [1988]], but focus on the hardness of learning linear classifiers
under malicious noise and recent results that get around it. Unlike previous works on learning from
malicious noise that consider any hypothesis class or a specific one such as linear classifiers, we
consider the hypothesis class of all binary classifiers, deterministic as well as randomized. Although
previous work in fair machine learning has extensively studied the Fair BOC and fair pre-/in-/post-
processing methods to achieve best possible fairness-accuracy trade-offs, their fairness and accuracy
guarantees may not hold when training data is biased or contaminated and does not match test data.
Adversarial or unknown bias in data makes it important to study the robustness of fairness and
accuracy guarantees of the Fair BOC.

The seminal work of |Kearns and Li| [ 1988]] shows the robustness (of accuracy) to malicious noise of
any deterministic hypothesis class (without fairness constraints) in terms of a Lipschitz condition,
i.e., given two similar distributions, the accuracy of the optimal classifier on each distribution is also
similar. In particular, their robustness guarantee also carries over to the deterministic BOC. In con-
trast, more recent findings by | Konstantinov and Lampert| [2022] reveal a concerning vulnerability:
incorporating fairness constraints can render certain deterministic hypothesis classes non-robust to
adversarial noise. This gap in understanding necessitates an investigation into the robustness of Fair
BOC’s under adversarial distribution shift, which in turn is the focus of this paper.

1.1 Overview of Our Results
We summarize our key contributions.

* We demonstrate in Claim [T] (Section [3.1)) that the deterministic Fair BOC is not robust to
adversarial noise, corroborating Konstantinov and Lampert| [2022].

Our main results prove the robustness of randomized Fair BOC’s.
* We prove in Theorems [I] (Section [3.2), [2] and [3] (Section [) that the accuracy of the ran-

domized Fair BOC is robust to malicious noise across three popular fairness notions (De-
mographic Parity, Equal Opportunity, and Predictive Equality). This robustness is charac-
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terized by a (local) Lipschitz property, where the Lipschitz constant depends on the distri-
bution [Yang et al.,|[2020].

* Toward this end, we first prove in Claims 2] [3] and [7] (Sections [3.2] and [) that a fixed hy-
pothesis maintains comparable accuracy and fairness across two similar distributions. This,
however, does not imply our main results since the Fair BOC may change significantly for
neighboring distributions. We establish the Lipschitz property using a more sophisticated
analysis of the specific structure of the randomized Fair BOC.

In addition to robustness, randomization confers multiple advantages.

* Claim [I] demonstrates that the Randomized Fair BOC can outperform its deterministic
counterpart in accuracy by 0.5 — € (for any ¢ > 0). We complement this with a tight-
ness result in Claim [6] (Appendix [B).

e The Randomized Fair BOC can be computed in polynomial time, whereas we prove in
Claim 5] (Appendix [B) that computing the deterministic Fair BOC is NP-complete.

Randomization is a very natural and useful resource for fairness as ties are often broken by a random
coin toss. However, when it brings arbitrariness to critical decisions, it needs to be used judiciously
and sparingly [Creel and Hellmanl 2021} Rosenblatt and Witter, |2024} |Cooper et al., [2024]]. A key
property of the randomized Fair BOC is that it is nearly deterministic, being randomized at most on
a single point in the domain and deterministic elsewhere. Thus, in a sense, we have the best of both
worlds, preserving the benefits of randomization, while using very little of it.

We present the problem formulation in Section [2] More detailed comparison with most relevant
previous work is given in Appendix[A] and we conclude in Section 5]

2 Problem Formulation

We are given a discrete distribution P over X x Z x ), where Z = {4, D} represents the protected
group membership (A denotes the advantaged group, and D denotes the disadvantaged group X
represents all the other features, and ) = {0, 1} represents the binary label set (we adopt the stan-
dard convention of associating the label 1 with success or acceptance). A randomized classification
rule f is a function f : X x Z — [0, 1], where f(x, z) denotes the probability of a feature vector or
instance (x, z) € X x Z being mapped to 1. A deterministic classifier is defined similarly, however
the output of f(z, z) is restricted to {0, 1}. We consider the standard 0-1 loss function 60_1 whose
expected value is given by L(f,P) = E[lo—1(f)] = Pr[f(X,Z) # Y], where the probability is
over (X,Z,Y) ~ As is standard, we define accuracy as Acc(f,P) =1 — L(f,P).

In a fairness-aware learning problem, we want to find an accurate classifier on a given distribution
that also satisfies some fairness constraints. Our work considers 3 of the most popular notions of
fairness (Demographic Parity, Equal Opportunity, Predictive Equality). We present our proofs for
Demographic Parity in the main body, and defer the proofs of the other 2 notions to Appendix 4] We
state the Demographic Parity definition below [[Dwork et al., [2012].

Definition 1 (Demographic Parity). Denote the selection rate for group z by r.(f,P) =
Pr[f(X,Z) = 1| Z = z]. f satisfies Demographic Parit if the selection rates are equal across
both groups, i.e., 14 (f, P) = rp(f, P). We quantify the unfairness of f as the difference in selection
rates across groups , i.e., Unfpp(f, P) = |[ra(f, P) —rp(f, P)|.

'Our results also hold when there are multiple groups, but for ease of exposition, we restrict our analysis to
the case of 2 groups.

2Using the same proof techniques, our results also hold for the more general loss function £, known in
literature as cost-sensitive risk [Menon and Williamson, 2018b], that assigns a weight « to False Positive
errors, and a weight (1 — «) to False Negative errors. However, for simplicity, we restrict our analysis here to
607 1.

3Henceforth, all probabilities will be over (X, Z,Y) ~ P, unless explicitly stated.

*Classifiers satisfying DP will be often be referred to as DP-fair.
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2.1 Fair Bayes Optimal Classifier

Given a distribution P, the optimal (accuracy-maximizing) classifier f* (the BOC) is given by
[r@,z) = To(PrlY = 1| X = a,Z = 2]), where 7,(3) is the threshold function that out-
puts 1 if 5 > ~, and 0 otherwise. We call the term S in the expression above the score or success
probability of a point (x, z), and formally define it below.

Definition 2 (Score). The score S of a point (i, z) is the probability that it has label 1, i.e., S(x, z) =
PrlYy =1|(X =2,Z = 2)].

The BOC basically accepts a point if its score is > % and rejects it otherwise. Note that the BOC
as described above is deterministic, and allowing for randomized classifiers will not provide any
increase in accuracy. However, when fairness constraints are involved, the picture is more compli-
cated, and it turns out that allowing for randomization actually can lead to a big jump in accuracy.
To see how randomized Fair BOC’s can improve the accuracy of their deterministic counterparts, let
us look at an example from |Agarwal and Deshpande|[2022].

Example 1 (Accuracy jump in Randomized Fair BOC’s). Consider the following distribution PE]
over X x Z x Y, where X = {z1,x2} (P,S(z, z) = (p, q) denotes that P(x, z) = p, and S(z, z) =
Q-

P,S(z1, A) = (0.5,0.75) P,S(z1, D) = (0.25,0.5)
P,S(x2,A) = (0,0) P,S(xs, D) = (0.25,0)

There are only 2 deterministic classifiers satisfying DP, either the constant 1 classifier f;, or the
constant 0 classifier fo, with £(f;) = L(fo) = 3. On the other hand, consider the following
randomized classifier f, where f(x1, A) = %,f(:z:l,D) =1, f(z2, A) = f(x2,D) = 0. It is easy
to see that f satisfies DP, and L(f) = %, hence improving over the accuracy of the deterministic
DP-fair BOC’s fj and f.

Given a distribution P, |Agarwal and Deshpande]| [2022] characterize the DP-Fair BOC (the optimal
classifier subject to DP constraints) on a given distribution, which we now describe. We first present
some of their terminology.

Definition 3 (Cell). Consider a randomized partition of the feature space X x Z into multiple
disjoint components. We call these components cells, and denote a cell by C.

One can also define the score of a cell, in the same way as we had defind the score of a point.
We have already seen the BOC that thresholds based on scores. Randomized classifiers give us the
ability to threshold by probability mass, instead of just thresholding by scores. To explain this better,
we introduce the notion of group-wise sorted cells.

Definition 4 (Group-wise Sorted Cells). Define C, = |J C, ., where the component cells of C4

zeX
and Cp are arranged in descending order of scores S. If two or more cells from the same group have

the same score, any ordering within them is acceptable.

By C.(t), denote the topmost cells of C, comprising of ¢ fraction of the total probability mass of
C.. Note that this may involve splitting a cell into 2 parts randomly. For example, in Example
C A(%) would involve splitting C, 4 into two equal parts randomly. However, in the deterministic
setting, only C4(0) and C(1) are defined, and not C4(%). By T;, we denote the mass threshold
classifier that accepts exactly C. (¢) for = € Z. In Example |1} the randomized classifier f is the
mass-threshold classifier T%

Definition 5 (Score Boundaries). Consider the component cells of groupwise sorted C4 and Cp.
Then, the score boundaries denote the set Z = Z4 U Zp, where Z, consists of all the boundary
points between component cells in C.,.

Definition 6 (Merged Cells). Consider any 7; € Z in sorted order, and define a merged cell C; as

Ci = A(T;,) — A(T;, ), where A(f) denotes the instances accepted by f, and 7;_ denotes the
element in Z preceding r;.

5Note that specifying a distribution over X x Z x ) is equivalent to specifying a distribution over X x Z
along with the scores for every instance (z,z2) € X X Z.
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Characterization Given a distribution P over X x Z x ), the DP-Fair BOC fgp is given by

the mass-threshold classifier 7., where ' = r; € T is the unique 7 such that S(C;) > 0.5, and
S(Ci+) < 0.5, where r;; denotes the element in Z after r;. Note that the DP-Fair BOC needs
to use randomization on at most one cell in the whole domain, since the candidate ' values lie in
. Hence, to evaluate the Fair BOC, instead of considering the hypothesis class of all randomized
classifiers, it is sufficient to consider the hypothesis class of classifiers that are randomized on at
most one element in the domain.

(1,1,1)

(0,0,0) -

Figure 1: If the feature space X x Z has cardinality n, then the hypothesis class of all randomized
classifiers H is the hypercube [0, 1]™. Similarly, the hypothesis class of all deterministic classifiers
is {0,1}™. A fairness criterion is a linear constraint (this may not be true of all fairness criteria,
but is true of the well-known ones that we study in this paper), which can be represented by a
hyperplane F. Also, accuracy A is a linear objective, implying that the Fair BOC is the point in
‘H N F maximizing A. We illustrate this in 3-dimensions here.

3 Robustness to Adversarial Distribution Shift

We study the robustness of the DP-Fair BOC to adversarial distribution shift. We show that given 2
similar distributions P, P’ (similarity measured by TV distance), the accuracy of the DP-Fair BOC
on the respective distributions is similar (satisfies local Lipschitzness). Note that DP-Fair BOC in the
deterministic case does not exhibit such a robustness property, as we demonstrate in the following
example.

3.1 Non-Robustness of the Deterministic Fair BOC

Claim 1 (Non-Robustness of Deterministic Fair BOC’s). Given ¢ > 0, there exist P, P’ with
TV (P,P') < e such that the deterministic DP-Fair BOC’s f, f' on P, P’, respectively, satisfy
|Ace(f, P) — Ace(f', P")| > Q(1).

Proof. Consider the following distribution P, with X = {z1, x4 }.
P,S(x1,A) = (0.25,1) P,S(x1,D) = (0.25,1)
P,S(x2, A) = (0.25,0) P,S(x2,D) = (0.25,0)
Consider the (deterministic) classifier f, with f(z1, A) = f(z1, D) =1, f(22, A) = f(x2,D) = 0.
It is easy to see that f satisfies DP, and Acc(f) = 1, implying that f is the DP-Fair BOC in both
the deterministic and randomized settings. Consider the neighboring distribution P’ as follows, for
small e.
P’ S(x1,A) = (0.25,1) P’ S(x1,D) = (0.25+¢,1)
P’ S(x2, A) = (0.25,0) P, S(xa, D) = (0.25 — ¢,0)
There are only 2 deterministic classifiers satisfying DP, either the constant 1 classifier fi, or the
constant 0 classifier fo, with £L(f1) = % + ¢ and L(fo) = % — ¢, implying that f; is the DP-Fair
BOC in the deterministic setting. Hence, the difference in accuracy of the deterministic DP-Fair

BOC on arbitrarily close P, P’ is almost 0.5, demonstrating the non-robustness of deterministic
classifiers to distribution shift. O
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3.2 Robustness of the Randomized Fair BOC

Now we state our main result.
Theorem 1 (Robustness of DP-Fair BOC). Given distributions P, P’ with TV (P, P’) = €, we have

max (P(4), P'(4)) . max (P(D),P'(D)) )
min(P(A),P'(4)) | min(P(D), P (D)) )

|Acc(fpF,P) — Ace(fpr, P')| < e (1+

Remark. Note that the Lipschitz constant will blow up if the masses of either group becomes very
small. Similar terms in the denominator will naturally feature in all our bounds. As such, robustness
is not satisfied at such extremal points.

We first state Lemmas [T] and 2] and Claim [2] that will help us prove Theorem [} We defer their
proofs to Appendix [B] Lemma [I] shows that one can decompose a transition from distribution P
to distribution P’ with distance ¢ into a sequence of elementary transitions from P;_; to P; with
distance €; such thate = 5 , € and for every ¢, the only difference between P;_; and P; is that mass
is transferred from exactly one element of the domain to another.

Lemma 1 (Decomposition into Elementary Transitions). Given distributions P, P’ with
TV (P,P') = ¢ there exist distributions Py, Py, ..., Py (for some n, with P = Py, P’ = P,),
such that the following two conditions hold:

1. Decomposability: TV (P;_1,P;) = €, Y i, €& = € and in the transition P;_1 — P;, €;
mass moves from some instance a; to some b; (a;,b; € X x Z, all other elements remain
constant).

2. Monotonicity: If P(A) < P'(A), then for every 1 < i < n, Pi(A) < Pir1(A) and
Pi(D) > P;11(D); otherwise, P;(A) > Piy1(A) and P;(D) < Pir1(D).

Claim roughly states that given 2 similar distributions P, P’, the accuracy and DP-unfairness of
any fixed hypothesis is similar on both P, P’. Such a property is useful when we want a guarantee
that if we train a classifier on the corrupted distribution P’, the performance of the classifier on the
actual distribution P will be similar to that on P’.

Claim 2 (Accuracy, DP Shift for Fixed Hypothesis). Given distributions P, P’, such that
TV (P, P") < ¢ any hypothesis | satisfies the following two properties:

1. |Ace(f,P) — Acc(f,P)| <e

2. |UnfDP(f’ P) - UnfDP(f’ Pl)| <e (rnin(P(Al),'P’(A)) + min(P(Dl),P'(D)))

We also use Lemma 2] for our main result .

Lemma 2. Given any P, f, and P, f' such that TV (P, P') = € if f'(q) differs from f(q) by
Af(q) (and is identical elsewhere), then

|Ace(f,P) = Ace(f', P))| < [P(9)(28(q) = DAF(g)] + €.
Now move on to the proof of our main theorem.

Proof of Theorem[I} Armed with these lemmas, we first establish the claim of the theorem for the
special case where the transition from P to P’ is elementary in that the only difference between
the two distributions is that there are two elements a and b that have ¢ more mass and ¢ less mass,
respectively, in P as compared to P’ (all other elements have the same mass in the two distributions).
At the end, we invoke Lemma [T|and transitivity to establish the general theorem statement.

Consider the transfer of € mass from a to b in a continuous manner. During this process, either the
cell corresponding to element a will monotonically increase in score or monotonically decrease in
scoreﬂ The same holds for the cell corresponding to element b. The scores of all other cells will
remain the same. In the following argument, we assume that the score of the cell of a decreases

%1n case the cell corresponding to a has score of 0 or 1, it’s score will remain unchanged, and this case is
trivially covered by our argument.
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monotonically and that of b increases monotonically. All of the arguments are analogous for the
remaining three cases.

We break down the ¢ mass transfer into smaller increments. At any point, let P be the distribution at
the start of this increment (so, P="P initially) and P’ be the distribution at the end of this increment
(so, P! = P’ finally). For an incremental mass transfer, we analyze how the DP BOC changes from
f2F to f3. Since the mass transfer is from element a to b, it follows that both P(A) and P’(A) lie

between P(A) and P’(A) while both P(D) and P’ (D) lie between P (D) and P’ (D). We consider
the largest mass transfer de until one of the two following events occur.

1. Equal-score event: The cell of a has the same score as the adjacent cell lower in the sorted
order or the cell of b has the same score as the adjacent cell higher in the sorted order.

2. Threshold event: The score of a merged cell containing a or b becomes exactly 0.5.

Bounding the accuracy change for je: Note that by the choice of de, during the transfer Je, all
the cells remain in the same order in both groups; furthermore, all masses and scores of all cells
other than the ones containing a or b remain the same during the transfer. By part 2 of Claim[2]

SUnfpp — ‘UnfDP( 28, P) — Unfpp(f2°, P")

1 1
de = = =
= (Inin(P(A),P’(A)) * min(P(D),P’(D)))

1 1
< de <min(P(A),P’(A)) + min(P(D),P’(D))>

Since Unpo(ng, 75) = 0, we know that 6Unfpp = Unpo(ng, 75’) = ’rA(ng, 75) —Ip (f;gp7 75’) )

Consider the cell q that is split in the middle by the threshold corresponding to fgp (for now, assume
q € D). Since neither the equal-score event nor the 0.5-score event occur, we see that after the
transition, the boundary of fgp intersecting g is dUnfpp away from the boundary in group A. To
modify f2° — f2, we therefore need to move to move the boundary at ¢ by dUnfpp so that the
boundaries in both groups align and DP is satisfied (the classifier remains the same apart from its
action on ¢). The change in function value on element g, which we denote by |A f(g)|, is bounded

by dUnfpp 7;5((]3)), after scaling (since P(D)dUnfpp = |Af(q)| P(q)). At the end of the e mass
transfer, by Lemma[2] the change in accuracy of the optimal fair classifier is given by

Acc(fp’, P) — Acc(fgr, P

< |Pl@)2S(a) - 1A f(g)| + be
< e <1+75<D>l<28<q2—1 |, PO
min(P(A), P'(A4)

max (P(D), P (D
< 0e (1 min(P(A), P'(A)

~—

1(28(g) - >>

min(P(D),P'(D))

) maX(P(D)’P'(D)U
min(P(D), P’ (D)) )’

| — —

where the last inequality follows from the facts that [(2S(q) — 1) < 1, P(A) and P’(A) both lie
between P(A) and P’(A) and P(D) and P’(D) both lie between P(D) and P’ (D).

In Appendix [B.4} we derive a better upper bound on |(25(g) — 1)| and derive the following:

max (P(A), P'(4)) | max (P(A), P’(A>))
min(P(A), P'(4)) | min(P(D),P' (D)) )

‘Acc(fgp, P) — Acc(fg],), P

§(56<1+

Putting the two upper bounds together yields the following:
max (P(A4), P'(A)) maX(P(D),P’(D))>

‘Acc(fgp, P) — Acc(fr, P

< de (” min(P(A), P(A)) T min(P(D), P'(D))
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Handling the equal-score and threshold events: We now describe how to handle the two events.

1. Equal-score event: If the cell of a has the same score as the adjacent cell lower in the sorted
order, then we swap the two cells so that the cell of a is lower in the order. Similarly, if the
cell of b has the same score as the adjacent cell higher in the order, then we swap the two
cells so that the cell of b is higher in the order. We update the classifier f and note that this
change has no impact on the accuracy of f.

2. Threshold event: The score of a merged cell containing a or b becomes exactly 0.5. We
include the merged cell in the classifier f, again without changing accuracy.

Thus, in a sense, between any two occurrences of these events, the change in accuracy is bounded
by an amount proportional to the mass transfer; when we reach these occurrences, the mass transfer
is paused, the BOC changes without any change in accuracy. Furthermore, at every occurrence of
the event, one of these three events happen: the cell containing a moves down in the order, the cell
containing b moves up in the order, or an additional merged cell is placed above the threshold. Since
the number of times these events can occur is upper bounded by the number of cells in the two
groups, this process is finite. Therefore, adding over all the de mass transfers, we obtain the desired
upper bound on the change in accuracy between the BOC’s for P and P’.

. (1 max (P(A),P'(A)) max(P(D), P’(D)))
min(P(A),P'(4))  min(P(D), P (D))

From elementary to arbitrary: Consider a general transition of distance ¢ from P to P’. We
invoke Lemma to obtain intermediate distributions {P;} with TV (P;_1,P;) = ¢; satisfying the
decomposability and monotonocity properties. We apply the above proof for each elementary tran-
sition P;_1 — P; of mass ¢;. For accuracy, we derive

|Acc( PP P) — Acc( £?7P/)| < Z ‘Acc(fgf_l,”Pifl) — Acc(fPPP;, Py)

)
_ 6( max(P(A),P'(A)) max(P(D),P'(D

where the third inequality follows from monotonocity and the last equation follows from decompos-
ability. This completes the proof of the theorem. [

We now state the following corollary, which follows from Claim [2]and Theorem [I] It roughly states
that given 2 closeby distributions P, P’, the accuracy of the respective DP-Fair BOC’s is similar on
‘P. Such a property is useful when we want a guarantee that intuitively says that if we train on the
corrupted distribution P’, we get a similar outcome to what we would have gotten had we trained
on the true distribution P.

Corollary 1. Given distributions P, P’ with TV (P, P’) = €, we have
max (P(4), P'(A)) | max (P(D),P’(D)))

|Acc(fp7,P) — Acc(fpr, P)| <€ (2 + min(P(A), P’ (A))  min(P(D),P'(D))

4 Equal Opportunity and Predictive Equality

Earlier, we presented results for Demographic Parity. Our results also extend to the popular fairness
notions of Equal Opportunity and Predictive Equality [Hardt et al.| 2016} Barocas et al., 2019]]. We
state the results here, and defer the proofs to Appendix |[Cl We first define the fairness notions.
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Definition 7 (Equal TPR, or Equal Opportunity). Denote the true positive rate of f on group z by
TPR.(f,P)=Pr[f(X,Z2)=1|Y =1,Z =z].

f satisfies Equal Opportunity if the true positive rates are equal for both groups, i.e. TPR4(f, P) =
TPRp(f, P). We quantify the unfairness of f as the difference in true positive rates across groups ,
ie.,

UnfEO(fa 7)) = |TPRA(f’ P) - TPRD(f) P)l

Definition 8 (Equal FPR, or Predictive Equality). Denote the false positive rate of of f on group z
by
FPR,(f,P)=Pr[f(X,Z)=1|Y =0,Z = z].

f satisfies Predictive Equality if the false positive rates are equal for both groups, i.e. FPR4(f, P) =
FPRp (f, P). We quantify the unfairness of f as the difference in false positive rates across groups
,i.e.,

Unfpg(f, P) = [FPRA(f, P) — FPRp(f, P)|.

Remark. Classifiers satisfying these notions of fairness will be referred to as EO-fair, and PE-fair
respectively. The results for PE follow using the same proof techniques as that of EO (since we can
just reverse the roles of the labels 0 and 1 in EO to get results for PE). We state the analogous results
for PE in Appendix [C.3] In addition, previous work has also considered equal False Negative rate
(FNR) and equal True Negative rate (TNR) as notions of fairness. Obtaining equal TPR is equivalent
to obtaining equal FNR, and obtaining equal TNR is equivalent to obtaining equal FPR, and hence
results for these notions of fairness also follow.

‘We now state the results for EO.

Claim 3 (EO Shift for a Fixed Hypothesis). Given distributions P, P’, with TV (P, P’) < ¢, and
any hypothesis f, it holds that

, 1 1
|Unfeo(f, P) = Unfyo(f, )] < € (min(P(A, 0. P (A1) T min(P(D, 1), P/(D, 1))) )

where f%o, [E? are the EO-Fair BOC’s on P, P’ respectively.

Theorem 2 (Robustness of EO-Fair BOC). Given distributions P, P’, such that TV (P, P’') = e,
we have that

1

1

|Acc(f£°,P) — Ace(f57,P")| < e (1 + 2max(P(1),P'(1)) (

where fEC, fE? are the EO-Fair BOC’s on P, P’ respectively.
Corollary 2. Given distributions P, P’, such that TV (P, P’) = €, we have that

1

1

|Acc(f£°,P) — Acc(f57.P)| < 2¢ (1 + max(P(1),P'(1)) <

where f%o, ff),o are the EO-Fair BOC’s on P, P’ respectively.

5 Conclusion

Our findings collectively advance the theoretical understanding of fairness and robustness in adver-
sarially noisy environments, providing a solid foundation for future research. Some directions for
further work include extending our results for binary classification to multi-class classification, and
regression. Another direction could be to look at relaxed or approximate versions of the fairness no-
tions we considered. One could even look at other popular notions of fairness, or satisfying multiple
fairness notions simultaneously. It would also be valuable to experimentally validate our theoreti-
cal claims. In addition, note that our results hold for adversarial noise, but it might be possible to
strengthen the bounds if the noise came from a particular distribution.

min(P(A, 1), P/(A, 1)) | min(P(D, 1), 7 (D,1))

min(P(A, 1), P/(A,1)  min(P(D,1),P(D, 1)))) ’

)
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A Comparison with Related Work

‘We now present detailed comparison with relevant previous work. In Blum et al.|[2024]], they aim to
avoid the non-robustness phenomena highlighted in [Konstantinov and Lampert| [2022], as follows.
Given any deterministic hypothesis class #, and distributions P, P’ with TV (P,P’') = e, they
construct a randomized closure of H called PQ(#). Denote by f, f the optimal classifiers (subject
to DP constraints) on P, P’ restricted to H, PQ(H) respectively. They show that this satisfies a
one-directional Lipschitzness constraint, i.e., Acc(f’',P’) > Acc(f,P) — O(e). They also show
analogous results for EO and PE. Our setup has some key differences. We do not consider any
arbitrary H, but the BOC setting which includes all deterministic classifiers (and the 1-skeleton of
their convex closure). More crucially, our robustness guarantee is stronger, as their Lipschitzness
guarantee is only one-directional. In addition, in most cases, their output hypothesis incorporates
a lot of randomness, outputting a randomized decision on all elements in the domain, whereas our
output hypothesis is randomized on at most one element.

In the concurrent work of |Xian and Zhao|[2024], the sensitivity analysis (Theorem 3.1) bounds the
drop in accuracy of the optimal fair classifier under a shift in distribution, for the multiclass and
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multigroup setting, focusing on continuous domains. However, their sensitivity analysis only holds
for either a shift in the label distribution, or in the group membership distribution, whereas our
robustness guarantee works for adversarial distribution shifts. Adversarial or arbitrary distribution
shifts are strictly more general than label/covariate shifts, and moreover, they cannot be simulated
by any combination of label/covariate shifts. In addition, in their sensitivity analysis (Theorem 3.1,
2nd result), the change in accuracy due to group distribution shift, is a constant independent of the
amount of distribution shift (in the case of perfect fairness). We prove a stronger Lipschitzness
guarantee, where the excess risk goes to 0 as distance between the distributions becomes arbitrarily
small. Furthermore, they do not provide a description of the Randomized Fair BOC in the case
of discrete domains, whereas we provide a complete characterization of the same, show that it is
minimally random. In addition, our algorithm (to output the Fair BOC on a distribution) is very
simple and efficient, running in O(|X’|log(]X|)) time, while their algorithm solves a large linear
program with O(]X|) constraints in O(]|X|) variables, requiring a much higher complexity.

Chen et al.|[2024] contains a similar sensitivity analysis as Xian and Zhao|[2024], for the same set-
ting except binary group and binary class. Unlike us, they do not deal with adversarial distributions
shifts, but only label distribution shifts and/or group distribution shifts. In addition, our setups are
fundamentally different, theirs being the continuous case, and ours being the discrete case. More-
over, their sensitivity analysis (Theorem 2) is looser, and has an extra additive error term, unlike
ours and that of Xian and Zhao| [2024]]. Besides, they do not deal with the case of perfect fairness,
and require 6 > 0. |Chen et al.|[2022] also consider fairness under distribution shift. Their result is
fundamentally different, and essentially shows that the fairness of a fixed hypothesis class on two
similar distributions is similar. This is essentially what we show in Claims [2J3|f7] however, they only
deal with label and covariate shifts, while we tackle the more general case of adversarial distribution
shifts.

B Missing Results from Section

B.1 Non-Robustness of the Deterministic Fair BOC (approximate fairness)

We show through the example below that the non-robustness phenomenon highlighted in Claim 1
also holds when we only require approximate faimessﬂ In particular, this can hold in the case where
sensitive group populations are highly imbalanced, for example when the mass of group A is much
larger than the mass of group D, i.e., P(A4) > P(D). We set § = 0.25, and slightly modify the
example in Claim 1, where we skew the probability mass towards Group A (in Claim 1, the group
masses are balanced).

Claim 4 (Non-Robustness of Deterministic Fair BOC (approximate fairness)). There exist distri-
butions P, P' with TV (P, P') = €, such that the deterministic DP-Fair BOC’s f, ' on P, P’,
respectively, satisfies |Acc(f, P) — Acc(f', P")| > Q(1).

Proof. Consider a distribution P, where P, S(x1,A) = (0.4,1) — P,S(z1,D) = (0.1,1) —
P,S(z2,A) = (0.4,0) — P,S(z2,D) = (0.1,0) Consider the (deterministic) classifier f, with
f(z1,A) = f(x1,D) = 1, f(x2,A) = f(x2, D) = 0. f satisfies DP, and Acc(f) = 1. Consider
the neighboring distribution P’ differing only on (z1, D), (22, D), as follows.

P',S(z1,D) = (0.1 +0.05,1) — P’, S(x2, D) = (0.1 — 0.05,0)

If we apply f on P’, it does not satisfy approximate DP for any § < 0.25, even though TV (P, P’) is
small (0.05). There are only 2 deterministic classifiers satisfying approximate DP for any § < 0.25,
either the constant 1 classifier f1, or the constant 0 classifier fy, with Acc(f1) = 1/2 + 0.05, and
Acc(fo) = 1/2—0.05. Hence, the difference in accuracy of the deterministic (approximate) DP-Fair
BOC on closeby P, P’ is almost 0.5, demonstrating non-robustness. O

B.2 NP-Completeness of Deterministic Fair Bayes Optimal Classifiers

Claim 5 (NP-Completeness of Deterministic DP-Fair BOC). Given a distribution P, the problem
of computing the deterministic DP-Fair BOC is NP-complete.

"We define a -approximately fair classifier as follows, “If 7 denotes selection rate, a classifier f is J-
approximately DP-fair if |r(f, A) — r(f, D)| < §”.
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Proof. We formalize the deterministic DP-Fair BOC decision problem as follows: Given a proba-
bility distribution PP and a score function S over a domain & x Z and an accuracy «, determine
whether there exists a deterministic fair classifier with accuracy at least a.

It is easy to see that the above problem is is in NP since one can guess the 0-1 classification for each
item in the domain and check in polynomial time that the resulting classifier is fair and satisfies the
accuracy bound by verifying two linear inequalities. We now show that the problem is NP-hard via
a polynomial-time reduction from the NP-complete Partition problem, which we state below.

Partition problem: Given a set S of n positive integers a1, as, ..., a, summing to 2s, determine
whether there exists a subset of .S that sums to s.

The reduction from Partition to the deterministic DP-Fair BOC problem is as follows. Given an
instance I of Partition, we create an instance I’ of the deterministic DP-fair BOC problem. Instance
I’ has n + 2 items—(x1, A) with mass 1/4 and score 1, item (z2, A) with mass 1/4 and score 0,
and then n items (y;, D) with mass a;/(4s) and score 0.5—and ask whether there is a deterministic
DP-Fair classifier with accuracy o > 3/4. It is clear that there are at most 3 kinds of deterministic
DP-fair classifiers: (i) the all-0 classifier that classifies all items as 0, (ii) the all-1 classifier that
classifies all items as 1, and (iii) if and only f I is a yes-instance with .S partitioned into S; and S2
of equal sums, then the classifier that accepts exactly one of (x1, A) or (z2, A) and accepts all items
in (y;, D) with a; € S7 and rejecting all items in (y;, D) with a; € S5. The first two classifiers have
accuracy 1/2 while the third, if it exists, has accuracy 3/4 if (21, A) is accepted and less than 3/4
otherwise. Thus, there exists a deterministic Fair BOC for instance I’ with 3/4 accuracy if and only
if I is a yes-instance for the Partition problem. Clearly, the reduction is of time polynomial in the
size of the deterministic DP-Fair BOC instance, thus establishing its NP-completeness.

Since determining the existence of a deterministic DP-fair classifier with accuracy at least 3/4 is NP-
complete it follows immediately that finding a deterministic DP-Fair BOC is also NP-complete. [

B.3 Maximal Accuracy Gain for Randomized Classifiers

Consider the example in Claim|[1} and consider the following randomized classifier f/, where
f/(xla A) = f/(xla D) =1, f/(x% A) = 46; f/(x27 D) =0.

It is easy to see that f’ satisfies DP on P’, and Acc(f’) = 1 — e. Hence, the randomized DP-fair
BOC improves over the accuracy of its deterministic counterpart by 0.5 — 2¢, where € > 0 can be
made arbitrarily small (so the gain in accuracy approaches 0.5). In the following claim, we argue
that this example is tight, i.e., we cannot hope to achieve an improvement over 0.5.

Claim 6 (Bound in Accuracy Gain for Randomized classifiers). Given any distribution P, the dif-
ference in accuracy of the Randomized and Deterministic DP-Fair BOC’s on P is strictly lesser than
0.5.

Proof. Note that the constant classifiers fo, f1 always satisfy DP, and Acc(fp) = 1 — Acc(f1).
Hence, the minimum accuracy of the optimal DP-fair deterministic classifier is 0.5. The maximum
accuracy of its randomized counterpart is bounded by 1, hence bounding the difference in accuracy
by 0.5. It suffices to show that these 2 events cannot occur simultaneously. Note that if some
classifier has perfect accuracy, then all cells in the domain have score of either O or 1. In particular,
this also holds if the optimal DP-fair randomized classifier has accuracy 1. However, observe that if
we randomize over any cell with score of 0(1), we are accepting (rejecting) a part of it, leading to a
loss in accuracy. This implies that any classifier with accuracy 1 has to be deterministic, concluding
our proof. O

B.4 Completion of the Robustness Analysis for Demographic Parity

In this section, we present the argument that was deferred in the proof of Theorem[I] This argument
concerns a better upper bound on |25(¢) — 1| than the vacuous bound of 1, where ¢ is the element
that is split by the threshold corresponding to the classifier f. Notice that since by assumption, f
splits ¢ in the middle, we know that there is a portion of ¢ that is rejected. Hence, the weighted
score of a merged cell involving ¢ (say C,) has score below the threshold of 0.5. Let C; contain
some element ¢ from group A. We are able to bound the score of S(g) by the following chain of
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inequalities.
S(C) <05 = S(@P(D)+S(H)P(A) <0.5(P(D) +P(A))
= S(g)P(D) < 0.5(P(D) + P(A))
P(A)

1< —+= 1

= P(D) (1
Since f splits ¢ in the middle, there is also a portion of ¢ that is accepted. Hence, the weighted
score of a merged cell involving ¢ (say C,) has score above the threshold of 0.5. Let C; contain
some element ¢ from group A. We are able to bound the score of S(¢q) by the following chain of
inequalities.

= 25(q) -

S§(Cy) >05 = S(QP(D)+S{t)P(A) >0.5(P(D)+ P(A))
—  S(q)P(D) +P(A) > 0.5 (P(D) + P(A))
= S(¢)P(D) > 0.5(P(D) — P(A))
= 2S(q)—1>—77j(g)) 2
Combining Equations[T]and 2] we get
250 - 11 < 5 ®
Using Equation 3] we get that
DP 35 5 1 5
Ace(f3",P) — Ace(fp/, P')| < de (min(ﬁ(A),ﬁ/(A)) + o )79 = +5
1
o (min(ﬁ(A)Js’(A)) " min(P(D), (D) ) )+ 0e
),P

max (P(A),P'(A)) max( (A
<de|1l 4
<oc(1+ i) o oy) @
The last equation follows by monotonicity. This completes the missing argument in the proof of
Theorem [T}

B.5 Proof of Lemmalll

Proof. We will prove the desired claim for n equal to number of elements g for which P(q) # P(¢).
Our proof is by induction on n. For the base case, we have n = 0, in which case P = P’ and the
claim trivially holds. For the induction step, let a be an element such that P(a) # P’(a). Suppose
P(a) > P’(a) and a is in group A; the arguments for the other scenarios are analogous. We consider
two cases. The first case is when there exists b € A such that P(b) < P’(b). We define P as the
same as P except that

P(a) = P(a) — min{P(a) — P'(a), P'(b) — P(b)}

P(b) = P(b) + min{P(a) — P'(a), P(b) — P'(b)}.
Note that either P(a) = P’(a) or P(b) = P’(b), which implies that the number of elements for
which P and P’ differ is less than n. Furthermore, P(A) = P(A) and P(D) = P(D). By
induction, there exist a sequence of m < n distributions P="Po,Pi,...,Pm =P satisfying the
decomposability and monotonicity properties. Appending the elementary transition P — P to the

above sequence yields the desired sequence for P and P’ with the decomposability and monotonicity
properties.

The second case is when there does not exist any b € A such that P(b) < P’(b). So, we have
P(A) > P'(A). Furthermore, there exists b € D such that P(b) < P’(b). We define P in
the same way as for the first case. Again, we have that either P(a) = P’(a) or P(b) = P'(b),
which implies that the number of elements for which P and P’ differ is less than n. Furthermore,
P(A) > P(A) and P(D) < P(D). By induction, there exist a sequence of m < 7 distributions
P ="Po,Pi,....,Pn =P satisfying the decomposability and monotonicity properties. Again,
appending the elementary transition P — P to the above sequence yields the desired sequence for
P and P’ with the decomposability and monotonicity properties. O
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B.6 Proof of Claim[2]

Proof. We first establish the desired statements for the special case where the transition from P
to P’ is elementary in that the only difference between the two distributions is that there are two
elements a and b that have ¢ more mass and ¢ less mass, respectively, in P as compared to P’ (all
other elements have the same mass in the two distributions). At the end, we invoke Lemma |1| and
transitivity to establish the general claim.

Accuracy: Divide the domain into 4 parts based on whether a point falls in categories TP, FP, TN,
or FN according to f. Denote the probability mass of elements in category E under f by P(E).
We know that Acc(f,P) = P(TP U TN). Doing a simple case by case analysis, we observe that
in the worst case, a belongs to TP U TN, and b belongs to FP U FN. This transition leads to a loss
in accuracy of €, i.e., Acc(f,P') = Acc(f,P) — e. We note that it is enough to consider a loss in
accuracy, since we can reverse the roles of the distributions and use the same argument for gain as
that for loss.

Demographic Parity: First we notice the following

|Unfpp(f, P) = Unfop(f, )| = llra(f,P) = tp(f, P)| = [ra(f, P") — ro(f, P
< |(ra(f,P) = rp(f,P) = (ta(f,P') — rp(f, P))]

(Triangle inequality)
= [(ra(f,P) —ra(f.P") + (cp(f, P') —1p(f,P))l
< |IA(f7P)_rA(f7P/)|+|rD(f77)/)_rD(f,7))| %)

The above argument breaks up the change in unfairness into two terms: (i) Ary, =
[ta(f, P) —ra(f,P’)|, which is the difference in selection rates of f for P, and P’ on A and (ii)

Arp 2 [tp(f,P) —rp(f,P")|, which is the difference in selection rates of f for P and P’ on D.

We proceed to bound Ar 4, and an identical argument can be used to bound Arp. In our argument,
we divide the domain into 4 parts based on the group membership and labeling according to f. Let
the probability mass of elements in group z with label y under classifier f be denoted by P(z, f,).
If a, b lie in the same group z then P(A) remains unchanged, and it is easy to see that the maximum
value of Ary is 74y, when P'(A, f1) =P(A, f1) e Incasea € A, and b € D, then P'(A) =

P(A) — e. We know that P'(A) = P'(4, f1) + P'(4, fo). Either a lies completely in (A, f1),
completely in (A, fy), or in both (if we are randomizing over the cell containing a). We first consider
the first case, where P’ (A, f1) = P(A, f1) — e

[ra(f,P) —ra(f, P

’P(A»fl) P(A, f1) — €

P(A) P(A) —¢
_ ’Pm)e — P4, fi)e
P(4) (P(4) o)
1
<e P~

We now consider the second case, where P’(A, fy) = P(A fo) —e.
P(A, A
_ ’ P(A,fl €
| P(A) (P(A) — )
1
“|Pa) e
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It is easy to see that in the third case, where a lies in both (A, f1) and (A, fy), Ara is bounded by
the max value of Ar4 of cases 1 and 2.

Here we argued for when A loses mass. Using symmetry, we can similarly argue the case where A
gains mass, i.e.,a € D, and b € A, leading to P'(A) = P(A) + e. Hence, we conclude that

1
_ NE<
ta(f,P) —ra(f, P < e <min(7>(A),7>’(A))> ©
Also, here we argued for group A, and an identical argument for D shows that
1
— N <
rp(£,P) —ro(£, P < e (minm(D),P'(D)) v
Plugging Equations[6and [7)into Equation [5} we get that
|UIlpo(f7 P) - UIlpo(f, ,P/)‘ <

‘ <min<P<Al>,P'<A>>> e <min<7><Dl>,7>'<D>>>

From elementary to arbitrary: Consider a general transition of distance ¢ from P to P’. We
invoke Lemma 1] to obtain intermediate distributions {P;} with TV (P;_1, P;) = ¢; satisfying the
decomposability and monotonocity properties. We apply the above proof for each elementary tran-
sition P;_; — P; of mass ¢;. For accuracy, we derive

|Acc(f, P) — Ace(f,P")| < Z |Acc(f, Pi—1) — Acc(f, P;)|

K2
< ZQ‘
:e.Z

For Demographic Parity, we derive
|Unfioe(f, P) — Unfpe(f, )| < > [Unfpp(f, Pi—1) — Unfpe(f, Pi)]

1 1
= Zei (min(Pm(A)ﬂ’i(A)) i min(Pil(D)77)i(D))>

K2

1 1
=26 (7@ mrorFoy)

1 1
= : + — ;
€<mm<7><A>,7>f<A>> mm<7><D>,7>f<D>>>
where the second inequality follows from monotonocity and the last equation follows from decom-
posability. This completes the proof of the claim. O

B.7 Proof of Lemmalf2]

Proof. The contribution to accuracy of an element ¢ is given by

P(9)S(q)f(q) + Pla)(1 = S(9))(1 = f(q) = 2P(q)S(q) f(q) + P(q) — P(¢)S(q) — P(q) f(q)

If P changes by € and f(q) changes by Af(q) (and remains constant elsewhere), then we can split
the process into two parts: (i) f(q) changes by Af(q) (and remains constant elsewhere) while P
remains constant, and (ii) P changes by € while f remains constant. We consider each of the parts.

If P remains fixed, and f(q) changes by Af(q) to give f’(g), then change in accuracy on ¢ (and
also overall accuracy) is given by

12P(q)S(9)Af(q) = P(9)Af(9)| = IP(q9)(25(q) — 1)Af(q)]

If P changes by €, and f’ remains constant, then by Claim [2| the change in accuracy is bounded by
€. Thus, the total change in accuracy is bounded as follows.

|Acc(f,P) — Acc(f', P)| < [P(0)(25(q) — 1)Af(q)| + e

16
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C Equal Opportunity and Predictive Equality (continued)

C.1 Fair Bayes Optimal Classifier

When discussing the DP-Fair BOC, we considered mass-threshold classifiers 7;, that select C.(t),
and reject C, — C,(t), for both z = A, and z = D. T; applies the same threshold ¢ to both groups A

and D. In this section, we consider groupwise mass-threshold classifiers 7; A.tp that apply different
thresholds t 4 and ¢ to groups A and D respectively.

Denote the True Positive rate of a classifier f restricted to a cell C by TPR(f(C)). Given r € (0, 1],
there is a unique classifier 77, ¢, such that TPR(T;, +,,(Ca)) = TPR(T;, +, (Cp)) = r. Denote
this classifier by f,.. Given r = 0, 77 4,tp need not be unique as there could exist cells with score
1. In that case, we define f; to be the unique groupwise mass-threshold classifier accepting exactly
the cells with score 1. Denote the groupwise thresholds of f, by 7 and r” respectively, i.e., f, =
Toa b . We now introduce some terminology, before detailing the EO-Fair BOC as characterized in
Agarwal and Deshpande| [2022]].
Definition 9 (TP-Boundaries). Recall the set of score-boundaries Z. We then define the set of TP-
boundaries Ztp as

Irp ={r|r* €T, orr? € T},
Irp essentially consists of all the true positive rates r, such that, the corresponding groupwise
threshold classifier f, = ﬁ-A,rD has a threshold at a point in the set of score boundaries Z.

As with DP, we define the notion of a merged cell, but notice that it differs from the notion of merged
cell in the case of DP.

Definition 10 (Merged cell (EO)). Consider r; € Zp, and define a merged cell C;, where
Ci = Alfr,) — A(fri0);

where r;_ denotes the element in Z7 p preceding r;.

Characterization Given a distribution P over X x Z x ), the EO-Fair BOC fE° is given by the
mass-threshold classifier is given by the group wise mass-threshold classifier f,., where v’ =r; € 7
is the unique ¢ such that S(C;) > 0.5, and S(C;+) < 0.5, where r; denotes the element in Zyp
after r;.

C.2 Robustness to Adversarial Distribution Shift

We study the robustness of the EO-Fair BOC to adversarial distribution shift. We show that given
two similar distributions P, P’, the accuracy of the EO-Fair BOC on the respective distributions
is similar (satisfies local Lipschitzness). Before proving the main result (Theorem [2), we prove
Claim 3] which analyzes the change in unfairness, with respect to EO, of a fixed classifier due to a
distribution shift. Such a property is useful when we want a guarantee that if we train a classifier on
the corrupted distribution P’, the performance of the classifier on the actual distribution P will be
similar to that on P’.

Proof of Claim[3] As in the proof of Claim [2] it follows from Lemma [T and transitivity that it is
enough to prove the statement of the claim for elementary transitions. We consider a transition
a — b of mass e. We first derive

|UIleo(f, P) - UnfEO(f> ,P/)‘ = ||TPRA(f7 P) - TPRD(fﬂ ,P)‘ - |TPRA(f7 P/) - TPRD(f7 P/)||

(Triangle inequality)

= |(TPRA(fa P) - TPRA(f7 Pl)) + (TPRD(fa Pl) - TPRD(fa P))|
< |TPRA(f,P) — TPRA(f,P’)| + [TPRp(f,P') — TPRD(f,P)(|8)

This breaks up the change in unfairness into two terms, which correspond to the difference in true
positive rates of f for P and P’ on A, D respectively (denoted by ATPR 4, ATPRp). Divide the

17
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domain into 8 parts based on the group membership and whether a point falls in TP, FP, TN, or FN
according to f. Denote the probability mass of elements in group z in category F under f by P(E.).
We know that P(A) = P(A,1) + P(A4,0) = (P(TP4) + P(EN4)) + (P(TN4) + P(FP4)).

We proceed to bound ATPR 4, and an identical argument can be used to bound ATPRp. If a, b lie

in P(A, 1), it remains unchanged, and it is easy to see that the maximum value of ATPR 4 is ﬁ,

when P'(TP4) = P(TP4) £ €. Incasea € (A,1),and b ¢ (A, 1), then P'(4,1) = P(A,1) —e.
We know that P'(A,1) = P'(TP4) + P/(FNy4). Either a lies completely in TP 4, completely in
FNy4, or in both (if we are randomizing over the cell containing a). We first consider the first case,
where P/(TP4) = P(TP4) — e.

ITPRA(f, P) — TPRA(f,P")| = _

P(TPA)P(A,1) — P(TP4)e — P(TP4)P(A,1) + P(A, 1)e
P(A,1)(P(A,1)—¢)

P(A,1)e — P(TP4)e

P(A,1)(P(A,1)—¢)
P(FN4)

P(A, 1) (P(A,1) —¢)
1

P(A,1)—e€

i

I
[0}

=€l

(A1)

1
=€ (min(P(A, 1), P'(4, 1)))
We now consider the second case, where P'(FN 4) = P(FN4) — e.
P(TP4) P'(TP,)
P(A)  P(A1)
P(TP4)  P(TPy4)

|TPRA(f7 P) - TPRA(fa P/)| =

P(A, 1)  P(A 1) —e
P(TPA)P(A,1) — P(TP4)e — P(TP4)P(A,1)
P(A,1)(P(A,1) —e)

B P(TPa)e
| P(A 1) (P(A 1) —e)
1

S PA T —
B 1
- 6’@(/1,1)‘

1
se€ (min(P(A, 1), P/(A, 1))) ©)

It is easy to see that in the third case, where a lies in both TP 4 and FN 4, ATPR 4 is bounded by the
max value of ATPR 4 of cases 1 and 2.

Here we argued for when (A, 1) loses mass. We can similarly argue the case where (A, 1) gains
mass, giving us an identical bound. Also, here we argued for group A, and an identical argument for
D shows that

[TPRA(f,P) = TPRA(f, P")| < € <mm(7><p 11> P'(D 1>>> 1

Plugging Equations [9]and [I0]into Equation [8] we get that

, 1 1
[Unfgo(f, P) — Unfeo(f, P')| < € (min(P(D7 1), P (D, 1))> te <min(7>(D, 1), P'(D, 1)))
0
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660 Now we prove our main result (Theorem [2)).

661 Proof of Theorem 2] Following the proof of Theorem [T} by Lemma[I]and transitivity, it suffices to
es2 show the theorem statement for the case where the transition from P to P’ is elementary in that the
es3 only difference between the two distributions is that there are two elements a and b that have € more
e64 mass and € less mass, respectively, in P as compared to P’ (all other elements have the same mass
665 in the two distributions). So, in the remainder of the proof, we only consider elementary transitions.

es6 Consider the transfer of € mass from a to b in a continuous manner. During this process, either the
667 cell corresponding to element a will monotonically increase in score or monotonically decrease in
668 scor The same holds for the cell corresponding to element b. The scores of all other cells will
669 remain the same. In the following argument, we assume that the score of the cell of a decreases
670 monotonically and that of b increases monotonically. All of the arguments are analogous for the
671 remaining three cases.

672 Let f denote the EO-fair BOC for the current distribution P at any instant in this mass transfer
673 process ending in distribution P’. As the mass transfer proceeds, we analyze how the EO-fair BOC
674 changes from f%o to f5?. We consider the largest mass transfer de until one of the two following
675 events occur.

676 1. Equal-score event: The cell of a has the same score as the adjacent cell lower in the sorted
677 order or the cell of b has the same score as the adjacent cell higher in the sorted order.
678 2. Threshold event: The score of a merged cell containing a or b becomes exactly 0.5.

679 Note that by the choice of d¢, during the transfer Je, all the cells remain in the same order in both
680 groups; furthermore, all masses and scores of all cells other than the ones containing a or b remain
es1 the same during the transfer. By Claim

5Unon = ‘Unon( %O7P) — Ul’leo( %O,IPIM

<o (pramy * 70

sz Since Unfgo(fE°(P)) = 0, we know that 6Unfgpo =  Unfeo(fE°,P") =
ss3 |TPRA(fEC,P’) — TPRp(fE°, P’)|. Consider the cell ¢ that is split by the threshold corre-
e84 sponding to f (for now, assume g € D). Since neither the equal-score event nor the 0.5-score
685 event occur, we see that after the transition, fgo has §Unfgg difference in TPR between groups.
686 1o modify f%o — fg(?, we therefore need to move to move the boundary at ¢ so that TPR in both
687 groups align and EO is satisfied (the classifier f remains the same apart from its action on q).
ess  The change in function (JAf(q)|) of element ¢ is bounded by §Unfgg %, after scaling (since
eso  P(D,1)0Unfgo = |Af(q)|P(q)S(q)). If f' denotes the EO-Fair BOC for the distribution at the
690 end of the de mass transfer (just prior to any of the two events), then by Lemma [2} the change in
691 accuracy of the optimal fair classifier is bounded by

|Ace(f, P) = Ace(f", P < [P(q)(25(q) — 1)Af(q)| + de

1 1 P(D,1)[(28(q) — 1)
< de <min(7>(A, 0, P(A4,1)  min(P(D, 1), P(D, 1))>

S(q)
(11)
) 1 P(D)
< de <min('P(A, 1),P'(A 1)) + min(P(D,1),P'(D, 1))) S(q)(l;r)&’

692 where the last equation follows by monotonicity. Note that % can potentially blow up, and we

693 would like to bound it. Notice that since by assumption, f splits g in the middle, we know that there
94 is a portion of ¢ that is accepted. Hence, the weighted score of a merged cell involving g (say C,) has

81n case the cell corresponding to a has score of 0 or 1, it’s score will remain unchanged, and this case is
trivially covered by our argument.
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695 score above the threshold of 0.5. Let C; contain some element ¢ from group A, and denote length
696 of group z in C, by [.. Since the TPR of both components are equal, we know that

P(A)laS(t) _ P(D)IpS(q)

= 13
PAT)  PD.) -
697 Also, since S(C,) > 0.5, we know that
P(A)l P(D)l

PAYLAS(H) + P(D)IpS(q) > DA PN (14)

98 Combining Equations[I3] and [14] and after a bunch of simplification, we get that

1 2P(1) P(A1)
< - 15
8@ = P(D.1)  P(D, 1S )
2P(1)

16
= P01 (16)

seo  Where the second equation follows because S(¢) > 0. Plugging Equation |16|into Equation we
700 get that
1 n 1
min(P(4,1),P'(4,1)) = min(P(D, 1), P'(D, 1))
1 1
< "1
<o (AT AT DDy PP )+ 6

(monotonicity)

|Acc(f, P) — Acc(f', P")| < de < ) 2P(1) + de

701 The handling of the equal-score and threshold events is identical to that in the proof of Theorem [I]
702 We repeat here for convenience.

703 1. Equal-score event: If the cell of a has the same score as the adjacent cell lower in the sorted
704 order, then we swap the two cells so that the cell of a is lower in the order. Similarly, if the
705 cell of b has the same score as the adjacent cell higher in the order, then we swap the two
706 cells so that the cell of b is higher in the order. We update the classifier f and note that this
707 change has no impact on the accuracy of f.

708 2. Threshold event: The score of a merged cell containing a or b becomes exactly 0.5. We
709 include the merged cell in the classifier f, again without changing accuracy.

710 Thus, between any two occurrences of these events, the change in accuracy is bounded by an amount
711 proportional to the mass transfer; when we reach these occurrences, the mass transfer is paused, the
712 BOC changes without any change in accuracy. Furthermore, at every occurrence of the event, one of
713 these three events happen: the cell containing @ moves down in the order, the cell containing b moves
714 up in the order, or an additional merged cell is placed above the threshold. Since the number of times
715 these events can occur is upper bounded by the number of cells in the two groups, this process is
716 finite. Therefore, adding over all the de mass transfers, we obtain the desired bound on the change
717 in accuracy between the BOC’s for P and P’, thus completing the proof of the theorem. O

718 C.3 Predictive Equality

719 We can obtain analogous results for Predictive Equality from the same proof techniques as that of
720 Equal Opportunity (since we can just reverse the roles of the labels 0 and 1 in EO to get results for
721 PE). Hence, we only discuss the proofs for EO, and state the analogous results for PE below without
722 proof.

723 Claim 7 (PE Shift for a Fixed Hypothesis). Given distributions P, P’, such that TV (P, P’) < ¢,
724 and any hypothesis f, it holds that

, 1 1
|Unfer(£,P) = Unfer(f, P)] < € (min(P(A,O),P’(A,O)) * min(P(D,O),P’(D,O))) :

20



725
726

727

728

729

Theorem 3 (Robustness of PE-Fair BOC). Given distributions P, P’, such that TV (P, P') = €, we
have that

PE PE ! , 1 1
|Acc(fFE, P) — Acc(fpF. P')| < e <1+2max(73(0),7> (0)) <min(7>(A,0),7>’(A,0)) + mm(P(D’O)y,(D’O)))) ,

where f£F, [R5 are the PE-Fair BOC’s on P, P’ respectively.
Corollary 3. Given distributions P, P’, such that TV (P, P’) = €, we have that

PE . .( tPE f 1 1
|Acc( 5, P) —Acc( P,,P)| < 2¢ <1 + max(P(0), P'(0)) (min(P(A,O),P’(A,O)) + min(P(D,O),P’(D,O)))) ,

where fgo, fg? are the EO-Fair BOC’s on P, P’ respectively
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