
Optimal Fair Learning Robust to Adversarial Distribution Shift

Anonymous Author(s)

Affiliation
Address
email

Abstract

1 Previous work in fair machine learning has characterised the Fair Bayes Optimal
2 Classifier (BOC) on a given distribution for both deterministic and randomized
3 classifiers. We study the robustness of the Fair BOC to adversarial noise in the
4 data distribution. Kearns and Li [1988] implies that the accuracy of the deterministic
5 BOC without any fairness constraints is robust (Lipschitz) to malicious noise
6 in the data distribution. We demonstrate that their robustness guarantee breaks
7 down when we add fairness constraints. Hence, we consider the randomized Fair
8 BOC, and our central result is that its accuracy is robust to malicious noise in the
9 data distribution. Our robustness result applies to various fairness constraints—
10 Demographic Parity, Equal Opportunity, Predictive Equality. Beyond robustness,
11 we demonstrate that randomization leads to better accuracy and efficiency. How-
12 ever, we show that the randomized Fair BOC is nearly-deterministic, and gives
13 randomized predictions on at most one data point, hence availing numerous bene-
14 fits of randomness, while using very little of it.

15 1 Introduction

16 The effectiveness of machine learning models has resulted in improved efficiency across multiple
17 domains but has also raised concerns about their fairness and possible amplification of biases in
18 their training data [Barocas et al., 2019]. When machine learning models are used to make de-
19 cisions that skew the distribution of important economic resources or reinforce stereotypes, they
20 compound disparities to cause social and economic harm. Fair classification has been an important
21 topic of research, and binary fair classification where the model makes yes/no decisions algorithmi-
22 cally is a simple yet challenging setting to study foundational questions in optimal fair classification
23 [Menon and Williamson, 2018b]. In group-fair classification, each data point has certain sensitive
24 attributes indicating the demographic group(s) to which it belongs (e.g., race, gender). Popular no-
25 tions of group-fairness such as statistical or demographic parity, equal opportunity, equalized odds,
26 and predictive parity are all motivated by the binary fair classification setting. Demographic parity
27 prescribes the positivity rates to be equal across different groups (e.g., race, gender), whereas equal
28 opportunity prescribes the true positive rates to be equal across different groups [Dwork et al., 2012,
29 Hardt et al., 2016]. Previous work has looked at various trade-offs between accuracy and fairness as
30 well as the difficulty in satisfying multiple fairness constraints simultaneously [Celis et al., 2020].
31 Previous work has also mathematically characterized the Fair Bayes Optimal Classifier (BOC),
32 namely, the optimal deterministic classifiers for maximizing accuracy subject to group-fairness con-
33 straints based such as demographic parity and equal opportunity [Menon and Williamson, 2018a,
34 Chzhen et al., 2019, Celis et al., 2021, Zeng et al., 2022]. Pre-processing or re-weighing for training
35 data imbalances, in-processing by fairness-constrained training loss, and post-processing a model’s
36 predictions for balanced outcomes are three known ways to realize fair and accurate classifiers in
37 practice [Kamiran and Calders, 2012, Agarwal et al., 2018, Barocas et al., 2019].

38 Biased or corrupted training data is a primary cause of unfairness in model predictions or outcomes.
39 Moreover, robustness of a machine learning model under bias or corruption in the data distribution
40 has been a more pragmatic concern that predates the research on fair machine learning. Learning
41 robust classifiers is important because training and test distributions are not always identical and
42 the training data may contain noise and malicious corruptions during data collection, curation, and
43 annotation. Robustness of fair classifiers under bias/shift in the data distribution is a well studied
44 issue in fair machine learning literature. Akpinar et al. [2022] empirically study the robustness of
45 BOC and Fair BOC on synthetic data distributions and provide a sandbox tool for stress-testing fair
46 classifiers. Sharma et al. [2023] and Ghosh et al. empirically study robustness of fair classifiers
47 under data bias on semi-synthetic real-world datasets (i.e., real-world datasets with synthetically
48 injected bias/shift). In both these papers, Exponentiated Gradient Reduction (EGR) or ExpGrad
49 [Agarwal et al., 2018] stands out for its better robustness under data bias/shift, and it is inherently a
50 randomized classifier.

51 A particularly compelling and illustrative practical example for fair binary classification with mali-
52 ciously corrupted training data is that of hate speech classifiers. Hate speech classifiers are known
53 to exhibit biases against the same vulnerable demographics they were supposed to protect in online
54 forums. For example, text in African American English (AAE) has higher likelihood of being mis-
55 reported as hate speech and even proper mentions of group identifiers such as ‘gay’ or ‘black’ get
56 misreported as toxic or prejudiced. Moreover, the training data taken from online forums that is used
57 to train hate speech classifiers contains societal biases of novice human annotators as well as mali-
58 cious attempts made to bypass existing classifiers or filters used in data collections and annotation
59 process [Davani et al., 2023, Davidson, 2023]. Maliciously corrupted training data makes it diffi-
60 cult to train fair hate speech classifiers with robust accuracy and fairness guarantees that would be
61 retained after real-world deployment [Davani et al., 2023, Davidson, 2023, Hartvigsen et al., 2022,
62 Harris et al., 2022].

63 Classification under malicious noise is a theoretically challenging direction on its own, even without
64 any fairness constraints. Balcan and Haghtalab [2020] survey research directions that originate
65 from the work of Kearns and Li [1988], but focus on the hardness of learning linear classifiers
66 under malicious noise and recent results that get around it. Unlike previous works on learning from
67 malicious noise that consider any hypothesis class or a specific one such as linear classifiers, we
68 consider the hypothesis class of all binary classifiers, deterministic as well as randomized. Although
69 previous work in fair machine learning has extensively studied the Fair BOC and fair pre-/in-/post-
70 processing methods to achieve best possible fairness-accuracy trade-offs, their fairness and accuracy
71 guarantees may not hold when training data is biased or contaminated and does not match test data.
72 Adversarial or unknown bias in data makes it important to study the robustness of fairness and
73 accuracy guarantees of the Fair BOC.

74 The seminal work of Kearns and Li [1988] shows the robustness (of accuracy) to malicious noise of
75 any deterministic hypothesis class (without fairness constraints) in terms of a Lipschitz condition,
76 i.e., given two similar distributions, the accuracy of the optimal classifier on each distribution is also
77 similar. In particular, their robustness guarantee also carries over to the deterministic BOC. In con-
78 trast, more recent findings by Konstantinov and Lampert [2022] reveal a concerning vulnerability:
79 incorporating fairness constraints can render certain deterministic hypothesis classes non-robust to
80 adversarial noise. This gap in understanding necessitates an investigation into the robustness of Fair
81 BOC’s under adversarial distribution shift, which in turn is the focus of this paper.

82 1.1 Overview of Our Results

83 We summarize our key contributions.

84 • We demonstrate in Claim 1 (Section 3.1) that the deterministic Fair BOC is not robust to
85 adversarial noise, corroborating Konstantinov and Lampert [2022].

86 Our main results prove the robustness of randomized Fair BOC’s.

87 • We prove in Theorems 1 (Section 3.2), 2 and 3 (Section 4) that the accuracy of the ran-
88 domized Fair BOC is robust to malicious noise across three popular fairness notions (De-
89 mographic Parity, Equal Opportunity, and Predictive Equality). This robustness is charac-

90 terized by a (local) Lipschitz property, where the Lipschitz constant depends on the distribution [Yang et al., 2020].
91

92 • Toward this end, we first prove in Claims 2, 3, and 7 (Sections 3.2 and 4) that a fixed hy-
93 pothesis maintains comparable accuracy and fairness across two similar distributions. This,
94 however, does not imply our main results since the Fair BOC may change significantly for
95 neighboring distributions. We establish the Lipschitz property using a more sophisticated
96 analysis of the specific structure of the randomized Fair BOC.

97 In addition to robustness, randomization confers multiple advantages.

98 • Claim 1 demonstrates that the Randomized Fair BOC can outperform its deterministic
99 counterpart in accuracy by $0.5 - \epsilon$ (for any $\epsilon > 0$). We complement this with a tight-
100 ness result in Claim 6 (Appendix B).
101 • The Randomized Fair BOC can be computed in polynomial time, whereas we prove in
102 Claim 5 (Appendix B) that computing the deterministic Fair BOC is NP-complete.

103 Randomization is a very natural and useful resource for fairness as ties are often broken by a random
104 coin toss. However, when it brings arbitrariness to critical decisions, it needs to be used judiciously
105 and sparingly [Creel and Hellman, 2021, Rosenblatt and Witter, 2024, Cooper et al., 2024]. A key
106 property of the randomized Fair BOC is that it is *nearly deterministic*, being randomized at most on
107 a single point in the domain and deterministic elsewhere. Thus, in a sense, we have the best of both
108 worlds, preserving the benefits of randomization, while using very little of it.

109 We present the problem formulation in Section 2. More detailed comparison with most relevant
110 previous work is given in Appendix A, and we conclude in Section 5.

111 2 Problem Formulation

112 We are given a discrete distribution \mathcal{P} over $\mathcal{X} \times \mathcal{Z} \times \mathcal{Y}$, where $\mathcal{Z} = \{A, D\}$ represents the protected
113 group membership (A denotes the advantaged group, and D denotes the disadvantaged group)¹, \mathcal{X}
114 represents all the other features, and $\mathcal{Y} = \{0, 1\}$ represents the binary label set (we adopt the stand-
115 ard convention of associating the label 1 with success or acceptance). A randomized classification
116 rule f is a function $f : \mathcal{X} \times \mathcal{Z} \rightarrow [0, 1]$, where $f(x, z)$ denotes the probability of a feature vector or
117 instance $(x, z) \in \mathcal{X} \times \mathcal{Z}$ being mapped to 1. A deterministic classifier is defined similarly, however
118 the output of $f(x, z)$ is restricted to $\{0, 1\}$. We consider the standard 0-1 loss function ℓ_{0-1} ², whose
119 expected value is given by $\mathcal{L}(f, \mathcal{P}) = \mathbb{E}[\ell_{0-1}(f)] = \Pr[f(X, Z) \neq Y]$, where the probability is
120 over $(X, Z, Y) \sim \mathcal{P}$ ³. As is standard, we define accuracy as $\text{Acc}(f, \mathcal{P}) = 1 - \mathcal{L}(f, \mathcal{P})$.

121 In a fairness-aware learning problem, we want to find an accurate classifier on a given distribution
122 that also satisfies some fairness constraints. Our work considers 3 of the most popular notions of
123 fairness (Demographic Parity, Equal Opportunity, Predictive Equality). We present our proofs for
124 Demographic Parity in the main body, and defer the proofs of the other 2 notions to Appendix 4. We
125 state the Demographic Parity definition below [Dwork et al., 2012].

126 **Definition 1** (Demographic Parity). Denote the selection rate for group z by $r_z(f, \mathcal{P}) =$
127 $\Pr[f(X, Z) = 1 \mid Z = z]$. f satisfies Demographic Parity⁴ if the selection rates are equal across
128 both groups, i.e., $r_A(f, \mathcal{P}) = r_D(f, \mathcal{P})$. We quantify the unfairness of f as the difference in selection
129 rates across groups, i.e., $\text{Unf}_{\text{DP}}(f, \mathcal{P}) = |r_A(f, \mathcal{P}) - r_D(f, \mathcal{P})|$.

¹Our results also hold when there are multiple groups, but for ease of exposition, we restrict our analysis to the case of 2 groups.

²Using the same proof techniques, our results also hold for the more general loss function ℓ_α , known in literature as cost-sensitive risk [Menon and Williamson, 2018b], that assigns a weight α to False Positive errors, and a weight $(1 - \alpha)$ to False Negative errors. However, for simplicity, we restrict our analysis here to ℓ_{0-1} .

³Henceforth, all probabilities will be over $(X, Z, Y) \sim \mathcal{P}$, unless explicitly stated.

⁴Classifiers satisfying DP will be often be referred to as DP-fair.

130 **2.1 Fair Bayes Optimal Classifier**

131 Given a distribution \mathcal{P} , the optimal (accuracy-maximizing) classifier f^* (the BOC) is given by
 132 $f^*(x, z) = \mathcal{T}_{\frac{1}{2}}(\Pr[Y = 1 | X = x, Z = z])$, where $\mathcal{T}_\gamma(\beta)$ is the threshold function that out-
 133 puts 1 if $\beta \geq \gamma$, and 0 otherwise. We call the term β in the expression above the score or success
 134 probability of a point (x, z) , and formally define it below.

135 **Definition 2 (Score).** The score \mathcal{S} of a point (x, z) is the probability that it has label 1, i.e., $\mathcal{S}(x, z) =$
 136 $\Pr[Y = 1 | (X = x, Z = z)]$.

137 The BOC basically accepts a point if its score is $\geq \frac{1}{2}$, and rejects it otherwise. Note that the BOC
 138 as described above is deterministic, and allowing for randomized classifiers will not provide any
 139 increase in accuracy. However, when fairness constraints are involved, the picture is more compli-
 140 cated, and it turns out that allowing for randomization actually can lead to a big jump in accuracy.
 141 To see how randomized Fair BOC's can improve the accuracy of their deterministic counterparts, let
 142 us look at an example from Agarwal and Deshpande [2022].

143 **Example 1** (Accuracy jump in Randomized Fair BOC's). Consider the following distribution \mathcal{P}^5
 144 over $\mathcal{X} \times \mathcal{Z} \times \mathcal{Y}$, where $\mathcal{X} = \{x_1, x_2\}$ ($\mathcal{P}, \mathcal{S}(x, z) = (p, q)$ denotes that $\mathcal{P}(x, z) = p$, and $\mathcal{S}(x, z) =$
 145 q).

$$\begin{aligned} \mathcal{P}, \mathcal{S}(x_1, A) &= (0.5, 0.75) & \mathcal{P}, \mathcal{S}(x_1, D) &= (0.25, 0.5) \\ \mathcal{P}, \mathcal{S}(x_2, A) &= (0, 0) & \mathcal{P}, \mathcal{S}(x_2, D) &= (0.25, 0) \end{aligned}$$

146 There are only 2 deterministic classifiers satisfying DP, either the constant 1 classifier f_1 , or the
 147 constant 0 classifier f_0 , with $\mathcal{L}(f_1) = \mathcal{L}(f_0) = \frac{1}{2}$. On the other hand, consider the following
 148 randomized classifier f , where $f(x_1, A) = \frac{1}{2}, f(x_1, D) = 1, f(x_2, A) = f(x_2, D) = 0$. It is easy
 149 to see that f satisfies DP, and $\mathcal{L}(f) = \frac{3}{8}$, hence improving over the accuracy of the deterministic
 150 DP-fair BOC's f_0 and f_1 .

151 Given a distribution \mathcal{P} , Agarwal and Deshpande [2022] characterize the DP-Fair BOC (the optimal
 152 classifier subject to DP constraints) on a given distribution, which we now describe. We first present
 153 some of their terminology.

154 **Definition 3 (Cell).** Consider a randomized partition of the feature space $\mathcal{X} \times \mathcal{Z}$ into multiple
 155 disjoint components. We call these components cells, and denote a cell by \mathcal{C} .

156 One can also define the score of a cell, in the same way as we had defined the score of a point.
 157 We have already seen the BOC that thresholds based on scores. Randomized classifiers give us the
 158 ability to threshold by probability mass, instead of just thresholding by scores. To explain this better,
 159 we introduce the notion of group-wise sorted cells.

160 **Definition 4 (Group-wise Sorted Cells).** Define $\mathcal{C}_z = \bigcup_{x \in \mathcal{X}} \mathcal{C}_{x,z}$, where the component cells of \mathcal{C}_A
 161 and \mathcal{C}_D are arranged in descending order of scores \mathcal{S} . If two or more cells from the same group have
 162 the same score, any ordering within them is acceptable.

163 By $\mathcal{C}_z(t)$, denote the topmost cells of \mathcal{C}_z comprising of t fraction of the total probability mass of
 164 \mathcal{C}_z . Note that this may involve splitting a cell into 2 parts randomly. For example, in Example 1,
 165 $\mathcal{C}_A(\frac{1}{2})$ would involve splitting $\mathcal{C}_{x_1, A}$ into two equal parts randomly. However, in the deterministic
 166 setting, only $\mathcal{C}_A(0)$ and $\mathcal{C}_A(1)$ are defined, and not $\mathcal{C}_A(\frac{1}{2})$. By $\tilde{\mathcal{T}}_t$, we denote the mass threshold
 167 classifier that accepts exactly $\mathcal{C}_z(t)$ for $z \in \mathcal{Z}$. In Example 1, the randomized classifier f is the
 168 mass-threshold classifier $\tilde{\mathcal{T}}_{\frac{1}{2}}$.

169 **Definition 5 (Score Boundaries).** Consider the component cells of groupwise sorted \mathcal{C}_A and \mathcal{C}_D .
 170 Then, the score boundaries denote the set $\mathcal{I} = \mathcal{I}_A \cup \mathcal{I}_D$, where \mathcal{I}_z consists of all the boundary
 171 points between component cells in \mathcal{C}_z .

172 **Definition 6 (Merged Cells).** Consider any $r_i \in \mathcal{I}$ in sorted order, and define a merged cell \mathcal{C}_i as
 173 $\mathcal{C}_i = \mathcal{A}(\tilde{\mathcal{T}}_{r_i}) - \mathcal{A}(\tilde{\mathcal{T}}_{r_{i-}})$, where $\mathcal{A}(f)$ denotes the instances accepted by f , and r_{i-} denotes the
 174 element in \mathcal{I} preceding r_i .

⁵Note that specifying a distribution over $\mathcal{X} \times \mathcal{Z} \times \mathcal{Y}$ is equivalent to specifying a distribution over $\mathcal{X} \times \mathcal{Z}$ along with the scores for every instance $(x, z) \in \mathcal{X} \times \mathcal{Z}$.

175 **Characterization** Given a distribution \mathcal{P} over $\mathcal{X} \times \mathcal{Z} \times \mathcal{Y}$, the DP-Fair BOC $f_{\mathcal{P}}^{\text{DP}}$ is given by
176 the mass-threshold classifier $\tilde{\mathcal{T}}_{r'}$, where $r' = r_i \in \mathcal{I}$ is the unique i such that $\mathcal{S}(C_i) \geq 0.5$, and
177 $\mathcal{S}(C_{i+}) < 0.5$, where r_{i+} denotes the element in \mathcal{I} after r_i . Note that the DP-Fair BOC needs
178 to use randomization on at most one cell in the whole domain, since the candidate r' values lie in
179 \mathcal{I} . Hence, to evaluate the Fair BOC, instead of considering the hypothesis class of all randomized
180 classifiers, it is sufficient to consider the hypothesis class of classifiers that are randomized on at
181 most one element in the domain.

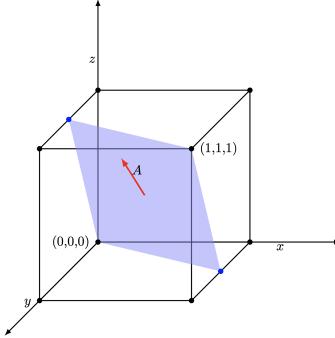


Figure 1: If the feature space $\mathcal{X} \times \mathcal{Z}$ has cardinality n , then the hypothesis class of all randomized classifiers \mathcal{H} is the hypercube $[0, 1]^n$. Similarly, the hypothesis class of all deterministic classifiers is $\{0, 1\}^n$. A fairness criterion is a linear constraint (this may not be true of all fairness criteria, but is true of the well-known ones that we study in this paper), which can be represented by a hyperplane \mathcal{F} . Also, accuracy A is a linear objective, implying that the Fair BOC is the point in $\mathcal{H} \cap \mathcal{F}$ maximizing A . We illustrate this in 3-dimensions here.

182 3 Robustness to Adversarial Distribution Shift

183 We study the robustness of the DP-Fair BOC to adversarial distribution shift. We show that given 2
184 similar distributions $\mathcal{P}, \mathcal{P}'$ (similarity measured by TV distance), the accuracy of the DP-Fair BOC
185 on the respective distributions is similar (satisfies local Lipschitzness). Note that DP-Fair BOC in the
186 deterministic case does not exhibit such a robustness property, as we demonstrate in the following
187 example.

188 3.1 Non-Robustness of the Deterministic Fair BOC

189 **Claim 1** (Non-Robustness of Deterministic Fair BOC's). *Given $\epsilon > 0$, there exist $\mathcal{P}, \mathcal{P}'$ with
190 $TV(\mathcal{P}, \mathcal{P}') \leq \epsilon$, such that the deterministic DP-Fair BOC's f, f' on $\mathcal{P}, \mathcal{P}'$, respectively, satisfy
191 $|Acc(f, \mathcal{P}) - Acc(f', \mathcal{P}')| \geq \Omega(1)$.*

192 *Proof.* Consider the following distribution \mathcal{P} , with $\mathcal{X} = \{x_1, x_2\}$.

$$\begin{array}{ll} \mathcal{P}, \mathcal{S}(x_1, A) = (0.25, 1) & \mathcal{P}, \mathcal{S}(x_1, D) = (0.25, 1) \\ \mathcal{P}, \mathcal{S}(x_2, A) = (0.25, 0) & \mathcal{P}, \mathcal{S}(x_2, D) = (0.25, 0) \end{array}$$

193 Consider the (deterministic) classifier f , with $f(x_1, A) = f(x_1, D) = 1, f(x_2, A) = f(x_2, D) = 0$.
194 It is easy to see that f satisfies DP, and $Acc(f) = 1$, implying that f is the DP-Fair BOC in both
195 the deterministic and randomized settings. Consider the neighboring distribution \mathcal{P}' as follows, for
196 small ϵ .

$$\begin{array}{ll} \mathcal{P}', \mathcal{S}(x_1, A) = (0.25, 1) & \mathcal{P}', \mathcal{S}(x_1, D) = (0.25 + \epsilon, 1) \\ \mathcal{P}', \mathcal{S}(x_2, A) = (0.25, 0) & \mathcal{P}', \mathcal{S}(x_2, D) = (0.25 - \epsilon, 0) \end{array}$$

197 There are only 2 deterministic classifiers satisfying DP, either the constant 1 classifier f_1 , or the
198 constant 0 classifier f_0 , with $\mathcal{L}(f_1) = \frac{1}{2} + \epsilon$, and $\mathcal{L}(f_0) = \frac{1}{2} - \epsilon$, implying that f_1 is the DP-Fair
199 BOC in the deterministic setting. Hence, the difference in accuracy of the deterministic DP-Fair
200 BOC on arbitrarily close $\mathcal{P}, \mathcal{P}'$ is almost 0.5, demonstrating the non-robustness of deterministic
201 classifiers to distribution shift. \square

202 **3.2 Robustness of the Randomized Fair BOC**

203 Now we state our main result.

204 **Theorem 1** (Robustness of DP-Fair BOC). *Given distributions $\mathcal{P}, \mathcal{P}'$ with $TV(\mathcal{P}, \mathcal{P}') = \epsilon$, we have*

$$|Acc(f_{\mathcal{P}}^{DP}, \mathcal{P}) - Acc(f_{\mathcal{P}'}^{DP}, \mathcal{P}')| \leq \epsilon \left(1 + \frac{\max(\mathcal{P}(A), \mathcal{P}'(A))}{\min(\mathcal{P}(A), \mathcal{P}'(A))} + \frac{\max(\mathcal{P}(D), \mathcal{P}'(D))}{\min(\mathcal{P}(D), \mathcal{P}'(D))} \right).$$

205 *Remark.* Note that the Lipschitz constant will blow up if the masses of either group becomes very
206 small. Similar terms in the denominator will naturally feature in all our bounds. As such, robustness
207 is not satisfied at such extremal points.

208 We first state Lemmas 1 and 2, and Claim 2 that will help us prove Theorem 1. We defer their
209 proofs to Appendix B. Lemma 1 shows that one can decompose a transition from distribution \mathcal{P}
210 to distribution \mathcal{P}' with distance ϵ into a sequence of elementary transitions from \mathcal{P}_{i-1} to \mathcal{P}_i with
211 distance ϵ_i such that $\epsilon = \sum_i \epsilon_i$ and for every i , the only difference between \mathcal{P}_{i-1} and \mathcal{P}_i is that mass
212 is transferred from exactly one element of the domain to another.

213 **Lemma 1** (Decomposition into Elementary Transitions). *Given distributions $\mathcal{P}, \mathcal{P}'$ with
214 $TV(\mathcal{P}, \mathcal{P}') = \epsilon$, there exist distributions $\mathcal{P}_0, \mathcal{P}_1, \dots, \mathcal{P}_n$ (for some n , with $\mathcal{P} = \mathcal{P}_0$, $\mathcal{P}' = \mathcal{P}_n$),
215 such that the following two conditions hold:*

- 216 1. *Decomposability: $TV(\mathcal{P}_{i-1}, \mathcal{P}_i) = \epsilon_i$, $\sum_{i=1}^n \epsilon_i = \epsilon$, and in the transition $\mathcal{P}_{i-1} \rightarrow \mathcal{P}_i$, ϵ_i
217 mass moves from some instance a_i to some b_i ($a_i, b_i \in \mathcal{X} \times \mathcal{Z}$, all other elements remain
218 constant).*
- 219 2. *Monotonicity: If $\mathcal{P}(A) \leq \mathcal{P}'(A)$, then for every $1 \leq i < n$, $\mathcal{P}_i(A) \leq \mathcal{P}_{i+1}(A)$ and
220 $\mathcal{P}_i(D) \geq \mathcal{P}_{i+1}(D)$; otherwise, $\mathcal{P}_i(A) \geq \mathcal{P}_{i+1}(A)$ and $\mathcal{P}_i(D) \leq \mathcal{P}_{i+1}(D)$.*

221 Claim 2 roughly states that given 2 similar distributions $\mathcal{P}, \mathcal{P}'$, the accuracy and DP-unfairness of
222 any fixed hypothesis is similar on both $\mathcal{P}, \mathcal{P}'$. Such a property is useful when we want a guarantee
223 that if we train a classifier on the corrupted distribution \mathcal{P}' , the performance of the classifier on the
224 actual distribution \mathcal{P} will be similar to that on \mathcal{P}' .

225 **Claim 2** (Accuracy, DP Shift for Fixed Hypothesis). *Given distributions $\mathcal{P}, \mathcal{P}'$, such that
226 $TV(\mathcal{P}, \mathcal{P}') \leq \epsilon$, any hypothesis f satisfies the following two properties:*

- 227 1. $|Acc(f, \mathcal{P}) - Acc(f, \mathcal{P}')| \leq \epsilon$.
- 228 2. $|Unf_{DP}(f, \mathcal{P}) - Unf_{DP}(f, \mathcal{P}')| \leq \epsilon \left(\frac{1}{\min(\mathcal{P}(A), \mathcal{P}'(A))} + \frac{1}{\min(\mathcal{P}(D), \mathcal{P}'(D))} \right)$

229 We also use Lemma 2 for our main result .

230 **Lemma 2.** *Given any \mathcal{P}, f , and \mathcal{P}', f' such that $TV(\mathcal{P}, \mathcal{P}') = \epsilon$, if $f'(q)$ differs from $f(q)$ by
231 $\Delta f(q)$ (and is identical elsewhere), then*

$$|Acc(f, \mathcal{P}) - Acc(f', \mathcal{P}')| \leq |\mathcal{P}(q)(2\mathcal{S}(q) - 1)\Delta f(q)| + \epsilon.$$

232 Now move on to the proof of our main theorem.

233 *Proof of Theorem 1.* Armed with these lemmas, we first establish the claim of the theorem for the
234 special case where the transition from \mathcal{P} to \mathcal{P}' is elementary in that the only difference between
235 the two distributions is that there are two elements a and b that have ϵ more mass and ϵ less mass,
236 respectively, in \mathcal{P} as compared to \mathcal{P}' (all other elements have the same mass in the two distributions).
237 At the end, we invoke Lemma 1 and transitivity to establish the general theorem statement.

238 Consider the transfer of ϵ mass from a to b in a continuous manner. During this process, either the
239 cell corresponding to element a will monotonically increase in score or monotonically decrease in
240 score⁶. The same holds for the cell corresponding to element b . The scores of all other cells will
241 remain the same. In the following argument, we assume that the score of the cell of a decreases

⁶In case the cell corresponding to a has score of 0 or 1, it's score will remain unchanged, and this case is trivially covered by our argument.

242 monotonically and that of b increases monotonically. All of the arguments are analogous for the
243 remaining three cases.

244 We break down the ϵ mass transfer into smaller increments. At any point, let $\tilde{\mathcal{P}}$ be the distribution at
245 the start of this increment (so, $\tilde{\mathcal{P}} = \mathcal{P}$ initially) and $\tilde{\mathcal{P}}'$ be the distribution at the end of this increment
246 (so, $\tilde{\mathcal{P}}' = \mathcal{P}'$ finally). For an incremental mass transfer, we analyze how the DP BOC changes from
247 $f_{\tilde{\mathcal{P}}}^{\text{DP}}$ to $f_{\tilde{\mathcal{P}}'}^{\text{DP}}$. Since the mass transfer is from element a to b , it follows that both $\tilde{\mathcal{P}}(A)$ and $\tilde{\mathcal{P}}'(A)$ lie
248 between $\mathcal{P}(A)$ and $\mathcal{P}'(A)$ while both $\tilde{\mathcal{P}}(D)$ and $\tilde{\mathcal{P}}'(D)$ lie between $\mathcal{P}(D)$ and $\mathcal{P}'(D)$. We consider
249 the largest mass transfer $\delta\epsilon$ until one of the two following events occur.

250 1. Equal-score event: The cell of a has the same score as the adjacent cell lower in the sorted
251 order or the cell of b has the same score as the adjacent cell higher in the sorted order.

252 2. Threshold event: The score of a merged cell containing a or b becomes exactly 0.5.

253 **Bounding the accuracy change for $\delta\epsilon$:** Note that by the choice of $\delta\epsilon$, during the transfer $\delta\epsilon$, all
254 the cells remain in the same order in both groups; furthermore, all masses and scores of all cells
255 other than the ones containing a or b remain the same during the transfer. By part 2 of Claim 2,

$$\begin{aligned}\delta\text{Unf}_{\text{DP}} &= \left| \text{Unf}_{\text{DP}}(f_{\tilde{\mathcal{P}}}^{\text{DP}}, \tilde{\mathcal{P}}) - \text{Unf}_{\text{DP}}(f_{\tilde{\mathcal{P}}'}^{\text{DP}}, \tilde{\mathcal{P}}') \right| \\ &\leq \delta\epsilon \left(\frac{1}{\min(\tilde{\mathcal{P}}(A), \tilde{\mathcal{P}}'(A))} + \frac{1}{\min(\tilde{\mathcal{P}}(D), \tilde{\mathcal{P}}'(D))} \right) \\ &\leq \delta\epsilon \left(\frac{1}{\min(\mathcal{P}(A), \mathcal{P}'(A))} + \frac{1}{\min(\mathcal{P}(D), \mathcal{P}'(D))} \right)\end{aligned}$$

256 Since $\text{Unf}_{\text{DP}}(f_{\tilde{\mathcal{P}}}^{\text{DP}}, \tilde{\mathcal{P}}) = 0$, we know that $\delta\text{Unf}_{\text{DP}} = \text{Unf}_{\text{DP}}(f_{\tilde{\mathcal{P}}'}^{\text{DP}}, \tilde{\mathcal{P}}') = \left| \text{r}_A(f_{\tilde{\mathcal{P}}'}^{\text{DP}}, \tilde{\mathcal{P}}) - \text{r}_D(f_{\tilde{\mathcal{P}}'}^{\text{DP}}, \tilde{\mathcal{P}}') \right|$.
257 Consider the cell q that is split in the middle by the threshold corresponding to $f_{\tilde{\mathcal{P}}'}^{\text{DP}}$ (for now, assume
258 $q \in D$). Since neither the equal-score event nor the 0.5-score event occur, we see that after the
259 transition, the boundary of $f_{\tilde{\mathcal{P}}'}^{\text{DP}}$ intersecting q is $\delta\text{Unf}_{\text{DP}}$ away from the boundary in group A . To
260 modify $f_{\tilde{\mathcal{P}}}^{\text{DP}} \rightarrow f_{\tilde{\mathcal{P}}'}^{\text{DP}}$, we therefore need to move the boundary at q by $\delta\text{Unf}_{\text{DP}}$ so that the
261 boundaries in both groups align and DP is satisfied (the classifier remains the same apart from its
262 action on q). The change in function value on element q , which we denote by $|\Delta f(q)|$, is bounded
263 by $\delta\text{Unf}_{\text{DP}} \frac{\tilde{\mathcal{P}}(D)}{\tilde{\mathcal{P}}(q)}$, after scaling (since $\tilde{\mathcal{P}}(D)\delta\text{Unf}_{\text{DP}} = |\Delta f(q)|\tilde{\mathcal{P}}(q)$). At the end of the $\delta\epsilon$ mass
264 transfer, by Lemma 2, the change in accuracy of the optimal fair classifier is given by

$$\begin{aligned}\left| \text{Acc}(f_{\tilde{\mathcal{P}}}^{\text{DP}}, \tilde{\mathcal{P}}) - \text{Acc}(f_{\tilde{\mathcal{P}}'}^{\text{DP}}, \tilde{\mathcal{P}}') \right| &\leq \left| \tilde{\mathcal{P}}(q)(2\mathcal{S}(q) - 1)\Delta f(q) \right| + \delta\epsilon \\ &\leq \delta\epsilon \left(1 + \frac{\tilde{\mathcal{P}}(D)|(2\mathcal{S}(q) - 1)|}{\min(\tilde{\mathcal{P}}(A), \tilde{\mathcal{P}}'(A))} + \frac{\tilde{\mathcal{P}}(D)|(2\mathcal{S}(q) - 1)|}{\min(\tilde{\mathcal{P}}(D), \tilde{\mathcal{P}}'(D))} \right) \\ &\leq \delta\epsilon \left(1 + \frac{\max(\mathcal{P}(D), \mathcal{P}'(D))}{\min(\mathcal{P}(A), \mathcal{P}'(A))} + \frac{\max(\mathcal{P}(D), \mathcal{P}'(D))}{\min(\mathcal{P}(D), \mathcal{P}'(D))} \right),\end{aligned}$$

265 where the last inequality follows from the facts that $|(2\mathcal{S}(q) - 1)| \leq 1$, $\tilde{\mathcal{P}}(A)$ and $\tilde{\mathcal{P}}'(A)$ both lie
266 between $\mathcal{P}(A)$ and $\mathcal{P}'(A)$ and $\tilde{\mathcal{P}}(D)$ and $\tilde{\mathcal{P}}'(D)$ both lie between $\mathcal{P}(D)$ and $\mathcal{P}'(D)$.

267 In Appendix B.4, we derive a better upper bound on $|(2\mathcal{S}(q) - 1)|$ and derive the following:

$$\left| \text{Acc}(f_{\tilde{\mathcal{P}}}^{\text{DP}}, \tilde{\mathcal{P}}) - \text{Acc}(f_{\tilde{\mathcal{P}}'}^{\text{DP}}, \tilde{\mathcal{P}}') \right| \leq \delta\epsilon \left(1 + \frac{\max(\mathcal{P}(A), \mathcal{P}'(A))}{\min(\mathcal{P}(A), \mathcal{P}'(A))} + \frac{\max(\mathcal{P}(D), \mathcal{P}'(D))}{\min(\mathcal{P}(D), \mathcal{P}'(D))} \right).$$

268 Putting the two upper bounds together yields the following:

$$\left| \text{Acc}(f_{\tilde{\mathcal{P}}}^{\text{DP}}, \tilde{\mathcal{P}}) - \text{Acc}(f_{\tilde{\mathcal{P}}'}^{\text{DP}}, \tilde{\mathcal{P}}') \right| \leq \delta\epsilon \left(1 + \frac{\max(\mathcal{P}(A), \mathcal{P}'(A))}{\min(\mathcal{P}(A), \mathcal{P}'(A))} + \frac{\max(\mathcal{P}(D), \mathcal{P}'(D))}{\min(\mathcal{P}(D), \mathcal{P}'(D))} \right).$$

269 **Handling the equal-score and threshold events:** We now describe how to handle the two events.

270 1. Equal-score event: If the cell of a has the same score as the adjacent cell lower in the sorted
 271 order, then we swap the two cells so that the cell of a is lower in the order. Similarly, if the
 272 cell of b has the same score as the adjacent cell higher in the order, then we swap the two
 273 cells so that the cell of b is higher in the order. We update the classifier f and note that this
 274 change has no impact on the accuracy of f .

275 2. Threshold event: The score of a merged cell containing a or b becomes exactly 0.5. We
 276 include the merged cell in the classifier f , again without changing accuracy.

277 Thus, in a sense, between any two occurrences of these events, the change in accuracy is bounded
 278 by an amount proportional to the mass transfer; when we reach these occurrences, the mass transfer
 279 is paused, the BOC changes without any change in accuracy. Furthermore, at every occurrence of
 280 the event, one of these three events happen: the cell containing a moves down in the order, the cell
 281 containing b moves up in the order, or an additional merged cell is placed above the threshold. Since
 282 the number of times these events can occur is upper bounded by the number of cells in the two
 283 groups, this process is finite. Therefore, adding over all the $\delta\epsilon$ mass transfers, we obtain the desired
 284 upper bound on the change in accuracy between the BOC's for \mathcal{P} and \mathcal{P}' .

$$\epsilon \left(1 + \frac{\max(\mathcal{P}(A), \mathcal{P}'(A))}{\min(\mathcal{P}(A), \mathcal{P}'(A))} + \frac{\max(\mathcal{P}(D), \mathcal{P}'(D))}{\min(\mathcal{P}(D), \mathcal{P}'(D))} \right).$$

285 **From elementary to arbitrary:** Consider a general transition of distance ϵ from \mathcal{P} to \mathcal{P}' . We
 286 invoke Lemma 1 to obtain intermediate distributions $\{\mathcal{P}_i\}$ with $TV(\mathcal{P}_{i-1}, \mathcal{P}_i) = \epsilon_i$ satisfying the
 287 decomposability and monotonicity properties. We apply the above proof for each elementary transi-
 288 tion $\mathcal{P}_{i-1} \rightarrow \mathcal{P}_i$ of mass ϵ_i . For accuracy, we derive

$$\begin{aligned} |\text{Acc}(f_{\mathcal{P}}^{\text{DP}}, \mathcal{P}) - \text{Acc}(f_{\mathcal{P}'}^{\text{DP}}, \mathcal{P}')| &\leq \sum_i \left| \text{Acc}(f_{\mathcal{P}_{i-1}}^{\text{DP}}, \mathcal{P}_{i-1}) - \text{Acc}(f_{\mathcal{P}_i}^{\text{DP}}, \mathcal{P}_i) \right| \\ &\leq \sum_i \epsilon_i \left(1 + \frac{\max(\mathcal{P}_{i-1}(A), \mathcal{P}_i(A))}{\min(\mathcal{P}_{i-1}(A), \mathcal{P}_i(A))} + \frac{\max(\mathcal{P}_{i-1}(D), \mathcal{P}_i(D))}{\min(\mathcal{P}_{i-1}(D), \mathcal{P}_i(D))} \right) \\ &\leq \sum_i \epsilon_i \left(1 + \frac{\max(\mathcal{P}(A), \mathcal{P}'(A))}{\min(\mathcal{P}(A), \mathcal{P}'(A))} + \frac{\max(\mathcal{P}(D), \mathcal{P}'(D))}{\min(\mathcal{P}(D), \mathcal{P}'(D))} \right) \\ &= \epsilon \left(1 + \frac{\max(\mathcal{P}(A), \mathcal{P}'(A))}{\min(\mathcal{P}(A), \mathcal{P}'(A))} + \frac{\max(\mathcal{P}(D), \mathcal{P}'(D))}{\min(\mathcal{P}(D), \mathcal{P}'(D))} \right), \end{aligned}$$

289 where the third inequality follows from monotonicity and the last equation follows from decompos-
 290 ability. This completes the proof of the theorem. \square

291 We now state the following corollary, which follows from Claim 2 and Theorem 1. It roughly states
 292 that given 2 closeby distributions $\mathcal{P}, \mathcal{P}'$, the accuracy of the respective DP-Fair BOC's is similar on
 293 \mathcal{P} . Such a property is useful when we want a guarantee that intuitively says that if we train on the
 294 corrupted distribution \mathcal{P}' , we get a similar outcome to what we would have gotten had we trained
 295 on the true distribution \mathcal{P} .

296 **Corollary 1.** *Given distributions $\mathcal{P}, \mathcal{P}'$ with $TV(\mathcal{P}, \mathcal{P}') = \epsilon$, we have*

$$|\text{Acc}(f_{\mathcal{P}}^{\text{DP}}, \mathcal{P}) - \text{Acc}(f_{\mathcal{P}'}^{\text{DP}}, \mathcal{P}')| \leq \epsilon \left(2 + \frac{\max(\mathcal{P}(A), \mathcal{P}'(A))}{\min(\mathcal{P}(A), \mathcal{P}'(A))} + \frac{\max(\mathcal{P}(D), \mathcal{P}'(D))}{\min(\mathcal{P}(D), \mathcal{P}'(D))} \right).$$

297 4 Equal Opportunity and Predictive Equality

298 Earlier, we presented results for Demographic Parity. Our results also extend to the popular fairness
 299 notions of Equal Opportunity and Predictive Equality [Hardt et al., 2016, Barocas et al., 2019]. We
 300 state the results here, and defer the proofs to Appendix C. We first define the fairness notions.

301 **Definition 7** (Equal TPR, or Equal Opportunity). Denote the true positive rate of f on group z by

$$\text{TPR}_z(f, \mathcal{P}) = \Pr[f(X, Z) = 1 \mid Y = 1, Z = z].$$

302 f satisfies Equal Opportunity if the true positive rates are equal for both groups, i.e. $\text{TPR}_A(f, \mathcal{P}) =$
 303 $\text{TPR}_D(f, \mathcal{P})$. We quantify the unfairness of f as the difference in true positive rates across groups ,
 304 i.e.,

$$\text{Unf}_{\text{EO}}(f, \mathcal{P}) = |\text{TPR}_A(f, \mathcal{P}) - \text{TPR}_D(f, \mathcal{P})|.$$

305 **Definition 8** (Equal FPR, or Predictive Equality). Denote the false positive rate of of f on group z by

$$\text{FPR}_z(f, \mathcal{P}) = \Pr[f(X, Z) = 1 \mid Y = 0, Z = z].$$

307 f satisfies Predictive Equality if the false positive rates are equal for both groups, i.e. $\text{FPR}_A(f, \mathcal{P}) =$
 308 $\text{FPR}_D(f, \mathcal{P})$. We quantify the unfairness of f as the difference in false positive rates across groups
 309 , i.e.,

$$\text{Unf}_{\text{PE}}(f, \mathcal{P}) = |\text{FPR}_A(f, \mathcal{P}) - \text{FPR}_D(f, \mathcal{P})|.$$

310 **Remark.** Classifiers satisfying these notions of fairness will be referred to as EO-fair, and PE-fair
 311 respectively. The results for PE follow using the same proof techniques as that of EO (since we can
 312 just reverse the roles of the labels 0 and 1 in EO to get results for PE). We state the analogous results
 313 for PE in Appendix C.3. In addition, previous work has also considered equal False Negative rate
 314 (FNR) and equal True Negative rate (TNR) as notions of fairness. Obtaining equal TPR is equivalent
 315 to obtaining equal FNR, and obtaining equal TNR is equivalent to obtaining equal FPR, and hence
 316 results for these notions of fairness also follow.

317 We now state the results for EO.

318 **Claim 3** (EO Shift for a Fixed Hypothesis). *Given distributions $\mathcal{P}, \mathcal{P}'$, with $TV(\mathcal{P}, \mathcal{P}') \leq \epsilon$, and*
 319 *any hypothesis f , it holds that*

$$|\text{Unf}_{\text{EO}}(f, \mathcal{P}) - \text{Unf}_{\text{EO}}(f, \mathcal{P}')| \leq \epsilon \left(\frac{1}{\min(\mathcal{P}(A, 1), \mathcal{P}'(A, 1))} + \frac{1}{\min(\mathcal{P}(D, 1), \mathcal{P}'(D, 1))} \right),$$

320 where $f_{\mathcal{P}}^{\text{EO}}, f_{\mathcal{P}'}^{\text{EO}}$ are the EO-Fair BOC's on $\mathcal{P}, \mathcal{P}'$ respectively.

321 **Theorem 2** (Robustness of EO-Fair BOC). *Given distributions $\mathcal{P}, \mathcal{P}'$, such that $TV(\mathcal{P}, \mathcal{P}') = \epsilon$,
 322 we have that*

$$|\text{Acc}(f_{\mathcal{P}}^{\text{EO}}, \mathcal{P}) - \text{Acc}(f_{\mathcal{P}'}^{\text{EO}}, \mathcal{P}')| \leq \epsilon \left(1 + 2 \max(\mathcal{P}(1), \mathcal{P}'(1)) \left(\frac{1}{\min(\mathcal{P}(A, 1), \mathcal{P}'(A, 1))} + \frac{1}{\min(\mathcal{P}(D, 1), \mathcal{P}'(D, 1))} \right) \right),$$

323 where $f_{\mathcal{P}}^{\text{EO}}, f_{\mathcal{P}'}^{\text{EO}}$ are the EO-Fair BOC's on $\mathcal{P}, \mathcal{P}'$ respectively.

324 **Corollary 2.** *Given distributions $\mathcal{P}, \mathcal{P}'$, such that $TV(\mathcal{P}, \mathcal{P}') = \epsilon$, we have that*

$$|\text{Acc}(f_{\mathcal{P}}^{\text{EO}}, \mathcal{P}) - \text{Acc}(f_{\mathcal{P}'}^{\text{EO}}, \mathcal{P}')| \leq 2\epsilon \left(1 + \max(\mathcal{P}(1), \mathcal{P}'(1)) \left(\frac{1}{\min(\mathcal{P}(A, 1), \mathcal{P}'(A, 1))} + \frac{1}{\min(\mathcal{P}(D, 1), \mathcal{P}'(D, 1))} \right) \right),$$

325 where $f_{\mathcal{P}}^{\text{EO}}, f_{\mathcal{P}'}^{\text{EO}}$ are the EO-Fair BOC's on $\mathcal{P}, \mathcal{P}'$ respectively.

326 5 Conclusion

327 Our findings collectively advance the theoretical understanding of fairness and robustness in adver-
 328 sarially noisy environments, providing a solid foundation for future research. Some directions for
 329 further work include extending our results for binary classification to multi-class classification, and
 330 regression. Another direction could be to look at relaxed or approximate versions of the fairness no-
 331 tions we considered. One could even look at other popular notions of fairness, or satisfying multiple
 332 fairness notions simultaneously. It would also be valuable to experimentally validate our theoreti-
 333 cal claims. In addition, note that our results hold for adversarial noise, but it might be possible to
 334 strengthen the bounds if the noise came from a particular distribution.

335 **References**

336 Alekh Agarwal, Alina Beygelzimer, Miroslav Dudík, John Langford, and Hanna Wallach. A re-
337 ductions approach to fair classification. In *International Conference on Machine Learning*, pages
338 60–69. PMLR, 2018.

339 Sushant Agarwal and Amit Deshpande. On the power of randomization in fair classification and
340 representation. In *Proceedings of the 2022 ACM Conference on Fairness, Accountability, and*
341 *Transparency*, FAccT ’22, 2022.

342 Nil-Jana Akpinar, Manish Nagireddy, Logan Stapleton, Hao-Fei Cheng, Haiyi Zhu, Steven Wu, and
343 Hoda Heidari. A sandbox tool to bias(stress)-test fairness algorithms, 2022.

344 Maria-Florina Balcan and Nika Haghtalab. Noise in classification. In *Beyond the Worst-Case Anal-*
345 *ysis of Algorithms*, 2020. URL <https://arxiv.org/abs/2010.05080>.

346 Solon Barocas, Moritz Hardt, and Arvind Narayanan. *Fairness and Machine Learning*. fairml-
347 book.org, 2019. <http://www.fairmlbook.org>.

348 Avrim Blum, Princewill Okoroafor, Aadirupa Saha, and Kevin M. Stangl. On the vulnerability
349 of fairness constrained learning to malicious noise. In *Proceedings of The 27th International*
350 *Conference on Artificial Intelligence and Statistics*, 2024.

351 L. Elisa Celis, Lingxiao Huang, Vijay Keswani, and Nisheeth K. Vishnoi. Classification with fair-
352 ness constraints: A meta-algorithm with provable guarantees, 2020.

353 L Elisa Celis, Lingxiao Huang, Vijay Keswani, and Nisheeth K Vishnoi. Fair classification with
354 noisy protected attributes: A framework with provable guarantees. In *International Conference*
355 *on Machine Learning*, pages 1349–1361. PMLR, 2021.

356 Wenlong Chen, Yegor Klochkov, and Yang Liu. Post-hoc bias scoring is optimal for fair classifica-
357 tion, 2024. URL <https://arxiv.org/abs/2310.05725>.

358 Yatong Chen, Reilly Raab, Jialu Wang, and Yang Liu. Fairness transferability subject to bounded
359 distribution shift. In *Proceedings of the 36th International Conference on Neural Information*
360 *Processing Systems*, NIPS ’22, 2022.

361 Evgenii Chzhen, Christophe Denis, Mohamed Hebiri, Luca Oneto, and Massimiliano Pontil. Lever-
362 aging labeled and unlabeled data for consistent fair binary classification. *Advances in Neural*
363 *Information Processing Systems*, 32, 2019.

364 A. Feder Cooper, Katherine Lee, Madiha Zahrah Choksi, Solon Barocas, Christopher De Sa, James
365 Grimmelmann, Jon Kleinberg, Siddhartha Sen, and Baobao Zhang. Arbitrariness and social pre-
366 diction: the confounding role of variance in fair classification. AAAI’24/IAAI’24/EAAI’24,
367 2024.

368 Kathleen Creel and Deborah Hellman. The algorithmic leviathan: Arbitrariness, fairness, and op-
369 portunity in algorithmic decision making systems. In *Proceedings of the 2021 ACM Conference*
370 *on Fairness, Accountability, and Transparency*, FAccT ’21, 2021.

371 Aida Mostafazadeh Davani, Mohammad Atari, Brendan Kennedy, and Morteza Dehghani. Hate
372 speech classifiers learn normative social stereotypes. *Transactions of the Association for Compu-*
373 *tational Linguistics*, 2023.

374 Thomas R. Davidson. Hate speech detection and bias in supervised text classification. In *The Oxford*
375 *Handbook of the Sociology of Machine Learning*. 2023.

376 Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard Zemel. Fairness
377 through awareness. In *Proceedings of the 3rd Innovations in Theoretical Computer Science (ITCS)*
378 *Conference*, 2012.

379 Avijit Ghosh, Pablo Kvitca, and Christo Wilson. When fair classification meets noisy protected
380 attributes. In *Proceedings of the 2023 AAAI/ACM Conference on AI, Ethics, and Society*, AIES
381 ’23.

382 Moritz Hardt, Eric Price, Eric Price, and Nati Srebro. Equality of opportunity in supervised learning.
 383 In *Advances in Neural Information Processing Systems*, 2016.

384 Camille Harris, Matan Halevy, Ayanna Howard, Amy Bruckman, and Diyi Yang. Exploring the
 385 role of grammar and word choice in bias toward african american english (aae) in hate speech
 386 classification. In *Proceedings of the 2022 ACM Conference on Fairness, Accountability, and*
 387 *Transparency*, FAccT'22, 2022.

388 Thomas Hartvigsen, Saadia Gabriel, Hamid Palangi, Maarten Sap, Dipankar Ray, and Ece Kamar.
 389 ToxiGen: A large-scale machine-generated dataset for adversarial and implicit hate speech detec-
 390 tion. In *Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics*
 391 (*Volume 1: Long Papers*). Association for Computational Linguistics, 2022.

392 Faisal Kamiran and Toon Calders. Data preprocessing techniques for classification without discrim-
 393 ination. *Knowledge and Information Systems*, 33(1):1–33, 2012.

394 Michael Kearns and Ming Li. Learning in the presence of malicious errors. In *Proceedings of the*
 395 *Twentieth Annual ACM Symposium on Theory of Computing*, pages 267–280, 1988.

396 Nikola Konstantinov and Christoph H. Lampert. On the impossibility of fairness-aware learning
 397 from corrupted data. In *Proceedings of The Algorithmic Fairness through the Lens of Causality*
 398 and *Robustness*. PMLR, 2022.

399 Aditya Krishna Menon and Robert C Williamson. The cost of fairness in binary classification. In
 400 *Conference on Fairness, accountability and transparency*, pages 107–118. PMLR, 2018a.

401 Aditya Krishna Menon and Robert C Williamson. The cost of fairness in binary classification. In
 402 *Proceedings of the 1st Conference on Fairness, Accountability and Transparency*, 2018b.

403 Lucas Rosenblatt and R. Teal Witter. Fairlyuncertain: A comprehensive benchmark of uncertainty
 404 in algorithmic fairness, 2024. URL <https://arxiv.org/abs/2410.02005>.

405 Mohit Sharma, Amit Deshpande, and Rajiv Ratn Shah. On comparing fair classifiers under data
 406 bias, 2023. URL <https://arxiv.org/abs/2302.05906>.

407 Ruicheng Xian and Han Zhao. A unified post-processing framework for group fairness in classifi-
 408 cation, 2024. URL <https://arxiv.org/abs/2405.04025>.

409 Yao-Yuan Yang, Cyrus Rashtchian, Hongyang Zhang, Ruslan Salakhutdinov, and Kamalika Chaud-
 410 huri. A closer look at accuracy vs. robustness. In *Proceedings of the 34th International Confer-*
 411 *ence on Neural Information Processing Systems*, NIPS '20, 2020.

412 Xianli Zeng, Edgar Dobriban, and Guang Cheng. Fair bayes-optimal classifiers under predictive
 413 parity. *Advances in Neural Information Processing Systems*, 35:27692–27705, 2022.

414 **A Comparison with Related Work**

415 We now present detailed comparison with relevant previous work. In Blum et al. [2024], they aim to
 416 avoid the non-robustness phenomena highlighted in Konstantinov and Lampert [2022], as follows.
 417 Given any deterministic hypothesis class \mathcal{H} , and distributions $\mathcal{P}, \mathcal{P}'$ with $TV(\mathcal{P}, \mathcal{P}') = \epsilon$, they
 418 construct a randomized closure of \mathcal{H} called $PQ(\mathcal{H})$. Denote by f, f' the optimal classifiers (subject
 419 to DP constraints) on $\mathcal{P}, \mathcal{P}'$ restricted to \mathcal{H} , $PQ(\mathcal{H})$ respectively. They show that this satisfies a
 420 one-directional Lipschitzness constraint, i.e., $Acc(f', \mathcal{P}') \geq Acc(f, \mathcal{P}) - O(\epsilon)$. They also show
 421 analogous results for EO and PE. Our setup has some key differences. We do not consider any
 422 arbitrary \mathcal{H} , but the BOC setting which includes all deterministic classifiers (and the 1-skeleton of
 423 their convex closure). More crucially, our robustness guarantee is stronger, as their Lipschitzness
 424 guarantee is only one-directional. In addition, in most cases, their output hypothesis incorporates
 425 a lot of randomness, outputting a randomized decision on all elements in the domain, whereas our
 426 output hypothesis is randomized on at most one element.

427 In the concurrent work of Xian and Zhao [2024], the sensitivity analysis (Theorem 3.1) bounds the
 428 drop in accuracy of the optimal fair classifier under a shift in distribution, for the multiclass and

429 multigroup setting, focusing on continuous domains. However, their sensitivity analysis only holds
 430 for either a shift in the label distribution, or in the group membership distribution, whereas our
 431 robustness guarantee works for adversarial distribution shifts. Adversarial or arbitrary distribution
 432 shifts are strictly more general than label/covariate shifts, and moreover, they cannot be simulated
 433 by any combination of label/covariate shifts. In addition, in their sensitivity analysis (Theorem 3.1,
 434 2nd result), the change in accuracy due to group distribution shift, is a constant independent of the
 435 amount of distribution shift (in the case of perfect fairness). We prove a stronger Lipschitzness
 436 guarantee, where the excess risk goes to 0 as distance between the distributions becomes arbitrarily
 437 small. Furthermore, they do not provide a description of the Randomized Fair BOC in the case
 438 of discrete domains, whereas we provide a complete characterization of the same, show that it is
 439 minimally random. In addition, our algorithm (to output the Fair BOC on a distribution) is very
 440 simple and efficient, running in $O(|\mathcal{X}| \log(|\mathcal{X}|))$ time, while their algorithm solves a large linear
 441 program with $O(|\mathcal{X}|)$ constraints in $O(|\mathcal{X}|)$ variables, requiring a much higher complexity.

442 Chen et al. [2024] contains a similar sensitivity analysis as Xian and Zhao [2024], for the same set-
 443 ting except binary group and binary class. Unlike us, they do not deal with adversarial distributions
 444 shifts, but only label distribution shifts and/or group distribution shifts. In addition, our setups are
 445 fundamentally different, theirs being the continuous case, and ours being the discrete case. More-
 446 over, their sensitivity analysis (Theorem 2) is looser, and has an extra additive error term, unlike
 447 ours and that of Xian and Zhao [2024]. Besides, they do not deal with the case of perfect fairness,
 448 and require $\delta > 0$. Chen et al. [2022] also consider fairness under distribution shift. Their result is
 449 fundamentally different, and essentially shows that the fairness of a fixed hypothesis class on two
 450 similar distributions is similar. This is essentially what we show in Claims 2/3/7, however, they only
 451 deal with label and covariate shifts, while we tackle the more general case of adversarial distribution
 452 shifts.

453 B Missing Results from Section 3

454 B.1 Non-Robustness of the Deterministic Fair BOC (approximate fairness)

455 We show through the example below that the non-robustness phenomenon highlighted in Claim 1
 456 also holds when we only require approximate fairness⁷. In particular, this can hold in the case where
 457 sensitive group populations are highly imbalanced, for example when the mass of group A is much
 458 larger than the mass of group D , i.e., $P(A) \gg P(D)$. We set $\delta = 0.25$, and slightly modify the
 459 example in Claim 1, where we skew the probability mass towards Group A (in Claim 1, the group
 460 masses are balanced).

461 **Claim 4** (Non-Robustness of Deterministic Fair BOC (approximate fairness)). *There exist distri-
 462 butions $\mathcal{P}, \mathcal{P}'$ with $TV(\mathcal{P}, \mathcal{P}') = \epsilon$, such that the deterministic DP-Fair BOC's f, f' on $\mathcal{P}, \mathcal{P}'$,
 463 respectively, satisfies $|Acc(f, \mathcal{P}) - Acc(f', \mathcal{P}')| \geq \Omega(1)$.*

464 *Proof.* Consider a distribution P , where $P, S(x_1, A) = (0.4, 1) — P, S(x_1, D) = (0.1, 1) —$
 465 $P, S(x_2, A) = (0.4, 0) — P, S(x_2, D) = (0.1, 0)$ Consider the (deterministic) classifier f , with
 466 $f(x_1, A) = f(x_1, D) = 1, f(x_2, A) = f(x_2, D) = 0$. f satisfies DP, and $Acc(f) = 1$. Consider
 467 the neighboring distribution P' differing only on $(x_1, D), (x_2, D)$, as follows.

$$468 P', S(x_1, D) = (0.1 + 0.05, 1) — P', S(x_2, D) = (0.1 - 0.05, 0)$$

469 If we apply f on P' , it does not satisfy approximate DP for any $\delta < 0.25$, even though $TV(P, P')$ is
 470 small (0.05). There are only 2 deterministic classifiers satisfying approximate DP for any $\delta < 0.25$,
 471 either the constant 1 classifier f_1 , or the constant 0 classifier f_0 , with $Acc(f_1) = 1/2 + 0.05$, and
 472 $Acc(f_0) = 1/2 - 0.05$. Hence, the difference in accuracy of the deterministic (approximate) DP-Fair
 473 BOC on closeby P, P' is almost 0.5, demonstrating non-robustness. \square

474 B.2 NP-Completeness of Deterministic Fair Bayes Optimal Classifiers

475 **Claim 5** (NP-Completeness of Deterministic DP-Fair BOC). *Given a distribution \mathcal{P} , the problem
 476 of computing the deterministic DP-Fair BOC is NP-complete.*

⁷We define a δ -approximately fair classifier as follows, “If r denotes selection rate, a classifier f is δ -
 approximately DP-fair if $|r(f, A) - r(f, D)| < \delta$ ”.

477 *Proof.* We formalize the deterministic DP-Fair BOC decision problem as follows: Given a probability distribution \mathcal{P} and a score function \mathcal{S} over a domain $\mathcal{X} \times \mathcal{Z}$ and an accuracy α , determine
 478 whether there exists a deterministic fair classifier with accuracy at least α .

480 It is easy to see that the above problem is in NP since one can guess the 0-1 classification for each
 481 item in the domain and check in polynomial time that the resulting classifier is fair and satisfies the
 482 accuracy bound by verifying two linear inequalities. We now show that the problem is NP-hard via
 483 a polynomial-time reduction from the NP-complete Partition problem, which we state below.

484 Partition problem: Given a set S of n positive integers a_1, a_2, \dots, a_n summing to $2s$, determine
 485 whether there exists a subset of S that sums to s .

486 The reduction from Partition to the deterministic DP-Fair BOC problem is as follows. Given an
 487 instance I of Partition, we create an instance I' of the deterministic DP-fair BOC problem. Instance
 488 I' has $n + 2$ items— (x_1, A) with mass $1/4$ and score 1, item (x_2, A) with mass $1/4$ and score 0,
 489 and then n items (y_i, D) with mass $a_i/(4s)$ and score 0.5 —and ask whether there is a deterministic
 490 DP-Fair classifier with accuracy $\alpha \geq 3/4$. It is clear that there are at most 3 kinds of deterministic
 491 DP-fair classifiers: (i) the all-0 classifier that classifies all items as 0, (ii) the all-1 classifier that
 492 classifies all items as 1, and (iii) if and only if I is a yes-instance with S partitioned into S_1 and S_2
 493 of equal sums, then the classifier that accepts exactly one of (x_1, A) or (x_2, A) and accepts all items
 494 in (y_i, D) with $a_i \in S_1$ and rejecting all items in (y_i, D) with $a_i \in S_2$. The first two classifiers have
 495 accuracy $1/2$ while the third, if it exists, has accuracy $3/4$ if (x_1, A) is accepted and less than $3/4$
 496 otherwise. Thus, there exists a deterministic Fair BOC for instance I' with $3/4$ accuracy if and only
 497 if I is a yes-instance for the Partition problem. Clearly, the reduction is of time polynomial in the
 498 size of the deterministic DP-Fair BOC instance, thus establishing its NP-completeness.

499 Since determining the existence of a deterministic DP-fair classifier with accuracy at least $3/4$ is NP-
 500 complete it follows immediately that finding a deterministic DP-Fair BOC is also NP-complete. \square

501 B.3 Maximal Accuracy Gain for Randomized Classifiers

502 Consider the example in Claim 1, and consider the following randomized classifier f' , where

$$f'(x_1, A) = f'(x_1, D) = 1, f'(x_2, A) = 4\epsilon, f'(x_2, D) = 0.$$

503 It is easy to see that f' satisfies DP on \mathcal{P}' , and $\text{Acc}(f') = 1 - \epsilon$. Hence, the randomized DP-fair
 504 BOC improves over the accuracy of its deterministic counterpart by $0.5 - 2\epsilon$, where $\epsilon > 0$ can be
 505 made arbitrarily small (so the gain in accuracy approaches 0.5). In the following claim, we argue
 506 that this example is tight, i.e., we cannot hope to achieve an improvement over 0.5.

507 **Claim 6** (Bound in Accuracy Gain for Randomized classifiers). *Given any distribution \mathcal{P} , the difference in accuracy of the Randomized and Deterministic DP-Fair BOC's on \mathcal{P} is strictly lesser than 0.5.*

510 *Proof.* Note that the constant classifiers f_0, f_1 always satisfy DP, and $\text{Acc}(f_0) = 1 - \text{Acc}(f_1)$.
 511 Hence, the minimum accuracy of the optimal DP-fair deterministic classifier is 0.5. The maximum
 512 accuracy of its randomized counterpart is bounded by 1, hence bounding the difference in accuracy
 513 by 0.5. It suffices to show that these 2 events cannot occur simultaneously. Note that if some
 514 classifier has perfect accuracy, then all cells in the domain have score of either 0 or 1. In particular,
 515 this also holds if the optimal DP-fair randomized classifier has accuracy 1. However, observe that if
 516 we randomize over any cell with score of 0(1), we are accepting (rejecting) a part of it, leading to a
 517 loss in accuracy. This implies that any classifier with accuracy 1 has to be deterministic, concluding
 518 our proof. \square

519 B.4 Completion of the Robustness Analysis for Demographic Parity

520 In this section, we present the argument that was deferred in the proof of Theorem 1. This argument
 521 concerns a better upper bound on $|2\mathcal{S}(q) - 1|$ than the vacuous bound of 1, where q is the element
 522 that is split by the threshold corresponding to the classifier f . Notice that since by assumption, f
 523 splits q in the middle, we know that there is a portion of q that is rejected. Hence, the weighted
 524 score of a merged cell involving q (say \mathcal{C}_q) has score below the threshold of 0.5. Let \mathcal{C}_q contain
 525 some element t from group A . We are able to bound the score of $\mathcal{S}(q)$ by the following chain of

526 inequalities.

$$\begin{aligned}
\mathcal{S}(\mathcal{C}_q) \leq 0.5 &\implies \mathcal{S}(q)\mathcal{P}(D) + \mathcal{S}(t)\mathcal{P}(A) \leq 0.5(\mathcal{P}(D) + \mathcal{P}(A)) \\
&\implies \mathcal{S}(q)\mathcal{P}(D) \leq 0.5(\mathcal{P}(D) + \mathcal{P}(A)) \\
&\implies 2\mathcal{S}(q) - 1 \leq \frac{\mathcal{P}(A)}{\mathcal{P}(D)}
\end{aligned} \tag{1}$$

527 Since f splits q in the middle, there is also a portion of q that is accepted. Hence, the weighted
528 score of a merged cell involving q (say \mathcal{C}_q) has score above the threshold of 0.5. Let \mathcal{C}_q contain
529 some element t from group A . We are able to bound the score of $\mathcal{S}(q)$ by the following chain of
530 inequalities.

$$\begin{aligned}
\mathcal{S}(\mathcal{C}_q) \geq 0.5 &\implies \mathcal{S}(q)\mathcal{P}(D) + \mathcal{S}(t)\mathcal{P}(A) \geq 0.5(\mathcal{P}(D) + \mathcal{P}(A)) \\
&\implies \mathcal{S}(q)\mathcal{P}(D) + \mathcal{P}(A) \geq 0.5(\mathcal{P}(D) + \mathcal{P}(A)) \\
&\implies \mathcal{S}(q)\mathcal{P}(D) \geq 0.5(\mathcal{P}(D) - \mathcal{P}(A)) \\
&\implies 2\mathcal{S}(q) - 1 \geq -\frac{\mathcal{P}(A)}{\mathcal{P}(D)}
\end{aligned} \tag{2}$$

531 Combining Equations 1 and 2, we get

$$|2\mathcal{S}(q) - 1| \leq \frac{\mathcal{P}(A)}{\mathcal{P}(D)} \tag{3}$$

532 Using Equation 3, we get that

$$\begin{aligned}
\left| \text{Acc}(f_{\tilde{\mathcal{P}}}^{\text{DP}}, \tilde{\mathcal{P}}) - \text{Acc}(f_{\tilde{\mathcal{P}}'}^{\text{DP}}, \tilde{\mathcal{P}}') \right| &\leq \delta\epsilon \left(\frac{1}{\min(\tilde{\mathcal{P}}(A), \tilde{\mathcal{P}}'(A))} + \frac{1}{\min(\tilde{\mathcal{P}}(D), \tilde{\mathcal{P}}'(D))} \right) \tilde{\mathcal{P}}(D) \frac{\tilde{\mathcal{P}}(A)}{\tilde{\mathcal{P}}(D)} + \delta\epsilon \\
&= \delta\epsilon \left(\frac{1}{\min(\tilde{\mathcal{P}}(A), \tilde{\mathcal{P}}'(A))} + \frac{1}{\min(\tilde{\mathcal{P}}(D), \tilde{\mathcal{P}}'(D))} \right) \tilde{\mathcal{P}}(A) + \delta\epsilon \\
&\leq \delta\epsilon \left(1 + \frac{\max(\mathcal{P}(A), \mathcal{P}'(A))}{\min(\mathcal{P}(A), \mathcal{P}'(A))} + \frac{\max(\mathcal{P}(D), \mathcal{P}'(D))}{\min(\mathcal{P}(D), \mathcal{P}'(D))} \right)
\end{aligned} \tag{4}$$

533 The last equation follows by monotonicity. This completes the missing argument in the proof of
534 Theorem 1.

535 B.5 Proof of Lemma 1

536 *Proof.* We will prove the desired claim for n equal to number of elements q for which $\mathcal{P}(q) \neq \mathcal{P}(q')$.
537 Our proof is by induction on n . For the base case, we have $n = 0$, in which case $\mathcal{P} = \mathcal{P}'$ and the
538 claim trivially holds. For the induction step, let a be an element such that $\mathcal{P}(a) \neq \mathcal{P}'(a)$. Suppose
539 $\mathcal{P}(a) > \mathcal{P}'(a)$ and a is in group A ; the arguments for the other scenarios are analogous. We consider
540 two cases. The first case is when there exists $b \in A$ such that $\mathcal{P}(b) < \mathcal{P}'(b)$. We define $\tilde{\mathcal{P}}$ as the
541 same as \mathcal{P} except that

$$\begin{aligned}
\tilde{\mathcal{P}}(a) &= \mathcal{P}(a) - \min\{\mathcal{P}(a) - \mathcal{P}'(a), \mathcal{P}'(b) - \mathcal{P}(b)\} \\
\tilde{\mathcal{P}}(b) &= \mathcal{P}(b) + \min\{\mathcal{P}(a) - \mathcal{P}'(a), \mathcal{P}(b) - \mathcal{P}'(b)\}.
\end{aligned}$$

542 Note that either $\tilde{\mathcal{P}}(a) = \mathcal{P}'(a)$ or $\tilde{\mathcal{P}}(b) = \mathcal{P}'(b)$, which implies that the number of elements for
543 which $\tilde{\mathcal{P}}$ and \mathcal{P}' differ is less than n . Furthermore, $\mathcal{P}(A) = \tilde{\mathcal{P}}(A)$ and $\mathcal{P}(D) = \tilde{\mathcal{P}}(D)$. By
544 induction, there exist a sequence of $m < n$ distributions $\tilde{\mathcal{P}} = \mathcal{P}_0, \mathcal{P}_1, \dots, \mathcal{P}_m = \mathcal{P}'$ satisfying the
545 decomposability and monotonicity properties. Appending the elementary transition $\mathcal{P} \rightarrow \tilde{\mathcal{P}}$ to the
546 above sequence yields the desired sequence for \mathcal{P} and \mathcal{P}' with the decomposability and monotonicity
547 properties.

548 The second case is when there does not exist any $b \in A$ such that $\mathcal{P}(b) < \mathcal{P}'(b)$. So, we have
549 $\mathcal{P}(A) > \mathcal{P}'(A)$. Furthermore, there exists $b \in D$ such that $\mathcal{P}(b) < \mathcal{P}'(b)$. We define $\tilde{\mathcal{P}}$ in
550 the same way as for the first case. Again, we have that either $\tilde{\mathcal{P}}(a) = \mathcal{P}'(a)$ or $\tilde{\mathcal{P}}(b) = \mathcal{P}'(b)$,
551 which implies that the number of elements for which $\tilde{\mathcal{P}}$ and \mathcal{P}' differ is less than n . Furthermore,
552 $\mathcal{P}(A) > \tilde{\mathcal{P}}(A)$ and $\mathcal{P}(D) < \tilde{\mathcal{P}}(D)$. By induction, there exist a sequence of $m < n$ distributions
553 $\tilde{\mathcal{P}} = \mathcal{P}_0, \mathcal{P}_1, \dots, \mathcal{P}_m = \mathcal{P}'$ satisfying the decomposability and monotonicity properties. Again,
554 appending the elementary transition $\mathcal{P} \rightarrow \tilde{\mathcal{P}}$ to the above sequence yields the desired sequence for
555 \mathcal{P} and \mathcal{P}' with the decomposability and monotonicity properties. \square

556 **B.6 Proof of Claim 2**

557 *Proof.* We first establish the desired statements for the special case where the transition from \mathcal{P} to \mathcal{P}' is elementary in that the only difference between the two distributions is that there are two
558 elements a and b that have ϵ more mass and ϵ less mass, respectively, in \mathcal{P} as compared to \mathcal{P}' (all
559 other elements have the same mass in the two distributions). At the end, we invoke Lemma 1 and
560 transitivity to establish the general claim.
561

562 **Accuracy:** Divide the domain into 4 parts based on whether a point falls in categories TP, FP, TN,
563 or FN according to f . Denote the probability mass of elements in category E under f by $\mathcal{P}(E)$.
564 We know that $\text{Acc}(f, \mathcal{P}) = \mathcal{P}(\text{TP} \cup \text{TN})$. Doing a simple case by case analysis, we observe that
565 in the worst case, a belongs to $\text{TP} \cup \text{TN}$, and b belongs to $\text{FP} \cup \text{FN}$. This transition leads to a loss
566 in accuracy of ϵ , i.e., $\text{Acc}(f, \mathcal{P}') = \text{Acc}(f, \mathcal{P}) - \epsilon$. We note that it is enough to consider a loss in
567 accuracy, since we can reverse the roles of the distributions and use the same argument for gain as
568 that for loss.

569 **Demographic Parity:** First we notice the following

$$\begin{aligned} |\text{Unf}_{\text{DP}}(f, \mathcal{P}) - \text{Unf}_{\text{DP}}(f, \mathcal{P}')| &= ||\mathbf{r}_A(f, \mathcal{P}) - \mathbf{r}_D(f, \mathcal{P})| - |\mathbf{r}_A(f, \mathcal{P}') - \mathbf{r}_D(f, \mathcal{P}')|| \\ &\leq |(\mathbf{r}_A(f, \mathcal{P}) - \mathbf{r}_D(f, \mathcal{P})) - (\mathbf{r}_A(f, \mathcal{P}') - \mathbf{r}_D(f, \mathcal{P}'))| \\ &\quad (\text{Triangle inequality}) \\ &= |(\mathbf{r}_A(f, \mathcal{P}) - \mathbf{r}_A(f, \mathcal{P}')) + (\mathbf{r}_D(f, \mathcal{P}') - \mathbf{r}_D(f, \mathcal{P}))| \\ &\leq |\mathbf{r}_A(f, \mathcal{P}) - \mathbf{r}_A(f, \mathcal{P}')| + |\mathbf{r}_D(f, \mathcal{P}') - \mathbf{r}_D(f, \mathcal{P})| \end{aligned} \quad (5)$$

570 The above argument breaks up the change in unfairness into two terms: (i) $\Delta \mathbf{r}_A \triangleq$
571 $|\mathbf{r}_A(f, \mathcal{P}) - \mathbf{r}_A(f, \mathcal{P}')|$, which is the difference in selection rates of f for \mathcal{P} , and \mathcal{P}' on A and (ii)
572 $\Delta \mathbf{r}_D \triangleq |\mathbf{r}_D(f, \mathcal{P}) - \mathbf{r}_D(f, \mathcal{P}')|$, which is the difference in selection rates of f for \mathcal{P} and \mathcal{P}' on D .

573 We proceed to bound $\Delta \mathbf{r}_A$, and an identical argument can be used to bound $\Delta \mathbf{r}_D$. In our argument,
574 we divide the domain into 4 parts based on the group membership and labeling according to f . Let
575 the probability mass of elements in group z with label y under classifier f be denoted by $\mathcal{P}(z, f_y)$.
576 If a, b lie in the same group z then $\mathcal{P}(A)$ remains unchanged, and it is easy to see that the maximum
577 value of $\Delta \mathbf{r}_A$ is $\frac{\epsilon}{\mathcal{P}(A)}$, when $\mathcal{P}'(A, f_1) = \mathcal{P}(A, f_1) \pm \epsilon$. In case $a \in A$, and $b \in D$, then $\mathcal{P}'(A) =$
578 $\mathcal{P}(A) - \epsilon$. We know that $\mathcal{P}'(A) = \mathcal{P}'(A, f_1) + \mathcal{P}'(A, f_0)$. Either a lies completely in (A, f_1) ,
579 completely in (A, f_0) , or in both (if we are randomizing over the cell containing a). We first consider
580 the first case, where $\mathcal{P}'(A, f_1) = \mathcal{P}(A, f_1) - \epsilon$.

$$\begin{aligned} |\mathbf{r}_A(f, \mathcal{P}) - \mathbf{r}_A(f, \mathcal{P}')| &= \left| \frac{\mathcal{P}(A, f_1)}{\mathcal{P}(A)} - \frac{\mathcal{P}(A, f_1) - \epsilon}{\mathcal{P}(A) - \epsilon} \right| \\ &= \left| \frac{\mathcal{P}(A)\epsilon - \mathcal{P}(A, f_1)\epsilon}{\mathcal{P}(A)(\mathcal{P}(A) - \epsilon)} \right| \\ &\leq \epsilon \left| \frac{1}{\mathcal{P}(A) - \epsilon} \right| \\ &\leq \epsilon \left(\frac{1}{\min(\mathcal{P}(A), \mathcal{P}'(A))} \right) \end{aligned}$$

581 We now consider the second case, where $\mathcal{P}'(A, f_0) = \mathcal{P}(A, f_0) - \epsilon$.

$$\begin{aligned} |\mathbf{r}_A(f, \mathcal{P}) - \mathbf{r}_A(f, \mathcal{P}')| &= \left| \frac{\mathcal{P}(A, f_1)}{\mathcal{P}(A)} - \frac{\mathcal{P}(A, f_1)}{\mathcal{P}(A) - \epsilon} \right| \\ &= \left| \frac{\mathcal{P}(A, f_1)\epsilon}{\mathcal{P}(A)(\mathcal{P}(A) - \epsilon)} \right| \\ &\leq \epsilon \left| \frac{1}{\mathcal{P}(A) - \epsilon} \right| \\ &\leq \epsilon \left(\frac{1}{\min(\mathcal{P}(A), \mathcal{P}'(A))} \right) \end{aligned}$$

582 It is easy to see that in the third case, where a lies in both (A, f_1) and (A, f_0) , Δr_A is bounded by
583 the max value of Δr_A of cases 1 and 2.

584 Here we argued for when A loses mass. Using symmetry, we can similarly argue the case where A
585 gains mass, i.e., $a \in D$, and $b \in A$, leading to $\mathcal{P}'(A) = \mathcal{P}(A) + \epsilon$. Hence, we conclude that

$$|r_A(f, \mathcal{P}) - r_A(f, \mathcal{P}')| \leq \epsilon \left(\frac{1}{\min(\mathcal{P}(A), \mathcal{P}'(A))} \right) \quad (6)$$

586 Also, here we argued for group A , and an identical argument for D shows that

$$|r_D(f, \mathcal{P}) - r_D(f, \mathcal{P}')| \leq \epsilon \left(\frac{1}{\min(\mathcal{P}(D), \mathcal{P}'(D))} \right) \quad (7)$$

587 Plugging Equations 6 and 7 into Equation 5, we get that

$$\begin{aligned} |\text{Unf}_{\text{DP}}(f, \mathcal{P}) - \text{Unf}_{\text{DP}}(f, \mathcal{P}')| &\leq \\ \epsilon \left(\frac{1}{\min(\mathcal{P}(A), \mathcal{P}'(A))} \right) + \epsilon \left(\frac{1}{\min(\mathcal{P}(D), \mathcal{P}'(D))} \right) \end{aligned}$$

588 **From elementary to arbitrary:** Consider a general transition of distance ϵ from \mathcal{P} to \mathcal{P}' . We
589 invoke Lemma 1 to obtain intermediate distributions $\{\mathcal{P}_i\}$ with $TV(\mathcal{P}_{i-1}, \mathcal{P}_i) = \epsilon_i$ satisfying the
590 decomposability and monotonicity properties. We apply the above proof for each elementary transi-
591 tion $\mathcal{P}_{i-1} \rightarrow \mathcal{P}_i$ of mass ϵ_i . For accuracy, we derive

$$\begin{aligned} |\text{Acc}(f, \mathcal{P}) - \text{Acc}(f, \mathcal{P}')| &\leq \sum_i |\text{Acc}(f, \mathcal{P}_{i-1}) - \text{Acc}(f, \mathcal{P}_i)| \\ &\leq \sum_i \epsilon_i \\ &= \epsilon. \end{aligned}$$

592 For Demographic Parity, we derive

$$\begin{aligned} |\text{Unf}_{\text{DP}}(f, \mathcal{P}) - \text{Unf}_{\text{DP}}(f, \mathcal{P}')| &\leq \sum_i |\text{Unf}_{\text{DP}}(f, \mathcal{P}_{i-1}) - \text{Unf}_{\text{DP}}(f, \mathcal{P}_i)| \\ &\leq \sum_i \epsilon_i \left(\frac{1}{\min(\mathcal{P}_{i-1}(A), \mathcal{P}_i(A))} + \frac{1}{\min(\mathcal{P}_{i-1}(D), \mathcal{P}_i(D))} \right) \\ &\leq \sum_i \epsilon_i \left(\frac{1}{\min(\mathcal{P}(A), \mathcal{P}'(A))} + \frac{1}{\min(\mathcal{P}(D), \mathcal{P}'(D))} \right) \\ &= \epsilon \left(\frac{1}{\min(\mathcal{P}(A), \mathcal{P}'(A))} + \frac{1}{\min(\mathcal{P}(D), \mathcal{P}'(D))} \right), \end{aligned}$$

593 where the second inequality follows from monotonicity and the last equation follows from decom-
594 posability. This completes the proof of the claim. \square

595 B.7 Proof of Lemma 2

596 *Proof.* The contribution to accuracy of an element q is given by

$$\mathcal{P}(q)\mathcal{S}(q)f(q) + \mathcal{P}(q)(1 - \mathcal{S}(q))(1 - f(q)) = 2\mathcal{P}(q)\mathcal{S}(q)f(q) + \mathcal{P}(q) - \mathcal{P}(q)\mathcal{S}(q) - \mathcal{P}(q)f(q)$$

597 If \mathcal{P} changes by ϵ and $f(q)$ changes by $\Delta f(q)$ (and remains constant elsewhere), then we can split
598 the process into two parts: (i) $f(q)$ changes by $\Delta f(q)$ (and remains constant elsewhere) while \mathcal{P}
599 remains constant, and (ii) \mathcal{P} changes by ϵ while f remains constant. We consider each of the parts.

600 If \mathcal{P} remains fixed, and $f(q)$ changes by $\Delta f(q)$ to give $f'(q)$, then change in accuracy on q (and
601 also overall accuracy) is given by

$$|2\mathcal{P}(q)\mathcal{S}(q)\Delta f(q) - \mathcal{P}(q)\Delta f(q)| = |\mathcal{P}(q)(2\mathcal{S}(q) - 1)\Delta f(q)|$$

602 If \mathcal{P} changes by ϵ , and f' remains constant, then by Claim 2 the change in accuracy is bounded by
603 ϵ . Thus, the total change in accuracy is bounded as follows.

$$|\text{Acc}(f, \mathcal{P}) - \text{Acc}(f', \mathcal{P}')| \leq |\mathcal{P}(q)(2\mathcal{S}(q) - 1)\Delta f(q)| + \epsilon.$$

604 \square

605 **C Equal Opportunity and Predictive Equality (continued)**

606 **C.1 Fair Bayes Optimal Classifier**

607 When discussing the DP-Fair BOC, we considered mass-threshold classifiers $\tilde{\mathcal{T}}_t$, that select $\mathcal{C}_z(t)$,
 608 and reject $\mathcal{C}_z - \mathcal{C}_z(t)$, for both $z = A$, and $z = D$. $\tilde{\mathcal{T}}_t$ applies the same threshold t to both groups A
 609 and D . In this section, we consider groupwise mass-threshold classifiers $\tilde{\mathcal{T}}_{t_A, t_D}$ that apply different
 610 thresholds t_A and t_D to groups A and D respectively.

611 Denote the True Positive rate of a classifier f restricted to a cell \mathcal{C} by $\text{TPR}(f(\mathcal{C}))$. Given $r \in (0, 1]$,
 612 there is a unique classifier $\tilde{\mathcal{T}}_{t_A, t_D}$, such that $\text{TPR}(\tilde{\mathcal{T}}_{t_A, t_D}(\mathcal{C}_A)) = \text{TPR}(\tilde{\mathcal{T}}_{t_A, t_D}(\mathcal{C}_D)) = r$. Denote
 613 this classifier by f_r . Given $r = 0$, $\tilde{\mathcal{T}}_{t_A, t_D}$ need not be unique as there could exist cells with score
 614 1. In that case, we define f_0 to be the unique groupwise mass-threshold classifier accepting exactly
 615 the cells with score 1. Denote the groupwise thresholds of f_r by r^A and r^D respectively, i.e., $f_r =$
 616 $\tilde{\mathcal{T}}_{r^A, r^D}$. We now introduce some terminology, before detailing the EO-Fair BOC as characterized in
 617 Agarwal and Deshpande [2022].

618 **Definition 9** (TP-Boundaries). Recall the set of score-boundaries \mathcal{I} . We then define the set of TP-
 619 boundaries \mathcal{I}_{TP} as

$$\mathcal{I}_{TP} = \{r \mid r^A \in \mathcal{I}, \text{ or } r^D \in \mathcal{I}\},$$

620 \mathcal{I}_{TP} essentially consists of all the true positive rates r , such that, the corresponding groupwise
 621 threshold classifier $f_r = \tilde{\mathcal{T}}_{r^A, r^D}$ has a threshold at a point in the set of score boundaries \mathcal{I} .

622 As with DP, we define the notion of a merged cell, but notice that it differs from the notion of merged
 623 cell in the case of DP.

624 **Definition 10** (Merged cell (EO)). Consider $r_i \in \mathcal{I}_{TP}$, and define a merged cell \mathcal{C}_i , where

$$\mathcal{C}_i = \mathcal{A}(f_{r_i}) - \mathcal{A}(f_{r_{i-}}),$$

625 where r_{i-} denotes the element in \mathcal{I}_{TP} preceding r_i .

626 **Characterization** Given a distribution \mathcal{P} over $\mathcal{X} \times \mathcal{Z} \times \mathcal{Y}$, the EO-Fair BOC $f_{\mathcal{P}}^{\text{EO}}$ is given by the
 627 mass-threshold classifier is given by the group wise mass-threshold classifier $f_{r'}$, where $r' = r_i \in \mathcal{I}$
 628 is the unique i such that $\mathcal{S}(\mathcal{C}_i) \geq 0.5$, and $\mathcal{S}(\mathcal{C}_{i+}) < 0.5$, where r_{i+} denotes the element in \mathcal{I}_{TP}
 629 after r_i .

630 **C.2 Robustness to Adversarial Distribution Shift**

631 We study the robustness of the EO-Fair BOC to adversarial distribution shift. We show that given
 632 two similar distributions $\mathcal{P}, \mathcal{P}'$, the accuracy of the EO-Fair BOC on the respective distributions
 633 is similar (satisfies local Lipschitzness). Before proving the main result (Theorem 2), we prove
 634 Claim 3, which analyzes the change in unfairness, with respect to EO, of a fixed classifier due to a
 635 distribution shift. Such a property is useful when we want a guarantee that if we train a classifier on
 636 the corrupted distribution \mathcal{P}' , the performance of the classifier on the actual distribution \mathcal{P} will be
 637 similar to that on \mathcal{P}' .

638 *Proof of Claim 3.* As in the proof of Claim 2, it follows from Lemma 1 and transitivity that it is
 639 enough to prove the statement of the claim for elementary transitions. We consider a transition
 640 $a \rightarrow b$ of mass ϵ . We first derive

$$\begin{aligned} |\text{Unf}_{\text{EO}}(f, \mathcal{P}) - \text{Unf}_{\text{EO}}(f, \mathcal{P}')| &= ||\text{TPR}_A(f, \mathcal{P}) - \text{TPR}_D(f, \mathcal{P})| - |\text{TPR}_A(f, \mathcal{P}') - \text{TPR}_D(f, \mathcal{P}')|| \\ &\leq |(\text{TPR}_A(f, \mathcal{P}) - \text{TPR}_D(f, \mathcal{P})) - (\text{TPR}_A(f, \mathcal{P}') - \text{TPR}_D(f, \mathcal{P}'))| \\ &= |(\text{TPR}_A(f, \mathcal{P}) - \text{TPR}_A(f, \mathcal{P}')) + (\text{TPR}_D(f, \mathcal{P}') - \text{TPR}_D(f, \mathcal{P}))| \\ &\leq |\text{TPR}_A(f, \mathcal{P}) - \text{TPR}_A(f, \mathcal{P}')| + |\text{TPR}_D(f, \mathcal{P}') - \text{TPR}_D(f, \mathcal{P})| \end{aligned} \tag{8}$$

641 This breaks up the change in unfairness into two terms, which correspond to the difference in true
 642 positive rates of f for \mathcal{P} and \mathcal{P}' on A, D respectively (denoted by $\Delta \text{TPR}_A, \Delta \text{TPR}_D$). Divide the

643 domain into 8 parts based on the group membership and whether a point falls in TP, FP, TN, or FN
 644 according to f . Denote the probability mass of elements in group z in category E under f by $\mathcal{P}(E_z)$.
 645 We know that $\mathcal{P}(A) = \mathcal{P}(A, 1) + \mathcal{P}(A, 0) = (\mathcal{P}(\text{TP}_A) + \mathcal{P}(\text{FN}_A)) + (\mathcal{P}(\text{TN}_A) + \mathcal{P}(\text{FP}_A))$.

646 We proceed to bound ΔTPR_A , and an identical argument can be used to bound ΔTPR_D . If a, b lie
 647 in $\mathcal{P}(A, 1)$, it remains unchanged, and it is easy to see that the maximum value of ΔTPR_A is $\frac{\epsilon}{\mathcal{P}(A, 1)}$,
 648 when $\mathcal{P}'(\text{TP}_A) = \mathcal{P}(\text{TP}_A) \pm \epsilon$. In case $a \in (A, 1)$, and $b \notin (A, 1)$, then $\mathcal{P}'(A, 1) = \mathcal{P}(A, 1) - \epsilon$.
 649 We know that $\mathcal{P}'(A, 1) = \mathcal{P}'(\text{TP}_A) + \mathcal{P}'(\text{FN}_A)$. Either a lies completely in TP_A , completely in
 650 FN_A , or in both (if we are randomizing over the cell containing a). We first consider the first case,
 651 where $\mathcal{P}'(\text{TP}_A) = \mathcal{P}(\text{TP}_A) - \epsilon$.

$$\begin{aligned}
 |\text{TPR}_A(f, \mathcal{P}) - \text{TPR}_A(f, \mathcal{P}')| &= \left| \frac{\mathcal{P}(\text{TP}_A)}{\mathcal{P}(A, 1)} - \frac{\mathcal{P}(\text{TP}_A) - \epsilon}{\mathcal{P}(A, 1) - \epsilon} \right| \\
 &= \left| \frac{\mathcal{P}(\text{TP}_A)\mathcal{P}(A, 1) - \mathcal{P}(\text{TP}_A)\epsilon - \mathcal{P}(\text{TP}_A)\mathcal{P}(A, 1) + \mathcal{P}(A, 1)\epsilon}{\mathcal{P}(A, 1)(\mathcal{P}(A, 1) - \epsilon)} \right| \\
 &= \left| \frac{\mathcal{P}(A, 1)\epsilon - \mathcal{P}(\text{TP}_A)\epsilon}{\mathcal{P}(A, 1)(\mathcal{P}(A, 1) - \epsilon)} \right| \\
 &= \epsilon \left| \frac{\mathcal{P}(\text{FN}_A)}{\mathcal{P}(A, 1)(\mathcal{P}(A, 1) - \epsilon)} \right| \\
 &\leq \epsilon \left| \frac{1}{\mathcal{P}(A, 1) - \epsilon} \right| \\
 &= \epsilon \left| \frac{1}{\mathcal{P}'(A, 1)} \right| \\
 &\leq \epsilon \left(\frac{1}{\min(\mathcal{P}(A, 1), \mathcal{P}'(A, 1))} \right)
 \end{aligned}$$

652 We now consider the second case, where $\mathcal{P}'(\text{FN}_A) = \mathcal{P}(\text{FN}_A) - \epsilon$.

$$\begin{aligned}
 |\text{TPR}_A(f, \mathcal{P}) - \text{TPR}_A(f, \mathcal{P}')| &= \left| \frac{\mathcal{P}(\text{TP}_A)}{\mathcal{P}(A)} - \frac{\mathcal{P}'(\text{TP}_A)}{\mathcal{P}'(A, 1)} \right| \\
 &= \left| \frac{\mathcal{P}(\text{TP}_A)}{\mathcal{P}(A, 1)} - \frac{\mathcal{P}(\text{TP}_A)}{\mathcal{P}(A, 1) - \epsilon} \right| \\
 &= \left| \frac{\mathcal{P}(\text{TP}_A)\mathcal{P}(A, 1) - \mathcal{P}(\text{TP}_A)\epsilon - \mathcal{P}(\text{TP}_A)\mathcal{P}(A, 1)}{\mathcal{P}(A, 1)(\mathcal{P}(A, 1) - \epsilon)} \right| \\
 &= \left| \frac{\mathcal{P}(\text{TP}_A)\epsilon}{\mathcal{P}(A, 1)(\mathcal{P}(A, 1) - \epsilon)} \right| \\
 &\leq \epsilon \left| \frac{1}{\mathcal{P}(A, 1) - \epsilon} \right| \\
 &= \epsilon \left| \frac{1}{\mathcal{P}'(A, 1)} \right| \\
 &\leq \epsilon \left(\frac{1}{\min(\mathcal{P}(A, 1), \mathcal{P}'(A, 1))} \right) \tag{9}
 \end{aligned}$$

653 It is easy to see that in the third case, where a lies in both TP_A and FN_A , ΔTPR_A is bounded by the
 654 max value of ΔTPR_A of cases 1 and 2.

655 Here we argued for when $(A, 1)$ loses mass. We can similarly argue the case where $(A, 1)$ gains
 656 mass, giving us an identical bound. Also, here we argued for group A , and an identical argument for
 657 D shows that

$$|\text{TPR}_A(f, \mathcal{P}) - \text{TPR}_A(f, \mathcal{P}')| \leq \epsilon \left(\frac{1}{\min(\mathcal{P}(D, 1), \mathcal{P}'(D, 1))} \right) \tag{10}$$

658 Plugging Equations 9 and 10 into Equation 8, we get that

$$|\text{Unf}_{\text{EO}}(f, \mathcal{P}) - \text{Unf}_{\text{EO}}(f, \mathcal{P}')| \leq \epsilon \left(\frac{1}{\min(\mathcal{P}(D, 1), \mathcal{P}'(D, 1))} \right) + \epsilon \left(\frac{1}{\min(\mathcal{P}(A, 1), \mathcal{P}'(A, 1))} \right)$$

659 \square

660 Now we prove our main result (Theorem 2).

661 *Proof of Theorem 2.* Following the proof of Theorem 1, by Lemma 1 and transitivity, it suffices to
662 show the theorem statement for the case where the transition from \mathcal{P} to \mathcal{P}' is elementary in that the
663 only difference between the two distributions is that there are two elements a and b that have ϵ more
664 mass and ϵ less mass, respectively, in \mathcal{P} as compared to \mathcal{P}' (all other elements have the same mass
665 in the two distributions). So, in the remainder of the proof, we only consider elementary transitions.

666 Consider the transfer of ϵ mass from a to b in a continuous manner. During this process, either the
667 cell corresponding to element a will monotonically increase in score or monotonically decrease in
668 score⁸. The same holds for the cell corresponding to element b . The scores of all other cells will
669 remain the same. In the following argument, we assume that the score of the cell of a decreases
670 monotonically and that of b increases monotonically. All of the arguments are analogous for the
671 remaining three cases.

672 Let f denote the EO-fair BOC for the current distribution \mathcal{P} at any instant in this mass transfer
673 process ending in distribution \mathcal{P}' . As the mass transfer proceeds, we analyze how the EO-fair BOC
674 changes from $f_{\mathcal{P}}^{\text{EO}}$ to $f_{\mathcal{P}'}^{\text{EO}}$. We consider the largest mass transfer $\delta\epsilon$ until one of the two following
675 events occur.

676 1. Equal-score event: The cell of a has the same score as the adjacent cell lower in the sorted
677 order or the cell of b has the same score as the adjacent cell higher in the sorted order.

678 2. Threshold event: The score of a merged cell containing a or b becomes exactly 0.5.

679 Note that by the choice of $\delta\epsilon$, during the transfer $\delta\epsilon$, all the cells remain in the same order in both
680 groups; furthermore, all masses and scores of all cells other than the ones containing a or b remain
681 the same during the transfer. By Claim 3,

$$\begin{aligned}\delta \text{Unf}_{\text{EO}} &= |\text{Unf}_{\text{EO}}(f_{\mathcal{P}}^{\text{EO}}, \mathcal{P}) - \text{Unf}_{\text{EO}}(f_{\mathcal{P}'}^{\text{EO}}, \mathcal{P}')| \\ &\leq \delta\epsilon \left(\frac{1}{\mathcal{P}(A, 1)} + \frac{1}{\mathcal{P}(D, 1)} \right).\end{aligned}$$

682 Since $\text{Unf}_{\text{EO}}(f_{\mathcal{P}}^{\text{EO}}(\mathcal{P})) = 0$, we know that $\delta \text{Unf}_{\text{EO}} = \text{Unf}_{\text{EO}}(f_{\mathcal{P}'}^{\text{EO}}, \mathcal{P}') =$
683 $|\text{TPR}_A(f_{\mathcal{P}}^{\text{EO}}, \mathcal{P}') - \text{TPR}_D(f_{\mathcal{P}}^{\text{EO}}, \mathcal{P}')|$. Consider the cell q that is split by the threshold corre-
684 sponding to f (for now, assume $q \in D$). Since neither the equal-score event nor the 0.5-score
685 event occur, we see that after the transition, $f_{\mathcal{P}}^{\text{EO}}$ has $\delta \text{Unf}_{\text{EO}}$ difference in TPR between groups.
686 To modify $f_{\mathcal{P}}^{\text{EO}} \rightarrow f_{\mathcal{P}'}^{\text{EO}}$, we therefore need to move the boundary at q so that TPR in both
687 groups align and EO is satisfied (the classifier f remains the same apart from its action on q).
688 The change in function $(|\Delta f(q)|)$ of element q is bounded by $\delta \text{Unf}_{\text{EO}} \frac{\mathcal{P}(D, 1)}{\mathcal{S}(q)\mathcal{P}(q)}$, after scaling (since
689 $\mathcal{P}(D, 1)\delta \text{Unf}_{\text{EO}} = |\Delta f(q)|\mathcal{P}(q)\mathcal{S}(q)$). If f' denotes the EO-Fair BOC for the distribution at the
690 end of the $\delta\epsilon$ mass transfer (just prior to any of the two events), then by Lemma 2, the change in
691 accuracy of the optimal fair classifier is bounded by

$$\begin{aligned}|\text{Acc}(f, \mathcal{P}) - \text{Acc}(f', \mathcal{P}')| &\leq |\mathcal{P}(q)(2\mathcal{S}(q) - 1)\Delta f(q)| + \delta\epsilon \\ &\leq \delta\epsilon \left(\frac{1}{\min(\mathcal{P}(A, 1), \mathcal{P}'(A, 1))} + \frac{1}{\min(\mathcal{P}(D, 1), \mathcal{P}'(D, 1))} \right) \frac{\mathcal{P}(D, 1)|(2\mathcal{S}(q) - 1)|}{\mathcal{S}(q)}\end{aligned} \tag{11}$$

$$\leq \delta\epsilon \left(\frac{1}{\min(\mathcal{P}(A, 1), \mathcal{P}'(A, 1))} + \frac{1}{\min(\mathcal{P}(D, 1), \mathcal{P}'(D, 1))} \right) \frac{\mathcal{P}(D)}{\mathcal{S}(q)} + \delta\epsilon, \tag{12}$$

692 where the last equation follows by monotonicity. Note that $\frac{1}{\mathcal{S}(q)}$ can potentially blow up, and we
693 would like to bound it. Notice that since by assumption, f splits q in the middle, we know that there
694 is a portion of q that is accepted. Hence, the weighted score of a merged cell involving q (say \mathcal{C}_q) has

⁸In case the cell corresponding to a has score of 0 or 1, its score will remain unchanged, and this case is trivially covered by our argument.

695 score above the threshold of 0.5. Let C_q contain some element t from group A , and denote length
 696 of group z in C_q by l_z . Since the TPR of both components are equal, we know that

$$\frac{\mathcal{P}(A)l_A\mathcal{S}(t)}{\mathcal{P}(A,1)} = \frac{\mathcal{P}(D)l_D\mathcal{S}(q)}{\mathcal{P}(D,1)} \quad (13)$$

697 Also, since $\mathcal{S}(C_q) \geq 0.5$, we know that

$$\mathcal{P}(A)l_A\mathcal{S}(t) + \mathcal{P}(D)l_D\mathcal{S}(q) \geq \frac{\mathcal{P}(A)l_A + \mathcal{P}(D)l_D}{2} \quad (14)$$

698 Combining Equations 13, and 14, and after a bunch of simplification, we get that

$$\frac{1}{\mathcal{S}(q)} \leq \frac{2\mathcal{P}(1)}{\mathcal{P}(D,1)} - \frac{\mathcal{P}(A,1)}{\mathcal{P}(D,1)\mathcal{S}(t)} \quad (15)$$

$$\leq \frac{2\mathcal{P}(1)}{\mathcal{P}(D,1)} \quad (16)$$

699 Where the second equation follows because $\mathcal{S}(t) \geq 0$. Plugging Equation 16 into Equation 12, we
 700 get that

$$\begin{aligned} |\text{Acc}(f, \mathcal{P}) - \text{Acc}(f', \mathcal{P}')| &\leq \delta\epsilon \left(\frac{1}{\min(\mathcal{P}(A,1), \mathcal{P}'(A,1))} + \frac{1}{\min(\mathcal{P}(D,1), \mathcal{P}'(D,1))} \right) 2\mathcal{P}(1) + \delta\epsilon \\ &\leq \delta\epsilon \left(\frac{1}{\min(\mathcal{P}(A,1), \mathcal{P}'(A,1))} + \frac{1}{\min(\mathcal{P}(D,1), \mathcal{P}'(D,1))} \right) 2 \max(\mathcal{P}(1), \mathcal{P}'(1)) + \delta\epsilon \end{aligned} \quad (\text{monotonicity})$$

701 The handling of the equal-score and threshold events is identical to that in the proof of Theorem 1.
 702 We repeat here for convenience.

- 703 Equal-score event: If the cell of a has the same score as the adjacent cell lower in the sorted
 704 order, then we swap the two cells so that the cell of a is lower in the order. Similarly, if the
 705 cell of b has the same score as the adjacent cell higher in the order, then we swap the two
 706 cells so that the cell of b is higher in the order. We update the classifier f and note that this
 707 change has no impact on the accuracy of f .
- 708 Threshold event: The score of a merged cell containing a or b becomes exactly 0.5. We
 709 include the merged cell in the classifier f , again without changing accuracy.

710 Thus, between any two occurrences of these events, the change in accuracy is bounded by an amount
 711 proportional to the mass transfer; when we reach these occurrences, the mass transfer is paused, the
 712 BOC changes without any change in accuracy. Furthermore, at every occurrence of the event, one of
 713 these three events happen: the cell containing a moves down in the order, the cell containing b moves
 714 up in the order, or an additional merged cell is placed above the threshold. Since the number of times
 715 these events can occur is upper bounded by the number of cells in the two groups, this process is
 716 finite. Therefore, adding over all the $\delta\epsilon$ mass transfers, we obtain the desired bound on the change
 717 in accuracy between the BOC's for \mathcal{P} and \mathcal{P}' , thus completing the proof of the theorem. \square

718 C.3 Predictive Equality

719 We can obtain analogous results for Predictive Equality from the same proof techniques as that of
 720 Equal Opportunity (since we can just reverse the roles of the labels 0 and 1 in EO to get results for
 721 PE). Hence, we only discuss the proofs for EO, and state the analogous results for PE below without
 722 proof.

723 **Claim 7** (PE Shift for a Fixed Hypothesis). *Given distributions $\mathcal{P}, \mathcal{P}'$, such that $TV(\mathcal{P}, \mathcal{P}') \leq \epsilon$,
 724 and any hypothesis f , it holds that*

$$|Unf_{PE}(f, \mathcal{P}) - Unf_{PE}(f, \mathcal{P}')| \leq \epsilon \left(\frac{1}{\min(\mathcal{P}(A,0), \mathcal{P}'(A,0))} + \frac{1}{\min(\mathcal{P}(D,0), \mathcal{P}'(D,0))} \right).$$

725 **Theorem 3** (Robustness of PE-Fair BOC). *Given distributions $\mathcal{P}, \mathcal{P}'$, such that $TV(\mathcal{P}, \mathcal{P}') = \epsilon$, we
726 have that*

$$|Acc(f_{\mathcal{P}}^{PE}, \mathcal{P}) - Acc(f_{\mathcal{P}'}^{PE}, \mathcal{P}')| \leq \epsilon \left(1 + 2 \max(\mathcal{P}(0), \mathcal{P}'(0)) \left(\frac{1}{\min(\mathcal{P}(A, 0), \mathcal{P}'(A, 0))} + \frac{1}{\min(\mathcal{P}(D, 0), \mathcal{P}'(D, 0))} \right) \right),$$

727 where $f_{\mathcal{P}}^{PE}, f_{\mathcal{P}'}^{PE}$ are the PE-Fair BOC's on $\mathcal{P}, \mathcal{P}'$ respectively.

728 **Corollary 3.** *Given distributions $\mathcal{P}, \mathcal{P}'$, such that $TV(\mathcal{P}, \mathcal{P}') = \epsilon$, we have that*

$$|Acc(f_{\mathcal{P}}^{PE}, \mathcal{P}) - Acc(f_{\mathcal{P}'}^{PE}, \mathcal{P}')| \leq 2\epsilon \left(1 + \max(\mathcal{P}(0), \mathcal{P}'(0)) \left(\frac{1}{\min(\mathcal{P}(A, 0), \mathcal{P}'(A, 0))} + \frac{1}{\min(\mathcal{P}(D, 0), \mathcal{P}'(D, 0))} \right) \right),$$

729 where $f_{\mathcal{P}}^{EO}, f_{\mathcal{P}'}^{EO}$ are the EO-Fair BOC's on $\mathcal{P}, \mathcal{P}'$ respectively