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Abstract

Understanding and forecasting lake dynamics is
essential for monitoring water quality and ecosys-
tem health in lakes and reservoirs. While ma-
chine learning models trained on ecological time-
series data have shown promise, they tend to
be task-specific and struggle with generaliza-
tion across diverse aquatic environments. Cur-
rent research is limited to single-lake single-
variable models, inconsistent observation fre-
quencies, and a lack of foundation models that
can generalize across ecosystems, hindering re-
producibility and transferability. To address
these challenges, we introduce LAKEFM, a foun-
dation model for lake ecosystems, pre-trained
on multi-variable and multi-depth data drawn
from a combination of simulated and observa-
tional lake datasets. Through empirical results
and qualitative analysis, we demonstrate that
LAKEFM learns meaningful representations span-
ning both fine-grained variable-level dynamics
and broader lake-level patterns. Furthermore, it
achieves competitive—and in some cases supe-
rior—forecasting performance compared to exist-
ing time-series foundation models

1. Introduction
Lake ecosystems regulate regional climate, support biodi-
versity, and supply drinking water. However, they are char-
acterized by complex physical-biogeochemical dynamics
that evolve over multiple temporal scales and depth lay-
ers. Recent sensor deployments now provide multi-variable,
multi-depth time-series that invite data-driven forecasting.
Physics-guided RNNs (Jia et al., 2018) and lake-specific
deep networks have improved temperature prediction, but
their tight coupling to individual variables and sites ham-
pers transfer to lakes that differ in morphometry, climate,
or sampling cadence. However, modeling lake systems at
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scale remains difficult due to the heterogeneity in variable
number and types, and data sparsity across sites, making it
hard to develop general-purpose models that transfer well.

At the same time, the broader ML community has made sig-
nificant progress in developing foundation models that learn
task-agnostic representations from large, heterogeneous cor-
pora: CLIP (Radford et al., 2021) for vision–language align-
ment, Chronos (Ansari et al., 2024) and Moment (Goswami
et al., 2024) for generic time-series forecasting, and domain-
specific backbones such as PAPAGEI (Pillai et al., 2024)
for photoplethysmography signals. In contrast, limnology
still lacks an analogous model capable of unifying multi-
ple lakes and variables observed with irregular frequencies
and depths, leaving cross-ecosystem synthesis as an open
challenge. Most generic TS foundation models either focus
solely on univariate signals or assume clean, densely sam-
pled data—assumptions that are rarely valid in limnology,
where data is multivariate and are inherently sparse across
both time and depth dimensions. While recent efforts such
as PGFM (Yu et al., 2025) have begun exploring foundation
models for lake systems, they remain limited in scope, being
restricted to a small number of variables and lacking the
ability to generalize across diverse measurement depths.

Motivated by this gap, we ask the following questions.
(a) Can we build a single model that can capture generic
lake processes, encompassing multiple lake ecosystems and
variables, while retaining site-specific nuances? (b) Can
treating scientific variables (temperature, chlorophyll, oxy-
gen, . . . ) as tokens reveal their functional relationships and
potentially be applicable as feature extractors for under-
standing more complex dynamical systems involving numer-
ous variables? (c) Can we encode lake characteristics that
reveal novel insights about the struucture of ecosystems?
To answer these questions, we introduce LAKEFM, a foun-
dation model pre-trained on simulated as well as observed
lakes with irregular, multi-depth records. LAKEFM flattens
each variable–depth pair into a token sequence and learns
representations via multi-step forecasting loss, augmented
by a weighted contrastive term that encourages—but does
not force—samples from the same lake to align. Overall,
LAKEFM attempts to establish a practical step towards scal-
able, generalizable, and interpretable modeling of aquatic
ecosystems and other relevant scientific domains. Our main
contributions are as follows.
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Figure 1. Overview of the proposed LAKEFM model.

1. A unified pre-training framework that can ingest multi-
variable, multi-depth lake observations and produce
generalizable representations, enabling zero-shot trans-
fer to unseen lakes and improving performance on
downstream ecological forecasting tasks.

2. Learning variable-aware embeddings that capture the
semantic roles of physical and bio-geochemical drivers,
in contrast to existing time-series foundation models
that treat input variables as unstructured features. By
learning representations grounded in variable identity
and behavior, the model opens up pathways for inter-
pretability, enabling insights into variable interactions

3. Learning lake-level embeddings that capture site-
specific characteristics, enabling discovery of shared
patterns and analyzing lake similarity and clustering.

2. Methodology
Background and Notations. Let D = {D1, . . . ,DN}
denote a collection of N lakes, where each lake Di

contains a multivariate, multi-depth time series: Di ={
(x

(i)
t ,m

(i)
t , ℓi)

}Ti

t=1
, where x

(i)
t ∈ RV×D represents ob-

servations of V scientific variables (e.g., temperature, oxy-
gen) at D depths for timestep t in lake i, and m

(i)
t ∈

{0, 1}V×D is a binary mask indicating missing values. ℓi de-
notes the lake identifier, used for contrastive training. Time
intervals are irregular and vary across lakes. We define an
encoder fθ that maps a context window of L timesteps into
a latent representation: zi = fθ

(
{x(i)

t }Lt=1

)
, zi ∈ Rd,

where d is the dimension of the learned embedding. Now,
given a context window of L timesteps from a time series
{x(i)

t }t0−1
t=t0−L, the forecasting task aims to predict the next

H steps: x̂(i)
t0:t0+H−1. We optimize the model to minimize

the mean squared error (MSE) between predictions and

observed values, Lforecast =
1
H

∑H−1
h=0

∥∥∥x̂(i)
t0+h − x

(i)
t0+h

∥∥∥2
2
.

2.1. Model Architecture

As illustrated in Figure 1, LAKEFM is built upon a masked
transformer encoder, drawing inspiration from the MOIRAI-
style modeling paradigm (Woo et al.). The architecture is
composed of three key components: (i) contextual/metadata
embeddings, (ii) a transformer-based encoder, and (iii) dual
task-specific heads for forecasting and clustering. The trans-
former encoder incorporates a binary attention bias (Woo
et al.) to differentiate intra- and inter-variate interactions,
enabling it to learn structured attention patterns across vari-
ables. For positional encoding, we adopt Rotary Position
Embeddings (RoPE) (Su et al., 2024) to model relative tem-
poral dependencies. The encoder output is fed into two
parallel heads: (i) a forecasting head, which applies a feed-
forward network over each context length L to predict future
values, and (ii) an attention pooling head, which aggregates
the encoded sequence into a fixed-length representation for
contrastive learning. The pooled representation captures
the point-level summary of the window and serves as a
lake-specific embedding for representation-level objectives.

Input Representation. The input consists of spatiotempo-
ral sequences over a context window {to − L, . . . , to − 1},
where L denotes the lookback window length. At each time
step t, we observe a set of two-dimensional (depth-varying)
lake variables x(2D)

t ∈ RV2D×D and one-dimensional me-
teorological drivers x

(1D)
t ∈ RV1D , where V2D and V1D

denote the number of variables in each group, and D is
the number of depth levels. To unify these heterogeneous
signals, we flatten each x

(2D)
t into a sequence of V2D ×D

tokens and each x
(1D)
t into V1D tokens, resulting in a total

of S = L · (V2D ·D + V1D) tokens per input sequence,

x =
[
x
(2D,v)
t,d | v ∈ V2D, d ∈ D, t ∈ [to − L, to − 1]

]
∪
[
x
(1D,v)
t | v ∈ V1D, t ∈ [to − L, to − 1]

]
After flattening, the two-dimensional lake variables and
one-dimensional meteorological drivers are combined into a
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single unified sequence. Instead of using separate encoders,
we model them jointly through a shared transformer en-
coder to capture their inter-dependencies—meteorological
drivers often influence lake dynamics, and decoupling their
encoding would ignore important interactions.

Contextual Information. Each token in the sequence is
enriched with contextual embeddings: variable (learned
from a fixed vocabulary, akin to word embeddings in lan-
guage), depth (via Fourier feature projections), and time
(using sinusoidal embeddings). Specifically, depth embed-
dings are generated using Fourier feature encoding, where
each scalar depth d is projected to a vector of sinusoidal
components. Specifically, we apply K frequency bands
to produce [sin(ω1d), cos(ω1d), . . . , sin(ωKd), cos(ωKd)],
where ωk = 2kπ

max resolution for k = 0, . . . ,K−1 frequency
bands and max resolution is the max value of input
used to scale frequencies. Optionally, the raw input d
can be prepended to the encoding. Time embeddings are
constructed using 2D sinusoidal features derived from the
month-of-year index, offering a lightweight, parameter-free
encoding of seasonal (here, monthly) patterns.

Rather than summing these embeddings with the in-
put token representation, we concatenate them, ei =
[xi ∥ vi ∥ di ∥ ti], where xi is the raw token embed-
ding and vi, di, and ti are the variable, depth, and time
embeddings respectively. Empirically, we find that concate-
nation preserves the semantic distinction between different
embedding types and allows the model to attend over het-
erogeneous subspaces independently—whereas summation
tends to blur these roles in a shared latent space.

2.2. Pre-training

LAKEFM is pre-trained to optimize two tasks/objectives -
prediction/forecasting loss and contrastive loss. In the first
case, given a context window {xt}Lt=1, we aim to predict the
next H steps. The objective is to minimize the prediction
loss (i.e., MSE), Lforecast =

∑H
h=1 ∥x̂t+h − xt+h∥22

To encourage lake-specific representations, we adopt a hard
contrastive learning objective. Given a batch of B samples
with corresponding representations {z1, . . . , zB} and lake
identifiers {ℓ1, . . . , ℓB}, we treat samples from the same
lake as positives and those from different lakes as negatives.
Each representation is ℓ2-normalized, and the contrastive
loss is computed using the standard InfoNCE (Oord et al.,
2018) formulation (here, τ is a temperature hyperparameter),

L(i) = −
∑
j

wij

(
z⊤i zj
τ

− log
∑
k

exp(z⊤i zk/τ)

)/∑
j

wij ,

i = 1, . . . , B

Lcontrast =
1

B

B∑
i=1

L(i).

The final pretraining objective combines forecasting and
contrastive learning: Ltotal = Lforecast + λLcontrast, where λ
balances the weight of contrastive loss.

Table 1. MSE comparison on in-distribution LakeBeD-US data.
Best performance is shown in bold. Second-best performance is
shown in underline.

Lake Baseline Water DO mg per L WaterTemp C Water Secchi m par Inflow cms Lake MSE

BARC

Chronos 2.3253 1.4375 1.6224 – – 1.8578
LPTM 2.2901 1.4458 1.5937 – – 1.843
MOMENT 5.0759 1.7661 2.0752 – – 3.2987
LakeFM 1.1866 1.0513 1.193 – – 1.1257

BM

Chronos 1.0758 1.1338 1.4098 1.3189 – 1.1941
LPTM 0.853 1.053 1.3402 1.1891 – 1.0555
MOMENT 0.8765 1.0748 1.3271 1.1827 – 1.0664
LakeFM 1.0384 1.0254 1.0652 1.055 – 1.0414

LIRO

Chronos 1.2263 2.7699 1.5377 – – 1.9562
LPTM 0.7012 3.1816 2.0241 – – 1.9489
MOMENT 38.3198 13.5536 4.4672 – – 23.9849
LakeFM 1.3815 1.1645 1.4198 – – 1.2859

SUGG

Chronos 1.2379 1.7081 1.3756 – – 1.4622
LPTM 1.0839 1.4955 1.1533 – – 1.2746
MOMENT 3.4189 1.8863 1.1905 – – 2.4902
LakeFM 0.1008 1.0316 0.9157 – – 0.6143

TOOK

Chronos 0.9848 1.4319 – – 1.2535 1.2148
LPTM 1.1142 1.6768 – – 1.2604 1.3762
MOMENT 1.3364 7.518 – – 3.6585 4.3174
LakeFM 1.0208 1.0263 – – 1.1086 1.0435

3. Experiments
In-distribution experiments evaluate each model on lakes
whose historical time-series were included in training but
held out for testing. As shown in Table 1 (full results in Ap-
pendix A), LAKEFM consistently delivers the lowest MSE
for majority of lake and variable forecasts, outperforming
Chronos (Ansari et al., 2024), LPTM (Prabhakar Kamarthi
& Prakash, 2024), and MOMENT (Goswami et al., 2024)
on lakes “seen” during training.

Out-of-Distribution Evaluation encompasses withhold-
ing five lakes entirely from the training process and assess
zero-shot forecasting accuracy. Even under this stringent
out-of-distribution setting, LAKEFM maintains competitive
accuracy, relative to the best baseline. Table 2 demonstrates
LAKEFM’s ability to forecast across diverse lake systems.

Please refer to Appendix A for dataset and experiment setup
details and Appendix B for implementation details

Table 2. MSE comparison on out-of-distribution LakeBeD-US
data. Best performance is shown in bold. Second-best perfor-
mance is shown in underline.

Lake Baseline Water DO mg per L WaterTemp C Water Secchi m par Lake MSE

AL

Chronos 0.9313 0.6046 1.0721 1.1562 0.9516
LPTM 0.8908 0.7019 1.0098 1.1082 0.94
MOMENT 1.2584 0.8964 0.9977 1.3618 1.1741
LakeFM 1.0049 1.0258 0.9482 0.9797 0.9942

BVR

Chronos 1.3908 1.3591 1.8854 – 1.4521
LPTM 1.5393 0.6034 1.5801 – 0.9221
MOMENT 1.5929 0.5437 7.9697 – 1.9562
LakeFM 1.0053 0.6703 1.0792 – 1.011

CRAM

Chronos 0.9715 0.9187 1.3632 – 0.9831
LPTM 0.8866 0.624 1.0824 – 0.7851
MOMENT 2.7135 0.7601 0.9776 – 1.6678
LakeFM 1.0033 0.9173 1.1038 – 0.9733

FI

Chronos 1.1408 1.0244 1.1578 – 1.0894
LPTM 1.3029 0.7445 0.9595 – 1.0179
MOMENT 1.2853 0.9222 1.1916 – 1.1117
LakeFM 1.0645 1.1013 1.0759 – 1.082

MO

Chronos 1.1404 0.8638 1.1849 – 1.0282
LPTM 1.0748 0.8829 1.1997 – 1.0104
MOMENT 1.3892 0.8747 1.3523 – 1.1634
LakeFM 1.0451 1.0776 1.0712 – 1.0627
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3.1. Ablations

3.1.1. PRETRAINING STRATEGIES

We conduct an ablation study to compare three different
pretraining strategies (see Table 3). First, simulation-only
pretraining (LakeFMSimOnly) trains exclusively on synthetic
Hanson and FCR datasets and is evaluated “zero-shot” on
LakeBeD US, this approach yields moderate MSEs but
struggles to fully bridge the simulation to real world domain
gap. Second, Sim → Real Fine-tune (LakeFMSim2RealFT)
first pretrains on the same simulations and then fine-tunes
on real LakeBed measurements; by adapting to real-world
variability, it achieves a substantial reduction in error com-
pared to simulation-only. Finally, Joint Sim+Real (CL)
(LakeFMJointCL) trains simultaneously on both simulated
and real data using a contrastive loss to align their represen-
tations; this approach yields the lowest MSEs of all three
and were used for all the LAKEFM results on this paper. To-
gether, these results demonstrate that while simulation-only
pretraining provides a useful initialization, incorporating
real observations significantly enhances predictive perfor-
mance on LakeBeD.

3.1.2. INCREMENTAL INFERENCE

Figure 2 shows an incremental-inference ablation on
LakeBeD, quantifying how progressive expansions of the
training set affect per-lake MSE. We begin with a model
trained exclusively on FCR data and then fine-tune it by
adding two Hanson lakes (FCR + 2 Hanson). Next, we
incorporate all four Hanson lakes (FCR + 4 Hanson) before
finally introducing four LakeBed lakes (FCR + 4 Hanson + 2
LakeBed). Each augmentation yields a consistent reduction
in MSE, with the largest drop occurring upon the initial in-
clusion of Hanson data. Subsequent gains from adding more
Hanson data and real LakeBed observations are smaller but
still meaningful, demonstrating that progressively enriching
the training corpus steadily enhances predictive accuracy.

3.1.3. INSIGHT ON LAKE CLUSTERING

We visualize the learned lake-level representations using
t-SNE in Figure 3. The embeddings reveal some interesting
and clear spatial structure, with lakes from similar geo-
graphic regions forming distinct clusters. This suggests that
the model is able to capture meaningful lake-specific char-
acteristics and encode latent similarities driven by regional

Table 3. Mean squared error (MSE) across five lakes for three dif-
ferent LakeFM pretraining strategies: Simulation-only, Sim→Real
fine-tuning, and Joint Sim+Real (contrastive) and the Chronos
baseline.

Pretraining Strategy AL FCR TOOK SP GL4

LakeFMSimOnly 1.5626 1.4180 1.5973 1.5167 1.5691
LakeFMSim2RealFT 1.0065 1.1137 1.1026 1.0644 1.2081
LakeFMJointCL 0.9942 1.0889 1.0435 1.0284 1.1704

FCR FCR+2H FCR+4H FCR+4H+4LB
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Figure 2. Improvement in Lake Forecasting Performance upon in-
crementally increasing the training data.

Figure 3. Lake embeddings clusters learned by the model. Cluster
in red corresponds to lakes in Florida; Cluster in green corresponds
to lakes lakes in Virginia; Cluster in violet corresponds to lakes in
Wisconsin; Cluster in orange corresponds to Colorado

climate, morphology, or variable dynamics—even though
geographic information was not explicitly provided during
training. These emergent clusters demonstrate the model’s
potential for cross-site generalization and transfer across
ecosystems.

4. Conclusion
In this work, we introduced LAKEFM, a foundation model
for lake ecosystems that learns generalizable representations
from multi-variable, multi-depth time-series data across
thousands of lakes. By unifying variable-level semantics and
site-level dynamics within a single framework, LAKEFM
enables zero-shot transfer to unseen lakes and improves
downstream ecological forecasting. A key limitation in
this domain lies in the sparsity and limited scale of avail-
able ecological observations—both in temporal coverage
and variable diversity. While our model is designed to in-
herently handle sparse inputs, the performance continues to
improve with data volume, suggesting that larger, more com-
prehensive datasets could yield even stronger foundation
models. Future work could explore pretraining on large sim-
ulation datasets and further leveraging the learned variable
embeddings for scientific discovery and interpretability.
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A. Dataset Description
We pre-train and evaluate LAKEFM on three complementary datasets that together span both observed and process-based
simulated lake dynamics. We use the first 80% of each dataset for training. For evaluation, 20% of the LakeBeD-US dataset
and 10% of each WQHansonSim and FcrSimPhy datasets are held out as test data. To assess out-of-distribution (OOD)
generalization, we exclude 5 lakes from the LakeBeD-US dataset entirely during training and use them as an unseen test set.
Each dataset contributes unique strengths to the modeling framework, as described below.

A.1. LakeBeD-US

Our primary observational dataset is LakeBeD-US (McAfee et al., 2025; Pradhan et al., 2024), consisting of over 500
million unique lake water quality observations collected between 1981 and 2024. The data span 21 U.S. lakes and include
both high- and low-frequency measurements. The dataset features 17 variables organized into three categories: (1) static
attributes, such as lake morphology and geographic location; (2) one-dimensional (1D) variables that vary over time (e.g.,
Secchi depth, inflow); and (3) two-dimensional (2D) variables that vary over both time and depth. This rich observational
dataset captures diverse temporal and spatial lake dynamics.

A.2. WQHansonSim simulation

The WQHansonSim dataset is a synthetic lake water quality simulation covering four lakes: Green Lake, Lake Mendota,
Prairie Lake, and Trout Lake. The synthetic data were created using a process-based water quality model (Hanson et al.,
2023) driven by meteorological forcing data from the second phase of the North American Land Data Assimilation System
(NLDAS-2; Xia et al., 2012). Each simulation underwent a 60-year burn-in period to allow slow-changing ecosystem states
to reach dynamic equilibrium, followed by a 20-year simulation period. The outputs are structured as daily time series, with
each row representing a unique date-depth combination.

Each record includes six core water quality variables: water temperature, dissolved oxygen, dissolved organic carbon,
particulate organic carbon, total phosphorus, and depth, alongside the corresponding date. Depths are lake-specific and
selected to reflect stratification layers, representing both the epilimnion and hypolimnion (e.g., 5 m and 23 m for Trout
Lake)—allowing for realistic modeling of thermal and chemical compositions among layers of the lake.

A.3. FcrSimPhy: simulations at Falling Creek Reservoir

The FcrSimPhy dataset was generated using the General Lake Model coupled with the AED water quality module (GLM-
AED; Hipsey et al., 2019), and comprises 1,000 process-based model runs at Falling Creek Reservoir (FCR), VA, spanning
daily resolution from December 1, 2016, to December 31, 2020. Each run represents a distinct ecological scenario defined
by a unique set of phytoplankton trait parameters, sampled using Latin hypercube sampling. Six parameters were varied
across three phytoplankton groups—cyanobacteria, green algae, and diatoms—including group-specific growth rates and
sinking rates. Model outputs include five key water quality variables: water temperature, soluble reactive phosphorus (SRP),
dissolved inorganic nitrogen (DIN), chlorophyll-a (Chla), and the light attenuation coefficient (Kd). These are reported at
seven depths (0.1, 1.6, 3.8, 5, 6.2, 8, and 9 m), corresponding to observational depths in FCR. Additionally, meteorological
driver variables (e.g., AirTemp, Shortwave, Inflow) are included. Each row represents a specific date and depth, enabling
detailed analysis of how phytoplankton trait variation influences ecosystem dynamics, particularly nutrient-light-temperature
interactions and emergent biogeochemical patterns.

B. Implementation details
B.1. LakeFM

LakeFM employs a transformer encoder with 6 layers of grouped-query self-attention, each having 4 attention heads. The
model’s hidden dimensiona (d model) is set to 128. Embedding dimensions are set to 128, 32, and 16 for the variate, depth,
and input features, respectively. Temporal information is encoded using a 2-dimensional embedding. For grouped query
attention we use a group size of 4. Dropout is applied to the attention heads with a rate of 0.02, while the overall model
dropout rate is set to 0.0. The feedforward network dimension is set to 2048 for the attention layers, and the SwigLU
activation function is used for the feedforward networks. Rotary Positional Embedding (RoPE) is used to incorporate relative
positional encodings. The model utilizes a scalar tokenization strategy with a patch size of 3. For contrastive learning, the
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projection dimension is set to 64, and attention pooling is used. During training, we implement a warmup phase with 10,000
warmup steps.

B.2. Baselines

For our baselines, we evaluate the zero-shot forecasting performance of three well-established time-series foundation models:
Chronos (Ansari et al., 2024), MOMENT (Goswami et al., 2024), and LPTM (Prabhakar Kamarthi & Prakash, 2024). Our
implementation leverages the Samay Time-series Foundational Models Library for Python (Prabhakar Kamarthi & Prakash,
2024). For Chronos, we use the amazon/chronos-t5-small variant. For MOMENT, we use the AutonLab/MOMENT-1-large
variant. For all models, we use a context length of 42, a prediction length of 21, and a stride of 1. Prior to feeding the data
into the models, we standardize each attribute in our datasets to ensure consistent scaling across all features.

Since the baseline methods cannot operate on sparse, non-imputed data, we first impute all missing entries in the LakeBeD
dataset using SAITS (Du et al., 2023), a self-attention–based imputation model, so that each baseline receives a fully dense
time series for evaluation.

C. Ecological Variables Modeled by LAKEFM

Table 4. Overview of available 2D and 1D variables for each lake across all datasets that forms the vocabulary of LAKEFM. In addition to
the variables shown in this table, WQHansonSim also includes the following 1D variables that are modeled by LAKEFM: Longwave,
Elevation, Precipitation, Discharge, and TOC.

Dataset Lake ID Chl a DOC DO DRP NO3 POC PAR TP Temp DIN Kd Inflow Secchi Air Temp Shortwave

LakeBedUS

AL ✓ ✓ ✓ ✓ ✓

BVR ✓ ✓ ✓ ✓ ✓ ✓

CRAM ✓ ✓ ✓

FI ✓ ✓ ✓

MO ✓ ✓ ✓

BARC ✓ ✓ ✓

BM ✓ ✓ ✓ ✓ ✓

CB ✓ ✓ ✓ ✓ ✓

CR ✓ ✓ ✓ ✓ ✓

FCR ✓ ✓ ✓ ✓ ✓ ✓

GL4 ✓ ✓ ✓ ✓ ✓

LIRO ✓ ✓ ✓

ME ✓ ✓ ✓

PRLA ✓ ✓ ✓

PRPO ✓ ✓ ✓

SP ✓ ✓ ✓ ✓ ✓

SUGG ✓ ✓ ✓

TB ✓ ✓ ✓ ✓ ✓

TOOK ✓ ✓ ✓ ✓

TR ✓ ✓ ✓ ✓

WI ✓ ✓ ✓

WQHansonSim All ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

FcrSimPhy All ✓ ✓ ✓ ✓ ✓ ✓ ✓
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Table 5. Performance comparison on in-distribution LakeBeD-US data
Lake Baseline Water DO mg per L SRP ugL WaterTemp C Water TP mg per L Water Secchi m par Inflow cms no3 Lake MSE

BARC

Chronos 2.3253 – 1.4375 – 1.6224 – – – 1.8578
LPTM 2.2901 – 1.4458 – 1.5937 – – – 1.843

MOMENT 5.0759 – 1.7661 – 2.0752 – – – 3.2987
LakeFM 1.1866 – 1.0513 – 1.193 – – – 1.1257

BM

Chronos 1.0758 – 1.1338 – 1.4098 1.3189 – – 1.1941
LPTM 0.853 – 1.053 – 1.3402 1.1891 – – 1.0555

MOMENT 0.8765 – 1.0748 – 1.3271 1.1827 – – 1.0664
LakeFM 1.0384 – 1.0254 – 1.0652 1.055 – – 1.0414

CB

Chronos 1.3767 – 1.5903 – 1.5466 1.5991 – – 1.5476
LPTM 1.0053 – 0.9939 – 1.0003 1.0173 – – 1.0085

MOMENT 1.0087 – 1.0378 – 1.2727 1.192 – – 1.1326
LakeFM 1.028 – 1.0268 – 1.0872 1.0382 – – 1.0388

CR

Chronos 1.4407 – 1.4127 – 1.327 1.2205 – – 1.3556
LPTM 0.8465 – 0.8389 – 1.0045 0.941 – – 0.8854

MOMENT 0.7886 – 0.8602 – 0.89 0.8525 – – 0.8381
LakeFM 1.0514 – 1.0302 – 1.0692 1.0211 – – 1.0372

FCR

Chronos 0.8032 1.2797 0.7211 1.0751 1.2216 – – – 0.9464
LPTM 1.07 1.0743 0.7634 0.8943 0.9704 – – – 0.9437

MOMENT 1.0464 1.8066 0.7187 1.7656 1.449 – – – 1.2216
LakeFM 1.2669 1.0639 1.2711 1.0788 1.099 – – – 1.0889

GL4

Chronos 1.5296 – 1.411 – 1.4306 – – 2.0672 1.6543
LPTM 1.4388 – 1.2985 – 1.0462 – – 1.5282 1.3984

MOMENT 7.8317 – 2.0117 – 1.3582 – – 10.7023 6.5054
LakeFM 1.2302 – 1.1901 – 0.985 – – 1.1321 1.1704

LIRO

Chronos 1.2263 – 2.7699 – 1.5377 – – – 1.9562
LPTM 0.7012 – 3.1816 – 2.0241 – – – 1.9489

MOMENT 38.3198 – 13.5536 – 4.4672 – – – 23.9849
LakeFM 1.3815 – 1.1645 – 1.4198 – – – 1.2859

ME

Chronos 1.3861 – 1.4473 – 1.1576 – – – 1.3797
LPTM 0.9472 – 0.9141 – 1.0349 – – – 0.9455

MOMENT 0.845 – 0.8544 – 1.3372 – – – 0.9194
LakeFM 1.037 – 1.0627 – 1.085 – – – 1.0548

PRLA

Chronos 1.3852 – 0.9938 – 1.5742 – – – 1.2245
LPTM 1.2558 – 0.9893 – 0.9589 – – – 1.1077

MOMENT 2.4559 – 1.1458 – 0.9971 – – – 1.7278
LakeFM 1.0034 – 1.0244 – 0.8489 – – – 0.9998

PRPO

Chronos 1.3668 – 0.875 – 2.2169 – – – 1.2426
LPTM 1.1841 – 1.0609 – 1.1318 – – – 1.1235

MOMENT 2.9214 – 1.3513 – 0.906 – – – 1.9996
LakeFM 1.1834 – 1.0691 – 1.0924 – – – 1.1221

SP

Chronos 1.2051 – 1.1932 – 1.2328 1.2574 – – 1.2197
LPTM 0.9903 – 0.9431 – 1.0868 1.1291 – – 1.0259

MOMENT 1.014 – 0.9876 – 1.0706 1.004 – – 1.0072
LakeFM 1.0402 – 1.0276 – 1.0384 1.0143 – – 1.0284

SUGG

Chronos 1.2379 – 1.7081 – 1.3756 – – – 1.4622
LPTM 1.0839 – 1.4955 – 1.1533 – – – 1.2746

MOMENT 3.4189 – 1.8863 – 1.1905 – – – 2.4902
LakeFM 0.1008 – 1.0316 – 0.9157 – – – 0.6143

TB

Chronos 1.0906 – 0.8741 – 1.0942 1.2872 – – 1.1459
LPTM 1.0215 – 0.9735 – 1.0175 1.2697 – – 1.1356

MOMENT 0.996 – 1.0177 – 1.1382 1.245 – – 1.139
LakeFM 1.0232 – 1.0157 – 1.0692 1.0018 – – 1.0173

TOOK

Chronos 0.9848 – 1.4319 – – – 1.2535 – 1.2148
LPTM 1.1142 – 1.6768 – – – 1.2604 – 1.3762

MOMENT 1.3364 – 7.518 – – – 3.6585 – 4.3174
LakeFM 1.0208 – 1.0263 – – – 1.1086 – 1.0435

TR

Chronos 1.2538 – 1.32 – 1.1681 1.0741 – – 1.2123
LPTM 1.0031 – 0.9493 – 1.0116 0.958 – – 0.9733

MOMENT 1.1394 – 0.978 – 1.1833 0.8093 – – 0.9915
LakeFM 1.0403 – 1.0327 – 0.9996 0.9649 – – 1.0125

WI

Chronos 1.1943 – 1.5961 – 1.3185 – – – 1.3882
LPTM 1.0338 – 1.5774 – 1.2681 – – – 1.3022

MOMENT 0.9228 – 1.501 – 1.2912 – – – 1.2191
LakeFM 0.9584 – 1.0445 – 1.027 – – – 1.0043
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