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Abstract
Understanding and forecasting lake dynamics is
essential for monitoring water quality and ecosys-
tem health in lakes and reservoirs. While ma-
chine learning models trained on ecological time-
series data have shown promise, they tend to
be task-specific and struggle with generaliza-
tion across diverse aquatic environments. Cur-
rent research is limited to single-lake single-
variable models, inconsistent observation fre-
quencies, and a lack of foundation models that
can generalize across ecosystems, hindering re-
producibility and transferability. To address
these challenges, we introduce LAKEFM, a foun-
dation model for lake ecosystems, pre-trained
on multi-variable and multi-depth data drawn
from a combination of simulated and observa-
tional lake datasets. Through empirical results
and qualitative analysis, we demonstrate that
LAKEFM learns meaningful representations span-
ning both fine-grained variable-level dynamics
and broader lake-level patterns. Furthermore, it
achieves competitive—and in some cases supe-
rior—forecasting performance compared to exist-
ing time-series foundation models

1. Introduction
Limnology, the study of inland aquatic systems such as
lakes and reservoirs, focuses on understanding their com-
plex physical-biogeochemical dynamics that evolve over
multiple temporal scales and depth layers. With the re-
cent availability of multi-variable, multi-depth data from
sensor deployments, ML has shown promise in enabling
data-driven prediction of lake dynamics. Physics-guided
RNNs (Jia et al., 2018), Modular Compositional Learning
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(Ladwig et al., 2024) and lake-specific deep networks have
improved temperature prediction, but their tight coupling
to individual variables and sites hampers transfer to lakes
that differ in morphometry, climate, or sampling cadence.
However, modeling lake systems at scale remains difficult
due to the heterogeneity in variable number and types, and
data sparsity across sites, making it hard to develop general-
purpose models that transfer well.

At the same time, the broader ML community has made sig-
nificant progress in developing foundation models that learn
task-agnostic representations from large, heterogeneous cor-
pora: CLIP (Radford et al., 2021) for vision–language align-
ment, Chronos (Ansari et al., 2024) and Moment (Goswami
et al., 2024) for generic time-series forecasting, and domain-
specific backbones such as PAPAGEI (Pillai et al., 2024)
for photoplethysmography signals. In contrast, limnology
still lacks an analogous model capable of unifying multi-
ple lakes and variables observed with irregular frequencies
and depths, leaving cross-ecosystem synthesis as an open
challenge. Moreover, most generic TS foundation models
either focus solely on univariate signals or assume clean,
densely sampled data—assumptions that are rarely valid
in limnology, where data is multivariate and are inherently
sparse across both time and depth dimensions. While recent
efforts such as PGFM (Yu et al., 2025) have begun exploring
foundation models for lake systems, they remain limited in
scope, being restricted to a small number of variables and
lacking the ability to generalize across diverse measurement
depths.

Motivated by this gap, we ask the following questions.
(a) Can we build a single model that can capture generic
lake processes, encompassing multiple lake ecosystems and
variables, while retaining site-specific nuances? (b) Can
treating scientific variables (temperature, chlorophyll, oxy-
gen, . . . ) as tokens reveal their functional relationships and
potentially be applicable as feature extractors for under-
standing more complex dynamical systems? (c) Can we
encode lake characteristics that reveal novel insights about
the structure of ecosystems? To answer these questions, we
introduce LAKEFM, a foundation model pre-trained on sim-
ulated as well as observed lakes with irregular, multi-depth
records. LAKEFM flattens each variable–depth pair into
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Figure 1. Overview of the proposed LAKEFM model.

a token sequence and learns representations via multi-step
forecasting loss, augmented by a weighted contrastive term
that encourages—but does not force—samples from the
same lake to align. Overall, LAKEFM attempts to establish
a practical step towards scalable and generalizable modeling
of lake ecosystems. Our main contributions are as follows.

1. A unified pre-training framework that can ingest multi-
variable, multi-depth lake observations and produce
generalizable representations, enabling zero-shot trans-
fer to unseen lakes and improving performance on
downstream ecological forecasting tasks.

2. Learning variable-aware embeddings that capture the
semantic roles of physical and bio-geochemical drivers,
in contrast to existing time-series foundation models
that treat input variables as unstructured features. By
learning representations grounded in variable identity
and behavior, the model opens up pathways for inter-
pretability, enabling insights into variable interactions

3. Learning lake-level embeddings that capture site-
specific characteristics, enabling discovery of shared
patterns and analyzing lake similarity and clustering.

2. Methodology
Background and Notations. Let D = {D1, . . . ,DN}
denote a collection of N lakes, where each lake Di

contains a multivariate, multi-depth time series: Di ={
(x

(i)
t ,m

(i)
t , ℓi)

}Ti

t=1
, where x

(i)
t ∈ RV×D represents ob-

servations of V scientific variables (e.g., temperature, oxy-
gen) at D depths for timestep t in lake i, and m

(i)
t ∈

{0, 1}V×D is a binary mask indicating missing values. ℓi de-
notes the lake identifier, used for contrastive training. Time
intervals are irregular and vary across lakes. We define an
encoder fθ that maps a context window of L timesteps into
a latent representation: zi = fθ

(
{x(i)

t }Lt=1

)
, zi ∈ Rd,

where d is the dimension of the learned embedding. Now,
given a context window of L timesteps from a time series
{x(i)

t }t0−1
t=t0−L, the forecasting task aims to predict the next

H steps: x̂(i)
t0:t0+H−1. We optimize the model to minimize

the mean squared error (MSE) between predictions and

observed values, Lforecast =
1
H

∑H−1
h=0

∥∥∥x̂(i)
t0+h − x

(i)
t0+h

∥∥∥2
2
.

2.1. Model Architecture

As illustrated in Figure 3, LAKEFM is built upon a masked
transformer encoder, drawing inspiration from the MOIRAI-
style modeling paradigm (Woo et al.). The architecture is
composed of three key components: (i) contextual/metadata
embeddings, (ii) a transformer-based encoder, and (iii) dual
task-specific heads for forecasting and clustering. The trans-
former encoder incorporates a binary attention bias (Woo
et al.) to differentiate intra- and inter-variate interactions,
enabling it to learn structured attention patterns across vari-
ables. For positional encoding, we adopt Rotary Position
Embeddings (RoPE) (Su et al., 2024) to model relative tem-
poral dependencies. The encoder output is fed into two
parallel heads: (i) a forecasting head, which applies a feed-
forward network over each context length L to predict future
values, and (ii) an attention pooling head, which aggregates
the encoded sequence into a fixed-length representation for
contrastive learning. The pooled representation captures
the point-level summary of the window and serves as a
lake-specific embedding for representation-level objectives.

Input Representation. The input consists of spatiotempo-
ral sequences over a context window {to − L, . . . , to − 1},
where L denotes the lookback window length. At each time
step t, we observe a set of two-dimensional (depth-varying)
lake variables x(2D)

t ∈ RV2D×D and one-dimensional me-
teorological drivers x

(1D)
t ∈ RV1D , where V2D and V1D

denote the number of variables in each group, and D is
the number of depth levels. To unify these heterogeneous
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signals, we flatten each x
(2D)
t into a sequence of V2D ×D

tokens and each x
(1D)
t into V1D tokens, resulting in a total

of S = L · (V2D ·D + V1D) tokens per input sequence,

x =
[
x
(2D,v)
t,d | v ∈ V2D, d ∈ D, t ∈ [to − L, to − 1]

]
∪
[
x
(1D,v)
t | v ∈ V1D, t ∈ [to − L, to − 1]

]
After flattening, the two-dimensional lake variables and
one-dimensional meteorological drivers are combined into a
single unified sequence. Instead of using separate encoders,
we model them jointly through a shared transformer en-
coder to capture their inter-dependencies—meteorological
drivers often influence lake dynamics, and decoupling their
encoding would ignore important interactions.

Contextual Information. Each token in the sequence is
enriched with contextual embeddings: variable (learned
from a fixed vocabulary, akin to word embeddings in lan-
guage), depth (via Fourier feature projections), and time
(using sinusoidal embeddings). Specifically, depth embed-
dings are generated using Fourier feature encoding, where
each scalar depth d is projected to a vector of sinusoidal
components. Specifically, we apply K frequency bands
to produce [sin(ω1d), cos(ω1d), . . . , sin(ωKd), cos(ωKd)],
where ωk = 2kπ

max resolution for k = 0, . . . ,K−1 frequency
bands and max resolution is the max value of input
used to scale frequencies. Optionally, the raw input d
can be prepended to the encoding. Time embeddings are
constructed using 2D sinusoidal features derived from the
month-of-year index, offering a lightweight, parameter-free
encoding of seasonal (here, monthly) patterns.

Rather than summing these embeddings with the in-
put token representation, we concatenate them, ei =
[xi ∥ vi ∥ di ∥ ti], where xi is the raw token embed-
ding and vi, di, and ti are the variable, depth, and time
embeddings respectively. Empirically, we find that concate-
nation preserves the semantic distinction between different
embedding types and allows the model to attend over het-
erogeneous subspaces independently—whereas summation
tends to blur these roles in a shared latent space.

2.2. Pre-training

LAKEFM is pre-trained to optimize two tasks/objectives -
prediction/forecasting loss and contrastive loss. In the first
case, given a context window {xt}Lt=1, we aim to predict the
next H steps. The objective is to minimize the prediction
loss (i.e., MSE), Lforecast =

∑H
h=1 ∥x̂t+h − xt+h∥22

To encourage lake-specific representations, we adopt a hard
contrastive learning objective. Given a batch of B samples
with corresponding representations {z1, . . . , zB} and lake
identifiers {ℓ1, . . . , ℓB}, we treat samples from the same
lake as positives and those from different lakes as negatives.
Each representation is ℓ2-normalized, and the contrastive

loss is computed using the standard InfoNCE (Oord et al.,
2018) formulation (here, τ is a temperature hyperparameter),

L(i) = −
∑
j

wij

(
z⊤i zj
τ

− log
∑
k

exp(z⊤i zk/τ)

)/∑
j

wij ,

i = 1, . . . , B

Lcontrast =
1

B

B∑
i=1

L(i).

The final pretraining objective combines forecasting and
contrastive learning: Ltotal = Lforecast + λLcontrast, where λ
balances the weight of contrastive loss.

Table 1. MSE comparison on in-distribution LakeBeD-US data.
Best performance is shown in bold. Second-best performance is
shown in underline.

Lake Baseline Water DO mg per L WaterTemp C Water Secchi m par Inflow cms Lake MSE

BARC

Chronos 2.3253 1.4375 1.6224 – – 1.8578
LPTM 2.2901 1.4458 1.5937 – – 1.843
MOMENT 5.0759 1.7661 2.0752 – – 3.2987
LakeFM 1.1866 1.0513 1.193 – – 1.1257

BM

Chronos 1.0758 1.1338 1.4098 1.3189 – 1.1941
LPTM 0.853 1.053 1.3402 1.1891 – 1.0555
MOMENT 0.8765 1.0748 1.3271 1.1827 – 1.0664
LakeFM 1.0384 1.0254 1.0652 1.055 – 1.0414

LIRO

Chronos 1.2263 2.7699 1.5377 – – 1.9562
LPTM 0.7012 3.1816 2.0241 – – 1.9489
MOMENT 38.3198 13.5536 4.4672 – – 23.9849
LakeFM 1.3815 1.1645 1.4198 – – 1.2859

SUGG

Chronos 1.2379 1.7081 1.3756 – – 1.4622
LPTM 1.0839 1.4955 1.1533 – – 1.2746
MOMENT 3.4189 1.8863 1.1905 – – 2.4902
LakeFM 0.1008 1.0316 0.9157 – – 0.6143

TOOK

Chronos 0.9848 1.4319 – – 1.2535 1.2148
LPTM 1.1142 1.6768 – – 1.2604 1.3762
MOMENT 1.3364 7.518 – – 3.6585 4.3174
LakeFM 1.0208 1.0263 – – 1.1086 1.0435

3. Experiments
We train our model using both simulated and real-world
data, but evaluate primarily on the latter. The real-world
dataset comprises 21 lakes from LakeBeD-US (McAfee
et al., 2025). Additional details on the datasets and experi-
mental setup are provided in Appendix B, with implementa-
tion specifics in Appendix C.

We evaluate on two test settings: (a) In-distribution, and
(b) Leave-out set. In the in-distribution setting, each model
is evaluated on lakes for which a portion of the data was
seen during training, with the remaining held out for testing.
As shown in Table 1 (full results in Appendix E), LAKEFM
consistently achieves the lowest MSE across most lake-
variable combinations, outperforming Chronos (Ansari et al.,
2024), LPTM (Prabhakar Kamarthi & Prakash, 2024), and
MOMENT (Goswami et al., 2024) on lakes “seen” during
training.

In the leave-out setting, we withhold five lakes entirely from
training and evaluate models in a zero-shot manner. Despite
this stringent challenge, LAKEFM maintains competitive
accuracy relative to the best-performing baselines. Table 2
highlights LAKEFM’s ability to generalize across diverse
lake systems.
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Table 2. MSE comparison on leave-out LakeBeD-US data. Best
performance is shown in bold. Second-best performance is shown
in underline.

Lake Baseline Water DO mg per L WaterTemp C Water Secchi m par Lake MSE

AL

Chronos 0.9313 0.6046 1.0721 1.1562 0.9516
LPTM 0.8908 0.7019 1.0098 1.1082 0.94
MOMENT 1.2584 0.8964 0.9977 1.3618 1.1741
LakeFM 1.0049 1.0258 0.9482 0.9797 0.9942

BVR

Chronos 1.3908 1.3591 1.8854 – 1.4521
LPTM 1.5393 0.6034 1.5801 – 0.9221
MOMENT 1.5929 0.5437 7.9697 – 1.9562
LakeFM 1.0053 0.6703 1.0792 – 1.011

CRAM

Chronos 0.9715 0.9187 1.3632 – 0.9831
LPTM 0.8866 0.624 1.0824 – 0.7851
MOMENT 2.7135 0.7601 0.9776 – 1.6678
LakeFM 1.0033 0.9173 1.1038 – 0.9733

FI

Chronos 1.1408 1.0244 1.1578 – 1.0894
LPTM 1.3029 0.7445 0.9595 – 1.0179
MOMENT 1.2853 0.9222 1.1916 – 1.1117
LakeFM 1.0645 1.1013 1.0759 – 1.082

MO

Chronos 1.1404 0.8638 1.1849 – 1.0282
LPTM 1.0748 0.8829 1.1997 – 1.0104
MOMENT 1.3892 0.8747 1.3523 – 1.1634
LakeFM 1.0451 1.0776 1.0712 – 1.0627

3.1. Ablations

3.1.1. PRETRAINING STRATEGIES

We conduct an ablation study to compare three different
pretraining strategies (see Table 3). First, simulation-only
pretraining (LakeFMSimOnly) trains exclusively on synthetic
Hanson and FCR datasets and is evaluated “zero-shot” on
LakeBeD US, this approach yields moderate MSEs but
struggles to fully bridge the simulation to real world domain
gap. Second, Sim → Real Fine-tune (LakeFMSim2RealFT)
first pretrains on the same simulations and then fine-tunes
on real LakeBed measurements; by adapting to real-world
variability, it achieves a substantial reduction in error com-
pared to simulation-only. Finally, Joint Sim+Real (CL)
(LakeFMJointCL) trains simultaneously on both simulated
and real data using a contrastive loss to align their represen-
tations; this approach yields the lowest MSEs of all three
and were used for all the LAKEFM results on this paper. To-
gether, these results demonstrate that while simulation-only
pretraining provides a useful initialization, incorporating
real observations significantly enhances predictive perfor-
mance on LakeBeD.

3.1.2. INCREMENTAL INFERENCE

Figure 2a shows an incremental-inference ablation on
LakeBeD, quantifying how progressive expansions of the
training set affect per-lake MSE. We begin with a model
trained exclusively on FCR data and then fine-tune it by
adding two Hanson lakes (FCR + 2 Hanson). Next, we
incorporate all four Hanson lakes (FCR + 4 Hanson) before

Table 3. Mean squared error (MSE) across five lakes for three dif-
ferent LakeFM pretraining strategies: Simulation-only, Sim→Real
fine-tuning, and Joint Sim+Real (contrastive)

Pretraining Strategy AL FCR TOOK SP GL4

LakeFMSimOnly 1.5626 1.4180 1.5973 1.5167 1.5691
LakeFMSim2RealFT 1.0065 1.1137 1.1026 1.0644 1.2081
LakeFMJointCL 0.9942 1.0889 1.0435 1.0284 1.1704

finally introducing four LakeBed lakes (FCR + 4 Hanson + 2
LakeBed). Each augmentation yields a consistent reduction
in MSE, with the largest drop occurring upon the initial in-
clusion of Hanson data. Subsequent gains from adding more
Hanson data and real LakeBed observations are smaller but
still meaningful, demonstrating that progressively enriching
the training corpus steadily enhances predictive accuracy.
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Figure 2. (a) Improvement in lake forecasting performance upon
incrementally increasing training data. (b) Lake embedding clus-
ters learned by the model. Red: Lakes in Florida; Green: Lakes in
Virginia; Blue: Lakes in Wisconsin; Orange: Lakes in Colorado.

3.1.3. INSIGHT ON LAKE CLUSTERING

We visualize the learned lake-level representations using
t-SNE in Figure 2b. The embeddings reveal some inter-
esting and clear spatial structure, with lakes from similar
geographic regions forming distinct clusters. This suggests
that the model is able to capture meaningful lake-specific
characteristics and encode latent similarities driven by re-
gional climate, morphology, or variable dynamics—even
though geographic information was not explicitly provided
during training. These emergent clusters demonstrate the
model’s potential for cross-site generalization and transfer
across ecosystems.

4. Conclusion
In this work, we introduced LAKEFM, a foundation model
for lake ecosystems that learns generalizable representations
from multi-variable, multi-depth time-series data across
thousands of lakes. By unifying variable-level semantics and
site-level dynamics within a single framework, LAKEFM
enables zero-shot transfer to unseen lakes and improves
downstream ecological forecasting. A key limitation in
this domain lies in the sparsity and limited scale of avail-
able ecological observations—both in temporal coverage
and variable diversity. While our model is designed to in-
herently handle sparse inputs, the performance continues to
improve with data volume, suggesting that larger, more com-
prehensive datasets could yield even stronger foundation
models. Future work could explore pretraining on large sim-
ulation datasets and further leveraging the learned variable
embeddings for scientific discovery and interpretability.
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A. Related Works and Discussion
Time-series forecasting models, including statistical approaches and deep learning architectures such as PatchTST (Nie
et al., 2022), iTransformer (Liu et al., 2023), have shown strong performance on benchmark datasets. However, these
models are typically domain- or dataset-specific. As a result, they struggle to generalize across ecosystems or variable
configurations, limiting their applicability in scientific domains with high structural heterogeneity. Scientific datasets,
particularly in ecology and environmental modeling, introduce unique challenges: missing values, irregular sampling, and
multi-resolution measurements across time and depth. Models like mTAN (Shukla & Marlin, 2021) and ContiFormer (Chen
et al., 2023) attempt to address these issues through neural ODEs, temporal embeddings, or attention over irregular grids,
however, these methods are often task-specific, rely on carefully engineered architectures, and do not scale well to large
multi-lake or multi-variable ecosystems. While MissTSM (Neog et al., 2025) provide a model agnostic approach to handle
missing values, it is not very computationally scalable. In contrast, our approach incorporates simulation and real-world
data by flattening multivariate, multi-depth signals into a unified representation, facilitating model training under partial
observations while maintaining generalizability.

Recent Time Series Foundation Models (TSFM) aim to generalize across diverse time-series tasks by learning from
large corpora of univariate or multivariate signals. However, univariate TSFMs lack the capacity to model inter-variable
interactions, while multivariate TSFMs tend to treat each variable—including depth-specific versions—as independent
features, ignoring structured dependencies such as how a single variable (e.g., temperature) behaves across the vertical depth
column of a lake. Moreover, existing TSFMs generally lack variable semantics—they do not encode or exploit the meaning
or identity of each variable, reducing interpretability and weakening scientific generalization.

LakeFM is designed to address these limitations by explicitly encoding the behavior of each variable across temporal and
depth dimensions. Instead of relying purely on temporal pattern recognition, LakeFM attempts to learns semantically
meaningful variable embeddings that capture how scientific signals evolve across lake ecosystems. This allows the model to
align its predictions for a variable from any lake with the learned behavior of that variable across all lakes. Additionally,
LakeFM incorporates contrastive pretraining across lake systems, enabling two levels of alignment: (a) First, inter-lake
alignment, where the model learns to associate a test lake with similar ecosystems based on observed dynamics; (b) Second,
intra-variable alignment, where predictions for each variable are grounded in its globally learned behavior.

Figure 3. Understanding the differences between LAKEFM and Time Series Foundation Models
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B. Dataset Description
We pre-train and evaluate LAKEFM on three complementary datasets that together span both observed and process-based
simulated lake dynamics. We use the first 80% of each dataset for training. For evaluation, 20% of the LakeBeD-US dataset
and 10% of each WQHansonSim and FcrSimPhy datasets are held out as test data. To assess out-of-distribution (OOD)
generalization, we exclude 5 lakes from the LakeBeD-US dataset entirely during training and use them as an unseen test set.
Each dataset contributes unique strengths to the modeling framework, as described below.

B.1. LakeBeD-US

Our primary observational dataset is LakeBeD-US (McAfee et al., 2025; Pradhan et al., 2024), consisting of over 500
million unique lake water quality observations collected between 1981 and 2024. The data span 21 U.S. lakes and include
both high- and low-frequency measurements. The dataset features 17 variables organized into three categories: (1) static
attributes, such as lake morphology and geographic location; (2) one-dimensional (1D) variables that vary over time (e.g.,
Secchi depth, inflow); and (3) two-dimensional (2D) variables that vary over both time and depth. This rich observational
dataset captures diverse temporal and spatial lake dynamics.

B.2. WQHansonSim simulation

The WQHansonSim dataset is a synthetic lake water quality simulation covering four lakes: Green Lake, Lake Mendota,
Prairie Lake, and Trout Lake. The synthetic data were created using a process-based water quality model (Hanson et al.,
2023) driven by meteorological forcing data from the second phase of the North American Land Data Assimilation System
(NLDAS-2; Xia et al., 2012). Each simulation underwent a 60-year burn-in period to allow slow-changing ecosystem states
to reach dynamic equilibrium, followed by a 20-year simulation period. The outputs are structured as daily time series, with
each row representing a unique date-depth combination.

Each record includes six core water quality variables: water temperature, dissolved oxygen, dissolved organic carbon,
particulate organic carbon, total phosphorus, and depth, alongside the corresponding date. Depths are lake-specific and
selected to reflect stratification layers, representing both the epilimnion and hypolimnion (e.g., 5 m and 23 m for Trout
Lake)—allowing for realistic modeling of thermal and chemical compositions among layers of the lake.

B.3. FcrSimPhy: simulations at Falling Creek Reservoir

The FcrSimPhy dataset was generated using the General Lake Model coupled with the AED water quality module (GLM-
AED; Hipsey et al., 2019), and comprises 1,000 process-based model runs at Falling Creek Reservoir (FCR), VA, spanning
daily resolution from December 1, 2016, to December 31, 2020. Each run represents a distinct ecological scenario defined
by a unique set of phytoplankton trait parameters, sampled using Latin hypercube sampling. Six parameters were varied
across three phytoplankton groups—cyanobacteria, green algae, and diatoms—including group-specific growth rates and
sinking rates. Model outputs include five key water quality variables: water temperature, soluble reactive phosphorus (SRP),
dissolved inorganic nitrogen (DIN), chlorophyll-a (Chla), and the light attenuation coefficient (Kd). These are reported at
seven depths (0.1, 1.6, 3.8, 5, 6.2, 8, and 9 m), corresponding to observational depths in FCR. Additionally, meteorological
driver variables (e.g., AirTemp, Shortwave, Inflow) are included. Each row represents a specific date and depth, enabling
detailed analysis of how phytoplankton trait variation influences ecosystem dynamics, particularly nutrient-light-temperature
interactions and emergent biogeochemical patterns.

C. Implementation details
C.1. LakeFM

LakeFM employs a transformer encoder with 6 layers of grouped-query self-attention, each having 4 attention heads. The
model’s hidden dimensiona (d model) is set to 128. Embedding dimensions are set to 128, 32, and 16 for the variate, depth,
and input features, respectively. Temporal information is encoded using a 2-dimensional embedding. For grouped query
attention we use a group size of 4. Dropout is applied to the attention heads with a rate of 0.02, while the overall model
dropout rate is set to 0.0. The feedforward network dimension is set to 2048 for the attention layers, and the SwigLU
activation function is used for the feedforward networks. Rotary Positional Embedding (RoPE) is used to incorporate relative
positional encodings. The model utilizes a scalar tokenization strategy with a patch size of 3. For contrastive learning, the
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projection dimension is set to 64, and attention pooling is used. During training, we implement a warmup phase with 10,000
warmup steps.

Hyperparameter tuning We perform hyper-parameter sweeps involving the following parameters: enc layers, num heads,
weight decay, warmup iterations, embed dim, attention dropout, head dropout, variate embed dim, depth embed dim,
contrastive loss weight. These were optimized using a validation split derived from the WQHansonSim simulation dataset.

Contrastive Sampling Strategy. We adopt a custom balanced sampling strategy, built on top of PyTorch’s DistributedSam-
pler, to construct batches for contrastive pretraining. Each batch consists of multiple anchor-positive groups, where each
anchor is paired with P pos = 4 positive samples from the same lake. For e.g., for a total batch size = 64, this
allows up to 12 such anchor-positive sets per batch, with the remaining slots filled by negative samples drawn from different
lakes. Positive and negative pools are precomputed per lake for efficiency, and sampling is performed with deterministic
seeding to support reproducibility across distributed processes. This sampling strategy ensures within-lake similarity and
across-lake contrast, enabling the model to learn lake-discriminative representations.

Hardware. We use a combination of NVIDIA H100 and A100 GPUs for pretraining and carrying out the experiments

C.2. Baselines

For our baselines, we evaluate the zero-shot forecasting performance of three well-established time-series foundation models:
Chronos (Ansari et al., 2024), MOMENT (Goswami et al., 2024), and LPTM (Prabhakar Kamarthi & Prakash, 2024). Our
implementation leverages the Samay Time-series Foundational Models Library for Python (Prabhakar Kamarthi & Prakash,
2024). For Chronos, we use the amazon/chronos-t5-small variant. For MOMENT, we use the AutonLab/MOMENT-1-large
variant. For all models, we use a context length of 42, a prediction length of 21, and a stride of 1. Prior to feeding the data
into the models, we standardize each attribute in our datasets to ensure consistent scaling across all features.

Since the baseline methods cannot operate on sparse, non-imputed data, we first impute all missing entries in the LakeBeD
dataset using SAITS (Du et al., 2023), a self-attention–based imputation model, so that each baseline receives a fully dense
time series for evaluation.

9



Toward Scientific Foundation Models for Aquatic Ecosystems

D. Ecological Variables Modeled by LAKEFM

Table 4. Overview of available 2D and 1D variables for each lake across all datasets that forms the vocabulary of LAKEFM. In addition to
the variables shown in this table, WQHansonSim also includes the following 1D variables that are modeled by LAKEFM: Longwave,
Elevation, Precipitation, Discharge, and TOC.

Dataset Lake ID Chl a DOC DO DRP NO3 POC PAR TP Temp DIN Kd Inflow Secchi Air Temp Shortwave

LakeBedUS

AL ✓ ✓ ✓ ✓ ✓

BVR ✓ ✓ ✓ ✓ ✓ ✓

CRAM ✓ ✓ ✓

FI ✓ ✓ ✓

MO ✓ ✓ ✓

BARC ✓ ✓ ✓

BM ✓ ✓ ✓ ✓ ✓

CB ✓ ✓ ✓ ✓ ✓

CR ✓ ✓ ✓ ✓ ✓

FCR ✓ ✓ ✓ ✓ ✓ ✓

GL4 ✓ ✓ ✓ ✓ ✓

LIRO ✓ ✓ ✓

ME ✓ ✓ ✓

PRLA ✓ ✓ ✓

PRPO ✓ ✓ ✓

SP ✓ ✓ ✓ ✓ ✓

SUGG ✓ ✓ ✓

TB ✓ ✓ ✓ ✓ ✓

TOOK ✓ ✓ ✓ ✓

TR ✓ ✓ ✓ ✓

WI ✓ ✓ ✓

WQHansonSim All ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

FcrSimPhy All ✓ ✓ ✓ ✓ ✓ ✓ ✓

10
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E. Full Results

Table 5. Performance comparison on in-distribution LakeBeD-US data
Lake Baseline Water DO mg per L SRP ugL WaterTemp C Water TP mg per L Water Secchi m par Inflow cms no3 Lake MSE

BARC

Chronos 2.3253 – 1.4375 – 1.6224 – – – 1.8578
LPTM 2.2901 – 1.4458 – 1.5937 – – – 1.843

MOMENT 5.0759 – 1.7661 – 2.0752 – – – 3.2987
LakeFM 1.1866 – 1.0513 – 1.193 – – – 1.1257

BM

Chronos 1.0758 – 1.1338 – 1.4098 1.3189 – – 1.1941
LPTM 0.853 – 1.053 – 1.3402 1.1891 – – 1.0555

MOMENT 0.8765 – 1.0748 – 1.3271 1.1827 – – 1.0664
LakeFM 1.0384 – 1.0254 – 1.0652 1.055 – – 1.0414

CB

Chronos 1.3767 – 1.5903 – 1.5466 1.5991 – – 1.5476
LPTM 1.0053 – 0.9939 – 1.0003 1.0173 – – 1.0085

MOMENT 1.0087 – 1.0378 – 1.2727 1.192 – – 1.1326
LakeFM 1.028 – 1.0268 – 1.0872 1.0382 – – 1.0388

CR

Chronos 1.4407 – 1.4127 – 1.327 1.2205 – – 1.3556
LPTM 0.8465 – 0.8389 – 1.0045 0.941 – – 0.8854

MOMENT 0.7886 – 0.8602 – 0.89 0.8525 – – 0.8381
LakeFM 1.0514 – 1.0302 – 1.0692 1.0211 – – 1.0372

FCR

Chronos 0.8032 1.2797 0.7211 1.0751 1.2216 – – – 0.9464
LPTM 1.07 1.0743 0.7634 0.8943 0.9704 – – – 0.9437

MOMENT 1.0464 1.8066 0.7187 1.7656 1.449 – – – 1.2216
LakeFM 1.2669 1.0639 1.2711 1.0788 1.099 – – – 1.0889

GL4

Chronos 1.5296 – 1.411 – 1.4306 – – 2.0672 1.6543
LPTM 1.4388 – 1.2985 – 1.0462 – – 1.5282 1.3984

MOMENT 7.8317 – 2.0117 – 1.3582 – – 10.7023 6.5054
LakeFM 1.2302 – 1.1901 – 0.985 – – 1.1321 1.1704

LIRO

Chronos 1.2263 – 2.7699 – 1.5377 – – – 1.9562
LPTM 0.7012 – 3.1816 – 2.0241 – – – 1.9489

MOMENT 38.3198 – 13.5536 – 4.4672 – – – 23.9849
LakeFM 1.3815 – 1.1645 – 1.4198 – – – 1.2859

ME

Chronos 1.3861 – 1.4473 – 1.1576 – – – 1.3797
LPTM 0.9472 – 0.9141 – 1.0349 – – – 0.9455

MOMENT 0.845 – 0.8544 – 1.3372 – – – 0.9194
LakeFM 1.037 – 1.0627 – 1.085 – – – 1.0548

PRLA

Chronos 1.3852 – 0.9938 – 1.5742 – – – 1.2245
LPTM 1.2558 – 0.9893 – 0.9589 – – – 1.1077

MOMENT 2.4559 – 1.1458 – 0.9971 – – – 1.7278
LakeFM 1.0034 – 1.0244 – 0.8489 – – – 0.9998

PRPO

Chronos 1.3668 – 0.875 – 2.2169 – – – 1.2426
LPTM 1.1841 – 1.0609 – 1.1318 – – – 1.1235

MOMENT 2.9214 – 1.3513 – 0.906 – – – 1.9996
LakeFM 1.1834 – 1.0691 – 1.0924 – – – 1.1221

SP

Chronos 1.2051 – 1.1932 – 1.2328 1.2574 – – 1.2197
LPTM 0.9903 – 0.9431 – 1.0868 1.1291 – – 1.0259

MOMENT 1.014 – 0.9876 – 1.0706 1.004 – – 1.0072
LakeFM 1.0402 – 1.0276 – 1.0384 1.0143 – – 1.0284

SUGG

Chronos 1.2379 – 1.7081 – 1.3756 – – – 1.4622
LPTM 1.0839 – 1.4955 – 1.1533 – – – 1.2746

MOMENT 3.4189 – 1.8863 – 1.1905 – – – 2.4902
LakeFM 0.1008 – 1.0316 – 0.9157 – – – 0.6143

TB

Chronos 1.0906 – 0.8741 – 1.0942 1.2872 – – 1.1459
LPTM 1.0215 – 0.9735 – 1.0175 1.2697 – – 1.1356

MOMENT 0.996 – 1.0177 – 1.1382 1.245 – – 1.139
LakeFM 1.0232 – 1.0157 – 1.0692 1.0018 – – 1.0173

TOOK

Chronos 0.9848 – 1.4319 – – – 1.2535 – 1.2148
LPTM 1.1142 – 1.6768 – – – 1.2604 – 1.3762

MOMENT 1.3364 – 7.518 – – – 3.6585 – 4.3174
LakeFM 1.0208 – 1.0263 – – – 1.1086 – 1.0435

TR

Chronos 1.2538 – 1.32 – 1.1681 1.0741 – – 1.2123
LPTM 1.0031 – 0.9493 – 1.0116 0.958 – – 0.9733

MOMENT 1.1394 – 0.978 – 1.1833 0.8093 – – 0.9915
LakeFM 1.0403 – 1.0327 – 0.9996 0.9649 – – 1.0125

WI

Chronos 1.1943 – 1.5961 – 1.3185 – – – 1.3882
LPTM 1.0338 – 1.5774 – 1.2681 – – – 1.3022

MOMENT 0.9228 – 1.501 – 1.2912 – – – 1.2191
LakeFM 0.9584 – 1.0445 – 1.027 – – – 1.0043
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