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Abstract
Training language models becomes increasingly expensive with scale, prompting numerous at-
tempts to improve optimization efficiency. Despite these efforts, the Adam optimizer remains the
most widely used, due to a prevailing view that it is the most effective approach. We aim to com-
pare several optimization algorithms, including SGD, Adafactor, Adam, Lion, and Sophia in the
context of autoregressive language modeling across a range of model sizes, hyperparameters, and
architecture variants. Our findings indicate that, except for SGD, these algorithms all perform com-
parably both in their optimal performance and also in terms of how they fare across a wide range
of hyperparameter choices. Our results suggest to practitioners that the choice of optimizer can
be guided by practical considerations like memory constraints and ease of implementation, as no
single algorithm emerged as a clear winner in terms of performance or stability to hyperparameter
misspecification. Given our findings, we further dissect these approaches, examining two simplified
versions of Adam: a) signed momentum (Signum) which we see recovers both the performance and
hyperparameter stability of Adam and b) Adalayer, a layerwise variant of Adam which we intro-
duce to study the impact on Adam’s preconditioning for different layers of the network. Examining
Adalayer leads us to the conclusion that, perhaps surprisingly, adaptivity on both the last layer
and LayerNorm parameters in particular are necessary for retaining performance and stability to
learning rate.

1. Introduction

As language model architectures increase in scale, pretraining becomes more expensive. In re-
sponse, numerous efforts have been made to design efficient optimizers to mitigate these costs, and
yet Adam [17] remains the primary optimizer used for training language models. This persistent
preference for Adam is rooted in an underlying belief that Adam generally outperforms alternative
optimization algorithms. Although newly proposed optimizers run ablations to demonstrate supe-
rior performance to Adam for select architectures and tasks [7, 21], there is no consensus among the
literature about the relative performance of these optimizers. In fact, to the best of our knowledge,
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Figure 1: Final validation loss when training language models with 150m, 300m, 600m, and 1.2b
parameters, sweeping across learning rates for five standard optimizers (SGD, Adam, Adafactor1,
Lion, and Signum). Plots have been shifted to align the optimal learning rates for each optimizer.
Except for SGD, other optimizers seem comparable in their optimal performance and stability with
respect to learning rate tuning.

[16] is the only work comparing these optimizers but in the context of masked language modeling
and at a single model scale.

In this work, we perform a comprehensive sweep for training autoregressive language models
across different optimizers, hyperparameters, architectures, and scale. Along with looking at opti-
mal performance, we argue that due to the difficulty of hyperparameter tuning with increasing scale
[36], the stability of performance with respect to hyperparameter choices is equally important. Prior
work has explored the learning rate stability of Adam [35]. We extend this investigation to include
the stability of multiple optimizers with respect to various hyperparameter choices. Surprisingly, we
find that multiple optimizers introduced in the literature after Adam—such as Lion [7] and Adafactor
(with momentum) [32, 37]—demonstrate robustness comparable to Adam and significantly supe-
rior to SGD. Figure 1 illustrates the remarkable similarity in performance and robustness of these
optimizers across different learning rates and across multiple model scales (150m, 300m, 600m,
and 1.2b parameters). This challenges the prevailing notion that Adam should be the default op-
timizer, where we see no single algorithm emerged as a clear winner in terms of performance or
hyperparameter stability.

Following our initial ablations, we wish to identify the essential components of these optimizers
that facilitate performance and stability. Thus, we conduct a series of investigations of simplified
versions of these algorithms. We study signed momentum (Signum), a special case of Lion. Prior

1. Our implementation of Adafactor adds back momentum as described in Appendix B.
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works have also studied its similarities to Adam [3]. We find that Signum also recovers the stability
and performance exhibited by Adam. This finding aligns with recent work [19], suggesting that the
primary distinction between SGD and Adam is driven by Adam’s resemblance to signSGD.

To further understand the role of preconditioning on various network parameters, we study
Adalayer, which performs preconditioning on a per-layer basis. We empirically demonstrate that
this variant nearly recovers the stability and performance of the other optimizers in previous ab-
lations. Through empirical studies of Adalayer and its variants, we show that while adapting the
parameters of the last layer and LayerNorm parameters in a transformer is necessary to achieve
stability and performance, we can actually train the remaining parameters (a vast majority of the
network) with SGD. To summarize, our main contributions are as follows:

• We empirically study the stability to hyperparameters of various optimization algorithms in-
cluding SGD, Adam, Lion and Adafactor, showing that with the exception of SGD, these
optimizers are comparable in terms of both performance and hyperparameter stability. This
holds across multiple scales (150m, 300m, 600m, and 1.2b) and across two transformer ar-
chitecture variants (Section 2).

• We study a coarser variant of Adam called Adalayer, that does per-layer preconditioning and
recovers much of the stability and performance exhibited by Adam (Section 3.1). Through
an empirical study of Adalayer and its variants, we establish that adaptivity is only necessary
for the last layer and LayerNorm parameters, while the remaining parameters can be trained
with SGD (Section 3.2).

2. Comparing Optimizers Across Hyperparameters, Architectures and Scale

2.1. Methodology

To conduct our experiments, we start with hyperparameters recommended by previous work (e.g.,
β1 = 0.9). We initially perform a learning rate sweep to identify the optimal learning rate. After
determining the optimal learning rate for each algorithm, we conduct one-dimensional sweeps for
each of the other hyperparameters. A limitation of this methodology is the potential neglect of ”2D”
interactions between hyperparameters. This is an important direction for future work, but beyond
the computational budget of this project. For example, some parameters like batch size and learning
rate indeed are likely to exhibit 2D interactions [27, 31]. However, we argue that the 1D sweeps
provide a tractable methodology that gives us useful signal about the hyperparameter stability of a
variety of algorithms around the parameters that are common in practice.

2.2. Setup

We train language models on C4 tokenized with the T5 tokenizer [28] and report results in terms
of validation loss. As we discussed in the introduction, we argue that it is best to evaluate algo-
rithms both in terms of the loss achieved by the best hyperparameters (performance) as well as the
robustness across values of the hyperparameters (stability). Full details of hyperparameters and our
setup can be found in Appendix B. In the next section we first present the results of sweeps across
learning rate. We sweep across five algorithms: Adam, Adafactor, Lion, Signum, and SGD. Fur-
ther ablations of momentum, weight decay, warmup, β2, and ϵ for the 150m standard model can be
found in Appendix C.
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2.3. Sweeping learning rates

First, we sweep over the most important hyperparameter: learning rate. Note, in all of these sweeps
over learning rate we set β1 = 0.9 for all algorithms except for SGD, where we set β1 = 0.98. As
we will see in the following subsection, SGD is more sensitive to the momentum hyperparameters
and requires more momentum to be competitive with the other optimizers.

Main results for our standard architecture across three scales are presented in Figure 1. Note
that the x-axis shifts the learning rates to align the optimal learning rates across algorithms. In terms
of absolute learning rates, we sweep in multiples of

√
10 from 1e-4 to 1 for Adam and Adafactor,

from 1e-5 to 1e-1 for Lion and Signum, and from 1e-3 to 10 for SGD.
The key takeaway is that not only do the algorithms achieve similar performance at the optimal

learning rate, but the learning rate stability itself is similar across algorithms and scales. The one
exception is SGD, which is worse both in terms of optimal performance and in terms of stability. In
Appendix C.4, we perform additional experiments specifically investigating the close performance
between Adam and Signum.

Takeaway: performance and stability to learning rate are comparable across the non-SGD algo-
rithms that we tested.

3. Investigating the key factors for optimizer stability and performance

Ablations in the previous section revealed the striking similarity in performance and stability across
multiple optimizers compared to Adam. Adam and its other variants are designed to have a high
degree of adaptivity at a fine granularity (per-parameter learning rates) throughout the training pro-
cess. This adaptivity is often credited with the stability and robust performance observed in these
optimizers. However, a critical question arises: to what extent is this adaptivity needed for different
parameters of the network? By identifying the necessity of adaptivity for different network compo-
nents to ensure both performance and stability, we aim to discern whether simpler optimizers like
SGD can achieve similar benefits with minimal modifications. Since higher momentum can often
play the same role as a better preconditioner and to have all algorithms on an equal footing, we will
fix β1 = 0.9 for all optimizers in this section.

The main optimizer we study in this section is a “layer-wise” variant of Adam, which we coin as
‘Adalayer’. We use Adalayer for our investigations because it lends a greater ease of understanding
compared to full-fledged Adam in identifying parts of the network which may be particularly critical
for optimizer performance and stability. Note that this layerwise variant is a special case of a
previously known optimizer called Blockwise Adaptive Gradient with Momentum (BAGM) [40].

3.1. Adalayer

To study the behavior of adaptive optimizers like Adam, we begin with describing a layer-wise
version of Adam which we refer to as Adalayer. Adam, Adafactor and Adalayer all (approximately)
store the diagonal second moment matrix, but with coarser and coarser granularity; for a layer of
dimension m×n, Adam explicitly maintains the second moment matrix using mn parameters in the
shape of a matrix. Adafactor stores row and column averages of the second moment matrix which
serve as a rank-1 approximation to the second moment matrix. Finally, Adalayer stores a single
scalar which is the average of the second moment matrix. We will later consider a generalization
of Adalayer where instead of averaging second moment over a layer we will average it over a
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Figure 2: Quantiles of effective learning rates (ηt/(
√

vlt + ϵ) for each layer l) for the last layer
blocks (Left), the LayerNorm blocks (Right), and the other matrix blocks (Middle) for a 150m
model trained using Adalayer*. Unlike the other matrix blocks and LayerNorm parameters, the
effective learning rates across logits vary across multiple orders of magnitude, providing evidence
for the need to precondition them separately.

“block” of parameters which can be a subset of a layer. We note that similar algorithms have been
studied before [1, 10] but we choose to study this variant since it is a direct analogue of Adam and
Adafactor.

Algorithm 1 Adalayer
Parameters: Learning rate η, exponential decay rates
for the moment estimates β1, β2, number of steps T , ϵ
while t ≤ T do

for each layer l with p parameters do
glt ← ∇lL(wt)
vlt ← β2 · vlt−1 + (1− β2) · p−1/2 · ∥glt∥22
ml

t ← β1 ·ml
t−1 + (1− β1)g

l
t

wl
t+1 ← wl

t − η · ml
t√

vlt+ϵ

end
end

A simplified version of Adalayer op-
timizer is given in Algorithm 1; other de-
tails such as bias correction are kept same
as that for Adam. In Appendix D, we pro-
vide more details about our Adalayer im-
plementation. Specifically, Adalayer when
naively applied for each layer is neither
performant nor stable to learning rate (Fig-
ure 9); however, if we additionally treat
the set of weights in the last layer feeding
into each logit as its own block, this recov-
ers most of the performance and stability
of Adam (see the dotted blue lines in Fig-
ure 3). We henceforth refer to Adalayer with this correction as Adalayer*. To study how Adalayer*
preconditions the network, we plot effective learning rates used for different logits by Adalayer* in

Figure 2 (Left). Here, the effective learning rate for a layer l in the network is λt/(
√
vlt + ϵ). We

find that Adalayer* indeed uses vastly different learning rates for different logits, supporting our
hypothesis that preconditioning weight in different logits separately is important for performance
and stability.

3.2. Both the last layer and LayerNorm parameters need adaptivity

The results using Adalayer* in the previous section suggest that all layers except the last layer only
need a iteration-dependent scalar correction to their learning rate. We now ask a stronger question:
do we need these scales at all? Or can we train the remaining layers with SGD? This hypothesis
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is supported by looking at Figure 2 (middle) where we observe that the learning rates for different
matrix layers (except the last layer) assigned by Adalayer* are remarkably similar.
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Figure 3: (Left): Training the last layer using Adalayer* with a fixed learning rate of 3.16e− 3 and
other LayerNorm and matrix blocks using SGD achieves better performance than SGD, but does
not recover stability. (Middle): Training both the last layer and LayerNorm blocks using Adalayer*
and the other matrix blocks using SGD nearly recovers or exceeds performance of Adalayer*, and
achieves stability across learning rates. (Right): Training both the last layer and LayerNorm blocks
using Adalayer* and the other matrix blocks using SGD for a 300m model. This outperforms
Adalayer* and is comparable to Adam’s performance. Dotted lines are baselines from optimizers
previously given in Sections 2 and 3.1.

To test this, we train the last layer with Adalayer* (fixing a learning rate of 3.16e − 3) and the
rest of the layers with SGD, both with β1 = 0.9. In Figure 3 (Left) we show the results while
sweeping over SGD learning rates from 0.1 to 3160. While this improves upon the performance of
SGD, we do not recover stability of the Adalayer* and Adam baselines. We trace this instability
to LayerNorm blocks: Figure 2 (Right) shows that the effective learning rates for the LayerNorm
blocks are much smaller, which suggests that they may destabilize at higher SGD learning rates.
To ameliorate this, in Figure 3 (Middle and Right) we add LayerNorm parameters to those being
trained with Adalayer* and find that this is sufficient to recover both performance and stability of
Adalayer*. For the larger 300m model, we find that this even exceeds the performance of Adalayer*.
In Figure 10 in the Appendix, we see this trend continue to hold for 600m parameter models.

We conduct additional experiments investigating these ‘hybrid’ variants of SGD in Appendix E,
where we provide a series of ablations supporting the evidence that Adalayer* on specifically both
the last layer and LayerNorm parameters are key for establishing performance and stability. Also
note that a caveat of the above results is that we have introduced an additional hyperparameter—
SGD learning rate, which we are sweeping over— while keeping the Adalayer* learning rate fixed.
While decoupling the learning rates here is needed (due to SGD’s performant learning rates being
orders of magnitude higher than that of Adalayer*), this may be responsible for the observed stabil-
ity. To address this, in Appendix F we train the network with Adalayer* but we stop updating the
second moment estimates for all layers except the last layer and LayerNorm blocks after initializa-
tion. We show that even in this setting, we can completely recover the performance and stability of
Adalayer* on the whole network.
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4. Discussion and Limitations

After a comprehensive comparison of a variety of optimizers for language modeling, we have found
that many optimizers seem to be roughly equivalent both in terms of optimal performance and
hyperparameter stability. Diving deeper, we have shown that the treatment of the last layer and
LayerNorm parameters is crucial for realizing the benefits of adaptive optimizers. Of course, there
are several limitations to our study including the fact that due to computational constraints we only
ablate a few architecture decisions, that we only consider one dimensional hyperparameter sweeps,
we fix batch size, and that we limit our study to autoregressive language modeling with a single
dataset. Despite these limitations, we believe that the study sheds new light on the fundamentals
of optimization for language modeling and suggests that optimizer choice may not be the optimal
point of intervention for increasing efficiency.
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Appendix A. Related work

One closely related work to ours is Wortsman et al. [35], which explores the stability of Adam with
respect to learning rate. We extend the comparison to other optimizers including SGD, Lion and
Adafactor, as well as other hyperparameters including momentum and weight decay.

Optimizers: SGD [30] had been the workhorse optimizer for deep learning until 2015, when
Adam [17] was introduced. Adam is a diagonal preconditioning algorithm that maintains a per-
parameter learning rate. Over time, coarser variants of Adam have been proposed, which do not
explicitly maintain a learning rate per parameter. Adafactor [32, 37] maintains a rank-1 approxima-
tion of the preconditioner matrix of Adam. Previous works have also explored Signum [5, 6] and
have observed its benefits in terms of communication efficiency and fault tolerance. Other works
have also explored the similarity of Adam with variants of Signum [3], and recently, a close variant
of Signum, called Lion [7], was discovered using symbolic search over algorithms. Some other op-
timizers that have recently gained increasing attention from the community include Shampoo [12]
and Sophia [21].

Adam and Signum: Many works have explored the relationship between Adam and variants
of Signum [3, 4, 19] and empirically demonstrated that Signum (or its close variants) generally
performs comparably to Adam. Balles et al. [4] also argued that signSGD generally performs bet-
ter when the Hessian is close to diagonal, however, it is unclear if this holds for practical settings.
Kunstner et al. [19] recently demonstrated that Adam and a close variant of Signum exhibit similar
performance on a variety of datasets including WikiText-2 [23] and SQuAD [29]. However, in con-
trast with our work, all of these are restricted to the setting of vision or masked language modeling,
and generally do not sweep over multiple hyperparameters.

Layerwise or blockwise Adam: We study Adalayer, a layerwise version of Adam. This is a
special case of the BAGM optimizer [40], specifically BAGM B.1. Similar algorithms have also
been studied by previous works [1, 10, 22, 39]. In particular, concurrent to our work, Zhang et al.
[39] propose an algorithm termed Adam-mini, which closely tracks a modified version of Adalayer
(called Adalayer*), and demonstrate comparable performance to AdamW. Note that, in our work,
Adalayer* is introduced to understand the role played by preconditioning in Adam, and we do not
specifically focus on the final performance. Zhang et al. [38] empirically study the Hessian spectrum
of transformers at initialization and find it to be more heterogeneous across layers as compared to
ResNets. They argue that this heterogeneity is evidence towards the importance of Adam in training
transformers. In contrast our results (Section 3.2) show that Adam’s preconditioning is particularly
important for the last layer and LayerNorm parameters to achieve performance and learning rate
stability.

Other related works: For vision transformers, in the fine-tuning phase, Kumar et al. [18] show
that using SGD with frozen embedding parameters leads to competitive performance with Adam.
Jelassi et al. [14] explore the similarity between Adam and normalized gradient descent [24] and
show that normalized gradient descent on GANs does not suffer from mode collapse, while SGD
does. Jiang et al. [15] empirically demonstrate that Adam steers the parameter trajectory towards
better-conditioned regions than SGD. Pan and Li [25] also show that the parameter trajectory of
Adam exhibits much higher directional smoothness than that of SGD. Ahn et al. [2] show that the
performance gap between Adam and SGD exacerbates with depth of the network. In a similar vein
to us, Kunstner et al. [20] show that Adam is less sensitive than gradient descent to class-imbalance
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present in language tasks; we provide further evidence for the importance of preconditioning the
last layer, as well as the LayerNorm parameters.

Appendix B. Setup and Architecture Details

Algorithms. We use the standard Pytorch implementation of AdamW [26], the timm implemen-
tation of SGDW [34], and the OLMo implementation of Lion [11]. Following [37] we implement
ourselves a modified version of Adafactor which maintains the factored estimates of second mo-
ments but has momentum i.e. it is equivalent to Adam with factored second moment estimates.
Since Signum is equivalent to Lion with β1 = β2 we reuse the OLMo implementation of Lion [11]
for it. We conducted experiments with the Sophia optimizer [21] in Appendix G. However, since it
does not outperform Signum (which can be achieved by setting ρ = 0 in Sophia), we did not include
it in other plots.

Models. We start from the OLMo codebase [11] and train decoder-only transformer models of
three sizes: 150m, 300m, and 600m, where the parameter count refers to non-embedding parame-
ters. The models have widths of 1024, 1024, and 1408 and depths of 12, 24, 24. The MLP hidden
dimension is 4x of the width. The activation function is GeLU [13]. We use RoPE positional
encodings [33]. Attention heads are always dimension 64. We use PyTorch default LayerNorm.
Following previous work [35] we do not learn biases for the linear layers or LayerNorms. We train
in mixed precision with bfloat16.

Training variants. We note that Wortsman et al. [35] observe that QK LayerNorm [9] and z-
loss [8] can have substantial effects on the stability of model training. As such, we consider two
variants in our experiments: standard which refers to a model with QK LayerNorms and z-loss
with coefficient 1e-4, and no QK norm or z-loss which refers to the same model without the QK
norm layers or the z-loss.

Token counts. For all models, we use a batch size of 256 and sequence length of 512 (as in
Wortsman et al. [35]). We default to training models for the approximately “chinchilla optimal”
number of tokens that is ≈20 times the number of parameters. Explicitly, this means for the 150m
models we train for 25k steps or ≈3.3b tokens. The 300m models are trained for 50k steps, the
600m models are trained for 100k steps and the 150m-long models are also trained for 100k steps.

Other hyperparameters. We default to using 0 weight decay. We default to using a learning rate
schedule with 10% of the training steps for warmup and then cosine decay with a minimum that is
10% of the maximum learning rate. We default to β2 = 0.95 and ϵ = 1e-15 following Wortsman et
al. [35]. These parameters are ablated in Appendix C.3.

Appendix C. Additional Hyperparameter Sweeps

In Section 2, we reported our main learning rate sweeps across architectures, optimizers, and scale.
Here, we report sweeps across other hyperparameters (i.e. momentum, β2, warmup, ε, etc.).
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Optimizer Optimal Learning Rate
Adam 3.16e-3 (150m), 1e-3 (300m), 1e-3 (600m), 1e-3 (1.2b)

Adafactor 3.16e-3 (150m), 1e-3 (300m), 1e-3 (600m), 1e-3 (1.2b)
Lion 3.16e-4 (150m), 3.16e-4 (300m), 3.16e-4 (600m), 1e-4 (1.2b)

Signum 3.16e-4 (150m), 3.16e-4 (300m), 3.16e-4 (600m), 3.16e-4 (1.2b)

Table 1: Optimal Learning Rates for Various Optimizers

Figure 4: Sweeping learning rate without QK norm or z-loss for (Left) the 150m model, and (Right)
the 300m model. These models are less stable than the standard model, but the same general trend
across algorithms hold here.

C.1. Additional Learning Rate Sweeps

For our ablations in Figure 1, we report on the optimal learning rate found for each optimizer in
Table 1. In general, we find that the optimal learning rate for Adam and Adafactor are similar, with
the optimal learning rate of Lion and Signum an order of magnitude smaller.

Further ablations for learning rate are presented in Figure 4 and Figure 5 illustrating performance
for models with no QK norm or z-loss and 4x longer training time respectively. While we find
that the architecture choices can clearly impact the amount of stability to learning rate, the cross-
algorithm comparisons remain the same: Adafactor and Lion are competitive with Adam, while
SGD is worse both in terms of performance and stability to learning rate. Similarly, training for
longer can improve performance and stability to learning rate, but does not change the high-level
cross-algorithm comparisons.

C.2. Sweeping momentum

Now we also sweep across momentum values (i.e. β1)2. To do this sweep we fix the per-algorithm
learning rate to be the optimal learning rate from the corresponding learning rate sweep.

Results are presented in Figure 6. We observe that across various settings, the robustness to β1
is similar across the non-SGD algorithms when we stay in the range of momentums between 0.8
and 0.98. However, for high β1 Lion is better and low β1 Adam and Adafactor are better. Again we
observe SGD being very sensitive to momentum.

2. Note that in Lion, both β1 and β2 can be thought of as different types of “momentum” with β1 being the “one-step”
momentum and β2 the “long-term” momentum. For consistency, we only sweep β1 here and sweep β2 in Section C.3.
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Figure 5: Sweeping learning rate on 150m models trained for 4x longer (100k steps) than in the base
runs for (Left) the standard model, and (Right) the model without QK norm or z-loss. Compared
to the shorter runs, these models achieve better performance and increased stability across learning
rates.

Figure 6: Sweeping momentum for fixed learning rate across three settings: (Left) 150m standard,
(Middle) 150m with no QK norm or z-loss, (Right) 300m standard. Adam and Adafactor are
similarly robust to β1, while Lion and Signum are slightly more sensitive to low values and SGD is
substantially more sensitive.

Takeaway: performance and stability to momentum are comparable across the non-SGD algo-
rithms that we tested if we stay within the usual range of momentum values.

C.3. Additional hyperparameter sweeps

We also sweep over a variety of other hyperparameters in Figure 7 using the best per-algorithm
learning rate and momentum. We observe that SGD is less stable with respect to weight decay and
warmup length. And while it is possible to get small benefits from higher weight decay, longer
warmup, and higher β2 than our defaults, the algorithms are much more stable to these parameters
than learning rate and momentum.

Takeaway: generally algorithms are more stable with respect to other hyperparameters and the
possible gains in performance are relatively small compared to learning rate and momentum.
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Figure 7: Sweeps over other hyperparameters. Top: weight decay, warmup duration, and batch size.
Bottom: ϵ and β2. We generally find little effect for the non-SGD algorithms, however there are
parameters that differ from our defaults that can offer up to 0.02 improvements in perplexity.

Figure 8: Sweeping momentum with β1 = β2 tied together for Adam (dashed) and compared
to Signum and Adam with fixed β2 = 0.95 (solid) across three settings: (Left) 150m standard,
(Middle) 150m with no QK norm or z-loss, (Right) 300m standard. When β1 = β2, Adam behaves
very similarly to Signum.

C.4. Signum recovers the performance and stability of Adam

In Figure 1 we observed that Adam and Signum have similar performance and stability for language
modeling, even at scale. The following lemma from prior work[3] shows that Adam performs
variance-adjusted sign gradient descent.

Lemma 1 ( [3]) Consider a parameter with a history of gradients gt, gt−1, . . .. Let m be the ran-
dom variable that is equal to gt−τ with probability (1− β1)β

τ
1 and v be the random variable that is

equal to gt−τ with probability (1 − β2)β
τ
2 . The Adam update δAdam and the Signum update δSignum

are related by

δAdam = δSignum ·
E[m]√
E[v2]
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If β1 = β2 then m = v in Lemma 1 and hence the ratio of Adam and Signum updates is equal
to the ratio of the mean and the square root of second moment of m. Intuitively, this holds because
when β1 = β2, the first moment estimates of Signum and Adam, and second moment estimates of
Adam, average the previous gradients with same coefficients ((1− β)βτ ). This intuitively suggests
that when β1 = β2, Adam and Signum may behave similarly. This motivates the conjecture that
the main benefit of Adam over Signum is the fact that in Adam, β2 can be varied independently of
β1. In Figure 1 we have β2 = 0.95 and β1 = 0.9 which are close, and as pointed out earlier, both
optimizers have similar performance and stability.

We examine this hypothesis further in Figure 8 by varying β1 and setting β2 = β1, and again
find that Signum and Adam behave very similarly. However, we also note that when we vary β1 for
Adam while fixing β2 we get more stability for β1 as compared to Signum.

Takeaway: With β2 = β1 Adam and Signum behave similarly and the standard setting for
training language models (β2 = 0.95, β1 = 0.9) is close to this.

Appendix D. Adalayer

As mentioned in Section 3, to investigate the role of preconditioning on language models for opti-
mizers like Adam, we introduce the Adalayer optimizer for ease of analysis. In this section, we first
establish the performance and stability of Adalayer as a reasonable proxy for Adam.

In Figure 9 we study the behavior of Adalayer across learning rates. To preserve the corre-
spondence with Adam we fix other hyperparameters to be the same: β1 = 0.9, β2 = 0.95 and
ϵ = 1e − 15. We find that Adalayer has better performance than SGD, but it performs worse than
Adam and also lacks Adam’s stability across learning rates. The major difference between Adam
and Adalayer is the preconditioning done by Adam within a layer. Intuitively, this preconditioning
will have large effects in layers where we expect different weights within a layer to have different
gradient scales. The first candidate for such a layer is the last layer, since different tokens have
widely different frequencies leading to different gradient scales. To test this hypothesis, we run a
corrected version3 of Adalayer where we treat the set of weights feeding into a logit as a separate
block. We henceforth refer to Adalayer with this correction as Adalayer*. This is plotted in Fig-
ure 9 and we observe that Adalayer* almost recovers the performance as well as a large fraction of
the stability of Adam.

Appendix E. Additional experiments: SGD + adaptive variants (Adalayer*,
Adafactor)

In this section, we report additional experiments involving training language models with SGD on a
fraction of the models’ parameters and an adaptive optimizer on the remaining parameters. Firstly,
we show that our results from Section 3.2 hold even when training 600m parameter models with
Adalayer* applied only on the last layer and LayerNorm parameters in Figure 10.

We also provide further ablations supporting our claim that the largest impact of the adaptivity
of Adalayer* is concentrated on the last layer and LayerNorm parameters. Firstly, we train 150m
models using Adalayer* on only the matrix parameters, while training the last layer and LayerNorm

3. We note that this reasoning also applies to the first layer, but in our ablations applying this correction the first layer
did not make a significant difference.
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Figure 9: Modifying Adalayer with the last layer correction improves performance and stability
across learning rates.

10 1 100 101 102

Multiple of optimal LR

2.70

2.75

2.80

2.85

2.90

2.95

3.00

3.05

Fin
al

 V
al

id
at

io
n 

Lo
ss

600m

Adalayer* (LL + LN, 1.0e-3) + SGD (Matrix)
AdaLayer*

Adam
SGD

Figure 10: As in Section 3.2, we train 600m models with Adalayer* on the last layer and LayerNorm
parameters, and train the remaining model parameters with SGD. We see that performance and
stability continues to match that of Adalayer* even at this larger scale.

parameters with SGD. In Figure 11, we see performance improves relative to SGD but we see similar
instability at larger learning rates.

Secondly, given that the effective learning rates of the LayerNorm blocks were observed to be
small in Figure 2 (Right), it is reasonable to ask whether training the LayerNorm parameters is
necessary at all; in Figure 12, we show results for training 150m and 300m models using Adalayer*
only on the last layer, using SGD on all other matrix blocks, and turning off training for the Layer-
Norm parameters. This indeed yields greater stability in comparison to Figure 3 (Left) but does not
fully recover the performance of Adalayer*, indicating that training LayerNorm parameters helps
with performance, which seems more pronounced in the larger model.

We saw in Figure 3 (Middle, Right) that using Adalayer* on only the last layer and LayerNorm
parameters sufficed to recover or exceed the performance of Adalayer*. In Figure 13, we report
a learning rate sweep over the analogous experiment but using Adafactor on the last layer and
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Figure 11: We train 150m models using Adalayer* on the matrix layers with a fixed learning rate of
1e−3 and using SGD on the last layer and LayerNorm parameters. Compared to the results in Figure
3, we do not recover the same stability nor do we reach the optimal performance of Adalayer*.
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Figure 12: Training 150m (Left) and 300m (Right) models using Adalayer* on the last layer with
a fixed learning rate of 3.16e − 3 and using SGD on other matrix blocks, while turning off the
option to train LayerNorm parameters. We see that while the performance and stability is improved
compared to SGD, it is still not as performant as Adalayer*. This indicates a degree of importance
of training LayerNorm parameters for these models.

LayerNorm parameters with a fixed learning rate. For the 150m model, using a learning rate of
3.16e − 3 with Adafactor yielded better performance than Adafactor for low learning rates, and
is comparable in terms of performance and stability. For the 300m model, the difference between
Adafactor and our ‘hybrid’ optimizer is more distinct at higher learning rates for fixed Adafactor
learning rate 1.0e− 3 and 3.16e− 3, but is comparable until the peak validation loss.

Appendix F. Additional experiments: freezing Adalayer learning rate ratios

As mentioned in Section 3.2, our experiments on the ‘hybrid’ SGD + Adalayer* optimizer has a
potentially confounding factor that the Adalayer* learning rate for the last layer and LayerNorm
parameters is fixed across SGD learning rate. In this section, we train all layers of the network with
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Figure 13: Training 150m (Left) and 300m (Right) models using Adafactor on the last layer with a
fixed learning rate and using SGD on other matrix blocks. We see that performance and stability is
comparable to Adafactor, but does not exceed it, particularly at higher learning rates.
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Figure 14: Training 150m (Left) and 300m (Right) models using fixed Adalayer* learning rate
ratios from initialization, with the exception of last layer and LayerNorm parameters. This al-
most entirely matches the performance and stability of Adalayer* in the 150m model, and exceeds
Adalayer*’s peak performance to be comparable with Adam.

Adalayer* after freezing the second moment estimates from initialization, with the exception of the
last layer and LayerNorm parameters. This implies that these layers are effectively being trained by
SGD with a fixed learning rate, though unlike the above results, these learning rates are different for
different layers. We implement this by passing 1000 batches to initialized 150m and 300m models
to obtain second moment estimates for all layers without letting the model take a gradient step, and
then allowing the model to train as normal under the same settings as all of our ablations. As in
our previous investigation, we fix other hyperparameters to be the same: β1 = 0.9, β2 = 0.95 and
ϵ = 1e− 15.

In Figure 14 we show the resulting learning rate sweep for freezing Adalayer* learning rate
scales at initialization (with the exception of the last layer and LayerNorm). Surprisingly, we find for
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the 150m model that we can almost entirely recover the stability and performance of Adalayer*. For
the 300m model we also match or exceed the performance of Adalayer*, and even nearly match the
peak performance of Adam. Note again that this sweeps learning rate across all network parameters.
This provides further evidence for the importance of adaptivity in the last layer and LayerNorm,
where in contrast we could used fixed ratios from initialization for all other parameters to recover
the performance and stability of Adalayer*.

We also report additional experiments exploring whether both last layer and LayerNorm adap-
tivity is truly needed for frozen Adalayer*. We show that this is indeed the case by conducting the
same sweep for frozen Adalayer* while trying to also freeze the learning rate ratios for last layer or
LayerNorm parameters as well. In Figure 15, we show that fixing initialized learning rate ratios for
all layers does not reach peak performance of Adalayer*, nor does it exhibit stability. In Figure 16,
we show that either continuing to update the LayerNorm parameters or the last layer parameters
can achieve the peak performance of Adalayer* but is still unstable. Finally, we show results for
turning off LayerNorm training while fixing learning rate ratios (with the exception of the last layer)
in Figure 17. We conclude that it is necessary to maintain adaptivity for both the last layer and Lay-
erNorm parameters, but understanding why the fixed ratios do not suffice would be an interesting
question for future work.
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Figure 15: Training 150m (Left) and 300m (Right) models using fixed Adalayer* learning rate
ratios from initialization for all layers. We observe this quickly diverges, achieving neither peak
performance nor stability.
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Figure 16: Training 150m models using fixed Adalayer* learning rate ratios from initialization while
either excluding only the last layer (Left) or excluding only the LayerNorm parameters (Right). We
observe both modifications reach peak performance but fails to be stable at higher learning rates.
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Figure 17: Training 150m (Left) and 300m (Right) models using fixed Adalayer* learning rate
ratios from initialization, while letting the last layer continue to update, and turning LayerNorm
training off. Stability across learning rates has improved but is less performant; for the 150m model
we also plot the sweep for regular Adalayer* with LayerNorm training off, and we see that it is
worse in performance compared to Adalayer* with LayerNorm training.

Appendix G. Sophia

In this section, we compare Sophia [21] to Signum. Note that Signum is a special case of Sophia,
achieved by setting ρ = 0. We find that Sophia does not outperform Signum. No significant change
in performance was observed when transferring the hyperparameters suggested by Liu et al. [21]
(eg. β1, β2, ε, weight decay), nor when additionally scaling attention by the inverse of layer index
which was used in the original Sophia implementation.

Figure 18: Comparing Sophia [21] and Signum for the 150M model in our default setup.
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