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Abstract
Detecting anomalies with limited supervision is
challenging due to the scarcity of labeled anoma-
lies, which often fail to capture the diversity
of abnormal behaviors. We propose Weakly
Supervised Anomaly Detection via Dual-Tailed
Kernel (WSAD-DT), a novel framework that
learns robust latent representations to distinctly
separate anomalies from normal samples under
weak supervision. WSAD-DT introduces two
centroids—one for normal samples and one for
anomalies—and leverages a dual-tailed kernel
scheme: a light-tailed kernel to compactly model
in-class points and a heavy-tailed kernel to main-
tain a wider margin against out-of-class instances.
To preserve intra-class diversity, WSAD-DT in-
corporates kernel-based regularization, encourag-
ing richer representations within each class. Fur-
thermore, we devise an ensemble strategy that par-
titions unlabeled data into diverse subsets, while
sharing the limited labeled anomalies among these
partitions to maximize their impact. Empirically,
WSAD-DT achieves state-of-the-art performance
on several challenging anomaly detection bench-
marks, outperforming leading ensemble-based
methods such as XGBOD.

1. Introduction
Anomaly detection identifies data instances that deviate sub-
stantially from normal patterns (Agrawal & Agrawal, 2015),
with critical applications in credit risk analysis (John &
Naaz, 2019), network intrusion detection (Tao et al., 2018),
and medical diagnostics (Abuzaid, 2020). Fully unsuper-
vised methods often yield high false positives, while fully su-
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pervised approaches require many labeled anomalies, which
is typically infeasible (Han et al., 2022). Consequently,
weakly supervised anomaly detection has emerged, lever-
aging a small labeled anomaly set alongside predominantly
normal unlabeled data (Pang et al., 2023). Two notable
examples are DeepSAD (Ruff et al., 2019), which extends
DeepSVDD (Ruff et al., 2018) by pushing labeled anoma-
lies away from a single “normal” center, and DevNet (Pang
et al., 2019), modeling anomalies as the extreme tail of a
univariate distribution. Both can handle sparse labels but
rely on a single center or tail, risking performance degra-
dation when anomalies exhibit significant heterogeneity or
cause collapsed embeddings (Goyal et al., 2020). Motivated
by these challenges and guided by classical margin-based
theory, which advocates maintaining a tight radius around
in-class samples while enforcing a wide margin against out-
of-class points to reduce model complexity and enhance
generalization (Cristianini & Shawe-Taylor, 2000; Bartlett
& Mendelson, 2002; Tax & Duin, 2004)—we introduce
Weakly Supervised Anomaly Detection via Dual-Tailed
Kernel (WSAD-DT). Our method is carefully tailored to
the nuances of weakly supervised anomaly detection, where
labeled anomalies are not only scarce but may also underrep-
resent the true diversity of anomalous behaviors. The core
idea of WSAD-DT is to map input data into a latent represen-
tation that effectively distinguishes normal from anomalous
samples. To achieve this, our approach employs dynamic
similarity measures based on heavy-tailed and light-tailed
kernels (Schölkopf & Smola, 2002) (Fig. 1), which are tai-
lored to the distinct characteristics of anomalies and normal
samples. Specifically, WSAD-DT leverages a light-tailed
kernel to tighten the representation around each class center
by rapidly reducing similarity with increasing distance. Con-
currently, a heavy-tailed kernel ensures slower similarity de-
cay, regulating broader dispersion farther away—balancing
compactness for in-class points with greater margins against
out-of-class samples. This dual-tailed kernel mechanism
effectively balances compactness near each center while
allowing broader margins for out-of-class patterns, thereby
enabling clear separation between normal and anomalous
instances. Fig. 1 illustrates the decay behaviors of light and
heavy-tailed kernels, highlighting their suitability for mod-
eling normal and anomalous data, respectively. Addition-
ally, WSAD-DT incorporates kernel-based regularization to
promote intra-class diversity and avoid over-concentration,
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Figure 1. Comparison of two distance-based similarity
functions—light-tailed and heavy-tailed—as distance in-
creases. The light-tailed kernel’s similarity rapidly falls off at
moderate distances. In contrast, the heavy-tailed decays more
gradually, preserving moderate similarity for points farther away.

ensuring a robust latent space representation. To address
the variability and imbalance inherent in weakly supervised
settings, WSAD-DT also introduces an effective ensemble
learning mechanism. This ensemble approach leverages
diverse subsets of the data while sharing labeled anoma-
lies across all subsets, which enhances robustness and sur-
passes traditional ensemble methods like XGBOD (Zhao &
Hryniewicki, 2018) in anomaly detection tasks.

Our key contributions are as follows:

• Dynamic Similarity Measures: We introduce a novel
loss function that incorporates both light-tailed and
heavy-tailed kernels, ensuring compact representation
around each class center while allowing broader disper-
sion for out-of-class samples. This dual-tailed kernel
design captures typical data tightly yet accommodates
anomalous deviations more flexibly, thereby improving
separation under limited supervision.

• Kernel-Based Regularization: To prevent degener-
ate “all-points-collapse” solutions, we incorporate a
kernel-based regularization term that promotes intra-
class diversity. This term ensures that each class retains
its inherent variability in the latent space, thereby en-
hancing robustness and generalization.

• Ensemble-Based Learning with Subset Splitting:
An effective ensemble scheme divides unlabeled data
into multiple subsets, while the limited labeled anoma-
lies are shared across all partitions. This design yields
diverse yet anomaly-aware models, and aggregated de-
cisions outperform strong ensemble baselines such as
XGBOD in anomaly detection tasks.

2. Related Work
Detecting anomalies under weak supervision—where a
small subset of anomalies is labeled while the majority of
data remain unlabeled—has attracted growing interest in
recent years (Pang et al., 2023).

DeepSAD (Ruff et al., 2019) extends DeepSVDD (Ruff
et al., 2018) by introducing an autoencoder-based latent
representation. In this representation, a single learned cen-
ter pulls normal samples closer and pushes anomalies far-
ther away; a hypersphere is then fitted to primarily cap-
ture normal embeddings. To address the collapse issue in
DeepSVDD, DROCC (Goyal et al., 2020) introduces ad-
versarial perturbations around normal points to learn robust
decision boundaries. Subsequently, DROCC-LF (Goyal
et al., 2020) incorporates a small number of labeled anoma-
lies alongside local feature representations, thus maintaining
adaptable boundaries even in high-dimensional spaces. De-
vNet (Pang et al., 2019) employs a Gaussian prior in the
latent space and a deviation loss that pulls normal sam-
ples toward the distribution center while pushing anomalies
outward. This focus on relative deviations yields compet-
itive performance. FeaWAD (Zhou et al., 2021) builds on
the same principle, fusing the deviation loss with autoen-
coders for more robust representations. PReNet (Pang et al.,
2023) tackles the anomaly detection problem from a meta-
learning viewpoint, combining pairwise relations with a
self-supervised distance metric to more effectively isolate
anomalies. A separate line of research leverages Generative
Adversarial Networks (GANs) (Goodfellow et al., 2014).
For example, GANomaly (Akcay et al., 2019) learns a latent
space in which the generator–discriminator pair accentu-
ates differences between reconstructions of normal samples
and anomalies. While GAN-based models can capture rich
data distributions, they often require careful tuning for sta-
ble adversarial training. RoSAS (Xu et al., 2023b) further
refines semi-supervised AD by introducing a contamination-
resilient, continuous supervision mechanism that uses mass
interpolation to produce smoothly varying anomaly scores,
enhancing robustness to label noise. Beyond deep end-
to-end solutions, hybrid approaches remain popular. XG-
BOD (Zhao & Hryniewicki, 2018), for instance, combines
a gradient-boosting ensemble with unsupervised anomaly
scores, integrating weak labels to sharpen decision bound-
aries. Single- vs. Multi-Kernel Methods. Classical kernel-
based methods such as One-Class SVM (Schölkopf et al.,
2001) rely on a single kernel for all data. Meanwhile, vari-
ous multi-view or multi-kernel approaches blend multiple
kernels—often via linear combinations—to capture richer
similarities (Gönen & Alpaydın, 2011). For example, Dual-
Regularized Multi-View Outlier Detection DMOD (Zhao &
Fu, 2015) factors multi-view data into cluster indicators and
sample-specific errors, thereby modeling both cross-view
inconsistencies and universal anomalies. By contrast, our
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work assigns two distinct kernels—light-tailed for in-class
points and heavy-tailed for out-of-class points—thus explic-
itly enforcing separate tail behaviors for each class rather
than learning a single “blended” kernel for the entire dataset.

3. The Proposed Approach
3.1. Problem Setting

Let X ⊂ RD be the input feature space, and consider a
dataset D ⊂ X × {0, 1}. In weakly supervised anomaly
detection, the dataset D is divided into an unlabeled set
DU = {(x1, 0), . . . , (xN , 0)}, which is largely normal but
may contain a few anomalies, and a labeled set DL =
{(xN+1, 1), . . . , (xN+K , 1)}, comprising a small number
of confirmed anomalies. Since K ≪ N , these labeled
anomalies provide only sparse supervision and often span
a narrow range of anomaly types (Pang et al., 2023). The
objective is to learn a scoring function ϕ : X → R that
ranks true anomalies (labeled or unseen) higher than normal
samples. This goal poses two key difficulties: (i) learning a
robust decision boundary from a small set of labeled anoma-
lies, and (ii) generalizing effectively on a large, unlabeled
pool that may include unknown anomalies.

3.2. Overview of WSAD-DT

To tackle these challenges, this paper introduces Weakly Su-
pervised Anomaly Detection via Dual-Tailed Kernel (WSAD-
DT), a framework tailored for scenarios with scarce labeled
anomalies and abundant unlabeled data dominated by nor-
mal instances. WSAD-DT learns a feature representation
f : X → Z , where X ⊆ RD and Z ⊆ Rd, that separates
normal from anomalous instances under limited supervision
and data imbalance. The mapping f is a feature represen-
tation learner, instantiated as a neural network f(·; Θf )
with parameters Θf = {W1, . . . ,WH}, where H ∈ N de-
notes the number of hidden layers. WSAD-DT employs
two distinct latent centers—one representing cohesive nor-
mal patterns and another capturing dispersed anomalies—to
establish a clear boundary between normality and anoma-
lies. A dual-tailed kernel approach then sharpens this divide
by keeping each class tightly localized around its match-
ing center while pushing out-of-class samples away from
the opposing center. However, merely driving data toward
these centers can trigger degenerate collapses, where all
points of a class map to a single coordinate. To avert this,
WSAD-DT includes a diversity term that preserves intra-
class variability. Additionally, an ensemble strategy further
enhances stability and generalization by distributing the lim-
ited anomaly labels across multiple partitions of unlabeled
data. Finally, WSAD-DT translates the learned embeddings
(Z) into anomaly scores ϕ : Z → R by contrasting each
embedding’s similarity to the normal center against its simi-
larity to the anomaly center.

4. Two Centers based Separation

In WSAD-DT, two dedicated centers c0 (for normal data)
and c1 (for anomalies) are placed in the latent space to
better capture the distinct characteristics of each class, par-
ticularly when labeled anomalies are scarce. In the weakly
unsupervised setting, we assume that the unlabeled dataset
DU is predominantly composed of normal instances (Pang
et al., 2023), although it may contain some anomalies.
Nevertheless, this assumption provides a solid foundation
for modeling normal behavior. In Appendix M, we fur-
ther analyze how WSAD-DT performs under varying lev-
els of contamination in the unlabeled data. A neural net-
work f(·; Θf ) projects each input xi to a latent embed-
ding zi, and the centers are initialized by averaging em-
beddings from DU (predominantly normal) and DL (con-
firmed anomalies), as in c0 = 1

|DU |

∑
(xi,yi)∈DU

fθ(xi) and

c1 = 1
|DL|

∑
(xi,yi)∈DL

fθ(xi), ensuring c0 ̸= c1. By aligning

each class with its dedicated center, normal samples cluster
around c0 and anomalies are pulled toward c1, yielding a
sharper distinction between their intrinsic characteristics.
This two-center design effectively decouples normal and
anomalous representations in the latent space, minimizing
overlap and improving separation.

Remark Single Center for Normality. Although real
data can exhibit multiple modes of normal behavior, we
adopt a single center c0 to represent normal samples be-
cause allowing multiple centers would introduce additional
complexity and the risk of overfitting or unstable partitions
in weakly supervised scenarios. This choice aligns with clas-
sic one-class frameworks (e.g., DeepSVDD and DeepSAD)
that effectively use a single hypersphere or reference point
for normal data and still achieve strong performance. Empir-
ically, our experiments (Tables 1, 5) demonstrate that even
a single center, combined with the dual-tailed kernel and a
suitable diversity term, can robustly capture local variations
while maintaining enough variance to avoid degeneracy.
Thus, one center often strikes the right balance between
simplicity, robustness, and generalization, especially under
limited anomaly labels.

5. Dual-Tailed Kernel: Motivation and Formal
Definition

Margin-based theory (Cristianini & Shawe-Taylor, 2000;
Bartlett & Mendelson, 2002; Tax & Duin, 2004) emphasizes
the importance of forming a compact in-class region while
maintaining a broad margin for out-of-class points. Moti-
vated by these insights, the main objective of WSAD-DT is
to achieve high in-class compactness and a clear boundary
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for anomalous samples, thereby yielding robust represen-
tations even under limited anomaly labels. To this end,
we propose a dual-tailed kernel separation loss that adap-
tively switches between two complementary similarity func-
tions according to each sample’s alignment with its assigned
class center. Concretely, we first define a distance metric to
quantify how far each sample lies from its designated class
center. We then transform these distances into similarity
scores through two specialized kernels: one that reinforces
a tighter distribution within each class, and another that
preserves a wider margin for out-of-class points. This dual
perspective ensures both strong in-class compactness and a
robust boundary for anomalous samples, ultimately produc-
ing discriminative embeddings even with sparse anomaly
supervision.

5.1. Distance Metric

For each sample (xi, yi), let fθ be the neural network map-
ping xi ∈ RD into the latent space. The distance between
fθ(xi) and ck (k ∈ {0, 1}) is defined as:

di,k =
∥∥fθ(xi)− ck

∥∥ =

√√√√ d∑
j=1

(
fθ(xi)j − ck,j

)2

. (1)

where “∥ · ∥” denotes the standard Euclidean (L2) norm.
Because yi ∈ {0, 1} indicates whether xi is normal (yi = 0)
or anomalous (yi = 1), we assign:

din =

{
di,0, if yi = 0,

di,1, if yi = 1,
dout =

{
di,1, if yi = 0,

di,0, if yi = 1.
(2)

Hence, din measures how close the sample is to its own class
center, while dout measures its distance to the opposite (out-
of-class) center (i.e. c1 for normal data, c0 for anomalous).
We aim to decrease din (pulling each sample to its own
center) and increase dout (pushing it away from the out-of-
class center), thus causing normal data to cluster near c0
and anomalies near c1.

5.2. Similarity-Based Kernels

To achieve compact in-class representation while maintain-
ing a broader margin for out-of-class points, we convert
distances in the latent space into a similarity measure using
carefully chosen kernels. These kernels regulate how fast
similarity decays with distance: To capture how data be-
haves in relation to these centers, we employ distance-based
kernels. Let

K : R≥0 → R≥0

be a function that maps a nonnegative distance (d) to a non-
negative similarity score, satisfying K(0) = 1 (maximum
similarity) and K(d) → 0 as d → ∞. We use ‘kernel’ in-
formally here: K need not be positive-semidefinite, but is

simply a distance-based similarity. In our setting, we use
two variants that differ in their tails (light-tailed vs. heavy-
tailed), reflecting different asymptotic decay behaviors. By
applying these kernels to distances di,k, we obtain a con-
tinuous measure of how “close” a sample is to its in-class
center or out-of-class center, allowing us to capture both
near- and long-range relationships in the latent space.

Light-tailed kernel (Compact Representations): We uti-
lize a light-tailed kernel designed to enforce a rapid decay
in similarity as points move farther from their true center.
A kernel Klight is called light-tailed if it decays at least as
fast as an exponential function for large d. Formally, there
exists a constant c > 0 such that

lim
d→∞

Klight(d)

e−c d
= L, (3)

where 0 < L < ∞. Equivalently, Klight(d) approaches
0 faster than any polynomial rate d−p. This rapid decay
enforces tight representations: small distances yield high
similarity, while similarity plummets quickly as d grows
(more detail in Section 6.1 and Appendix H).

Heavy-Tailed Kernel (Separation Enforcement) : In a
two-class setting, it is crucial that off-center points remain
distinctly separated from the wrong class. While a light-
tailed kernel excels at pulling well-matched points close to
its center, it may fail to emphasize separation once points
deviate substantially. In contrast, a heavy-tailed kernel de-
cays more gradually with distance, preserving a moderate
similarity for out-of-class points even at larger distances
and thereby enforcing a clearer boundary. Formally, we say
Kheavy is heavy-tailed if it decays at most polynomially:
there exist constants p > 0 and ℓ > 0 such that

lim
d→∞

(
dpKheavy(d)

)
= ℓ, (0 < ℓ <∞). (4)

This implies Kheavy(d) remains larger at moderate to large
distances than an exponentially decaying function, maintain-
ing a “long tail” that keeps out-of-class points distinguish-
able. Consequently, mismatched samples retain consistently
low (but not vanishing) similarity to the wrong center, re-
inforcing class separation (more detail in Section 6.1 and
Appendix H)).

By further considering the ratio of light and heavy-tailed
kernels:

Lemma 5.1 (Ratio of Light- and Heavy-Tailed Kernels). Let
Klight be light-tailed and Kheavy be heavy-tailed as defined.
Then

lim
d→∞

Klight(d)

Kheavy(d)
= 0. (5)
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Proof. By definition, KL(d) decays at least exponentially
with rate α > 0, while KH(d) is at most polynomial decay.
Hence

Klight(d)

Kheavy(d)
∼ e−αd

d−β
= dβ e−αd −−−→

d→∞
0. (6)

confirms, that light-tailed kernels rapidly decay to near-zero
for distant points, while heavy-tailed kernels diminish more
gradually, preserving longer-range distinctions.

This result underpins why one kernel function cannot, at
the same distance scale, exhibit both “very small” similarity
values (the hallmark of an exponential/light tail) and “mod-
erate” similarity values (the hallmark of a polynomial/heavy
tail). If a kernel had to be “light-tailed” for in-class com-
pactness and “heavy-tailed” for out-of-class separation at
the same distance regime, it would violate the limit. Hence,
Lemma 5.1 is critical: it clarifies that no single kernel can
act like both an exponential tail and a polynomial tail simul-
taneously. .

6. Dual-tailed kernel
In the following, we consider two disjoint classes of samples
in the feature space Rd: the normal class
B = {xi|(xi, yi) ∈ DU} and the anomalous class A =
{xi|(xi, yi) ∈ DL} (known labeled anomalies).

6.1. Single-tailed kernel vs. Dual-tailed kernel
Approaches

In the following, we demonstrate why (1) light-tailed ker-
nels excel at in-class compactness, (2) heavy-tailed kernels
excel at out-of-class separation, and (3) no single kernel
can provide both simultaneously. This naturally motivates a
dual-tailed kernel approach (light-tailed kernel for in-class,
heavy-tailed kernel for out-of-class). Concretely, we incor-
porate two in-class separation terms, defined as :

ℓ
(K)
in (z) = ln

[
K(din)

]
and ℓ

(K)
out (z) = ln

[
1−K(dout)

]
.

The In-class term ℓ
(K)
in (z) rewards data points for remaining

near their correct center, ensuring that normal or anomalous
examples stay close to their respective centers. Conversely,
the out-of-class term ℓ

(K)
out (z) penalizes points that approach

the wrong center, driving them away from the wrong center.

Lemma 6.1 (Light-Tailed Kernels for In-Class Compact-
ness). Suppose Klight decays very quickly at moderate dis-
tances, whereas Kheavy decays more slowly. Then for a
point z near or moderately far from its own class center c0,∥∥∇z ℓ

(Klight)
in (z)

∥∥ >
∥∥∇z ℓ

(Kheavy)
in (z)

∥∥.

Consequently, Klight exerts a stronger “pull” toward c0,
resulting in a strictly tighter in-class cluster than Kheavy.

In contrast, a heavy-tailed kernel better preserves a non-
zero similarity at moderate distances, thereby maintaining
an outward “push” that increases separation for out-of-class
points.

Lemma 6.2 (Heavy-Tailed Kernels for Out-of-Class Sepa-
ration). Assume Klight decays to nearly zero at moderate
distances, whereas Kheavy remains non-negligible. Then
for an out-of-class point z with moderate ∥z − c1∥,

∥∥∇z ℓ
(Kheavy)
out (z)

∥∥ >
∥∥∇z ℓ

(Klight)
out (z)

∥∥. (7)

Hence, Kheavy continues pushing out-of-class samples far-
ther than Klight, achieving a strictly larger separation mar-
gin.

6.2. No Single Kernel Can Do Both

As established in Lemmas 6.1 and 6.2, a light-tailed kernel
enforces tight in-class clustering but fails to maintain a
wide out-of-class margin, whereas a heavy-tailed kernel
preserves a broad margin but cannot strongly pull in-class
points together. Consequently, no single kernel can satisfy
both goals at once, motivating a dual-tailed-kernel approach.

Theorem 6.3 (Dual-tailed Kernel Outperforms Single Ker-
nel). Let a single-kernel approach use the same functionKS

for both ln[KS(din)] (in-class term) and ln[1−KS(dout)]
(out-of-class term). Let a dual-tailed kernel approach in-
stead use Klight for in-class and Kheavy for out-of-class.
Under mild assumptions (e.g., sufficient model capacity or
well-separated data), any single-kernel method must com-
promise either on compactness for in-class points or on
maintaining a wide out-of-class margin. By contrast, the
dual-tailed kernel design achieves both objectives simulta-
neously.

The proof follows directly by Lemmas 6.1 and 6.2.

Based on these observations we define the dual-tailed kernel
separation loss as:

Dual-tailed kernel (Klight,Kheavy) Separation Loss.
Building on the insight of Theorem 6.3, we unify these
findings into a ratio-based logistic form. Rather than sum-
ming a separate in-class reward (ln[Klight(·)]) and out-of-
class penalty (ln[1−Kheavy(·)]), we define the sample wise
dual-tailed kernel loss as:

ℓseparation(θ;x, y) = − ln

[ Klight

(
din

)
Klight

(
din

)
+Kheavy

(
dout

)]. (8)
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and based on the wise loss, we define the total separation
loss as:

Lseparation(θ) =
∑

(x,y)∈D

ℓseparation
(
θ; x, y

)
︸ ︷︷ ︸

sum of single-sample losses

(9)

This encourages each sample to have higher similarity to
its correct center (via the light-tailed kernel) than to the
opposite center (heavy-tailed kernel). The ratio inside the
logarithm naturally captures both closeness to the correct
center (via the light-tailed term in the numerator) and dis-
tance from the opposing center (via the heavy-tailed term
in the denominator). Numerically, this ratio-based design is
stable, and conceptually, it aligns with a softmax-style inter-
pretation, ensuring each sample is more “similar” to its own
center than the other while leveraging the complementary
strengths of light and heavy tails.

To quantify the benefit of using separate light-tailed and
heavy-tailed kernels, we perform an ablation in Appendix
K where we replace our dual-tailed design with a single
kernel for both in-class and out-of-class distances. Table 8
below summarizes the main findings: We observe that the
dual-tailed approach outperforms the single-kernel baseline.
In particular, the heavy-tailed component preserves a more
effective “push” for out-of-class samples, while the light-
tailed component enforces tighter in-class clustering.

6.3. Necessity of Diversity Loss

Relying solely on the separation loss can yield degenerate
solutions if the model is sufficiently expressive (e.g., large
enough parameters). In such cases, the model can drive
its training error near zero by mapping every instance of
a class onto a single point in latent space, leading to poor
generalization (Goyal et al., 2020).

Lemma 6.4 (Degenerate Solutions with Fixed Centers). If
the network fθ : RD → Rd is sufficiently expressive, then
there exists a parameter set θ∗ such that

fθ∗(x) =

c0, if x ∈ U ,

c1, if x ∈ A,
(10)

and this degenerate mapping drives the training separation
loss Lseparation(θ

∗) arbitrarily close to 0.

This result motivates the introduction of the diversity term
(Eq. 11), which counteracts the tendency to collapse by
fostering variability within each class. By penalizing over-
concentration, the diversity term ensures that normal data
retains subtle variations and that anomalies preserve their
inherent heterogeneity, enhancing the model’s robustness
and generalization capabilities (Goyal et al., 2020). Specifi-
cally, for class C ∈ {A,U}, we define the average pairwise

similarity:

k(C; θ) =
1

|C|2
∑
i,j∈C

exp
(
−∥fθ(xi)−fθ(xj)∥

σ2
C

)
, (11)

where σ > 0 is a fixed scale. The diversity loss is

Ldiversity(θ) = k(A; θ) + k(U ; θ). (12)

A high value of k(C; θ) indicates that points in C are
mapped very close together in latent space (since the expo-
nential term exp(−∥ · ∥/σ2) is close to 1). We minimize
Ldiversity to disfavor such overly tight clustering. A key
advantage of this exponential form is its smoothly decaying
gradient, which provides better control over moderate dis-
tances than linear or threshold-based metrics. Moreover, al-
lowing separate σC values for normal and anomalous classes
captures their differing spread without adding significant
complexity.

Lemma 6.5 (Diversity Lower Bound for Collapsed Map-
ping). Let U and A each contain at least two samples.
Suppose fθ∗ is the fully collapsed mapping:

fθ∗(x) =

{
c̃0, x ∈ U ,
c̃1, x ∈ A,

with c̃0 ̸= c̃1.

Then

k(U ; θ∗) = 1, k(A; θ∗) = 1, so Ldiversity(θ
∗) = 2.

Based on these insights we define the overall loss ass:

Ltotal(θ) = Lseparation(θ) + Ldiversity(θ), (13)

Corollary 6.6. If the total loss is

Ltotal(θ) = Lseparation(θ) + Ldiversity(θ) with ,

then at the collapsed solution θ∗ we have

Ltotal(θ
∗) = Lseparation(θ

∗) + 2 ≥ 2.

Thus no collapsed solution can have zero total loss. Hence,
diversity prevents degeneracy.

Discussion We want to point out that the degenerate ar-
rangement does not globally minimize the total loss. Con-
sider a non-degenerate mapping in which points lie close to
their respective centers rather than coinciding exactly. By
choosing this partial spread, we keep the separation loss
Lseparation(θ) arbitrarily small—say ε—while lowering the
diversity loss Ldiversity(θ) below 2 by some margin δ > 0.
In total we have:

Ltotal(θ) = Lseparation(θ)+Ldiversity(θ) ≤ ε+( 2−δ ) < 2.
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Because the degenerate arrangement fixes the total loss at
2, any such non-degenerate solution with ε < δ strictly
improves upon it. Consequently, the collapsed mapping is
not optimal: degeneracy cannot minimize Ltotal.

The separation loss pushes each sample toward its own
center and away from the opposite center, while the diversity
loss preserves intra-class variability to prevent collapse.

6.4. Computational Complexity of the Diversity Term.

A naive implementation of the diversity term incurs O(N2)
cost for a dataset of size N . We instead compute it within
each mini-batch of size b, reducing the cost to O(b2) per
iteration. To go further, we uniformly subsample bs =

√
b

points from each class within the batch, yielding a O(b2s) =
O(b) complexity per iteration. This strategy preserves the
diversity penalty’s effectiveness while keeping its overhead
linear in the batch size.

7. Ensemble-Based Subset Splitting.
Let DU be the unlabeled dataset and DL the set of la-
beled anomalies. We partition DU into M disjoint subsets,
{D(m)

U }Mm=1, by splitting the data indices into M consecu-
tive blocks. As a result,

M⋃
m=1

D(m)
U = DU , D(i)

U ∩D
(j)
U = ∅ for i ̸= j. (14)

Note that if |DU | is not exactly divisible by M , the last
subset may contain fewer samples, but altogether they still
cover DU fully without overlap. Each subset D(m)

U is then
combined with the same set of labeled anomalies DL to
form a training set for the m-th model:

D(m) = D(m)
U ∪ DL.

Hence, every model in the ensemble sees a unique slice of
unlabeled data while sharing the same anomalies.

Training Ensemble Components. Denote by fm(·) the
feature mapping or anomaly score network trained on the
set D(m). Let Θm be its parameters, learned by minimizing
a suitable objective (Eq. 13):

Θ∗
m = argmin

Θm

L
(
Θm; D(m)

U , DL

)
, m = 1, 2, . . . ,M.

Since all D(m) share DL, each model is exposed to the
same limited but crucial anomaly examples, preventing any
single model from entirely ignoring the labeled anomaly
information.

7.1. Aggregating Ensemble Outputs.

During inference, a test point x is passed through each
trained model, and the anomaly score ϕm(x) for the m-th

model is computed as:

ϕm(x) = 1 −
Kheavy

(
∥rm,0(x)∥

)
Kheavy(x)

(
∥rm,0(x)∥

)
+ Kheavy

(
∥rm,1∥

) .
(15)

where we define

rm,0(x) = fΘm(x) − c0 and rm,1(x) = fΘm(x) − c1.

ϕm(x) is bounded between [0,1]. For ϕm we utilize the
heavy-tailed kernel, due to the diversity term, normal points
naturally spread around c0, but still remain closer than
anomalies. A light-tailed kernel would penalize even mod-
erate distances and risk mislabeling these normal points.
Instead, the heavy-tailed kernel in Eq. 15 retains sufficient
similarity at moderate distances, ensuring normal points
consistently receive lower anomaly scores, while anomalies
lying farther out are assigned higher scores. We then aggre-
gate the M scores into a single final score by averaging:

ϕ(x) =
1

M

M∑
m=1

ϕm(x). (16)

The anomaly score ϕ(x) is between [0,1]. Anomalies have
an anomaly score of ≈ 1, while normal samples have a
significantly lower anomaly score of ≈ 0.

Discussion. Splitting unlabeled data gives each ensem-
ble model a distinct view of normality, while sharing the
same anomaly labels ensures consistent guidance. Aggre-
gating these diverse detectors improves robustness and gen-
eralization under limited anomaly labels. Appendix L pro-
vides an ablation study on ensemble size. Our empirical
sweep (Appendix L) shows that M = 5 strikes a good
balance—achieving near-optimal performance gains over
smaller ensembles (like M = 1, 3) without incurring the
heavy computational cost of even larger ensembles. Hence,
we fix M = 5 as our default throughout the experiments.

8. Experiments
8.1. Experimental Setup

We compare WSAD-DT with state-of-the-art deep anomaly
detection methods on over 20 real-world datasets from the
AdBenchmark repository (Han et al., 2022). Each dataset
is split into 70% training and 30% testing, preserving the
anomaly ratio via stratified sampling. In this experiment,
we label only 5% of anomalies (or 5 anomalies, whichever
is larger), chosen uniformly at random from the training
set, ensuring minimal yet consistent supervision across all
runs. Note that in these main experiments, we do not add
contamination in the training data; the limited anomaly la-
bels (≤ 5%) reflect our focus on weaker supervision (in

7
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Table 1. This table presents the results of all algorithms using the default parameters outlined in the original paper. Hereby, the best values
are shown in bold, and the runner-up is underlined. The ’AVG Rank’ row of the table lists the average rank achieved by all algorithms in
the metric AUC-ROC. The lower the rank, the better the result. The last row of the table contains the adjusted p-value of the Wilcoxon
signed-rank test at an alpha = 0.05 for comparison between the WSAD-DT and reference methods. The symbol ’+’ represents situations
where the WSAD-DT is statistically superior to the comparing method.

Dataset WSAD-DT DeepSAD DevNet FeaWAD GANAnomaly PreNet ROSAS XGBOD

Optdigits 0.9996 (3) 0.9773 (7) 0.9959 (4) 0.9839 (5) 0.6041 (8) 1.0000 (1) 1.0000 (1) 0.9817 (6)
Lymphography 1.0000 (1) 1.0000 (1) 0.9961 (4) 0.9787 (6) 0.8953 (7) 1.0000 (1) ∗ 0.9903 (5)
Pendigits 0.9998 (1) 0.9768 (5) 0.9682 (6) 0.7798 (8) 0.8361 (7) 0.9832 (4) 0.9997 (2) 0.9981 (3)
Vertebral 0.9051 (1) 0.7810 (5) 0.4974 (7) 0.6399 (6) 0.3618 (8) 0.9036 (2) 0.8377 (3) 0.8125 (4)
Wdbc 1.0000 (1) 0.9990 (3) 1.0000 (1) 0.9979 (4) 0.9830 (8) 0.9969 (6) 0.9933 (7) 0.9979 (4)
Wpbc 0.6915 (1) 0.6144 (4) 0.6403 (3) 0.5619 (6) 0.4635 (7) 0.6649 (2) * 0.6135 (5)
Stamps 0.9902 (1) 0.9492 (4) 0.8909 (6) 0.8664 (7) 0.7529 (8) 0.9697 (2) 0.9544 (3) 0.9011 (5)
Satimage-2 0.9973 (1) 0.9715 (5) 0.9562 (6) 0.9753 (4) 0.9783 (3) 0.9243 (8) 0.9526 (7) 0.9866 (2)
Spambase 0.9499 (2) 0.8669 (5) 0.9389 (3) * 0.6108 (7) 0.8453 (6) 0.9128 (4) 0.9610 (1)
Thyroid 0.9960 (2) 0.9782 (4) 0.9667 (5) 0.8525 (7) 0.7795 (8) 0.9420 (6) 0.9961 (1) 0.9795 (3)
Mnist 0.9883 (1) 0.9116 (4) 0.9037 (6) 0.8100 (8) 0.8127 (7) 0.9093 (5) 0.9609 (3) 0.9870 (2)
Yeast 0.6545 (1) 0.6336 (3) 0.5942 (5) 0.5360 (7) 0.4867 (8) 0.6309 (4) 0.6521 (2) 0.5922 (6)
Cardio 0.9908 (1) 0.9842 (3) 0.9778 (4) 0.8067 (8) 0.9084 (7) 0.9422 (6) 0.9567 (5) 0.9904 (2)
Vowels 0.9736 (1) 0.9712 (2) 0.8839 (6) 0.7696 (8) 0.8231 (7) 0.9300 (5) 0.9653 (3) 0.9516 (4)
Wine 1.0000 (1) 1.0000 (1) 0.9954 (5) 0.9491 (6) 0.6836 (7) 1.0000 (1) * 1.0000 (1)
Magic.gamma 0.9166 (1) 0.8719 (4) 0.8282 (5) 0.7228 (7) 0.6817 (8) 0.8260 (6) 0.9034 (3) 0.9159 (2)
Ionosphere 0.9779 (1) 0.9704 (3) 0.5232 (7) 0.4238 (8) 0.6880 (6) 0.7116 (5) 0.7656 (4) 0.9746 (2)
Glass 0.9830 (1) 0.9355 (3) 0.8199 (6) 0.6891 (8) 0.7106 (7) 0.8934 (5) 0.8952 (4) 0.9606 (2)
Breastw 0.9894 (2) 0.9508 (5) 0.9947 (1) * 0.9559 (4) 0.9402 (6) 0.7851 (7) 0.9842 (3)
Yelp 0.8311 (1) 0.7139 (4) 0.6812 (5) 0.5522 (8) 0.6567 (7) 0.6670 (6) 0.7950 (2) 0.7584 (3)
Imdb 0.7623 (1) 0.6730 (3) 0.6204 (5) 0.5683 (6) 0.5021 (8) 0.5464 (7) 0.6473 (4) 0.6996 (2)
MNIST-C-Fog 1.0000 (1) 1.0000 (1) 1.0000 (1) 0.9529 (7) 0.8012 (8) 1.0000 (1) 1.0000 (1) 0.9998 (6)
MNIST-C-canny-Edges 0.9999 (1) 0.9859 (6) 0.9927 (5) 0.8818 (7) 0.6937 (8) 0.9932 (4) 0.9996 (2) 0.9982 (3)
MVTec-AD-Zipper 0.9307 (1) 0.8626 (3) 0.7728 (6) 0.5132 (8) 0.7402 (7) 0.7815 (5) 0.8993 (2) 0.8455 (4)
MNIST-C-Stripe 1.0000 (1) 1.0000 (1) 1.0000 (1) 0.9697 (8) 0.9733 (7) 1.0000 (1) 1.0000 (1) 1.0000 (1)
Skin 0.9998 (1) 0.9995 (2) 0.9937 (5) * 0.5202 (6) † 0.9992 (4) 0.9995 (2)
Fraud 0.9574 (2) 0.9504 (4) 0.9189 (6) 0.7855 (7) 0.9300 (5) † 0.9521 (3) 0.9612 (1)
Http 1.0000 (1) 1.0000 (1) 0.9984 (4) * 0.7011 (6) † 0.9979 (5) 0.9997 (3)
Cover 0.9996 (2) 0.9976 (4) 0.9992 (3) 0.6304 (6) 0.4702 (7) † 0.9997 (1) 0.9946 (5)
Shuttle 0.9956 (2) 0.9942 (3) 0.9775 (6) 0.9717 (7) 0.9781 (5) † 0.9864 (4) 0.9993 (1)
AVGRank 1.27 3.43 4.57 6.90 6.87 4.77 3.73 3.10
p-value N/A 0.00022220 (+) 0.00020919 (+) 0.00000005 (+) 0.00000005 (+) 0.00019809 (+) 0.00019916 (+) 0.00344150 (+)

Values marked with † indicate that no result was available within 12 hours.
Values marked with * indicate that a runtime error occurred during execution.
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line with (Han et al., 2022; Pang et al., 2023)). For an
ablation study on contamination in the training data, see
Appendix M. Each experiment is repeated on three splits
and averaged, with performance measured by AUC-ROC
and AUC-PR (Davis & Goadrich, 2006) and significance
tested via paired Wilcoxon signed-rank (Holm-Bonferroni
correction (McDonald, 2014)). All features are scaled to
[0, 1] (MinMaxScaler (Pedregosa et al., 2011)); five seeds
({0,1,2,100,1000}) are used for stochastic methods; and
default hyperparameters are taken from the original refer-
ences (Appendix I). We set the ensemble size to 5 (Ablation
study for ensemble size see Appendix L), and provide fur-
ther dataset statistics, kernel choices, parameter details, and
experiments with varied labeled-anomaly proportions in
Appendices H and N.

8.2. Real-world data

Table 1 and the Appendix F summarize the AUC-ROC and
AUC-PR results across all competing methods. WSAD-DT
ranks first on 23 datasets and second on 6 for AUC-ROC
(Table 1), attaining an average rank of 1.27. By contrast,
baselines such as DeepSAD and DevNet—relying on single
centers or single-tail distributions—perform less effectively.
WSAD-DT also excels in AUC-PR (Appendix F), rank-
ing first on 15 datasets and second on 11, with an average
rank of 1.70. Wilcoxon signed-rank tests confirm these
improvements are statistically significant. The gains pri-
marily arise from WSAD-DT’s dual-tailed kernel, which
integrates light- and heavy-tailed similarities for tighter in-
class clustering and a broader inter-class margin, along with
its diversity term that prevents trivial collapse. Moreover,
WSAD-DT’s ensemble—splitting unlabeled data but shar-
ing few labeled anomalies—outperforms gradient-boosting
ensembles (e.g., XGBOD), highlighting the benefits of com-
bining scarce anomaly labels with diverse unlabeled parti-
tions. Even under contamination in the unlabeled dataset,
WSAD-DT maintains strong performance across diverse
benchmarks. To assess the robustness of WSAD-DT, Ap-
pendix M presents additional experiments simulating vary-
ing contamination rates. Our results show that WSAD-DT
maintains strong performance even as unlabeled data be-
comes increasingly corrupted. In particular, it degrades
gracefully compared to other methods, underscoring the
resilience of the dual-tailed kernel design and ensemble
approach under noisy supervision. Moreover, it shows re-
silience to hyperparameter choices, reinforcing its reliability
in real-world scenarios with varying data conditions.

9. Conclusion
We introduced WSAD-DT, a dual-tailed kernel framework
for weakly supervised anomaly detection that employs a
light-tailed kernel for in-class compactness and a heavy-

tailed kernel for robust out-of-class separation. This design
allows WSAD-DT to learn a latent space where normal and
anomalous samples are effectively distinguished, aided by a
diversity term that prevents degenerate all-points-collapse
mappings. In addition, we split the unlabeled dataset into
multiple partitions while sharing a small set of labeled
anomalies across them; the resulting ensemble achieves
state-of-the-art results under limited supervision. Our dual-
kernel similarity approach resolves the tension between tight
clustering and wide margins, outperforming single-kernel
methods in both in-class pull and out-of-class push. Split-
ting unlabeled data into multiple partitions enables each
model to develop a different view of normality, while shared
anomaly labels enforce a consistent notion of anomaly. An
ensemble size of M = 5 was found to offer a practical
trade-off between accuracy and computational cost. More-
over, the method demonstrates strong robustness to weak
labels, effectively identifying anomalies using as few as five
labeled anomalies across various datasets.

10. Future Directions
Although WSAD-DT excels on static tabular data, it does
not explicitly handle temporal or relational structures. Real-
world tasks (e.g., fraud or sensor monitoring) often involve
time-series or graph data, where anomalies manifest through
evolving patterns or network connections. Adapting WSAD-
DT to recurrent or transformer-based models (for sequences)
or graph neural networks (for relational data) could signifi-
cantly broaden its applicability.
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Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none of which we feel must be
specifically highlighted here.
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Appendix Section Content
Appendix A Notation summary
Appendix B Proof of Lemma 6.1
Appendix C Proof of Lemma 6.2
Appendix D Proof of Lemma 6.4
Appendix E Proof of Lemma 6.5
Appendix F AUC-PR results
Appendix G Algorithms Details
Appendix H Experiment details
Appendix I Implementation Details
Appendix J Scalability Test
Appendix K Ablation study light-tailed, heavy-tailed, dual-tailed kernel
Appendix M Analyzing the performance under contamination in the training data
Appendix L Ablation study on the effect of different numbers of ensembles
Appendix N Ablation study for different numbers of labeled anomalies
Appendix O Parameter Sensitivity
Appendix P Ablation study kernel regularization
Appendix Q Limitation

Table 2. Structure of our appendix.

A. Notation summary
Table 3 provides a summary of the notation used throughout this paper.

Table 3. Notation Summary

Symbol Description

DU Unlabeled dataset (primarily normal but may be contaminated)
DL Labeled set of anomalies
N,K Number of unlabeled points (N ), number of labeled anomalies (K)
xi ∈ RD i-th input data point (feature vector of dimension D)
yi ∈ {0, 1} Binary label indicating normal (y = 0) or anomaly (y = 1)
fθ(·) Neural network mapping from input space to latent space
zi = fθ(xi) Latent representation (embedding) of point xi

c0, c1 ∈ Rd Centers in latent space for normal (c0) and anomalous (c1) classes
di,k Distance between zi and center ck, e.g. ∥zi − ck∥2
din, dout In-class vs. out-of-class distance for a sample, depending on yi
Klight(d) Light-tailed kernel (e.g. Gaussian), for in-class distances
Kheavy(d) Heavy-tailed kernel (e.g. Student-t), for out-of-class distances
σU , σA Bandwidth parameters for the light-tailed kernels (normal/anomaly)
ν Degrees-of-freedom parameter for the heavy-tailed kernel
Lseparation(θ) Separation loss term
Ldiversity(θ) Diversity (regularization) loss term
Ltotal(θ) Overall training objective, sum of separation + diversity
ϕm(x) Anomaly score output by the m-th model in the ensemble
ϕ(x) Final ensemble anomaly score (aggregation of ϕm)
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B. Proof Lemma 6.1
Proof. 1. General Gradient Form. For ℓ(K)

in (z) = ln[K(d)] with d = ∥z − c0∥, we compute:

∇z ℓ
(K)
in (z) =

dK(d)
d (d)

· 1

K(d)
· ∇z

(
∥z − c0∥

)
.

Since
∇z

∥∥z − c0
∥∥ =

z − c0∥∥z − c0
∥∥ .

, we have

∇z ℓ
(K)
in (z) =

K′(d)

K(d)
· z − c0∥∥z − c0

∥∥ .

Its magnitude is
∥∇z ℓ

(K)
in (z)∥ =

∣∣K′(d)
K(d)

∣∣.
2. Moderate to large ∥z − c0∥: Klight is smaller⇒ bigger reciprocal.∥∥∥∇z ℓ

(Klight)
in (z)

∥∥∥ ≫ ∥∥∥∇z ℓ
(K(only)

heavy )

in (z)
∥∥∥ for large d.

Because Klight(d) ∼ e−αd, we get
K′

light(d) ≈ −α e−αd.

Thus
K′

light(d)

Klight(d)
=
−α e−αd

e−αd
= −α,

a constant in magnitude. Meanwhile, Klight(d) itself is extremely small for large d, making ln[Klight(d)] strongly
negative and its gradient large in magnitude. This yields a strong inward pull for any in-class point at moderate/large
distance

If we replaced Klight by a heavier kernel Kheavy ∼ d−β , then at moderate d we have

K′
heavy(d) ∼ (−βd−β−1),

K′
heavy(d)

Kheavy(d)
∼ − β

d
→ 0.

This smaller ratio translates to a weaker inward gradient. Therefore, Klight is strictly more “aggressive” about pulling
in-class points near c0.

Thus, the light-tailed kernel exerts a stronger inward pull, preventing normal points from staying at large distances
from the true center.

Because the Klight gradient strictly exceeds that of K(only)
heavy for moderate to large distances, it never tolerates a normal point

lingering far from c0. Consequently, the final in-class cluster is strictly tighter under Klight.

Remark 1. In a deep model, z = fθ(x) depends on parameters θ. Although the proof here focuses on ∇z ℓ, the actual
training updates weights via chain rule:

∇θ ℓin(θ) = ∇z ℓin · ∇θz =
(
∇z ℓin

)
×

(
∇θ fθ(x)

)
.

Since a larger ∥∇z ℓ∥ directly contributes to a larger ∥∇θ ℓ∥, the strong “pull” evident in the latent space indeed translates
into stronger parameter updates in backpropagation. Therefore, if Klight induces a bigger inward gradient on z, it also
induces larger weight updates, more tightly clustering in-class points around c0.

Remark 2. An identical argument applies if we replace c0 by another class center c1. The same exponential vs. polynomial
decay comparison shows that a light-tailed kernel Klight always exerts a stronger inward pull, regardless of which center is
in question.
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C. Proof Lemma 6.2
Proof. Let d = ∥z − c1∥. Then:

ℓ
(K)
out (z) = ln

[
1−K(d)

]
, ∇z ℓ

(K)
out (z) =

1

1−K(d)
(−K′(d)) · z − c1∥∥z − c1

∥∥ .

Focus on moderate d: We compute the gradient of ℓ(K)
out (z) with respect to z. Using the chain rule:

∇z ℓ
(K)
out (z) =

∂

∂z
ln
[
1−K(d)

]
.

Let d = ∥z − c1∥2. Then:
∂

∂d
ln
[
1−K(d)

]
=

1

1−K(d)
[
−K′(d)

]
,

and
∂(d)

∂z
=

∂

∂z
∥z − c1∥ =

z − c0∥∥z − c0
∥∥ .

Thus:

∇z ℓ
(K)
out (z) =

−K′(d)

1−K(d)
· z − c1∥∥z − c1

∥∥ .

Note that K′(d) is the derivative of K with respect to ∥z − c1∥.

3. The behavior of Light-Tailed vs. Heavy-Tailed Kernels at Moderate Distances (a) Light-Tailed Kernel Klight: By
definition, a light-tailed kernel rapidly decays toward (or extremely close to) zero when d is only moderately large. Hence,
for moderate d, we typically have:

Klight(d) ≈ 0, K′
light(d) ≈ 0.

Substituting into the gradient formula:

∇z ℓ
(Klight)
out (z) ≈ − 0

1− 0
· z − c1∥∥z − c1

∥∥ = 0.

Consequently, the out-of-class log-loss ln[1−Klight(d)] saturates at ln(1) = 0, and the gradient becomes nearly zero. This
implies there is almost no incentive to push z farther away from c1.

(b) Heavy-Tailed Kernel Kheavy: A heavy-tailed kernel retains moderate positive values even at moderate distances. For
such d, we might have:

Kheavy(d) ̸= 0, K′
heavy(d) ̸= 0.

Then:

∇z ℓ
(Kheavy)
out (z) ≈

−K′
heavy(d)

Kheavy(d)
· z − c1∥∥z − c1

∥∥ ̸= 0.

This gradient remains non-trivial, meaning the loss is still increasing as z moves outward. The model thus continues to
“push” z away from c1, promoting a wider separation boundary.

Conclusion Because Klight effectively becomes negligible at moderate distances, ℓ(Klight)
out saturates and yields no gradient

for pushing out-of-class points farther. In contrast, Kheavy preserves a moderate value at similar distances, ensuring ℓ
(Kheavy)
out

continues to provide a meaningful gradient that drives z away from c1.

Remark 1. Again, if z = fθ(x) is computed by a neural net with parameters θ, then standard backpropagation yields:

∇θ ℓout(θ) = ∇z ℓout × ∇θz.

Hence a sustained non-zero gradient in ∇z ℓout (under heavy tails) also implies a sustained non-zero gradient in ∇θ ℓout,
causing the network weights to keep shifting z away from c1. By contrast, a light-tailed kernel’s near-zero∇z at moderate d
translates into minimal weight updates once z is already somewhat far from c1.
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Remark 2.The same argument applies if we swap centers. We specifically showed how a light-tailed kernel saturates when
pushing z away from c1; however, one could equally consider pushing a point away from c0 if it is out-of-class for that
center. The key principle remains: a heavy-tailed kernel continues to produce a nonzero gradient at larger distances, while a
light-tailed kernel saturates and stops pushing.

Remark (Moderate Distances). Throughout Lemmas 5.1 and 5.2, we say a sample z is at a moderate distance from a
center ck if ∥z − ck∥ is neither so small as to be effectively zero, nor so large that the kernel has saturated at (or near) zero.
Concretely, let δmin, δmax > 0 be thresholds such that

δmin < ∥z − ck∥ < δmax.

• Near Distance (∥z − ck∥ ≈ 0) leads to a similarity K(∥z − ck∥) ≈ 1.

• Large Distance (∥z − ck∥ ≫ 1) often results in K(∥z − ck∥) ≈ 0 for a light-tailed kernel (or near saturation for a
heavy-tailed kernel).

• Moderate Distance is precisely the range where the kernel’s decay profile (exponential vs. polynomial) meaningfully
differs and produces nontrivial gradient behavior.

In practice, “moderate distance” captures the radius at which a light-tailed kernel begins to drop off sharply, or a heavy-
tailed kernel remains significantly above zero. It is in this regime that Lemmas 5.1 and 5.2 highlight how light-tailed vs.
heavy-tailed kernels yield distinct advantages for in-class compactness and out-of-class separation, respectively.

Experiment validation To further validate these observations, we conducted experiments on some real-world datasets,
training each model for 100 epochs and reporting the results in Table 4. Our analysis focused on the average distances of
anomalous and normal points to both the anomaly center (c1) and the normal center (c0), as detailed below:

i.a. :=
1

|Ain|
∑

x∈Ain

d
(
x, c1

)
, o.a. :=

1

|Aout|
∑

x∈Aout

d
(
x, c0

)
,

i.n. :=
1

|Uin|
∑
x∈Uin

d
(
x, c0

)
, o.n. :=

1

|Uout|
∑

x∈Uout

d
(
x, c1

)
.

Here:

• Ain and Uin denote points correctly assigned to their respective centers (anomalous to c1, normal to c0).

• Aout and Uout refer to points assessed in relation to the center of the opposite class.

Key Findings

In-Class Distances (i.a. and i.n.:) The light-tailed kernel achieves significantly smaller in-class distances compared to
the heavy-tailed kernel. This indicates that the light-tailed kernel promotes tighter clustering around the respective centers,
confirming its ability to enforce compactness for in-class points.

Out-of-Class Distances (o.a. and o.n.:) The heavy-tailed kernel results in larger out-of-class distances, effectively
separating points from the center of the opposing class. This observation aligns with the heavy-tailed kernel’s design, which
preserves moderate similarity for points farther away, thereby maintaining a wider margin between classes.

Implications

The results validate the complementary roles of the light and heavy-tailed kernels as described in Lemmas 6.1 and 6.2.
Specifically:

• The light-tailed kernel excels at compacting in-class points, ensuring that normal and anomalous points cluster tightly
around their respective centers.
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• The heavy-tailed kernel enforces broader margins, preventing out-of-class points from being falsely pulled toward the
wrong center.

By leveraging both kernels, the dual-tailed kernel approach achieves robust in-class compactness and out-of-class separation,
which are critical for distinguishing anomalies from normal points. This dual mechanism addresses the limitations of
single-kernel methods and demonstrates superior adaptability across diverse datasets (see ablation study in Appendix K).

Table 4. Comparison of Average Distances Using Light-Tailed vs. Heavy-Tailed Kernels

Light-Tailed Kernel Heavy-Tailed Kernel

Dataset i.a. o.a. i.n. o.n. i.a. o.a. i.n. o.n.

Vertebral 0.3556 0.5176 0.4038 0.4495 0.8766 1.0620 0.9960 1.0299
WDBC 0.0568 1.1348 0.1310 1.2099 0.2737 1.4539 0.2862 1.4368
WPBC 0.1294 0.5579 0.3189 0.6069 0.5693 0.9703 0.9013 1.1783
Stamps 0.0588 0.8711 0.1115 0.8529 0.2683 1.0988 0.4663 1.2703
Satimage-2 0.0274 0.9126 0.0581 0.9499 0.2904 1.2005 0.3640 1.2727
Magic.gamma 0.2421 0.5414 0.1981 0.6531 0.7599 1.1767 0.6396 1.1107
Yeast 0.2427 0.5069 0.3010 0.4875 0.7474 1.0097 0.8511 0.9507
Vowels 0.0363 0.6670 0.1455 0.7584 0.2462 0.8767 0.7248 1.3530
Ionosphere 0.0960 0.8152 0.1026 0.7668 0.3943 1.1142 0.5042 1.2127

D. Proof of Lemma 6.4
Proof. Zero Separation Loss. The per-sample separation loss for a point (x, y) takes the form

ℓseparation(θ;x, y) = − ln

[
Klight

(
∥fθ(x)− cin∥

)
Klight

(
∥fθ(x)− cin∥

)
+Kheavy

(
∥fθ(x)− cout∥

)],
where cin is the “correct” center for x (i.e., c0 if y = 0, or c1 if y = 1), and cout is the opposite center.

Consider the mapping

fθ∗(x) =

{
c0, y = 0,

c1, y = 1.

Then ∥fθ∗(x) − cin∥ = 0. Since Klight(0) ≈ 1 and ∥c0 − c1∥ > 0, the ratio inside the logarithm approaches 1, making
ℓseparation(θ

∗;x, y) ≈ 0 for each sample. Summing over the entire training set, Lseparation(θ
∗) ≈ 0.

Class Collapse and Consequences. All normal points (y = 0) are mapped to c0, and all anomalous points (y = 1) are
mapped to c1. Hence, each class is collapsed onto a single coordinate in the latent space, destroying any intra-class variability.
While it yields “perfect” separation on the training set, this degenerate solution generalizes poorly (Goyal et al., 2020).

Conclusion. With fixed c0 and c1, a sufficiently flexible fθ can achieve near-zero training separation loss by collapsing each
class onto its respective center. This justifies the need for additional regularization (e.g., a diversity term) to preserve the
intra-class structure and avoid trivial collapse.

E. Proof of Lemma 6.5
Proof. Fix θ∗ such that fθ∗(x) is constant on U . Pick any xi, xj ∈ U . Then ∥fθ∗(xi)− fθ∗(xj)∥ = ∥c̃0 − c̃0∥ = 0, so the
exponential similarity exp(−∥zi − zj∥/σ2) = exp(0) = 1. Hence every pair (i, j) ∈ U × U contributes 1. Summing over
|U|2 pairs and dividing by |U|2 yields k(U ; θ∗) = 1. Identical reasoning applies to A. A summation of the two completes
the proof.
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Corollary: If the total loss is Ltotal(θ) = Lseparation(θ) + Ldiversity(θ) ,then at the collapsed solution θ∗ we have

Ltotal(θ
∗) = Lseparation(θ

∗) + ×2 ≥ 2.

Thus no collapsed solution can have zero total loss with diversity penalty. Hence, diversity prevents degeneracy.

Compactness from separation.

Although the diversity term penalizes an overly tight cluster, the separation objective Lseparation(θ) still rewards each class-k
point zi = fθ(xi) for lying near its center ck. If a point drifts arbitrarily far from ck, Lseparation grows, hurting the total
objective. Therefore, at the optimum θ∗, each class remains relatively compact around ck (to keep the separation cost low),
yet not collapsed to a single point (to keep diversity cost low).

Conclusion. By combining separation and diversity:

• Non-collapse: The diversity penalty ensures that no class fully collapses onto one coordinate.

• Compactness: The separation objective still keeps each z∗i near its respective cyi
, so all points of class k form a cluster

around ck with moderate scatter.

This balance yields robust representations that preserve in-class variability and clear separation from other classes (Goyal
et al., 2020).

Conclusion

By introducing a diversity loss, we ensure that any attempt to collapse all class members to a single point incurs a large
penalty, thus preventing the degenerate mappings that minimize the separation loss alone. This mechanism encourages the
learned representations to maintain a more realistic spread of samples within each class, ultimately improving generalization
and robustness in anomaly detection tasks. In Appendix D, we compare WSAD-DT with and without the diversity term,
providing empirical evidence that the inclusion of the diversity term leads to improved anomaly detection.

F. Addtional AUC-PR results
In addition to the AUC-ROC results presented in the main paper, we also report the AUC-PR (Area Under the Precision-
Recall curve) (Davis & Goadrich, 2006) scores for all competing methods. Table 5 summarizes these additional experiments
on the same benchmark datasets described in Section H.

• Consistency with AUC-ROC. As with ROC-AUC, WSAD-DT consistently achieves strong AUC-PR performance
across the majority of datasets. This reaffirms its robustness under heavily imbalanced scenarios, where AUC-PR is
often considered more informative than AUC-ROC.

• Robust Ranking. Based on WSAD-DT’s average rank in AUC-PR, we conclude that it not only effectively separates
anomalies from normal points but also preserves high precision under severe class imbalance, where the prevalence of
anomalies is especially low.

Overall, the AUC-PR results are consistent with the main findings based on AUC-ROC, further reinforcing the effectiveness
of WSAD-DT under weak supervision.

17



Weakly Supervised Anomaly Detection via Dual-Tailed Kernel

Table 5. This table presents the results of all algorithms using the default parameters outlined in the original paper in the metric AUC-PR.
Dataset WSAD-DT DeepSAD DevNet FeaWAD GANAnomaly PreNet ROSAS XGBOD

Optdigits 0.9890 (3) 0.9469 (5) 0.9830 (4) 0.8320 (6) 0.0376 (8) 0.9991 (2) 0.9994 (1) 0.7631 (7)
Lymphography 1.0000 (1) 1.0000 (1) 0.9444 (4) 0.7278 (6) 0.5051 (7) 1.0000 (1) * 0.8528 (5)
Pendigits 0.9915 (2) 0.9265 (6) 0.9313 (5) 0.5205 (7) 0.2064 (8) 0.9454 (3) 0.9946 (1) 0.9392 (4)
Vertebral 0.6342 (1) 0.4025 (4) 0.1538 (7) 0.3150 (6) 0.1136 (8) 0.6242 (2) 0.5161 (3) 0.3958 (5)
Wdbc 1.0000 (1) 0.9722 (3) 1.0000 (1) 0.9500 (4) 0.7641 (8) 0.9306 (6) 0.8718 (7) 0.9444 (5)
Wpbc 0.4495 (2) 0.4121 (3) 0.3424 (5) 0.3296 (6) 0.2606 (7) 0.4858 (1) * 0.3744 (4)
Stamps 0.9254 (1) 0.7155 (4) 0.5349 (6) 0.5357 (5) 0.2316 (8) 0.8084 (2) 0.7703 (3) 0.5232 (7)
Satimage-2 0.9122 (2) 0.8694 (6) 0.8624 (7) 0.8701 (5) 0.3463 (8) 0.8711 (4) 0.9004 (3) 0.9163 (1)
Spambase 0.9283 (2) 0.8650 (5) 0.9005 (3) * 0.4589 (7) 0.8550 (6) 0.9004 (4) 0.9451 (1)
Thyroid 0.8894 (1) 0.7866 (5) 0.7847 (6) 0.6200 (7) 0.2137 (8) 0.8263 (4) 0.8878 (2) 0.8465 (3)
Mnist 0.9040 (2) 0.8078 (5) 0.7978 (6) 0.4794 (7) 0.2665 (8) 0.8492 (4) 0.8849 (3) 0.9114 (1)
Yeast 0.4716 (4) 0.4807 (2) 0.3920 (6) 0.3472 (7) 0.3239 (8) 0.4780 (3) 0.4888 (1) 0.4262 (5)
Cardio 0.9450 (2) 0.9465 (1) 0.8693 (5) 0.5509 (8) 0.5967 (7) 0.8629 (6) 0.8716 (4) 0.9265 (3)
Vowels 0.8127 (3) 0.8205 (1) 0.4429 (6) 0.2680 (7) 0.2448 (8) 0.7695 (5) 0.8090 (4) 0.8154 (2)
Wine 1.000 (1) 1.0000 (1) 0.9639 (5) 0.8905 (6) 0.2366 (7) 1.0000 (1) * 1.0000 (1)
Magic.gamma 0.8767 (2) 0.8449 (4) 0.6975 (6) 0.6480 (7) 0.5577 (8) 0.8083 (5) 0.8718 (3) 0.8854 (1)
Ionosphere 0.9658 (2) 0.9541 (3) 0.5213 (7) 0.4288 (8) 0.6709 (6) 0.7566 (5) 0.7942 (4) 0.9659 (1)
Glass 0.8310 (1) 0.5999 (4) 0.1867 (6) 0.1286 (8) 0.1365 (7) 0.6732 (3) 0.4341 (5) 0.7455 (2)
Breastw 0.9764 (2) 0.9233 (6) 0.9895 (1) * 0.9261 (5) 0.9349 (4) 0.8082 (7) 0.9725 (3)
Yelp 0.3663 (1) 0.2899 (3) 0.1321 (6) 0.0703 (8) 0.0817 (7) 0.2564 (4) 0.3523 (2) 0.1896 (5)
Imdb 0.2335 (1) 0.1602 (2) 0.0752 (6) 0.0645 (7) 0.0499 (8) 0.1434 (4) 0.1541 (3) 0.1203 (5)
MNIST-C-Fog 1.0000 (1) 1.0000 (1) 1.0000 (1) 0.8680 (7) 0.1794 (8) 1.0000 (1) 1.0000 (1) 0.9960 (6)
MNIST-C-canny-Edges 0.9974 (1) 0.9655 (5) 0.9626 (6) 0.6155 (7) 0.0832 (8) 0.9860 (3) 0.9952 (2) 0.9741 (4)
MVTec-AD-Zipper 0.8718 (1) 0.8021 (3) 0.6757 (6) 0.3894 (8) 0.6298 (7) 0.6901 (5) 0.8557 (2) 0.7750 (4)
MNIST-C-Stripe 1.0000 (1) 1.0000 (1) 1.0000 (1) 0.9421 (7) 0.6279 (8) 1.0000 (1) 1.0000 (1) 0.9992 (6)
Skin 0.9990 (1) 0.9972 (3) 0.9446 (5) * 0.2519 (6) † 0.9902 (4) 0.9979 (2)
Fraud 0.7437 (2) 0.7361 (3) 0.4941 (6) 0.2695 (7) 0.6274 (5) † 0.6832 (4) 0.7978 (1)
Http 0.9985 (1) 0.9947 (2) 0.9908 (4) * 0.2886 (6) † 0.9798 (5) 0.9921 (3)
Cover 0.9647 (4) 0.9851 (2) 0.9512 (5) 0.1392 (6) 0.0091 (7) † 0.9861 (1) 0.9810 (3)
Shuttle 0.9901 (2) 0.9865 (3) 0.9680 (5) 0.9546 (6) 0.9359 (7) † 0.9773 (4) 0.9978 (1)
AVGRank 1.70 3.23 4.90 6.77 7.27 4.10 3.60 3.37
p-value N/A 0.00192370 (+) 0.00016651 (+) 0.00000005 (+) 0.00000005 (+) 0.00044749 (+) 0.00262462 (+) 0.04616544 (+)

Values marked with † indicate that no result was available within 12 hours.
Values marked with * indicate that a runtime error occurred during execution.

G. Algorithm details
In Algo. 1 we describe WSAD-DT in detail. The core of WSAD-DT is to leverage both labeled anomalies and unlabeled
data in a weakly supervised setting by training multiple models (an ensemble) and then aggregating their anomaly scores.
First, the unlabeled dataset is split into M disjoint subsets; each subset is augmented with the same small set of labeled
anomalies, ensuring that every model has consistent information about the known anomalies while observing different
portions of unlabeled data. This yields M distinct training sets, each used to train a separate neural network mapping inputs
to a latent representation. Within the latent space, two distinct centers are maintained, one for normal points (c0) and another
for anomalies (c1). A dual-kernel approach drives the representations toward the correct center and away from the incorrect
one. Specifically, a light-tailed kernel is applied to in-class distances, causing normal or anomalous samples to cluster tightly
around their correct center, whereas a heavy-tailed kernel is applied to out-of-class distances, keeping mismatched samples
at a broader margin. This two-part strategy facilitates both tight grouping for in-class points and clear separation between
classes, which a single kernel cannot achieve simultaneously. A crucial challenge is the risk of degenerate solutions where
all points of a given class collapse onto a single coordinate in the latent space. To mitigate this, WSAD-DT introduces a
diversity regularization term that penalizes pairs of points in the same class that are mapped too closely together. This penalty
protects intra-class variability by discouraging trivial collapse onto each center. Finally, once every network in the ensemble
is trained, each model’s anomaly scores for a new sample are combined, by averaging, to yield a final ensemble score. This
last step enhances stability and robustness, especially given the scant availability of labeled anomalies, by capitalizing on
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diverse perspectives of the unlabeled data while retaining consistent guidance from the same known anomalies.

Algorithm 1 WSAD-DT

Require: Labeled anomalies DL = {(xi, 1)}, Unlabeled data DU = {(xj , 0)}, Ensemble size M , mini-batch size b,
max epoch maxEpoch

1: Partition DU into M disjoint subsets {D(m)
U }Mm=1, each combined with DL to form D(m).

2: for m = 1 to M do
3: Initialize network parameters Θm and centers c0, c1.
4: for epoch = 1 to maxEpoch do
5: for each mini-batchW ′ ⊂ D(m) (of size b) do
6: Step 1. Compute embeddings zi = fΘm(xi) for all xi ∈ W ′.
7: Step 2. Compute separation loss (Lseperation):

Lseparation(θ) =
∑

(x,y)∈W′

ℓseparation
(
θ; x, y

)
︸ ︷︷ ︸

sum of single-sample losses

8: Step 3. Subsampling for diversity:
9: LetW ′

0 = {zi | (xi, 0) ∈ W ′} andW ′
1 = {zi | (xi, 1) ∈ W ′}.

10: Uniformly randomly sample bs = ⌊
√
b⌋ points from eachW ′

k, yielding subsets W̃ ′
k ⊆ W ′

k.
11: Step 4. Compute diversity loss (Ldiversity):

Ldiversity(θ) =
∑

k∈{0,1}

1

|W̃ ′
k|2

∑
zi,zj ∈W̃′

k

exp
(
−∥zi−zj∥

σ2

W̃′
k

)
.

12: Step 5. Gradient update:

Θm ← Θm − η · ∇Θm

(
Lseparation(θ) + Ldiversity(θ)

)
.

13: end for
14: end for
15: end for
16: Inference: For each test sample x, each model outputs

ϕm(x) = 1− Kheavy(∥fΘm(x)− c0∥)
Kheavy(∥fΘm

(x)− c0∥) +Kheavy(∥fΘm
(x)− c1∥)

.

17: Aggregate ensemble outputs:

ϕ(x) =
1

M

M∑
m=1

ϕm(x).

Final anomaly scores ϕ(x).

H. Experiment details
Experiment Setup

All experiments were conducted on a workstation equipped with an Intel Core i7-10700K CPU (3.8 GHz) and 32 GB
of RAM. We repeat all experiments on three different splits and report average results. Performance is measured with
AUC-ROC and AUC-PR (Davis & Goadrich, 2006), and significance is determined via a paired Wilcoxon signed-rank test
with Holm-Bonferroni correction (McDonald, 2014). All features are scaled to [0, 1] using MinMaxScaler (Pedregosa et al.,
2011). For stochastic methods, five random seeds {0,1,2,100,1000} are used, and default hyperparameters according to (Xu,
2023).
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Datasets and Splits

We adopt a diverse set of real-world anomaly detection benchmarks from AdBench (Han et al., 2022) (Table 6), each split
70%–30% for training and testing via stratified sampling to preserve anomaly ratios. In line with (Han et al., 2022), only
a small fraction of anomalies in the training split is labeled (weak supervision), specifically labeling either 5 anomalies
or p% of anomalies—whichever is greater—to ensure a minimal but consistent supervisory signal across all experiments.
These labeled anomalies are selected uniformly at random from the available anomalies. This setup reflects real-world
conditions, where annotated anomalies are scarce and often fail to capture the breadth of abnormal behaviors. We further
analyze different fractions of labeled anomalies in Appendix N and contamination in the training data in Appendix M.

Dataset # Instances # Dimensions # Anomalies (%)
Optdigits 5216 64 150(0.0288)

Lymphography 148 18 6(0.0405)
Pendigits 6870 16 156(0.0227)
Vertebral 240 6 30(0.1250)

Wdbc 367 30 10(0.0272)
Cardiotocography 2114 21 466(0.2204)

Wpbc 198 33 47(0.2374)
Stamps 340 9 31(0.0912)

Satimage-2 5803 36 71(0.0122)
Spambase 4207 57 1679(0.3991)
Thyroid 3772 6 93(0.0247)
Mnist 7603 100 700(0.0921)
Yeast 1484 8 507(0.3416)
Cardio 1831 21 176(0.0961)
Vowels 1456 12 50(0.0343)
Wine 129 13 10(0.0775)

Magic.gamma 19020 10 6688(0.3516)
Ionosphere 351 32 126(0.3590)

Glass 214 7 9(0.0421)
Breastw 683 9 239(0.3499)

Yelp 10000 512 500(0.0500)
Imdb 10000 512 500(0.0500)

MNIST-C-Fog 10000 512 500(0.0500)
MNIST-C-canny-Edges 10000 512 500(0.0500)

MVTec-AD-Zipper 10000 512 500(0.0500)
MNIST-C-Striper 10000 512 500(0.0500)

Skin 245057 3 50859(0.2075)
Http 567498 3 2211(0.0039)

Cover 286048 10 2747(0.0096)
Shuttle 49097 9 3511(0.0715)

Table 6. Statistics of the used datasets

Implementation and Code

Our code is implemented in PyTorch and builds on top of the DeepOD and PyOD libraries (Zhao et al., 2019; Xu, 2023).
Our anonymous code repository: Link (Anonymous).

Baselines

We compare our method (WSAD-DT) with state-of-the-art anomaly detection baselines, including DeepSAD, DevNet,
FeaWAD, GANomaly, PReNet, RoSAS, and ensemble-based XGBOD. For each baseline, we used the open-source implemen-
tation from (Xu et al., 2023a; Han et al., 2022); further details can be found in Appendix I. By default, XGBOD employs
multiple unsupervised detectors (including KNN (Ramaswamy et al., 2000) and LOF (Breunig et al., 2000)). However,

20

https://anonymous.4open.science/r/weakly_anomaly_detection


Weakly Supervised Anomaly Detection via Dual-Tailed Kernel

on datasets exceeding 100000 samples, these two detectors took over 12 hours to complete. We therefore omit KNN and
LOF in such large-scale cases to keep XGBOD’s runtime feasible, while still leveraging the remaining detectors for reliable
anomaly scores.

Kernel Choices & Hyperparameters

One key novelty in WSAD-DT is the dual-kernel design: a light-tailed kernel for in-class similarity and a heavy-tailed
kernel for out-of-class separation. Below, we outline each kernel and its bandwidth parameters (σ, ν).

H.1. Light-Tailed Kernel (Gaussian)

Klight

(
di,k

)
= exp

(
− di,k

2σ2
k

)
,

• σU = 0.5 for the normal center, ensuring a tighter cluster for normal data.

• σA = 1.0 for the anomaly center, allowing a slightly looser cluster for more diverse anomalies.

H.2. Heavy-Tailed Kernel (Student-t)

Kheavy

(
di,k

)
=

(
1 +

di,k

ν

)− ν+1
2 .

• Default ν = 0.2. A smaller ν corresponds to a heavier tail, which helps separate out-of-class points more aggressively.

Diversity Term

A key risk of minimizing only the separation loss is collapse, where all points in a class map to the same latent coordinate.
To counteract this, we introduce a class-specific exponential diversity penalty. For each class C ∈ {A,U}, we first measure
the average pairwise similarity:

k(C; θ) =
1

|C|2
∑
i,j∈C

exp
(
−∥fθ(xi)−fθ(xj)∥

σ2
C

)
,

where σC > 0 is a fixed bandwidth parameter for class C. The overall diversity loss is then defined as

Ldiversity(θ) = k(A; θ) + k(U ; θ).

Role of σC . In practice, the parameter σC controls how strongly the method penalizes points that are closely mapped in
latent space:

• Small σC (e.g., σdiversity,U = 0.1 for normal data) leads to a weaker penalty for moderate distances, so partial
clustering incurs but still effectively prevents any accidental clustering into a single point.

• Larger σC (e.g., σdiversity,A = 1.0 for anomalies) allows more dispersion among inherently diverse anomalies, since
moderate pairwise distances will incur a sufficient penalty.

A high value of k(C; θ) indicates that points in class C are excessively close in the latent space, triggering a larger penalty
and thus discouraging trivial collapse. By adjusting σC appropriately for each class, one can balance intra-class variability
against the risk of collapse. In practice, these parameters may be selected via cross-validation or a small parameter search,
depending on dataset size and diversity.

A detailed ablation study on hyperparameter selection is provided in Appendix O, offering comprehensive insights into the
impact of each parameter on model performance.

Ensemble Setup (M splits)

By default, WSAD-DT uses M = 5 ensemble splits (unless otherwise noted). An ablation over M ∈ {1, 3, 5} is reported
in the Appendix L, showing that M = 5 typically yields the best or near-best performance.
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Evaluation Metrics & Statistical Significance

Metrics

We use two widely adopted metrics to evaluate anomaly detection models:

1. ROC-AUC (Receiver Operating Characteristic—Area Under the Curve) (Davis & Goadrich, 2006): This measures
the trade-off between the True Positive Rate (TPR) and the False Positive Rate (FPR) over different decision thresholds.
A higher ROC-AUC indicates stronger discriminative power in distinguishing anomalies from normal points.

2. PR-AUC (Precision–Recall—Area Under the Curve) (Davis & Goadrich, 2006): Unlike ROC-AUC, PR-AUC
focuses on Precision (the fraction of detected anomalies that are actually anomalous) and Recall (the fraction of
anomalies correctly identified).

By reporting both metrics, we gain a more comprehensive view of each method’s effectiveness in detecting anomalies across
varying degrees of class imbalance.

Statistical Testing

We adopt the paired Wilcoxon signed-rank test with Holm–Bonferroni correction to compare WSAD-DT against each
baseline at α = 0.05. We highlight “+” if WSAD-DT is significantly superior, “−” if worse, and “≈” otherwise. In the
reporting tables, we list the adjusted p-values with Holm–Bonferroni correction.

Ranking

All tables include an “average rank” across all datasets; a smaller rank value indicates better overall performance.

I. Implementation Details
All algorithms are implemented as described in their respective original papers and integrated into the publicly available
DeepOD library (Xu, 2023), following a uniform training protocol to ensure fair comparisons across methods. Each
experiment is conducted on the same data splits, using consistent data loading and preprocessing procedures.

Network Architecture. We employ a three-layer feed-forward encoder with hidden sizes of 100 and 50, followed by a
projection into a final embedding dimension of 128, aligning with configurations used in approaches such as DeepSAD.
Formally, the neural network has the layers:

input dimension → 100 → 50 → 128.

Activation Functions. In our proposed method WSAD-DT, we utilize the Scaled Exponential Linear Unit (SELU) activation
function at each layer, which we found to stabilize training and often accelerate convergence. For other baselines, we adhere
to the recommended activation functions specified in their original publications, such as ReLU or LeakyReLU. SELU
activation function is defined as:

SELU(x) =

{
λx if x > 0,

λα(ex − 1) if x ≤ 0,

where:

• λ ≈ 1.0507 is the scaling parameter,

• α ≈ 1.67326 is the parameter that controls the slope for negative inputs.

Optimization. All models are trained for 100 epochs using the Adam optimizer with a learning rate of 1 × 10−3 and a
weight decay of 1× 10−5. We use the standard Adam hyperparameters (β1 = 0.9, β2 = 0.999). Batches of size 64 are
used for each training step (Table 7).

Remark: Importantly, apart from using the SELU activation function, we did not implement any other modifications. To
ensure the comparison is as fair as possible to the comparison method, our method and the underlying network architecture,
along with the corresponding hyperparameters, remain the same as recommended by (Xu, 2023).
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Parameter Value

GENERAL TRAINING
Batch size 64
Learning rate 1e–3
Epochs 100

ARCHITECTURE
Feed Forward InputDim-100-50-embedding-dim
Embedding size 128
Activation function SELU

OPTIMIZER
Optimizer Adam
Momentum β1 0.9
Momentum β2 0.999
Weight decay 1e–5

Table 7. Neuralnetwork and training setting of WSAD-DT

J. Scalability Test

(a) varying the number of data points (b) Legend

Figure 2. Analyzing the runtime performance for WSAD-DT and the competitors.

To assess the scalability of our proposed method (WSAD-DT), we measure its runtime performance on an increasing number
of data points and compare it against several baselines. Figure 2 illustrates the average wall-clock time (in seconds) as a
function of dataset size for WSAD-DT and other competing methods.

Experimental Setup. We simulate large-scale synthetic datasets by primarily drawing normal samples from a 16-
dimensional Gaussian and injecting a small fraction (5%-10%) of anomalies sampled from a distinct distribution. We label
these injected points as anomalies and combine them with the normal samples. This yields a controlled dataset where the
fraction of anomalies remains fixed while we grow the overall dataset size from 4,000 samples up to 512,000 samples. Each
size is run three times with different random seeds, and we report the average wall-clock time for each approach. For this
experiment, we used the default setup described in Appendix I, with the exception that we fixed the number of epochs to 10
for all algorithms in this experiment.

• Asymptotic Behavior. As illustrated in Figure 2(a), WSAD-DT exhibits runtime scaling similar to DeepSAD and
other deep anomaly detection approaches as the number of samples increases. This behavior is expected in standard
mini-batch-based deep learning pipelines. Although WSAD-DT includes a diversity penalty term, its computational
overhead remains modest. Specifically, the diversity penalty is evaluated only on each mini-batch and further reduced
by subsampling pairs of points, making its contribution to overall runtime negligible in practice. In contrast, the
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ensemble method XGBOD (which uses KNN (Ramaswamy et al., 2000) and LOF (Breunig et al., 2000) as base
estimators) experiences higher computational overhead on large datasets, consistent with our observations. Meanwhile,
WSAD-DT maintains a relatively consistent runtime profile, particularly with mini-batch optimization.

• Impact of Ensemble Size. In Fig. 2(b), WSAD-DT-1 refers to WSAD-DT with a single ensemble, whereas WSAD-DT
represents the default setting with five ensembles. The runtime does increase proportionally with the number of
ensemble splits in WSAD-DT since each component model is trained on a distinct partition of unlabeled data. However,
we set the default number of ensembles to a moderate value (e.g., M = 5), striking a practical balance between
computational overhead and performance gains.

Overall, WSAD-DT demonstrates competitive runtime scalability, making it well-suited for large-scale anomaly detection
tasks where both robust performance and manageable computational cost are required.

K. Ablation study of light-tailed, heavy-tailed, and dual-tailed kernel
We conducted an ablation study by separately evaluating the light-tailed kernel, the heavy-tailed kernel, and their combination
(dual-tailed kernel). We set the number of ensembles to 1 for all different configurations (light-tailed kernel, heavy-tailed
kernel, dual-tailed kernel). Our findings (Table 8) reveal that while each kernel on its own provides a decent level of
performance, combining both kernels clearly improves the model’s ability to distinguish anomalies from normal points.
Specifically, the dual-tailed kernel configuration yields higher AUC-ROC scores compared to either kernel used in isolation.
This result underscores the complementary benefits of the two kernels, with the light-tailed kernel component enforcing
tight clustering for in-class points and the heavy-tailed component preserving greater separation for out-of-class samples.
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Table 8. We present the AUC-ROC values for various configurations in WSAD-DT. Specifically, we compare the AUC-ROC performance
across three settings: single kernels (light-tailed kernel and heavy-tailed kernel) and dual-tailed kernel.

Dataset WSAD-DT Light-tailed kernel Heavy-tailed kernel

Optdigits 0.9984 (1) 0.8875 (3) 0.9845 (2)
Lymphography 0.9961 (1) 0.9787 (2) 0.9593 (3)
Pendigits 0.9997 (1) 0.9477 (3) 0.9991 (2)
Vertebral 0.8827 (1) 0.8354 (2) 0.7778 (3)
Wdbc 1.0000 (1) 0.9979 (3) 0.9995 (2)
Cardiotocography 0.9347 (1) 0.8899 (2) 0.8894 (3)
Wpbc 0.6801 (1) 0.6724 (2) 0.5807 (3)
Stamps 0.9841 (1) 0.8769 (3) 0.9456 (2)
Satimage-2 0.9954 (1) 0.9811 (3) 0.9941 (2)
Spambase 0.9317 (1) 0.8842 (3) 0.9202 (2)
Thyroid 0.9911 (1) 0.9667 (3) 0.9889 (2)
Mnist 0.9820 (1) 0.8293 (3) 0.9696 (2)
Yeast 0.6566 (1) 0.6409 (2) 0.5854 (3)
Cardio 0.9908 (1) 0.9505 (3) 0.9741 (2)
Vowels 0.9824 (1) 0.8737 (3) 0.9629 (2)
Wine 1.0000 (1) 0.9923 (2) 0.9769 (3)
Magic.gamma 0.8974 (1) 0.8375 (3) 0.8649 (2)
Ionosphere 0.9836 (1) 0.9510 (3) 0.9651 (2)
Glass 0.9794 (2) 0.9543 (3) 0.9964 (1)
Breastw 0.9828 (2) 0.9658 (3) 0.9844 (1)
Yelp 0.7811 (1) 0.7355 (2) 0.7189 (3)
Imdb 0.6882 (1) 0.6074 (3) 0.6228 (2)
MNIST-C-Fog 1.0000 (1) 1.0000 (1) 0.9998 (3)
MNIST-C-Canny-Edges 0.9999 (1) 0.9846 (3) 0.9989 (2)
MVTec-AD-Zipper 0.9280 (1) 0.8468 (3) 0.9140 (2)
MNIST-C-Stripe 1.0000 (1) 1.0000 (1) 1.0000 (1)
Skin 0.9998 (1) 0.9991 (2) 0.9987 (3)
Fraud 0.9485 (1) 0.9346 (3) 0.9416 (2)
Http 1.0000 (1) 1.0000 (1) 1.0000 (1)
Cover 0.9995 (1) 0.9896 (3) 0.9973 (2)
Shuttle 0.9935 (2) 0.9862 (3) 0.9961 (1)
AvgRank 1.10 2.55 2.13
p-values NA 0.00001200 (+) 0.00015176 (+)
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L. Ablation study on the effect of different numbers of ensembles
Below, we present an ablation study evaluating the effect of varying the number of ensemble models (#ensembles) in
WSAD-DT from 1 to 3 to 5. Table 9 reports AUC-ROC scores for a selection of benchmark datasets. A single model (#1)
already achieves strong results, yet using #3 ensembles yields a clear boost on most datasets. Increasing the ensemble size
to #5 generally delivers the highest overall performance.

Key Observations

1. #1 vs. #3: Introducing ensembles (i.e., going from 1 to 3) consistently improves robustness. The models benefit from
diverse views of the unlabeled data, while all leveraging the same limited set of labeled anomalies.

2. #3 vs. #5: Although gains can be smaller after #3, using #5 often still improves AUC-ROC, suggesting further
diversity helps in certain datasets with complex structures or highly imbalanced anomalies.

3. Computational Cost vs. Accuracy: While larger ensembles typically perform better, they also introduce additional
training overhead. In practice, #3 or #5 often provide a good balance between computational cost and accuracy.

Overall, the results confirm that using an ensemble of models, each trained on a distinct partition of the unlabeled data while
sharing the same few labeled anomalies, significantly enhances performance. In practice, #5 ensembles are often a good
default, balancing the improved robustness from ensemble diversity against the computational cost.
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Table 9. This table presents the AUC-ROC results of WSAD-DT under different number of ensembles (M ).

Dataset #5-Spilt #1-Spilt #3–Spilt

Optdigits 0.9996 (1) 0.9984 (3) 0.9995 (2)
Lymphography 1.0000 (1) 0.9961 (3) 1.0000 (1)
Pendigits 0.9998 (1) 0.9997 (2) 0.9997 (2)
Vertebral 0.9051 (1) 0.8827 (3) 0.8939 (2)
Wdbc 1.0000 (1) 1.0000 (1) 0.9990 (3)
Wpbc 0.6915 (2) 0.6801 (3) 0.6918 (1)
Stamps 0.9902 (1) 0.9841 (3) 0.9883 (2)
Satimage-2 0.9973 (1) 0.9954 (3) 0.9962 (2)
Spambase 0.9499 (1) 0.9317 (3) 0.9454 (2)
Thyroid 0.9960 (1) 0.9911 (3) 0.9951 (2)
Mnist 0.9883 (1) 0.9820 (3) 0.9867 (2)
Yeast 0.6545 (2) 0.6566 (1) 0.6512 (3)
Cardio 0.9908 (2) 0.9908 (2) 0.9919 (1)
Vowels 0.9736 (3) 0.9824 (1) 0.9778 (2)
Wine 1.0000 (1) 1.0000 (1) 1.0000 (1)
Magic.gamma 0.9166 (1) 0.8974 (3) 0.9150 (2)
Ionosphere 0.9779 (3) 0.9836 (1) 0.9792 (2)
Glass 0.9830 (1) 0.9794 (2) 0.9794 (2)
Breastw 0.9894 (1) 0.9828 (3) 0.9883 (2)
Yelp 0.8311 (1) 0.7811 (3) 0.8008 (2)
Imdb 0.7623 (1) 0.6882 (3) 0.7379 (2)
MNIST-C-Fog 1.0000 (1) 1.0000 (1) 1.0000 (1)
MNIST-C-canny-Edges 0.9999 (1) 0.9999 (1) 0.9999 (1)
MVTec-AD-Zipper 0.9307 (2) 0.9280 (3) 0.9354 (1)
MNIST-C-Stripe 1.0000 (1) 1.0000 (1) 1.0000 (1)
Skin 0.9998 (1) 0.9998 (1) 0.9998 (1)
Fraud 0.9574 (1) 0.9485 (3) 0.9556 (2)
Http 1.0000 (1) 1.0000 (1) 1.0000 (1)
Cover 0.9996 (2) 0.9995 (3) 0.9997 (1)
Shuttle 0.9956 (1) 0.9935 (2) 0.9934 (3)
AVGRank 1.30 2.20 1.73
p-value NA 0.00645607 (+) 0.00947055 (+)

M. Analyzing the performance under contamination in the training data
In real-world scenarios, a portion of the unlabeled dataset may itself be contaminated with anomalies, making the weakly
supervised setting even more challenging.

Contamination Procedure. We begin by using only 5% of the total anomalies for weakly supervised training, chosen
uniformly at random, leaving the remaining anomalies “unused.” We then define a contamination fraction p% (relative
to these unused anomalies) to artificially degrade the unlabeled set. Specifically, we inject p% of the leftover anomalies
into the unlabeled pool, mislabeled as normal points. At the same time, we select the same number of normal points from
the unlabeled set and mislabeled them as anomalies. This symmetrical label swap increases both label noise and anomaly
contamination in the unlabeled data, enabling a systematic evaluation of WSAD-DT under two configurations: WSAD-DT
(ensemble size of 5) and WSAD-DT-1 (ensemble size of 1) across various levels of mislabeling and adversarial injection
(see Fig. 3i). Using this setup, we run multiple experiments with p% ranging from 1% (small contamination) to 100%
(maximum contamination). Figure 3 shows the AUC-ROC curves of WSAD-DT and several reference methods over eight
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representative datasets as contamination increases. Across all levels of contamination, WSAD-DT (blue curve) demonstrates
consistently higher or comparable AUC-ROC values compared to other approaches. WSAD-DT-1 with a single ensemble
also consistently achieves higher or comparable AUC-ROC values than other approaches, underscoring the advantages of
the dual-tailed kernel and kernel-based regularization. Notably, its performance degrades more gracefully than baselines
when the contamination rate exceeds 10%. These findings underline two key advantages of WSAD-DT:

1. Robustness to Noisy Unlabeled Data. By maintaining dual-tailed separation, WSAD-DT can still isolate anomalies
even when contamination is present in the data.

2. Effective Use of Sparse Labels. Sharing a small number of labeled anomalies across ensemble splits remains
advantageous. Even at higher contamination levels, each component of the ensemble learns to down-weight suspicious
unlabeled instances using the limited—but high-value—labeled examples.

Overall, WSAD-DT’s resilience to contamination makes it well-suited for practical applications where unlabeled data may
not be entirely clean, reinforcing the benefits of a dual-tailed kernel formulation and ensemble-based training under weak
supervision.

(a) Vowels (b) Glass (c) Lymphography

(d) Thyroid (e) Satimage (f) Wine

(g) Stamps (h) WDBC (i) Legend

Figure 3. Analyzing the performance under contamination in the training data.
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N. Ablation study for different numbers of labeled anomalies
Below, we examine how varying the fraction of labeled anomalies in the training set impacts performance under weak
supervision. While our main experiments generally use 5% labeled anomalies, real-world anomaly detection tasks may have
even fewer labeled anomalies, or—though still “weakly” supervised—potentially a higher fraction of anomaly labels.

N.1. Experimental Setup

We select multiple benchmark datasets from our main evaluation and train WSAD-DT using three different proportions of
labeled anomalies in the training data: 1%, 5%, and 10%. All other settings (network architecture, batch size, mini-batch
sampling, etc.) remain identical to the primary experiments in Section H. Specifically,

• 1% labeled anomalies: Extremely limited supervision, approaching the scarcity seen in purely unsupervised settings.

• 5% labeled anomalies: Our default setting is a moderately weakly supervised scenario.

• 10% labeled anomalies: We have more labeled anomalies, but still lack enough fully supervised data to provide better
coverage of anomaly types.

We compare WSAD-DT’s performance to other state-of-the-art methods (DeepSAD, DevNet, etc.) under these varying
amounts of labeled anomalies.

N.2. Results and Observations

Tables 10 and 11 show the AUC-ROC results for two representative levels: 1% and 10% labeled anomalies. (Our main paper
reports the case of 5%.)

Key Observations:

• Sensitivity to Labeled Fraction. As expected, all methods tend to improve with more labeled anomalies, but WSAD-
DT consistently outperforms or matches the best baseline at each fraction. Even at 1% labeled anomalies, it achieves
top performance on a majority of datasets.

• Strong Gains from Limited Labels. Moving from 1% to 10% labeled anomalies often yield a large jump for
WSAD-DT. This suggests that even a modest increase in anomaly labels can substantially reduce false positives and
sharpen the separation boundary, especially given the two-center and the dual-tailed kernel approach.

Conclusion. WSAD-DT exhibits robust performance across a broad range of labeled anomaly percentages. While having
more labeled anomalies generally leads to more accurate and stable decision boundaries, our method consistently maintains
a strong lead (or near-lead) even when extremely few (1%) labeled anomalies are available. This resiliency underscores the
effectiveness of the dual-kernel framework and ensemble strategy in leveraging limited supervision for improved anomaly
detection.
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Table 10. This table presents the results of all algorithms using the default parameters outlined in the original paper and 1% of labeled
anomalies.

Dataset WSAD-DT DeepSAD DevNet FeaWAD GANAnomaly PreNet ROSAS XGBOD

Optdigits 0.9996 (3) 0.9773 (7) 0.9959 (4) 0.9839 (5) 0.6041 (8) 1.0000 (1) 1.0000 (1) 0.9817 (6)
Lymphography 1.0000 (1) 1.0000 (1) 0.9961 (4) 0.9787 (6) 0.8953 (7) 1.0000 (1) * 0.9903 (5)
Pendigits 0.9998 (1) 0.9768 (5) 0.9682 (6) 0.7798 (8) 0.8361 (7) 0.9832 (4) 0.9997 (2) 0.9981 (3)
Vertebral 0.9051 (1) 0.7810 (5) 0.4974 (7) 0.6399 (6) 0.3618 (8) 0.9036 (2) 0.8377 (3) 0.8125 (4)
Wdbc 1.0000 (1) 0.9990 (3) 1.0000 (1) 0.9979 (4) 0.9830 (8) 0.9969 (6) 0.9933 (7) 0.9979 (4)
Wpbc 0.6915 (1) 0.6144 (4) 0.6403 (3) 0.5619 (6) 0.4635 (7) 0.6649 (2) * 0.6135 (5)
Stamps 0.9902 (1) 0.9492 (4) 0.8909 (6) 0.8664 (7) 0.7529 (8) 0.9697 (2) 0.9544 (3) 0.9011 (5)
Satimage-2 0.9973 (1) 0.9715 (5) 0.9562 (6) 0.9753 (4) 0.9783 (3) 0.9243 (8) 0.9526 (7) 0.9866 (2)
Spambase 0.8900 (3) 0.7591 (5) 0.9214 (2) * 0.6103 (7) 0.7334 (6) 0.7933 (4) 0.9263 (1)
Thyroid 0.9960 (2) 0.9782 (4) 0.9667 (5) 0.8525 (7) 0.7795 (8) 0.9420 (6) 0.9961 (1) 0.9795 (3)
Mnist 0.9767 (1) 0.8268 (5) 0.7492 (7) 0.6498 (8) 0.8281 (4) 0.7907 (6) 0.8725 (3) 0.9759 (2)
Yeast 0.6024 (3) 0.5351 (7) 0.6081 (2) 0.6268 (1) 0.4884 (8) 0.5453 (6) 0.5678 (5) 0.5797 (4)
Cardio 0.9916 (1) 0.9796 (3) 0.9686 (4) 0.8559 (8) 0.9095 (6) 0.9052 (7) 0.9672 (5) 0.9837 (2)
Vowels 0.9736 (1) 0.9712 (2) 0.8839 (6) 0.7696 (8) 0.8231 (7) 0.9300 (5) 0.9653 (3) 0.9516 (4)
Wine 1.0000 (1) 1.0000 (1) 0.9954 (5) 0.9491 (6) 0.6836 (7) 1.0000 (1) * 1.0000 (1)
Magic.gamma 0.8853 (2) 0.8056 (5) 0.8304 (4) 0.7818 (6) 0.6784 (8) 0.7257 (7) 0.8504 (3) 0.8930 (1)
Ionosphere 0.9779 (1) 0.9704 (3) 0.5232 (7) 0.4238 (8) 0.6880 (6) 0.7116 (5) 0.7656 (4) 0.9746 (2)
Glass 0.9830 (1) 0.9355 (3) 0.8199 (6) 0.6891 (8) 0.7106 (7) 0.8934 (5) 0.8952 (4) 0.9606 (2)
Breastw 0.9875 (2) 0.9398 (5) 0.9947 (1) * 0.9555 (4) 0.8872 (6) 0.7631 (7) 0.9859 (3)
Yelp 0.7283 (3) 0.7310 (2) 0.5676 (6) 0.5491 (7) 0.6691 (5) 0.4998 (8) 0.7440 (1) 0.6888 (4)
Imdb 0.6809 (2) 0.5555 (6) 0.5502 (7) 0.5693 (5) 0.5042 (8) 0.5880 (4) 0.6810 (1) 0.6399 (3)
MNIST-C-Fog 1.0000 (1) 0.9901 (6) 0.9999 (4) 0.9327 (7) 0.8011 (8) 1.0000 (1) 1.0000 (1) 0.9968 (5)
MNIST-C-canny-Edges 0.9977 (2) 0.9578 (6) 0.9649 (5) 0.7623 (7) 0.6864 (8) 0.9667 (4) 0.9986 (1) 0.9846 (3)
MVTec-AD-Zipper 0.9307 (1) 0.8626 (3) 0.7728 (6) 0.5132 (8) 0.7402 (7) 0.7815 (5) 0.8993 (2) 0.8455 (4)
MNIST-C-Stripe 1.0000 (1) 1.0000 (1) 1.0000 (1) 0.9159 (8) 0.9743 (7) 1.0000 (1) 1.0000 (1) 0.9998 (6)
Http 1.0000 (1) 1.0000 (1) 0.9981 (4) * 0.5595 (6) † 0.9980 (5) 0.9997 (3)
Skin 0.9998 (1) 0.9995 (2) 0.9957 (5) * 0.4688 (6) † 0.9993 (3) 0.9990 (4)
Fraud 0.9526 (1) 0.9228 (5) 0.9136 (6) 0.7745 (7) 0.9281 (4) † 0.9478 (2) 0.9451 (3)
Cover 0.9994 (1) 0.9930 (5) 0.9963 (3) 0.9102 (6) 0.5970 (7) † 0.9992 (2) 0.9935 (4)
Shuttle 0.9952 (1) 0.9866 (3) 0.9789 (5) 0.9383 (6) 0.9068 (7) † 0.9855 (4) 0.9922 (2)
AVGRank 1.43 3.90 4.60 6.57 6.70 4.90 3.63 3.33
p-value NA 0.00029508 (+) 0.00146843 (+) 0.00000048 (+) 0.00000005 (+) 0.00021790 (+) 0.00146843 (+) 0.00146843 (+)

Values marked with † indicate that no result was available within 12 hours.
Values marked with * indicate that a runtime error occurred during execution.
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Table 11. This table presents the results of all algorithms using the default parameters outlined in the original paper and 10% of labeled
anomalies.

Dataset WSAD-DT DeepSAD DevNet FeaWAD GANAnomaly PreNet ROSAS XGBOOST

Optdigits 0.9999 (3) 0.9948 (6) 0.9997 (4) 0.9983 (5) 0.6044 (8) 1.0000 (1) 1.0000 (1) 0.9931 (7)
Lymphography 1.0000 (1) 1.0000 (1) 0.9961 (4) 0.9787 (6) 0.8953 (7) 1.0000 (1) * 0.9903 (5)
Pendigits 0.9998 (1) 0.9931 (4) 0.9889 (5) 0.9841 (6) 0.8323 (8) 0.9800 (7) 0.9993 (2) 0.9971 (3)
Vertebral 0.9051 (1) 0.7810 (5) 0.4974 (7) 0.6399 (6) 0.3618 (8) 0.9036 (2) 0.8377 (3) 0.8125 (4)
Wdbc 1.0000 (1) 0.9990 (3) 1.0000 (1) 0.9979 (4) 0.9830 (8) 0.9969 (6) 0.9933 (7) 0.9979 (4)
Wpbc 0.6915 (1) 0.6144 (4) 0.6403 (3) 0.5619 (6) 0.4635 (7) 0.6649 (2) * 0.6135 (5)
Stamps 0.9902 (1) 0.9492 (4) 0.8909 (6) 0.8664 (7) 0.7529 (8) 0.9697 (2) 0.9544 (3) 0.9011 (5)
Satimage-2 0.9973 (1) 0.9715 (5) 0.9562 (6) 0.9753 (4) 0.9783 (3) 0.9243 (8) 0.9526 (7) 0.9866 (2)
Spambase 0.9615 (2) 0.9073 (5) 0.9310 (4) * 0.6103 (7) 0.8781 (6) 0.9412 (3) 0.9686 (1)
Thyroid 0.9957 (2) 0.9705 (5) 0.9753 (4) 0.9449 (6) 0.7761 (8) 0.9407 (7) 0.9966 (1) 0.9843 (3)
Mnist 0.9921 (1) 0.9511 (4) 0.9425 (5) 0.8121 (8) 0.8284 (7) 0.9368 (6) 0.9703 (3) 0.9914 (2)
Yeast 0.6819 (1) 0.6673 (2) 0.5805 (6) 0.5260 (7) 0.4885 (8) 0.6633 (3) 0.6593 (4) 0.6471 (5)
Cardio 0.9945 (2) 0.9869 (3) 0.9830 (4) 0.7676 (8) 0.9088 (7) 0.9428 (6) 0.9743 (5) 0.9967 (1)
Vowels 0.9736 (1) 0.9712 (2) 0.8839 (6) 0.7696 (8) 0.8231 (7) 0.9300 (5) 0.9653 (3) 0.9516 (4)
Wine 1.0000 (1) 1.0000 (1) 0.9954 (5) 0.9491 (6) 0.6836 (7) 1.0000 (1) * 1.0000 (1)
Magic.gamma 0.9187 (2) 0.8919 (4) 0.8323 (6) 0.7932 (7) 0.6680 (8) 0.8594 (5) 0.9141 (3) 0.9203 (1)
Ionosphere 0.9769 (1) 0.9693 (2) 0.3976 (8) 0.6145 (7) 0.6887 (6) 0.8720 (4) 0.8587 (5) 0.9605 (3)
Glass 0.9830 (1) 0.9355 (3) 0.8199 (6) 0.6891 (8) 0.7106 (7) 0.8934 (5) 0.8952 (4) 0.9606 (2)
Breastw 0.9876 (3) 0.9670 (4) 0.9943 (1) * 0.9549 (5) 0.9388 (6) 0.8695 (7) 0.9925 (2)
Yelp 0.8671 (1) 0.7777 (3) 0.7061 (4) 0.5846 (8) 0.6691 (6) 0.6491 (7) 0.6888 (5) 0.8351 (2)
Imdb 0.8140 (2) 0.8094 (3) 0.6801 (5) 0.5792 (7) 0.5021 (8) 0.6128 (6) 0.8230 (1) 0.7616 (4)
MNIST-C-Fog 1.0000 (1) 1.0000 (1) 1.0000 (1) 0.6645 (8) 0.8040 (7) 1.0000 (1) 1.0000 (1) 1.0000 (1)
MNIST-C-canny-Edges 0.9999 (1) 0.9946 (6) 0.9980 (5) 0.7528 (7) 0.6962 (8) 0.9995 (3) 0.9998 (2) 0.9988 (4)
MVTec-AD-Zipper 0.9278 (1) 0.8923 (4) 0.7327 (6) 0.5681 (8) 0.7385 (5) 0.7313 (7) 0.8945 (3) 0.8964 (2)
MNIST-C-Stripe 1.0000 (1) 1.0000 (1) 1.0000 (1) 0.8470 (8) 0.9738 (7) 1.0000 (1) 1.0000 (1) 1.0000 (1)
Http 1.0000 (1) 1.0000 (1) 0.9984 (4) * 0.5482 (6) † 0.9980 (5) 0.9992 (3)
Cover 0.9997 (2) 0.9976 (4) 0.9990 (3) * 0.4632 (6) † 0.9998 (1) 0.9968 (5)
Skin 0.9998 (1) 0.9995 (3) 0.9949 (5) * 0.5026 (6) † 0.9993 (4) 0.9996 (2)
Fraud 0.9566 (3) 0.9337 (5) 0.9342 (4) 0.8545 (7) 0.9181 (6) † 0.9641 (2) 0.9680 (1)
Shuttle 0.9949 (3) 0.9956 (2) 0.9779 (5) 0.9044 (7) 0.9714 (6) † 0.9849 (4) 0.9995 (1)
AVGRank 1.47 3.33 4.47 6.87 6.83 4.83 3.80 2.87
p-value NA 0.00031712 (+) 0.00028952 (+) 0.00000005 (+) 0.00000005 (+) 0.00020799 (+) 0.00175194 (+) 0.02846843 (+)

Values marked with † indicate that no result was available within 12 hours.
Values marked with * indicate that a runtime error occurred during execution.

O. Parameter Sensitivity
In WSAD-DT, each of the two class centers (normal and anomalous) is associated with a light-tailed kernel that enforces
tighter clustering around that center. We allow each center’s light-tailed kernel to have its own bandwidth parameter, enabling
the normal and anomalous clusters to have different degrees of “compactness.” Both centers have the same parameter ν
for the single heavy-tailed kernel to model out-of-class similarity, ensuring a broader margin is maintained for any point
that does not align with its assigned center. Similarly, for the diversity term (which penalizes excessive clustering), we use
class-specific bandwidth parameters that can adjust how strongly intra-class distances are regulated. We conduct a detailed
ablation to analyze the effect of varying these parameters, showing that while the method is robust across a reasonable range
of values, fine-tuning can further improve performance in different data regimes.

Experimental Setup.

• Normal Kernel Bandwidth: We vary the bandwidth σU of the light-tailed kernel (assigned to the normal center)
within {0.1, 0.25, 0.5, 0.75}.

• Anomaly Kernel Bandwidth: We similarly vary σA, the bandwidth of the anomalous center’s light-tailed kernel,
within {0.25, 0.5, 0.75, 1.0}.
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• Heavy-Tailed Kernel (Tail Parameter ν): We adjust the degrees-of-freedom parameter ν of the heavy-tailed kernel
over {0.2, 0.5, 0.75, 1.0}.

• Diversity Bandwidth: Finally, we vary the bandwidth (σdiv,U , σdiv,A) used in the exponential term of the diversity
loss in {0.1, 0.5, 1.0, 2.0}.

All other hyperparameters (e.g., network architecture, batch size, and ensemble splits) are kept at their default settings.

Results and Analysis. Figure 4 illustrates the impact of changing each parameter on AUC-ROC for five example datasets.
We highlight several observations:

• Light-tailed kernels (Normal vs. Anomaly Center). Although performance does change with different bandwidth
values, the method remains generally robust for σ ∈ [0.2, 1.0]. For normal data a smaller σ often yields higher
accuracy by enforcing a tighter, more coherent cluster; however, using a larger σ can make the model overly permissive
and degrade performance. By contrast, for anomalous data, a relatively larger σ tends to improve performance by
accommodating the greater heterogeneity of anomalies, whereas a too-small σ risks overly constraining the anomalous
region and thus degrading results.

• Heavy-Tailed Kernel (Tail Parameter ν). We find that values of ν around 0.2–1.0 often offer strong performance,
preserving sufficient separation for out-of-class points.

• Diversity Term (σdiversity). For most datasets, σdiversity ∈ [0.5, 1.0] provides a balanced penalty that prevents collapse
while still allowing appropriate clustering within each class. Extremely small values (e.g., 0.1) risk over-penalizing
points that are naturally close, while very large values reduce the diversity penalty, making the model more susceptible
to trivial collapse in extreme cases.

Practical Recommendations. Overall, WSAD-DT is not highly sensitive to modest changes in these parameters; even
when they are set sub-optimally, the method continues to outperform or stay on par with strong baselines. We recommend
the following default ranges, based on empirical results:

• σU , σA ≈ 0.5 and 1.0.

• ν (heavy-tailed) in the range {0.2, 1.0}.

• σdiversity,U ≈ 0.5 and σdiversity,A ≈ 1.0.

In practice, a quick grid or random search within these ranges often suffices to achieve robust performance without extensive
tuning.
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(a) σdiversity,U (b) σdiversity,A (c) σU

(d) σA (e) ν (f) Legend

Figure 4. Analyzing the performance of WSAD-DT under different hyperparameters.

P. Ablation study kernel regularization
As established in Appendix D, relying solely on the separation loss can lead to degeneracies where samples of each class
collapse to a single latent point. To mitigate this, WSAD-DT includes a kernel-based regularization term—the diversity
loss—which penalizes over-concentration and thus preserves intra-class variability. In this ablation study, we assess how
omitting this diversity term affects performance.

Experimental Setup. We compare WSAD-DT with and without the diversity term, keeping all other hyperparameters
unchanged. For both settings, we set the ensemble size of WSAD-DT to 1. Specifically, No Regularization removes the
exponential pairwise penalty exp

(
−∥fθ(xi) − fθ(xj)∥2/σ2

)
from the total loss. We evaluate both variants on multiple

real-world datasets under the same weakly supervised setting described in Section H

Results. Table 12 reports AUC-ROC scores with (“WSAD-DT”) and without (“No Regularization Term”) the diversity
penalty. In most datasets, WSAD-DT achieves higher AUC-ROC than its unregularized counterpart. Although in a few cases,
the version without regularization narrowly outperforms the regularized one, most datasets strongly benefit from including
the diversity term. Specifically: Without regularization, the model can map each entire class to a single point in latent space,
artificially minimizing the separation loss (Appendix D). This often degrades generalization to unseen anomalies (Goyal
et al., 2020). Overall, these results confirm the theoretical and empirical rationale for using kernel-based regularization:
while some datasets may not strictly require it to avoid degenerate solutions, it significantly increases robustness and yields
better or comparable AUC-ROC on average.
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Table 12. This table presents the AUC-ROC results of WSAD-DT with and without diversity term.

Dataset WSAD-DT No regularization term

Optdigits 0.9984 (1) 0.9864 (2)
Lymphography 0.9961 (2) 0.9981 (1)
Pendigits 0.9997 (1) 0.9768 (2)
Vertebral 0.8827 (2) 0.8836 (1)
Wdbc 1.0000 (1) 0.9928 (2)
Cardiotocography 0.9347 (1) 0.8839 (2)
Wpbc 0.6801 (2) 0.6827 (1)
Stamps 0.9841 (1) 0.9765 (2)
Satimage-2 0.9954 (1) 0.9898 (2)
Spambase 0.9317 (1) 0.9053 (2)
Thyroid 0.9911 (1) 0.9732 (2)
Mnist 0.9820 (1) 0.9249 (2)
Yeast 0.6566 (1) 0.6413 (2)
Cardio 0.9908 (1) 0.9514 (2)
Vowels 0.9824 (1) 0.9670 (2)
Wine 1.0000 (1) 1.0000 (1)
Magic.gamma 0.8974 (1) 0.8974 (1)
Ionosphere 0.9836 (1) 0.9674 (2)
Glass 0.9794 (2) 0.9919 (1)
Breastw 0.9828 (1) 0.9758 (2)
Yelp 0.7811 (1) 0.6415 (2)
Imdb 0.6882 (1) 0.6262 (2)
MNIST-C-Fog 1.0000 (1) 1.0000 (1)
MNIST-C-canny-Edges 0.9999 (1) 0.9873 (2)
MVTec-AD-Zipper 0.9280 (1) 0.8585 (2)
MNIST-C-Stripe 1.0000 (1) 1.0000 (1)
Skin 0.9998 (1) 0.9992 (2)
Fraud 0.9485 (1) 0.9064 (2)
Http 1.0000 (1) 0.9985 (2)
Cover 0.9995 (1) 0.9752 (2)
Shuttle 0.9935 (2) 0.9956 (1)
AvgRank 1.16 1.71
p-value NA 0.000127 (+)

Q. Limitations
While WSAD-DT generally performs well under weak supervision, several scenarios can pose significant challenges.
One issue arises when anomalies are poorly separated from normal instances, creating a fuzzy boundary that can require
additional supervision or more refined feature engineering in cases of extreme overlap. Another complication occurs if
anomalies are highly diverse, as we employ a single center for anomaly representation. If anomalies originate from multiple,
markedly different clusters with no shared center, a single anomaly center may underfit, indicating that multi-center or
multi-modal methods could be more appropriate. Finally, although WSAD-DT addresses extremely limited anomaly labels,
there may be domains with such a scarcity of labeled anomalies that even the dual-tailed kernel and diversity term are not
sufficient for reliable separation. Nevertheless, our experiments suggest that WSAD-DT remains robust under most practical
conditions, balancing in-class compactness with broad margins and leveraging sparse anomaly labels through an ensemble
mechanism.
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