
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

NEURAL STOCHASTIC DIFFERENTIAL EQUATIONS FOR
UNCERTAINTY-AWARE, OFFLINE RL

Anonymous authors
Paper under double-blind review

ABSTRACT

Offline model-based reinforcement learning (RL) offers a principled approach to
using a learned dynamics model as a simulator to optimize a control policy. Despite
the near-optimal performance of existing approaches on benchmarks with high-
quality datasets, most struggle on datasets with low state-action space coverage or
suboptimal demonstrations. We develop a novel offline model-based RL approach
that particularly shines in low-quality data regimes while maintaining competitive
performance on high-quality datasets. Neural Stochastic Differential Equations for
UNcertainty-aware, Offline RL (NUNO) learns a dynamics model as neural stochas-
tic differential equations (SDE), where its drift term can leverage prior physics
knowledge as inductive bias. In parallel, its diffusion term provides distance-aware
estimates of model uncertainty by matching the dynamics’ underlying stochasticity
near the training data regime while providing high but bounded estimates beyond
it. To address the so-called model exploitation problem in offline model-based RL,
NUNO builds on existing studies by penalizing and adaptively truncating neural
SDE’s rollouts according to uncertainty estimates. Our empirical results in D4RL
and NeoRL MuJoCo benchmarks evidence that NUNO outperforms state-of-the-art
methods in low-quality datasets by up to 93% while matching or surpassing their
performance by up to 55% in some high-quality counterparts.

1 INTRODUCTION

Offline reinforcement learning (RL) concerns the problem of learning control policies from offline
datasets of interactions (Lange et al., 2012; Levine et al., 2020). This paradigm captures safety-critical
real-world settings such as healthcare (Tseng et al., 2017; Wang et al., 2018), robotics (Levine et al.,
2018; Rafailov et al., 2021) and autonomous driving (Yu et al., 2020a), where logged data is abundant,
simulators are computationally expensive, or online learning causes hazardous behavior. Although
off-policy RL algorithms can, in principle, address settings with a priori available data, they fail in the
offline setting due to the distribution shift between the dataset and learned policies (Fujimoto et al.,
2019; Kumar et al., 2019). To resolve distribution shift, model-free offline RL methods introduce
conservatism via constraining learned policies to available data (Jaques et al., 2019; Wu et al., 2019;
Fujimoto & Gu, 2021) or penalizing out-of-distribution actions (Kumar et al., 2020; Bai et al., 2022).
However, such approaches struggle with sub-optimal behavior policies (Yu et al., 2020b).

Offline model-based RL trains a control policy via synthetic data generated by a learned dynamics
model (Kidambi et al., 2020; Yu et al., 2021). Compared to offline model-free RL, employing
the learned model improves generalization beyond the training data regime Rigter et al. (2022).
However, naive application of model-based RL causes a phenomenon called model exploitation:
Learned control policies exploit the parts of the state-action space where the model is inaccurate
and overestimates the return Janner et al. (2019); Yu et al. (2020b); Kurutach et al. (2018). Model
exploitation can result in learning policies that perform worse than data-logging policies.

Prior works in offline model-based RL address model exploitation by enforcing conservatism for
learning policies (Janner et al., 2019; Yu et al., 2020b; Kidambi et al., 2020; Yu et al., 2021) or
dynamics models (Rigter et al., 2022). A standard methodology of imposing conservatism is to
penalize the agent with respect to the predicted uncertainty of the learned model on a taken transition
Yu et al. (2020b); Kidambi et al. (2020); Yang et al. (2021); Zhang et al. (2023b). Given a true
admissible error estimator for learned dynamics, these approaches provide theoretical guarantees for

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Figure 1: NUNO learns a dynamics model as neural stochastic differential equations, where its drift
term can leverage prior physics knowledge as inductive bias, and its diffusion term provides distance-
aware estimates of uncertainty. NUNO addresses model exploitation inherent in offline model-based
RL by penalizing and adaptively truncating neural SDE’s rollouts according to uncertainty estimates.

lower bounds on the expected cumulative reward in the groundtruth environment (Yu et al., 2020b).
In practice, the standard architecture for learning dynamics models is deep probabilistic ensembles.
The error estimators rely on heuristics such as maximum aleatoric uncertainty, i.e., the maximum
standard deviation of learned models in the ensemble, the maximum pairwise difference between
predictions of ensemble members, or variance of the log-likelihood of members. (Lu et al., 2021).

halfcheetah-random-v2 hopper-random-v2 walker2d-random-v2
0

20

40

60

80

H
um

an
 n

or
m

al
iz

ed
 s

co
re

NUNO
NUNOR

TATU+MOPO
MOPO

Figure 2: Comparison in random datasets of D4RL MuJoCo bench-
mark Fu et al. (2020). MOPO and TATU+MOPO penalize and trun-
cate, rollouts based on uncertainty estimates from Gaussian ensembles,
whereas NUNO achieves SOTA results in all environments via distance-
aware uncertainty estimates of learned neural SDEs (see Fig. 1) NUNOR
predicts rewards, whereas NUNO uses the groundtruth reward function.

Inspired by Djeumou et al.
(2023) that shows neural
stochastic differential equa-
tions improve uncertainty
estimates and prediction
accuracy over probabilistic
ensembles, we develop an
offline model-based RL
approach that leverages
them: Neural Stochastic
Differential Equations for
UNcertainty-aware, Offline
RL (NUNO; see Figure 1).
NUNO learns a dynamics
model as neural stochastic
differential equations
(SDE) and introduces
conservatism through its
uncertainty estimates. Neural SDEs consist of two main terms: drift and diffusion. A priori available
physics knowledge imposes inductive biases on the drift term as a differentiable composition of
separately parameterized known and unknown functions. At the same time, the diffusion term
provides aleatoric and distance-aware estimate of the model uncertainty: It emulates the stochasticity
of groundtruth dynamics around the training data regime while corresponding to conservative
estimates of uncertainty beyond the dataset. Building on Yu et al. (2020b); Zhang et al. (2023b),
NUNO addresses model exploitation by penalizing control policies and truncating training rollouts
according to distance-aware uncertainty estimates of neural SDEs. NUNO provides a consistently
high-performing framework, especially in randomly collected datasets (see Figure 2), by exploiting
neural SDEs’ capability of accurate predictions over long horizons with separate and theoretically
motivated quantification of aleatoric and epistemic uncertainty.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Contribution. Our contribution is three-fold:

(1) We develop an uncertainty-aware offline model-based RL approach, NUNO, that (i) learns
a dynamics model as a neural SDE, where the drift term leverages minimal prior physics
knowledge as inductive bias, and the diffusion term provides distance-aware estimates
of model uncertainty, and (ii) addresses model exploitation by penalizing and adaptively
truncating synthetic rollouts based on estimated distance-aware uncertainty estimator.

(2) In control benchmarks D4RL (Fu et al., 2020) and NeoRL (Qin et al., 2022), NUNO imposes
structure on the drift term by exploiting the fact that MuJoCo environments are governed by
rigid body dynamics, and decomposing state into position and velocity components.

(3) Our empirical results evidence that NUNO outperforms state-of-the-art methods in low-
quality datasets (’random-v2’ in D4RL and ’Low’ in NeoRL) by up to 93% while either
matching or surpassing their performance by up to 55% in high-quality counterparts.

2 RELATED WORK

Our work focuses on the intersection of offline RL and physics-informed learning of dynamics models.
Appendix A investigates existing works on offline model-free RL.

Offline model-based RL: The objective of offline model-based RL is to learn a dynamics model
from a static dataset of environment interactions in a supervised manner and subsequently generate
synthetic data to train a control policy. To tackle model exploitation, most offline model-based
RL approaches impose conservatism by constraining the learning policy to the behavior policy
(Matsushima et al., 2020; Swazinna et al., 2021; Cang et al., 2021; Bhardwaj et al., 2023), learning
conservative value functions (Yu et al., 2021; Rigter et al., 2022), learning pessimistic policies
via biased sampling from a belief distribution over dynamics (Guo et al., 2022) or via uncertainty
penalization (Yu et al., 2020b; Kidambi et al., 2020; Yang et al., 2021; Rafailov et al., 2021; Zhang
et al., 2023b; Sun et al., 2023). To address compounding estimation error in model-based approaches,
Jeong et al. (2022) propose a methodology that combines model-based and model-free value estimates
for policy evaluation based on their epistemic uncertainties. A recent line of works casts offline model-
based RL as a sequence modeling problem and learns a dynamics model as a transformer (Chen et al.,
2021; Janner et al., 2021; Yamagata et al., 2023) without enforcing conservatism. NUNO inherits
its principle of uncertainty penalization and rollout truncation from MOPO (Yu et al., 2020b) and
TATU+MOPO (Zhang et al., 2023b), respectively. Both methods train a deep probabilistic ensemble
as a dynamics model and penalize the reward based on their uncertainty estimator. TATU+MOPO
extends MOPO by truncating synthetic trajectories if the accumulated uncertainty exceeds a threshold
based on single-step estimates on the training data. NUNO builds on them by training a neural SDE as
a dynamics model to improve uncertainty estimation and prediction accuracy (Djeumou et al., 2023).

Neural differential equations for physics-informed learning: Neural ordinary differential equations
(ODEs) specify a structure that parameterizes a differential equation via neural networks using a
priori known physics knowledge. Many existing works utilize neural ODE-based physics-informed
architectures to learn dynamics models for control tasks Liu & Wang (2021); Shi et al. (2019); Plaza
et al. (2022); Furieri et al. (2022); Wong et al. (2022); Menda et al. (2019); Gupta et al. (2020); Duong
& Atanasov (2021); Lutter et al. (2019). Although not for control tasks, some inform the structure of
neural ODEs via Hamiltonian Greydanus et al. (2019); Chen et al. (2019); Zhu et al. (2020); Zhong
et al. (2020); Eidnes et al. (2023), Port-Hamiltonian Desai et al. (2021); Neary & Topcu (2023),
or Lagrangian Roehrl et al. (2020); Finzi et al. (2020); Cranmer et al. (2020); Allen-Blanchette
et al. (2020); Zhong et al. (2021b;a) formulation of dynamics. Neural ODE-based structures are
commonly deterministic and, hence do not provide a notion of uncertainty. In contrast, neural SDEs
allow uncertainty-aware models, and previous works investigate their use for learning dynamics of
stochastic systems (Jia & Benson, 2019; Yang et al., 2023), estimating the uncertainty in parameters
of neural networks Kong et al. (2020); Li et al. (2020); Kidger (2022); Xu et al. (2022), and generative
modeling Kidger et al. (2021). However, these approaches do not deal with epistemic uncertainty
in a way tailored to offline RL. Djeumou et al. (2023) propose using neural SDEs to leverage a
priori physics knowledge and capture epistemic uncertainty to control dynamical systems and offline
model-based RL. In comparison to our work, Djeumou et al. (2023) does not address the model
exploitation problem and does not use a loss function that properly models aleatoric uncertainty.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

3 PRELIMINARIES

3.1 MARKOV DECISION PROCESSES

We formalize the environments of interest in this work as Markov decision processes (MDP), specified
by a tuple M = ⟨S,A, T,R, γ, ρ0⟩, where S and A are state and action spaces, T : S ×A → ∆(S)
is the transition distribution, R : S ×A → R, γ ∈ (0, 1) is the discount factor, and ρ0 is the initial
state distribution, i.e., ∆(S). A policy π : S → ∆(A) in an MDP M outputs a probability simplex
over the action space A given a state s ∈ S. The objective of RL is to learn an optimal policy
π∗, which maximizes the expected discounted return in M, i.e., π∗ ∈ argmaxπ ηM(π), where
ηM(π) = Eπ,T,ρ0 [

∑∞
t=0 γ

tR(st,at)] is the expected discounted return, at ∼ π(st) is the policy’s
action, and st+1 ∼ T (st,at) is the new state at time t by starting in s0 ∼ ρ0.

3.2 OFFLINE MODEL-BASED RL

The offline RL problem assumes access to a dataset D = {τi}i of interactions τ = {(s,a, r, s′)t}t
with the environment M. Multiple behavior policies πb, optimal or suboptimal, can contribute to D.
The objective is to learn a policy π that minimizes the sub-optimality gap, namely, ηM(π∗)− ηM(π).
Offline model-based RL methods approach this problem by first learning a dynamics model T̂ from
the dataset D. Then, they utilize the learned dynamics model to optimize the policy. Depending on
the access, one can learn a reward function R̂ or an initial state distribution ρ0 from the dataset D.

A naive way to optimize the policy is to interact with the learned MDP, e.g., as online RL algorithms.
However, such an approach can cause model exploitation, i.e., the estimated return in the learned
environment is greater than the true return: ηM̂(π)− ηM(π) > 0 (Yu et al., 2020b). Due to the finite
coverage of the dataset D, the policy π learns to exploit regions of the state-action space where the
epistemic uncertainty of the learned model T̂ and the estimated return ηM̂(π) are high.

A common strategy to undertake model exploitation is to penalize the agent in correlation to the
estimated model uncertainty, as in Model-based Offline Policy Optimization (MOPO) (Yu et al.,
2020b), which defines a pessimistic reward function: R̃(s,a)

.
= R(s,a)−λpenu(s,a), where u(s,a)

is the estimation of the model uncertainty at the state-action pair (s,a) and λpen is the regularization
coefficient for the uncertainty penalty. Utilizing the pessimistic reward function, MOPO constructs a
pessimistic learned MDP M̃ = ⟨S,A, T̂ , R̃, γ, ρ0⟩ and modifies the policy optimization objective
as maxπ ηM̃(π). Zhang et al. (2023b) proposes Trajectory Truncation with Uncertainty, TATU,
which truncates model rollouts if the accumulated uncertainty exceeds a predetermined threshold.
The theoretical results follow a similar line of argument in MOPO and construct a pessimistic MDP,
then provide suboptimality bounds for policies learned in pessimistic MDPs. TATU’s uncertainty
truncation threshold depends on uncertainty estimates over the single-step transitions from the
datasets, which is a limitation considering that TATU trains policies with longer rollouts.

3.3 NEURAL STOCHASTIC DIFFERENTIAL EQUATIONS AS DYNAMICS MODELS

Stochastic differential equations (SDEs) offer a principled approach to modeling uncertain, real-world,
and time-varying stochastic processes. Their continuous-time nature and ability to encode prior
physics knowledge (world models) as inductive bias make them suitable for modeling dynamical
systems from data. A neural SDE is an SDE parameterized by neural networks as follows

ds = fθ(s,a) dt+Σϕ(s,a) ⋆ dW, (1)
where fθ : S ×A → Rns and Σϕ : S ×A → Rns×nw are the drift and diffusion terms parameterized
by θ and ϕ, W is the nw-dimensional Wiener process, and ⋆ expresses that the SDE is either in Ito
Ito et al. (1951) or Stratonovich Stratonovich (1966) form. The reader unfamiliar with these forms
should feel free to ignore the distinction (Van Kampen, 1981; Massaroli et al., 2021; Kidger, 2022),
which becomes an arbitrary modeling choice when fθ and Σϕ are learned.

Given a dataset D of interactions of a behavior policy πb in MDP M, we seek the unknown functions
fθ and Σϕ of a neural SDE that best fit the sequences of states and actions in the dataset. Specifically,
we build on the framework proposed in Djeumou et al. (2023) and extend it to train neural SDEs in
such a way that the diffusion term Σϕ captures aleatoric uncertainty as well as epistemic uncertainty
in the form distance-aware estimates of model uncertainty.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

4 NUNO

In this section, we discuss the details of NUNO’s design. First, we provide insight into the use of
a distance-aware uncertainty estimator and discuss our parametric estimator and its corresponding
training algorithm. Then, we introduce our physics-based neural SDE approach for modeling the
dynamics of the MDP while capturing aleatoric and epistemic uncertainty. Finally, we show how
our uncertainty estimator can efficiently enforce conservatism when training the RL policy. In the
remainder of the paper, we assume access to the dataset D of realized state-actions trajectories. We
also assume access to the time steps ∆t between consecutive states st and st+1.

4.1 DISTANCE-AWARE UNCERTAINTY ESTIMATOR

By investigating particle-based estimators of the cross entropy between the learned model’s transition
distribution and the unknown transition distribution, Zhang et al. (2023a) provides a theoretical
framework for characterizing model uncertainty u(s,a) as a function of the distance, in the appropriate
space, between the query point (s,a) and its k-th nearest neighbor (KNN) in the dataset D. We build
on this idea and propose a parametric distance-aware uncertainty estimator ηϕ : S × A → R that
captures such distance to the closest k-th neighbor in the dataset without the need for a KNN search.
Besides bypassing intractable KNN search, our parametric estimator can be trained alongside the
neural SDE model (see Section 4.2) such that the model can capture both aleatoric and epistemic
uncertainty in the dynamics. The estimator is smooth and differentiable and thus blends well with the
requirements for numerical integration of the neural SDE model.

A simple choice for ηϕ for which we can provide theoretical guarantees is given by

η̄ϕ = argminη E(s,a)∼D
[
E(s′,a′)∼Uniform(S×A)[η(s

′,a′)− ∥(s,a)− (s′,a′)∥]2
]
. (2)

Lemma 1 The optimal solution η̄ϕ of equation 2 is a convex function with respect to (s,a) and is an
upper bound of the distance to the state-action centroid of the training dataset. Additionally, we have
that the negative gradient −∇s,aη̄ϕ at any point (s,a) points inside the convex hull of D.

We provide the proof of Lemma 1 in Appendix B. The first property above illustrates that η̄ϕ is a
suitable choice for a distance-aware uncertainty estimator. In contrast, the second property enables
conservatism by suggesting that any reward penalization with η̄ϕ will encourage the policy to stay
within the convex hull of the training dataset. However, the estimator η̄ϕ approximates only the
distance to the centroid of the entire dataset, which may not be sufficient to accurately capture the
uncertainty in the model’s predictions if the geometry of the dataset has multiple clusters.

To address this limitation, we enforce additional constraints to encourage ηϕ to cluster the dataset
properly. Informally speaking, we model the term ηϕ(·) with neural networks such that when
evaluated near points in the training dataset D, such term provides low values with almost-zero
gradients. In contrast, it provides high but bounded values when evaluated far from the training data.
Specifically, a strong property of our approach is that by sampling only locally around the training
dataset, we can train the parameters of ηϕ to enforce the desired distance-based properties globally. In
particular, we translate the distance-aware requirement into several mathematical properties that ηϕ
must satisfy, and propose a loss function that encourages the neural network to learn these properties.

(a) Increasing ηϕ along state-action paths that move away from the training data. As the query point
(s,a) moves away from the training data, the distance-aware term ηϕ should monotonically increase
accordingly. Let Γ be any path along which the distance from the current point to the nearest training
datapoint always increases. Then, along Γ, the entries of ηϕ should monotonically increase. We
enforce this property via local strong convexity constraints near the training dataset. Specifically,
for every state action (st,at) ∈ D and a fixed radius r > 0, we enforce strong convexity of ηϕ
within a ball Br(st,at) := {(s,a) | ∥(s,a)− (st,at)∥ ≤ r} with a convexity constant µt > 0. More
specifically, we want to enforce that for any (s,a), (s′,a′) ∈ Br(st,at), the convexity constraint
(s,a, s′,a′)µt

≥ 0 holds, where the constraint is defined as

(s,a, s′,a′)µt
:= ηϕ(s

′,a′)− ηϕ(s,a)−∇(s,a)ηϕ(s,a)
⊤((s,a)− (s′,a′))− µt∥(s,a)− (s′,a′)∥2.

We parametrize a function µϕ : S ×A → R+ using a neural network to predict the strong convexity
constants µt = µϕ(st,at) for each (st,at) ∈ D instead of manually tuning them. Thus, we define

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

the following loss functions to enforce the desired properties at a sample (st,at) ∈ D as follows:

Lsc =
∑

(s,a),(s′,a′)
∼N ((st,at),r)

{
0, if (s,a, s′,a′)µt

≥ 0

(s,a, s′,a′)2µt
, otherwise

and Lµ =
∑

(st,at)∈D

1

µϕ(st,at)
, (3)

where N ((st,at), r) is a Gaussian distribution with mean (st,at) and standard deviation r, and Lµ

is a regularization loss term that encourages high values of µt. Intuitively, such regularization ensures
that the distance-aware term ηϕ reaches its maximum value as close as possible to the boundaries of
the training dataset, enabling dataset clustering.

(b) Zero-gradient and distance-aware estimate near training data. We enforce that the distance-
aware term ηϕ has almost zero gradients near the training dataset such that, with the local convexity
constraints, points in the dataset become local minima of ηϕ and the negative gradient of ηϕ near a
cluster is directed towards the cluster. This constraint can be enforced at a sample (st,at) ∈ D as

Lgrad = ∥∇(s,a)ηϕ(st,at)∥2 + ηϕ(st,at)
2, (4)

where the last term encourages ηϕ to be zero when evaluated on the training data. Appendix B.2
provides insights about the distance-aware uncertainty estimator, as well as toy 2-D dataset examples
to demonstrate how ηϕ efficiently clusters the training dataset to capture datapoints distance.

4.2 PHYSICS-INSPIRED NEURAL SDES

We aim to learn a neural SDE’s drift and diffusion terms that best fit the sequences of states and
actions in the dataset D. Specifically, we first consider the following black-box neural SDE

ds = fθ(s,a) dt+
(
σϕ(s,a) + hϕ(ηϕ(s,a))

)
⋆ dW, (5)

where we simplify the diffusion term Σϕ from equation 1 to be a diagonal matrix composed of two
complementary terms. The first term σϕ : S × A → Rns is an unconstrained neural network that
captures the aleatoric uncertainty of the dynamics, while we design the second term hϕ(ηϕ(·)) to
estimate heterogeneous epistemic uncertainty in the model’s predictions. Here hϕ : R → Rns is a
bounded, monotonic, and learnable transformation that ensures the diffusion term is positive and
monotonically increasing in the proposed distance-aware term ηϕ : S × A → R. In the following,
we use Σϕ to refer to σϕ + hϕ(ηϕ) when the distinction is unnecessary.

Monotonicity and boundedness of hϕ. To ensure globally monotonic and bounded diffusion values
as a function of ηϕ, we adopt a simple design choice for hϕ: A scaled sigmoid function to transform
ηϕ into a heterogeneous diffusion term. Specifically, we define hϕ(ηϕ) = Wmaxsigmoid(Wηϕ + b),
where sigmoid(x) = (1 + exp(−x))−1, W ∈ Rns and b ∈ Rns are the learnable parameters of the
neural network. We constrain W to be greater than 1. Besides, the term Wmax is a hyperparameter
that controls the desired maximum value of the diffusion term outside the training data regime. We
emphasize that this design choice works well in our experiments, but others are possible.

Training the neural SDE. In contrast to the standard approaches such as probabilistic ensembles
where the model fits a single-step transition, the proposed neural SDE is designed and trained to fit
sequences of states and the uncertainty in the model’s predictions. Given a sequence of states and
actions {st,at, . . . , st+H} with H being the prediction horizon, we aim to minimize the negative
log-likelihood (NLL) of the sequence under the neural SDE model. However, estimating the NLL
of neural SDE-generated sequences is challenging due to the intractability of computing the kernel
density of the underlying stochastic process. To address this issue, we adopt numerical integration
schemes to approximate the sequence’s NLL through Monte Carlo sampling. Specifically, assuming
approximate Gaussian transitions between discrete time steps of the stochastic process, e.g., when
employing the Euler-Maruyama sampler, we can approximate the NLL as

Ldata = Es̃θ,ϕt+1,...,s̃
θ,ϕ
t+H

[∑t+H−1

k=t
∥sk+1 − s̃θ,ϕk+1∥

2
(Σ−1

ϕ)k
+ log(det(Σϕ)k)

]
, (6)

where (Σϕ)k = Σϕ(s̃
θ,ϕ
k ,ak), and s̃θ,ϕt+1, . . . , s̃

θ,ϕ
t+H are the sample states obtained by any differential

SDE numerical integration scheme. Note that the accuracy of the NLL approximation depends on
the quality of the numerical integration scheme. the stepsize to discretize the SDE between two

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

consecutive states, and the number of samples used to estimate the expectation. In practice, though,
we can fit accurate neural SDE models to the data even with Euler-Maruyama and a single sample.

The problem of learning the SDE model parameters with distance-aware uncertainty estimates can be
formulated as the following optimization problem:

minimize
θ,ϕ

Est,at,...,st+H∼D [λdataLdata + λscLsc + λgradLgrad + λµLµ] , (7)

Incorporating prior physics knowledge. We can incorporate prior physics knowledge into the neural
SDE model by designing the drift term fθ to encode structural knowledge from first principles or
domain expertise. To this end, we represent the drift term fθ as the composition of a known function –
derived from a priori knowledge – and a collection of unknown functions that must be learned from
data. That is, we write fθ(s,a) := F (s,a, gθ1(·), . . . , gθd(·)), where F is a known differentiable
function and gθ1(·), . . . , gθd(·) are unknown terms within the underlying model. The inputs to these
functions could themselves be arbitrary functions of the states and control inputs. Additionally,
known constraints on gθi can be enforced during training using the augmented Lagrangian method.

We exploit the fact that rigid body dynamics govern our benchmark environments to constrain the
structure on the drift term. We typically decompose the state as s = [spos, svel], where spos and svel
are the position and velocity components, respectively, and we define the drift term as

fpos
θ (s,a) = svel, f

vel
θ (s,a) = Gϕ(svel)a+Hϕ(s)svel, fθ = [fpos

θ , fvel
θ] + f res

θ , (8)
where Gϕ and Hϕ are learnable neural networks, and f res

θ is a residual term that captures the
unmodeled dynamics. We additionally penalize the residual term in the loss function to ensure
minimal deviation from the structured drift term. We note that this formulation integrates minimal
prior knowledge into the neural SDE model, and such prior knowledge does not affect modeling
performance in the large dataset regime seen in our experiments.

Incorporating reward learning. We can incorporate reward learning into the neural SDE model by
augmenting the state representation with a variable representing cumulative rewards. Specifically, we
define the new state as s = [spos, svel, rc], where rc is the cumulative reward up to the current time
step. We then augment the neural SDE model with drc = f rew

θ (s,a) dt, where f rew
θ is a learnable

neural network that captures the reward dynamics. We can then train the combined neural SDE model
to minimize the NLL of the sequence of states, actions, and rewards under the model.

4.3 DISTANCE-AWARE REGULARIZED OFFLINE RL

We now discuss incorporating the distance-aware uncertainty estimate ηϕ into the offline RL frame-
work to enforce conservatism in the learned policy. Specifically, we build on the work by Zhang
et al. (2023b) and use our distance-aware uncertainty estimate to penalize and truncate the transitions
generated by the learned neural SDE model during the RL policy training.

Reward penalty. Following MOPO penalization criteria, we use the distance-aware uncertainty to
define the pessimistic reward as R̃(s,a) = R(s,a)− λpenηϕ(s,a).

Trajectory truncation. During the RL agent training, we use the current policy and the neural SDE
model to generate synthetic trajectories for policy improvement. To figure out whether the synthetic
trajectory is reliable, we set a truncating threshold ϵ on the accumulated distance-aware estimate
ηϕ over the sequence. Specifically, we compute T =

∑h
t=0 ηϕ(st,at), and we compare its value

with the threshold ϵ. If the accumulated quantity exceeds the threshold, we truncate the trajectory
and do not use it for policy optimization. The choice of the threshold ϵ is a crucial hyperparameter
that varies accross environments or tasks while enforcing the level of conservatism in the policy
training. To account for different task and environment complexities, we propose automatically
setting the threshold based on the entire training dataset. We propose to use a user-defined Conditional
Value-at-Risk (CVaR) as the threshold to compute the hyperparameter ϵ via performing statistics on
the entire dataset over all possible sequences of horizon h.

5 EXPERIMENTAL RESULTS

We empirically evaluate NUNO against state-of-the-art (SOTA) offline model-based and model-free
approaches in continuous control benchmarks, namely MuJoCo datasets in D4RL Fu et al. (2020)

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Table 1: Average human-normalized scores of NUNO and other model-based and model-free offline
RL approaches on D4RL MuJoCo v2 datasets. Due to limited space, we use abbreviations of task
and dataset names: hc = halfcheetah, hp = hopper, wk = walker2d; r = random, m = medium, mr
= medium-replay, me = medium-expert. For NUNO, we provide the mean and standard deviation
(following ±) of best scores among independent runs. Bold scores indicate the best for each task.

Task NUNO (Ours) NUNOR (Ours) MOBILE MOPOT MOPO COMBO MOREL RAMBO EDAC

hc-r 52.7±3.4 52.2±0.5 39.3±3.0 33.3 35.9 38.8 38.9 39.5 28.4
hp-r 73.2±9.8 53.7±13.9 31.9±0.6 31.9 16.7 17.9 38.1 25.4 25.3
wk-r 27.7±0.9 28.1±1.2 17.9±6.6 10.4 4.2 7.0 16.0 0.0 16.6

hc-m 68.8±0.4 64.7±0.5 74.6±1.2 61.9 73.1 54.2 60.7 77.9 65.9
hp-m 104.6±0.2 104.4±0.3 106.6±0.6 104.3 38.3 97.2 84.0 87.0 101.6
wk-m 85.4±0.9 92.6±1.3 87.7±1.1 77.9 41.2 81.9 72.8 84.9 92.5

hc-mr 66.5±0.2 64.6±0.3 71.7±1.2 67.2 69.2 55.1 44.5 68.7 61.3
hp-mr 107.8±1.2 106.6±1.9 103.9±1.0 104.4 32.7 89.5 81.8 99.5 101.0
wk-mr 97.0±1.4 101.1±3.9 89.9±1.5 75.3 73.7 56.0 40.8 89.2 87.1

hc-me 97.0±0.5 95.8±1.2 108.2±2.5 74.1 70.3 90.0 80.4 95.4 106.3
hp-me 112.2±0.3 111.9±0.5 112.6±0.2 107.0 60.6 111.1 105.6 88.2 110.7
wk-me 113.2±0.5 112.6±0.6 115.2±0.7 107.9 77.4 103.3 107.5 56.7 114.7

Average 83.8 82.4 80.0 71.3 49.4 66.8 64.3 67.7 76.0

and NeoRL Qin et al. (2022). Through our empirical evaluation, we answer the following questions:
1) How does NUNO perform in terms of human normalized score? 2) Can NUNO’s uncertainty
estimator, i.e., distance-aware estimate of a neural SDE, effectively quantify uncertainty? 3) How
does NUNO address the model exploitation phenomenon in contrast to TATU+MOPO and MOPO?

5.1 HOW DOES NUNO PERFORM IN STANDARD CONTROL BENCHMARKS?

5.1.1 D4RL

We run experiments on 12 D4RL tasks, combining three MuJoCo environments (halfcheetah, hopper,
and walker2d) and four datasets (random, medium, medium-replay, and medium-expert) per envi-
ronment. We compare NUNO against the following methods: a model-free method called EDAC An
et al. (2021), that penalizes Q-values based on the estimated uncertainty of a Q-function ensemble;
and model-based methods: MOPO Yu et al. (2020b) and TATU+MOPO Zhang et al. (2023b),
from which NUNO inherits its principles of uncertainty penalization and truncation, respectively,
COMBO Kumar et al. (2020), which equally penalizes samples that are out-of-distribution according
to model uncertainty, MOBILE Sun et al. (2023), which penalizes the Bellman estimation based on
the inconsistency of Bellman estimations by an ensemble of learned dynamics models, RAMBO
that adversarially learns a policy and dynamics model, and finally, MOREL Kidambi et al. (2020),
which penalizes a transition when estimated uncertainty exceeds a threshold. In Table 1, we refer to
TATU+MOPO as MOPOT.

Table 1 demonstrates the mean and standard deviation of maximum human-normalized scores
that NUNO and NUNOR, which predicts the reward, reach in D4RL MuJoCo tasks (v2) during five
independent runs of one million gradient steps. In the random task involving datasets collected by
randomly initialized policies, NUNO and NUNOR outperform all approaches across every MuJoCo
environment by a significant margin. NUNO achieves this by building onto uncertainty penalization
and truncation principles proposed by MOPO and TATU+MOPO. NUNO’s advantage comes from
leveraging prior physics knowledge, though minimal, and exploiting the diffusion term’s capability
of estimating aleatoric and epistemic uncertainty. Given higher-quality datasets, namely, better-
performing data logging policies, NUNO either reaches SOTA results or closely follows existing ones.
Specifically, NUNO reaches state-of-the-art results in hopper-medium-replay-v2, walker-medium-
replay-v2, and hopper-medium-expert-v2. Table 1 also demonstrates that NUNO achieves the second-
best results in medium tasks of halfcheetah and hopper, as well as medium-expert task of hopper.
Overall, NUNO and NUNOR yield the highest average human-normalized scores in the D4RL MuJoCo
benchmark. Figure 3a visualize the progression of human normalized score for NUNO and NUNOR.
See Appendix E.2 for more details.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Table 2: Average human-normalized scores of NUNO and other model-based and model-free offline
RL approaches on NeoRL MuJoCo datasets. Due to limited space, we use abbreviations of dataset
names: L = low, M = medium, H = high. For NUNO, we provide the mean and standard deviation
(following ±) of best scores among independent runs. Bold scores indicate the best for each task.

Task NUNO (Ours) NUNOR (Ours) MOBILE MOPO BC CQL TD3+BC EDAC

hc-L 52.5±0.6 58.4±0.5 54.7±3.0 40.1 29.1 38.2 30.0 31.3
hp-L 26.9±3.8 26.4±6.8 17.4±3.9 6.2 15.1 16.0 15.8 18.3
wk-L 52.5±2.4 49.4±1.9 37.6±2.0 11.6 28.5 44.7 43.0 40.2

hc-M 73.4±0.6 78.8±0.8 77.8±1.4 62.3 49.0 54.6 52.3 54.9
hp-M 103.3±2.2 92.3±1.7 51.1±13.3 1.0 51.3 64.5 70.3 44.9
wk-M 65.8±0.4 49.4±16.9 62.2±1.6 39.9 48.7 57.3 58.5 57.6

hc-H 85.2±0.6 84.9±0.4 83.0±4.6 65.9 71.3 77.4 75.3 81.4
hp-H 103.0±3.1 97.9±5.5 87.8±26.0 11.5 43.1 76.6 75.3 52.5
wk-H 72.9±1.6 74.5±1.6 74.9±3.4 18.0 72.6 75.3 69.6 75.5

Average 70.6 68 60.7 28.5 45.4 56.1 54.5 50.7

0.0 0.2 0.4 0.6 0.8 1.0
Number of epochs ×103

0

25

50

75

100

H
um

an
 n

or
m

al
iz

ed
 s

co
re

NUNOR

NUNO

(a) Human normalized score

0.0 0.2 0.4 0.6 0.8 1.0
Number of epochs ×103

0.1

0.2

0.3

0.4

U
nc

er
ta

in
ty

random
data
progress

(b) Uncertainty-NUNO

0.0 0.2 0.4 0.6 0.8 1.0
Number of epochs ×103

0.1

0.2

0.3

0.4

U
nc

er
ta

in
ty

random
data
progress

(c) Uncertainty-NUNOR

Figure 3: Training progression in hopper-medium-expert-v2: (a) We report the progression of human
normalized score in evaluation episodes during training. (b-c) We demonstrate how the uncertainty
estimates of neural SDEs in NUNO and NUNOR evolve when evaluated with trained policies’ actions
in one-step rollouts from states in the dataset. ’random’ and ’data’ refer to the uncertainty estimates
of the learned model given actions from a random policy and the dataset, respectively.

5.1.2 NEORL

We further evaluate NUNO in NeoRL Qin et al. (2022), a benchmark developed to reflect real-world
characteristics by logging data via conservative policies. We investigate nine datasets involving
three environments (HalfCheetah-v3, Hopper-v3, Walker2d-v3) and three types of datasets (low,
medium, high) per environment with 1000 trajectories each. We compare NUNO against MOBILE,
MOPO, EDAC, CQL which penalizes OOD samples’ Q-values equally, behavior cloning (BC),
which imitates data-logging policies, and TD3+BC Fujimoto & Gu (2021), which extends TD3
Fujimoto et al. (2018) by regularizing the policy optimization objective via a behavioral cloning term.

Table 2 reports the mean and standard deviation of maximum human-normalized scores that NUNO
reaches in NeoRL MuJoCo tasks during four independent runs of one million gradient steps. NUNO
achieves the highest scores in the low tasks of NeoRL by outperforming existing SOTA results in
hopper and walker2d by a significant margin, as in the random tasks of D4RL. In addition, NUNO
or NUNOR reach the highest scores in medium and high tasks of all MuJoCo environments. Overall,
NUNO and NUNOR collect the highest average human normalized scores across nine tasks in NeoRL.

5.2 CAN NUNO’S UNCERTAINTY ESTIMATOR EFFECTIVELY QUANTIFY UNCERTAINTY?

Figures 3b and 3c demonstrate the evolution of uncertainty estimates of trained neural SDEs for
NUNO and NUNOR during training. Neural SDE’s uncertainty estimator assigns the largest values to
random actions and the smallest to the dataset, evidencing that the uncertainty estimators correctly
identify out-of-distribution and in-distribution actions, respectively. As trained policies progress,
see Figure 3a, the model uncertainty for learned policies’ actions approaches the uncertainty of
in-distribution samples because learned policies avoid out-of-distribution actions through penalization
and truncation based on distance-aware uncertainty estimates. Appendix D provides an ablation study
on the choice of the uncertainty estimator for penalization and truncation in policy learning.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

hopper-random-v2 halfcheetah-random-v2 walker2d-random-v2

2

1

0

1

H
um

an
 n

or
m

al
iz

ed
 s

co
re

GT
Pess
NUNOR

NUNO
TATU+MOPO
MOPO

(a) Random
hopper-medium-replay-v2 halfcheetah-medium-replay-v2 walker2d-medium-replay-v20

1

2

3

H
um

an
 n

or
m

al
iz

ed
 s

co
re

GT
Pess
NUNOR

NUNO
TATU+MOPO
MOPO

(b) Medium-replay
Figure 4: Model exploitation: We evaluate NUNO, NUNOR, TATU+MOPO, and MOPO in rollouts
from their learned dynamics models in (a) random and (b) medium-replay tasks, and report the average
score per step with (pessimistic, Pess) and without (groundtruth, GT) uncertainty penalization.

1 5 10 15
Horizon

100

102

104

106

108

Pr
ed

ic
tio

n
E

rr
or

walker2d-medium-v2
walker2d-medium-replay-v2
walker2d-medium-expert-v2

nsde_rew
nsde
ensemble

(a) D4RL Walker2d: In-distribution

1 3 5 9
Horizon

100

101

102

103

104

Pr
ed

ic
tio

n
E

rr
or

walker2d-random-v2
walker2d-medium-v2
walker2d-medium-replay-v2
walker2d-medium-expert-v2

nsde_rew
nsde
ensemble

(b) D4RL Walker2d: Out-of-distribution
Figure 5: Model analysis: We illustrate the evolution of model prediction error in different datasets
for D4RL Walker2d. (a) In-distribution: Evaluation of the datasets in which the models are trained.
(b) Out-of-distribution: Evaluation of models, trained via random, in trajectories from other datasets.

5.3 HOW DOES NUNO ADDRESS THE MODEL EXPLOITATION PHENOMENON?

We assess how NUNO addresses the model exploitation phenomenon based on two aspects: (1) con-
servativeness of the reward function of pessimistic learned MDPs, and (2) prediction accuracy of
learned dynamics models. Figures 4 and 5 evidence that NUNO enables less conservativeness and
better accuracy over longer horizons. Figure 4 addresses the first aspect in two sets of D4RL tasks:
random and medium-replay. Based on the gap between the groundtruth score and the pessimistic
score, we observe that NUNO and NUNOR construct pessimistic learned MDPs that are less conser-
vative than their counterparts in MOPO and TATU+MOPO, which use Gaussian ensembles. The
only exception is hopper-medium-replay, which may be why TATU+MOPO and MOPO perform
slightly better, as reported in Table 1. Model accuracy results in Figure 5 show that neural SDEs are
significantly more accurate than a Gaussian ensemble over longer horizons.

6 CONCLUSION

We develop a novel uncertainty-aware offline model-based RL algorithm, NUNO, that learns a single
dynamics model, in contrast to probabilistic ensembles in most existing work, as a neural SDE and
addresses model exploitation phenomenon by penalizing and adaptively truncating model rollouts
based on its uncertainty estimates. NUNO achieves this by imposing minimal prior physics knowledge
into the drift term of a neural SDE as inductive bias and learning distance-aware uncertainty estimates
via its diffusion term, which matches the dynamics’ underlying stochasticity around the training data
regime while providing high but bounded estimates beyond it. Through our empirical evaluations
of NUNO in these benchmarks, we demonstrate that NUNO outperforms state-of-the-art methods,
particularly in low-quality datasets with low state-action space coverage or suboptimal demonstrations
(’random-v2’ in D4RL and ’low’ in NeoRL) by up to 93%. In tasks involving higher quality datasets,
NUNO matches or exceeds the state-of-the-art performances in some environments by up to 55%.

Limitations and future work. Although we can extend our formulation to address partially observed
Markov decision processes, our experiments utilize full knowledge of the system state in MuJoCo
environments from both benchmarks. In the future, we aim to extend our uncertainty-aware approach
to address different settings, e.g., environments with image observations. Additionally, future work
can investigate formally proving properties of our distance-aware uncertainty estimator and extend
our formulation for non-Euclidean state-action spaces by adjusting the distance metrics accordingly.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

REPRODUCIBILITY STATEMENT

For the theoretical analysis of this work, we state all assumptions made in Section 4 and Appendix B.
For all the hyperparameters and detailed settings of the experiments, please refer to Appendix C.
Lastly, we put the core code of our approach in the supplementary details. The code includes
dataloaders, execution code, and links to download all the datasets and models used.

REFERENCES

Rishabh Agarwal, Dale Schuurmans, and Mohammad Norouzi. An optimistic perspective on offline
reinforcement learning. In International Conference on Machine Learning, pp. 104–114. PMLR,
2020.

Christine Allen-Blanchette, Sushant Veer, Anirudha Majumdar, and Naomi Ehrich Leonard.
Lagnetvip: A lagrangian neural network for video prediction. arXiv preprint arXiv:2010.12932,
2020.

Gaon An, Seungyong Moon, Jang-Hyun Kim, and Hyun Oh Song. Uncertainty-based offline
reinforcement learning with diversified q-ensemble. Advances in neural information processing
systems, 34:7436–7447, 2021.

Chenjia Bai, Lingxiao Wang, Zhuoran Yang, Zhi-Hong Deng, Animesh Garg, Peng Liu, and Zhaoran
Wang. Pessimistic bootstrapping for uncertainty-driven offline reinforcement learning. In Inter-
national Conference on Learning Representations, 2022. URL https://openreview.net/
forum?id=Y4cs1Z3HnqL.

Mohak Bhardwaj, Tengyang Xie, Byron Boots, Nan Jiang, and Ching-An Cheng. Adversarial model
for offline reinforcement learning. arXiv preprint arXiv:2302.11048, 2023.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and
Qiao Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL
http://github.com/google/jax.

Catherine Cang, Aravind Rajeswaran, Pieter Abbeel, and Michael Laskin. Behavioral priors and
dynamics models: Improving performance and domain transfer in offline rl. arXiv preprint
arXiv:2106.09119, 2021.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel,
Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence
modeling. Advances in neural information processing systems, 34:15084–15097, 2021.

Zhengdao Chen, Jianyu Zhang, Martin Arjovsky, and Léon Bottou. Symplectic recurrent neural
networks. arXiv preprint arXiv:1909.13334, 2019.

Miles Cranmer, Sam Greydanus, Stephan Hoyer, Peter Battaglia, David Spergel, and Shirley Ho.
Lagrangian neural networks. arXiv preprint arXiv:2003.04630, 2020.

Shaan A Desai, Marios Mattheakis, David Sondak, Pavlos Protopapas, and Stephen J Roberts. Port-
hamiltonian neural networks for learning explicit time-dependent dynamical systems. Physical
Review E, 104(3):034312, 2021.

Franck Djeumou, Cyrus Neary, and Ufuk Topcu. How to learn and generalize from three minutes of
data: Physics-constrained and uncertainty-aware neural stochastic differential equations. arXiv
preprint arXiv:2306.06335, 2023.

Thai Duong and Nikolay Atanasov. Hamiltonian-based neural ode networks on the se (3) manifold
for dynamics learning and control. arXiv preprint arXiv:2106.12782, 2021.

Sølve Eidnes, Alexander J Stasik, Camilla Sterud, Eivind Bøhn, and Signe Riemer-Sørensen. Pseudo-
hamiltonian neural networks with state-dependent external forces. Physica D: Nonlinear Phenom-
ena, 446:133673, 2023.

11

https://openreview.net/forum?id=Y4cs1Z3HnqL
https://openreview.net/forum?id=Y4cs1Z3HnqL
http://github.com/google/jax

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Marc Finzi, Ke Alexander Wang, and Andrew G Wilson. Simplifying hamiltonian and lagrangian
neural networks via explicit constraints. Advances in neural information processing systems, 33:
13880–13889, 2020.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning.
Advances in neural information processing systems, 34:20132–20145, 2021.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
critic methods. In International conference on machine learning, pp. 1587–1596. PMLR, 2018.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. In International conference on machine learning, pp. 2052–2062. PMLR, 2019.

Luca Furieri, Clara Lucía Galimberti, Muhammad Zakwan, and Giancarlo Ferrari-Trecate. Distributed
neural network control with dependability guarantees: a compositional port-hamiltonian approach.
In Learning for Dynamics and Control Conference, pp. 571–583. PMLR, 2022.

Carles Gelada and Marc G Bellemare. Off-policy deep reinforcement learning by bootstrapping the
covariate shift. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pp.
3647–3655, 2019.

Samuel Greydanus, Misko Dzamba, and Jason Yosinski. Hamiltonian neural networks. Advances in
neural information processing systems, 32, 2019.

Kaiyang Guo, Shao Yunfeng, and Yanhui Geng. Model-based offline reinforcement learning with
pessimism-modulated dynamics belief. Advances in Neural Information Processing Systems, 35:
449–461, 2022.

Jayesh K Gupta, Kunal Menda, Zachary Manchester, and Mykel Kochenderfer. Structured mechanical
models for robot learning and control. In Learning for Dynamics and Control, pp. 328–337. PMLR,
2020.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International conference
on machine learning, pp. 1861–1870. PMLR, 2018.

Kiyosi Ito, Kiyosi Itô, Kiyosi Itô, Japon Mathématicien, Kiyosi Itô, and Japan Mathematician. On
stochastic differential equations, volume 4. American Mathematical Society New York, 1951.

Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your model: Model-based
policy optimization. Advances in neural information processing systems, 32, 2019.

Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning as one big sequence
modeling problem. Advances in neural information processing systems, 34:1273–1286, 2021.

Natasha Jaques, Asma Ghandeharioun, Judy Hanwen Shen, Craig Ferguson, Agata Lapedriza, Noah
Jones, Shixiang Gu, and Rosalind Picard. Way off-policy batch deep reinforcement learning of
implicit human preferences in dialog. arXiv preprint arXiv:1907.00456, 2019.

Jihwan Jeong, Xiaoyu Wang, Michael Gimelfarb, Hyunwoo Kim, Scott Sanner, et al. Conser-
vative bayesian model-based value expansion for offline policy optimization. In The Eleventh
International Conference on Learning Representations, 2022.

Junteng Jia and Austin R Benson. Neural jump stochastic differential equations. Advances in Neural
Information Processing Systems, 32, 2019.

Rahul Kidambi, Aravind Rajeswaran, Praneeth Netrapalli, and Thorsten Joachims. Morel: Model-
based offline reinforcement learning. Advances in neural information processing systems, 33:
21810–21823, 2020.

Patrick Kidger. On neural differential equations. arXiv preprint arXiv:2202.02435, 2022.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Patrick Kidger, James Foster, Xuechen Li, and Terry J Lyons. Neural sdes as infinite-dimensional
gans. In International conference on machine learning, pp. 5453–5463. PMLR, 2021.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Lingkai Kong, Jimeng Sun, and Chao Zhang. Sde-net: Equipping deep neural networks with
uncertainty estimates. arXiv preprint arXiv:2008.10546, 2020.

Ilya Kostrikov, Rob Fergus, Jonathan Tompson, and Ofir Nachum. Offline reinforcement learning
with fisher divergence critic regularization. In International Conference on Machine Learning, pp.
5774–5783. PMLR, 2021.

Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabilizing off-policy
q-learning via bootstrapping error reduction. Advances in Neural Information Processing Systems,
32, 2019.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. Advances in Neural Information Processing Systems, 33:1179–1191, 2020.

Thanard Kurutach, Ignasi Clavera, Yan Duan, Aviv Tamar, and Pieter Abbeel. Model-ensemble
trust-region policy optimization. arXiv preprint arXiv:1802.10592, 2018.

Sascha Lange, Thomas Gabel, and Martin Riedmiller. Batch reinforcement learning. In Reinforcement
learning: State-of-the-art, pp. 45–73. Springer, 2012.

Sergey Levine, Peter Pastor, Alex Krizhevsky, Julian Ibarz, and Deirdre Quillen. Learning hand-
eye coordination for robotic grasping with deep learning and large-scale data collection. The
International journal of robotics research, 37(4-5):421–436, 2018.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tutorial,
review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Xuechen Li, Ting-Kam Leonard Wong, Ricky TQ Chen, and David K Duvenaud. Scalable gradients
and variational inference for stochastic differential equations. In Symposium on Advances in
Approximate Bayesian Inference, pp. 1–28. PMLR, 2020.

Jeremiah Liu, Zi Lin, Shreyas Padhy, Dustin Tran, Tania Bedrax Weiss, and Balaji Lakshminarayanan.
Simple and principled uncertainty estimation with deterministic deep learning via distance aware-
ness. Advances in neural information processing systems, 33:7498–7512, 2020.

Xin-Yang Liu and Jian-Xun Wang. Physics-informed dyna-style model-based deep reinforcement
learning for dynamic control. Proceedings of the Royal Society A, 477(2255):20210618, 2021.

Cong Lu, Philip J Ball, Jack Parker-Holder, Michael A Osborne, and Stephen J Roberts. Revisiting
design choices in offline model-based reinforcement learning. arXiv preprint arXiv:2110.04135,
2021.

Michael Lutter, Christian Ritter, and Jan Peters. Deep lagrangian networks: Using physics as model
prior for deep learning. arXiv preprint arXiv:1907.04490, 2019.

Stefano Massaroli, Michael Poli, Stefano Peluchetti, Jinkyoo Park, Atsushi Yamashita, and Hajime
Asama. Learning stochastic optimal policies via gradient descent. IEEE Control Systems Letters,
6:1094–1099, 2021.

Tatsuya Matsushima, Hiroki Furuta, Yutaka Matsuo, Ofir Nachum, and Shixiang Gu. Deployment-
efficient reinforcement learning via model-based offline optimization. arXiv preprint
arXiv:2006.03647, 2020.

Kunal Menda, Jayesh K Gupta, Zachary Manchester, and Mykel J Kochenderfer. Structured me-
chanical models for efficient reinforcement learning. In Workshop on Structure and Priors in
Reinforcement Learning, International Conference on Learning Representations, volume 11, 2019.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Ofir Nachum, Yinlam Chow, Bo Dai, and Lihong Li. Dualdice: Behavior-agnostic estimation of
discounted stationary distribution corrections. Advances in neural information processing systems,
32, 2019a.

Ofir Nachum, Bo Dai, Ilya Kostrikov, Yinlam Chow, Lihong Li, and Dale Schuurmans. Algaedice:
Policy gradient from arbitrary experience. arXiv preprint arXiv:1912.02074, 2019b.

Cyrus Neary and Ufuk Topcu. Compositional learning of dynamical system models using port-
hamiltonian neural networks. In Learning for Dynamics and Control Conference, pp. 679–691.
PMLR, 2023.

Santiago Sanchez-Escalonilla Plaza, Rodolfo Reyes-Baez, and Bayu Jayawardhana. Total energy
shaping with neural interconnection and damping assignment-passivity based control. In Learning
for Dynamics and Control Conference, pp. 520–531. PMLR, 2022.

Doina Precup, Richard S Sutton, and Sanjoy Dasgupta. Off-policy temporal-difference learning with
function approximation. In ICML, pp. 417–424, 2001.

Rong-Jun Qin, Xingyuan Zhang, Songyi Gao, Xiong-Hui Chen, Zewen Li, Weinan Zhang, and Yang
Yu. Neorl: A near real-world benchmark for offline reinforcement learning. Advances in Neural
Information Processing Systems, 35:24753–24765, 2022.

Rafael Rafailov, Tianhe Yu, Aravind Rajeswaran, and Chelsea Finn. Offline reinforcement learning
from images with latent space models. In Learning for Dynamics and Control, pp. 1154–1168.
PMLR, 2021.

Paria Rashidinejad, Hanlin Zhu, Kunhe Yang, Stuart Russell, and Jiantao Jiao. Optimal conservative
offline RL with general function approximation via augmented lagrangian. In The Eleventh
International Conference on Learning Representations, 2023. URL https://openreview.
net/forum?id=ZsvWb6mJnMv.

Marc Rigter, Bruno Lacerda, and Nick Hawes. Rambo-rl: Robust adversarial model-based offline
reinforcement learning. Advances in neural information processing systems, 35:16082–16097,
2022.

Manuel A Roehrl, Thomas A Runkler, Veronika Brandtstetter, Michel Tokic, and Stefan Obermayer.
Modeling system dynamics with physics-informed neural networks based on lagrangian mechanics.
IFAC-PapersOnLine, 53(2):9195–9200, 2020.

Guanya Shi, Xichen Shi, Michael O’Connell, Rose Yu, Kamyar Azizzadenesheli, Animashree
Anandkumar, Yisong Yue, and Soon-Jo Chung. Neural lander: Stable drone landing control
using learned dynamics. In 2019 international conference on robotics and automation (icra), pp.
9784–9790. IEEE, 2019.

RL196814 Stratonovich. A new representation for stochastic integrals and equations. SIAM Journal
on Control, 4(2):362–371, 1966.

Yihao Sun, Jiaji Zhang, Chengxing Jia, Haoxin Lin, Junyin Ye, and Yang Yu. Model-bellman
inconsistency for model-based offline reinforcement learning. In International Conference on
Machine Learning, pp. 33177–33194. PMLR, 2023.

Richard S Sutton, A Rupam Mahmood, and Martha White. An emphatic approach to the problem
of off-policy temporal-difference learning. The Journal of Machine Learning Research, 17(1):
2603–2631, 2016.

Phillip Swazinna, Steffen Udluft, and Thomas Runkler. Overcoming model bias for robust offline
deep reinforcement learning. Engineering Applications of Artificial Intelligence, 104:104366,
2021.

Huan-Hsin Tseng, Yi Luo, Sunan Cui, Jen-Tzung Chien, Randall K Ten Haken, and Issam El Naqa.
Deep reinforcement learning for automated radiation adaptation in lung cancer. Medical physics,
44(12):6690–6705, 2017.

14

https://openreview.net/forum?id=ZsvWb6mJnMv
https://openreview.net/forum?id=ZsvWb6mJnMv

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Joost Van Amersfoort, Lewis Smith, Yee Whye Teh, and Yarin Gal. Uncertainty estimation using a
single deep deterministic neural network. In International conference on machine learning, pp.
9690–9700. PMLR, 2020.

Nicolaas G Van Kampen. Itô versus stratonovich. Journal of Statistical Physics, 24:175–187, 1981.

Lu Wang, Wei Zhang, Xiaofeng He, and Hongyuan Zha. Supervised reinforcement learning with
recurrent neural network for dynamic treatment recommendation. In Proceedings of the 24th ACM
SIGKDD international conference on knowledge discovery & data mining, pp. 2447–2456, 2018.

Josiah Wong, Viktor Makoviychuk, Anima Anandkumar, and Yuke Zhu. Oscar: Data-driven
operational space control for adaptive and robust robot manipulation. In 2022 International
Conference on Robotics and Automation (ICRA), pp. 10519–10526. IEEE, 2022.

Yifan Wu, George Tucker, and Ofir Nachum. Behavior regularized offline reinforcement learning.
arXiv preprint arXiv:1911.11361, 2019.

Yue Wu, Shuangfei Zhai, Nitish Srivastava, Joshua M Susskind, Jian Zhang, Ruslan Salakhutdinov,
and Hanlin Goh. Uncertainty weighted actor-critic for offline reinforcement learning. In Marina
Meila and Tong Zhang (eds.), Proceedings of the 38th International Conference on Machine
Learning, volume 139 of Proceedings of Machine Learning Research, pp. 11319–11328. PMLR,
18–24 Jul 2021. URL https://proceedings.mlr.press/v139/wu21i.html.

Winnie Xu, Ricky TQ Chen, Xuechen Li, and David Duvenaud. Infinitely deep bayesian neural net-
works with stochastic differential equations. In International Conference on Artificial Intelligence
and Statistics, pp. 721–738. PMLR, 2022.

Taku Yamagata, Ahmed Khalil, and Raul Santos-Rodriguez. Q-learning decision transformer:
Leveraging dynamic programming for conditional sequence modelling in offline rl. In International
Conference on Machine Learning, pp. 38989–39007. PMLR, 2023.

Luxuan Yang, Ting Gao, Yubin Lu, Jinqiao Duan, and Tao Liu. Neural network stochastic differential
equation models with applications to financial data forecasting. Applied Mathematical Modelling,
115:279–299, 2023.

Yijun Yang, Jing Jiang, Tianyi Zhou, Jie Ma, and Yuhui Shi. Pareto policy pool for model-based
offline reinforcement learning. In International Conference on Learning Representations, 2021.

Fisher Yu, Haofeng Chen, Xin Wang, Wenqi Xian, Yingying Chen, Fangchen Liu, Vashisht Madhavan,
and Trevor Darrell. Bdd100k: A diverse driving dataset for heterogeneous multitask learning.
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp.
2636–2645, 2020a.

Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Y Zou, Sergey Levine, Chelsea Finn,
and Tengyu Ma. Mopo: Model-based offline policy optimization. Advances in Neural Information
Processing Systems, 33:14129–14142, 2020b.

Tianhe Yu, Aviral Kumar, Rafael Rafailov, Aravind Rajeswaran, Sergey Levine, and Chelsea Finn.
Combo: Conservative offline model-based policy optimization. Advances in neural information
processing systems, 34:28954–28967, 2021.

Hongchang Zhang, Jianzhun Shao, Shuncheng He, Yuhang Jiang, and Xiangyang Ji. Darl: distance-
aware uncertainty estimation for offline reinforcement learning. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 37, pp. 11210–11218, 2023a.

Junjie Zhang, Jiafei Lyu, Xiaoteng Ma, Jiangpeng Yan, Jun Yang, Le Wan, and Xiu Li. Uncertainty-
driven trajectory truncation for data augmentation in offline reinforcement learning. In ECAI 2023,
pp. 3018–3025. IOS Press, 2023b.

Yaofeng Desmond Zhong, Biswadip Dey, and Amit Chakraborty. Dissipative symoden: En-
coding hamiltonian dynamics with dissipation and control into deep learning. arXiv preprint
arXiv:2002.08860, 2020.

15

https://proceedings.mlr.press/v139/wu21i.html

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Yaofeng Desmond Zhong, Biswadip Dey, and Amit Chakraborty. Benchmarking energy-conserving
neural networks for learning dynamics from data. In Learning for dynamics and control, pp.
1218–1229. PMLR, 2021a.

Yaofeng Desmond Zhong, Biswadip Dey, and Amit Chakraborty. Extending lagrangian and hamil-
tonian neural networks with differentiable contact models. Advances in Neural Information
Processing Systems, 34:21910–21922, 2021b.

Aiqing Zhu, Pengzhan Jin, and Yifa Tang. Deep hamiltonian networks based on symplectic integrators.
arXiv preprint arXiv:2004.13830, 2020.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

A RELATED WORK - EXTENSION

Offline model-free RL: Model-free RL algorithms in the offline setting aim to learn an optimal
policy within the available data coverage without learning a dynamics model. Existing methods
focus on learning policies that stay close to the data logging policy and avoid out-of-distribution
actions by constraining the policy explicitly to the data logging policy Wu et al. (2019); Fujimoto
et al. (2019); Fujimoto & Gu (2021), importance sampling Precup et al. (2001); Sutton et al. (2016);
Gelada & Bellemare (2019); Nachum et al. (2019a); Rashidinejad et al. (2023), learning conservative
value functions Nachum et al. (2019b); Kumar et al. (2020); Kostrikov et al. (2021), and uncertainty
quantification Kumar et al. (2019); Agarwal et al. (2020); An et al. (2021); Wu et al. (2021); Bai
et al. (2022). Although they refrain from the computational expense of learning a dynamics model,
model-free approaches commonly struggle when the data logging policy is sub-optimal because
optimal actions become out-of-distribution.

B DISTANCE-AWARE UNCERTAINTY ESTIMATOR

B.1 PROOF OF LEMMA 1

This section provides results supporting the claim of Lemma 1. To this end, we analyze the extrema
of the optimization problem

η̄ϕ = argminη E(s,a)∼D
[
E(s′,a′)∼Uniform(S×A)[η(s

′,a′)− ∥(s,a)− (s′,a′)∥]2
]
. (9)

Under the assumption that S ×A is compact, we can reformulate the optimization problem according
to Fubini’s theorem as

minη E(s′,a′)∼Uniform(S×A)

[
E(s,a)∼D[η(s

′,a′)− ∥(s,a)− (s′,a′)∥]2
]
. (10)

Let z = (s,a) and z′ = (s′,a′). We can rewrite the objective function as

J(η(z′)) =

∫
S×A

1

|S × A|
Ez∼D[η(z

′)− ∥z − z′∥]2 dz. (11)

The extrema of the objective function are solutions of

∂J(η(z′))

∂η(z′)
= 0 (12)

⇒ ∂

∂η(z′)

(
Ez∼D[η(z

′)− ∥z − z′∥]2
)
= 0 (13)

⇒ Ez∼D[η(z
′)− ∥z − z′∥] = 0. (14)

Thus, by expanding the expectation, we have

Ez∼D[η(z
′)]− Ez∼D[∥z − z′∥] = 0 (15)

⇒ η(z′) = Ez∼D[∥z − z′∥]. (16)

We can then conclude that the optimal solution η is a convex function since it is a linear combination
of convex functions.

Additionally, we have through Jensen’s inequality that

η(z′) = Ez∼D[∥z − z′∥] ≥ ∥Ez∼D[z]− z′∥ = ∥z0 − z′∥ = 0, (17)

where z0 = Ez∼D[z] is the state-action centroid of the dataset. Thus, the first property of Lemma 1 is
proven.

Finally, let’s prove that the negative of the gradient points inside the convex hull. By linearity of the
gradient, we have

−∇η(z′) = Ez∼D[∥−
z′ − z

∥z′ − z∥
∥]. (18)

This implies that for any point z′ that lies outside of the training dataset, the negative of the gradient
is a non-negative combination of vectors − z′−z

∥z′−z∥ that points inside the convex hull of the dataset.
This concludes the proof of Lemma 1.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

B.2 ILLUSTRATION OF THE DISTANCE-AWARE TERM ON TOY 2-D EXAMPLES

Distance-aware estimator as model epistemic uncertainty estimator. Most offline model-based
reinforcement learning approaches employ either Monte Carlo (MC) dropout or model ensemble for
epistemic uncertainty estimation. Although such approaches have demonstrated incredible results,
Liu et al. (2020); Van Amersfoort et al. (2020) show that MC Dropout or model ensembles are
unaware of the distance between unseen samples and training datasets, even in simple toy examples.
Besides, these uncertainty estimators are parametric models targeted for reconstruction or regression
objectives solely based on in-distribution data rather than directly tasked for uncertainty estimation.
Therefore, they might discard relevant information, such as the distances between different samples
or distances to out-of-sample data. We also refer to Figure 1 from Zhang et al. (2023a), where the
authors demonstrate how these methods could not yield accurate distance-based uncertainty estimates.

Instead, using a distance-aware uncertainty estimator preserves the data’s mutual relations while
providing the ability to detect out-of-sample data. Besides, we can theoretically relate the problem
of estimating the cross entropy between learned model dynamics and ground truth dynamics to
calculating data point distances to a k-nearest neighbor clustering of the training dataset. Such
cross-entropy is crucial for enforcing pessimism when training offline RL policies and for providing
tight performance bounds. One of our goals is to design a parametric distance-aware uncertainty
estimator that can efficiently cluster the dataset without performing k-nearest neighbor clustering and
that can directly be embedded into the neural SDE formulation.

Our term ηϕ accurately provides distance-based uncertainty estimates. We seek to demonstrate
that the loss functions in equation 3 and equation 4 are sound and, upon convergence, provide a
distance-based uncertainty estimate term ηϕ that can efficiently cluster the training dataset. To this
end, we generate three datasets of a two-dimensional system as illustrated in Figure 6. Our approach
can cluster the training dataset in all examples while providing a clear delimitation between in-sample
and out-of-sample data points.

Figure 6: Visualization of the distance-aware uncertainty estimate ηϕ on three generated dataset. The
red points represent the state-action samples in the dataset. Yellow indicates high uncertainty, while
dark blue represents low uncertainty. X-axis and y-axis denote the states of the system.

C EXPERIMENTAL DETAILS

C.1 BENCHMARKS

We empirically evaluate NUNO in two continuous control benchmarks: D4RL and NeoRL. We utilize
three MuJoCo environments from both benchmarks: halfcheetah, hopper, and walker2d. In D4RL,
each environment comes with four types of datasets: (1) random-v2, where a randomly initialized
policy collects the samples; (2) medium-v2, where an early-stopped policy trained via SAC Haarnoja
et al. (2018) for one million steps is the data-logging policy; (3) medium-replay-v2, where the
datasets comprises of the samples from the buffer of the early-stopped policy used for medium-v2;
(4) medium-expert-v2, where half of the samples come from a medium-level policy and the other
from an expert one. Our experiments use the v2 version of D4RL datasets. We report the results of
MOBILE, RAMBO, and EDAC from their original papers, as the experiments were on v2 datasets.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

For the rest, we provide the scores reported in TATU+MOPO paper (Zhang et al., 2023b), as our
codebase is based on theirs. We note that MOBILE and EDAC train four independent runs for three
million gradient steps, and RAMBO reports five runs of two million gradient steps, in contrast to
five runs of one million steps for the rest.

In comparison, the NeoRL (Near real-world offline RL) benchmark consists of datasets collected
by policies with validated performance. More specifically, NeoRL trains a policy via SAC until
convergence and uses several checkpoints from the training to collect data. These checkpoints
correspond to policies with three levels of sub-optimality: 25%, 50%, and 75% of expert returns,
which NeoRL calls low, medium, and high. The datasets we investigate consist of 1000 trajectories.
We report the results of BC, CQL, and MOPO from the paper proposing NeoRL (Qin et al., 2022).
For the rest, we provide the scores reported in the MOBILE paper (Sun et al., 2023). We exclude
TATU+MOPO, TATU+MOPO, COMBO, and MOREL because NeoRL paper does not report
any results for them, and also it would be extremely time-consuming to carry out a hyperparameter
search for each approach. Similar to the experiments with D4RL, MOBILE results come from four
independent training runs of three million gradient steps.

C.2 POLICY OPTIMIZATION

Our implementation heavily relies on the codebase of Zhang et al. (2023b), which proposes uncertainty
truncation, e.g., TATU+MOPO and TATU+COMBO. We use the default parameters of SAC
described in Zhang et al. (2023b). We train RL agents on a cluster with NVIDIA RTX A5000 GPUs
and an Intel(R) Xeon(R) Gold 6226R CPU @ 2.90GHz. Given a memory of approximately 6GB, a
training run of 1 million gradient steps take around 12 hours.

C.3 HYPERPARAMETERS OF NUNO

NUNO has four hyperparameters: real ratio β, rollout length h, CVaR coefficient α to set a truncation
threshold, and uncertainty penalization threshold λpen. The real ratio parameter β refers to the
ratio of samples from the real dataset in a mini-batch used to update the SAC policy. We set β to
0.05, as TATU+MOPO, for all tasks in our experiments. For the rest of the parameters, we run a
search over the following set of values: h ∈ {5, 10, 15, 20}, α ∈ {0.9, 0.95, 0.98, 0.99, 1.0}, and
λpen ∈ {0.001, 0.1, 1}. Our hyperparameter search procedure starts by tuning for rollout length h
with α = 0.9 and λpen = 0.001. Using the best performing, namely, the highest human-normalized
score yielding rollout length, we tune for α. Finally, we run a search for λpen. Table 3 reports the
best-performing values for each task in our experiments. We use the same values for NUNOR.

C.4 NEURAL SDE TRAINING

We implement all the numerical experiments using the python library JAX Bradbury et al. (2018), in
order to take advantage of its automatic differentiation and just-in-time compilation features. We use
Python 3.8.5 for the experiments and train all our models on a laptop computer with an Intel i9-9900
3.1 GHz CPU with 32 GB of RAM and a GeForce RTX 2060, TU106.

For training the neural SDE, we use randomly sampled sequences of horizon 2 for all the environments.
We take the timestep of the ground truth environment and use it as the time step to integrate the
neural SDE models. We use Euler-Maruyama as the integration scheme in all our experiments and
generate one particle during each integration step to compute the expectation defined in Ldata. For the
regularization loss term Lµ, we define µϕ(st,at) = eNNϕ(st,at) ensuring that the output is positive,
where NNϕ is a neural network parametrized by ϕ.

For the neural SDE architecture, we parameterize ηϕ as a neural network with two hidden layers of
size 64 with swish activation functions. We parameterize the uncertainty term σϕ as a neural network
with two hidden layers of size 256 with tanh activation functions. The reward’s drift term f reward

θ is
parameterized as a neural network with three hidden layers of size 64 with swish activation functions
while the other drift terms are parameterized with three hidden layers of size 256 and swish activation
functions. Finally, the strong convexity neural network is parameterized with two hidden layers of
size 32 with swish activation functions.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Table 3: Hyperparameters of NUNO in D4RL and NeoRL MuJoCo tasks

Task h α λpen

hc-random 20 1 0.001
hp-random 10 1 0.001
wk-random 10 0.99 0.001

hc-medium 5 0.99 1
hp-medium 10 0.99 1
wk-medium 10 0.98 1

hc-medium-replay 5 0.9 1
hp-medium-replay 10 0.99 1
wk-medium-replay 10 0.95 1

hc-medium-expert 10 0.95 1
hp-medium-expert 10 0.99 1
wk-medium-expert 10 0.98 1

hc-low 10 1 1
hp-low 10 0.99 0.001
wk-low 5 0.99 0.001

hc-medium 10 0.99 1
hp-medium 5 0.9 0.1
wk-medium 5 0.99 0.001

hc-high 5 0.99 1
hp-high 5 0.9 0.1
wk-high 5 0.99 1

The distance-aware diffusion term is trained with a ball radius of 0.1 in all environments and a strong
convexity coefficient of 1. We use λgrad = 10−4 and 20 samples to obtain the state-action needed to
enforce the strong convexity constraint.

Training optimizer hyperparameters. We use the Adam optimizer (Kingma & Ba, 2014) for all
optimization problems. We use the default hyperparameters for the optimizer, except for the learning
rate, which we linearly decay from 0.01 to 0.001 over the first 5000 gradient steps. We use early
stopping criteria for all our experiments. We use a batch size of 128 for the neural SDE training.

D ABLATION STUDY FOR UNCERTAINTY ESTIMATORS IN POLICY TRAINING

NUNO incorporates the distance-aware uncertainty estimate ηϕ into the offline RL framework to
enforce conservatism in the learned policy. Specifically, NUNO uses ηϕ to penalize and truncate the
transitions generated by the learned neural SDE model during the RL policy training. In an ablation
study, we investigate whether the choice of the uncertainty estimator impacts the learned policy. We
compare NUNO, which uses the distance-aware uncertainty estimate ηϕ, corresponding to epistemic
uncertainty, against NUNOal, which utilizes the aleatoric uncertainty estimate σϕ (5). We evaluate
NUNO and NUNOal in two types of datasets of the D4RL benchmark: random and medium-expert.
Random datasets have low-quality trajectories, as the data-logging policies are sub-optimal. At the
same time, random datasets have high coverage, as the trajectories showcase random behavior. In
comparison, medium-expert datasets have high-quality trajectories yet low coverage as the data-
logging policies are not random, and they act expert-like. D4RL benchmarks do not consist of very
noisy datasets. Hence, we expect to have low aleatoric uncertainty in both datasets. However, data
coverage determines epistemic uncertainty. We expect low epistemic uncertainty in random datasets
and high in medium-expert ones.

Table 4 shows the best average human-normalized scores NUNO and NUNOal achieve, whereas
Figure 7 demonstrates their performance progression. In random datasets, NUNO and NUNOal both
achieve SOTA results, with NUNO performing better in halfcheetah and walker2d. In contrast, NUNOal
performs significantly worse in medium-expert datasets, except in hopper, where NUNO and NUNOal
achieve similar scores. These results align with our expectations based on the coverage properties of
random and medium-expert datasets. A critical remark is that the reward penalty coefficient λpen

is set to a low value, λpen = 0.001, in random datasets. Hence, NUNO and NUNOal practically do
not penalize the agent, except when the uncertainty is estimated to be very high. In comparison, in
medium-expert datasets, the reward penalty coefficient is λpen = 1, hence they frequently penalize

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Table 4: Average human-normalized scores of NUNO and NUNOal in D4RL benchmarks. Due to
limited space, we use abbreviations of task and dataset names: hc = halfcheetah, hp = hopper, wk =
walker2d; r = random, me = medium-expert.We report the mean and standard deviation (following
±) of best scores among independent runs. Bold scores indicate the best for each task.

Task & Data hc-r hp-r wk-r hc-me hp-me wk-me

NUNO 52.7±3.4 73.2±9.8 27.7±0.9 97.0±0.5 112.2±0.3 113.2±0.5

NUNOal 50.6±2.8 71.7±9.8 18.3±1.7 10.5±0.4 112.6±0.9 48.3±11.7

0.0 0.2 0.4 0.6 0.8 1.0
Number of epochs ×103

0

20

40

60

80

H
um

an
 n

or
m

al
iz

ed
 s

co
re

NUNO
NUNOal

(a) hopper-random-v2

0.0 0.2 0.4 0.6 0.8 1.0
Number of epochs ×103

0

10

20

30

40

50

H
um

an
 n

or
m

al
iz

ed
 s

co
re

NUNO
NUNOal

(b) halfcheetah-random-v2

0.0 0.2 0.4 0.6 0.8 1.0
Number of epochs ×103

5

10

15

20

25

30

H
um

an
 n

or
m

al
iz

ed
 s

co
re

NUNO
NUNOal

(c) walker2d-random-v2

0.0 0.2 0.4 0.6 0.8 1.0
Number of epochs ×103

0

25

50

75

100

H
um

an
 n

or
m

al
iz

ed
 s

co
re

NUNO
NUNOal

(d) hopper-medium-expert-v2

0.0 0.2 0.4 0.6 0.8 1.0
Number of epochs ×103

0

20

40

60

80

100

H
um

an
 n

or
m

al
iz

ed
 s

co
re

NUNO
NUNOal

(e) halfcheetah-medium-expert-v2

0.0 0.2 0.4 0.6 0.8 1.0
Number of epochs ×103

0

25

50

75

100

H
um

an
 n

or
m

al
iz

ed
 s

co
re

NUNO
NUNOal

(f) walker2d-medium-expert-v2

Figure 7: Ablation study: The impact of the choice of uncertainty estimator on policy learning.

the agent. As the epistemic uncertainty is expected to be high in this setting, the distance-aware
uncertainty estimate is superior to the aleatoric uncertainty estimate.

E DETAILED RESULTS

This section provides detailed results on model accuracy and training progression.

E.1 MODEL ANALYSIS

Figure 8 provides model analysis results for D4RL Hopper and HalfCheetah (see Section 5 for results
in D4RL Walker2d). In-distribution evaluation demonstrates how learned dynamics models perform
over varying prediction horizons in trajectories from datasets with which the models are trained.
In D4RL Hopper, probabilistic ensembles yield significantly higher prediction errors than neural
SDEs as the horizon lengths increase. In D4RL HalfCheetah, the same pattern occurs, except in
halfcheetah-medium-replay-v2, where all models provide low prediction error. Out-of-distribution
evaluation assesses how learned dynamics models trained with low-quality datasets, i.e., random,
perform in trajectories collected by behavior policies that are better than a random policy. All models
perform well in trajectories from the random task, which is in-distribution. However, in D4RL
Hopper, ensembles yield high prediction error in medium-replay and medium-expert as the horizon
length increases. In D4RL HalfCheetah, we observe the same results, except in medium-replay.

E.2 TRAINING PROGRESSION

Figures 9, 10, and 11 demonstrate the training progression in D4RL domains, Hopper, HalfCheetah
and Walker2d, respectively. The first columns illustrate the progression of human normalized score in
evaluation episodes ran after every epoch during training. In most tasks, NUNO and NUNOR achieve
similar human normalized scores at the end of the training, with some exceptions such as hopper-

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

1 10 20 25
Horizon

103

108

1013

1018

Pr
ed

ic
tio

n
E

rr
or

hopper-medium-v2
hopper-medium-replay-v2
hopper-medium-expert-v2

nsde_rew
nsde
ensemble

(a) D4RL Hopper: In-distribution

1 2 5 7
Horizon

101

103

105

107

109

Pr
ed

ic
tio

n
E

rr
or

hopper-random-v2
hopper-medium-v2
hopper-medium-replay-v2
hopper-medium-expert-v2

nsde_rew
nsde
ensemble

(b) D4RL Hopper: Out-of-distribution

1 10 20 25
Horizon

102

104

106

108

Pr
ed

ic
tio

n
E

rr
or

halfcheetah-medium-v2
halfcheetah-medium-replay-v2
halfcheetah-medium-expert-v2

nsde_rew
nsde
ensemble

(c) D4RL HalfCheetah: In-distribution

1 10 20 30
Horizon

103

106

109

1012

Pr
ed

ic
tio

n
E

rr
or

halfcheetah-random-v2
halfcheetah-medium-v2
halfcheetah-medium-replay-v2
halfcheetah-medium-expert-v2

nsde_rew
nsde
ensemble

(d) D4RL HalfCheetah: Out-of-distribution

Figure 8: Model analysis: We illustrate the evolution of model prediction error in different datasets
for D4RL Hopper and HalfCheetah. (a) In-distribution: Evaluation of the datasets in which the
models are trained. (b) Out-of-distribution: Evaluation of models, trained via random, in trajectories
from other datasets.

random-v2, halfcheetah-medium-v2, halfcheetah-medium-replay-v2, and walker2d-medium-v2. The
second and third columns show the progression of the uncertainty estimates of neural SDEs trained
in NUNO and NUNOR, as well as those models’ uncertainty estimates for random actions and actions
from offline datasets. In random datasets, progress, random, and data curves are close to each other,
as these datasets consist of trajectories from a random policy. In the rest of the tasks, neural SDEs
can distinguish in-distribution actions (data) from out-of-distribution actions (random). Furthermore,
as the trained policy progresses, the corresponding uncertainty estimates of neural SDEs approach
the data curve. This is expected as neural SDEs generate synthetic trajectories close to offline data,
and the policies’ replay buffers are initially augmented with the offline dataset.

Figure 12 demonstrates the progression of human normalized score in NeoRL tasks. Like D4RL, in
most tasks, NUNO and NUNOR reach similar scores. In Hopper-v3-Medium-1000 and Walker2d-v3-
Medium-1000 NUNO outperforms NUNOR. The opposite occurs in HalfCheetah-v3-Low-1000 and
HalfCheetah-v3-Medium-1000.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

0.0 0.2 0.4 0.6 0.8 1.0
Number of epochs ×103

0

20

40

60

80

H
um

an
 n

or
m

al
iz

ed
 s

co
re

NUNOR

NUNO

(a) Random: Score

0.0 0.2 0.4 0.6 0.8 1.0
Number of epochs ×103

0.10

0.15

0.20

0.25

U
nc

er
ta

in
ty

random
data
progress

(b) Random: NUNO uncertainty

0.0 0.2 0.4 0.6 0.8 1.0
Number of epochs ×103

0.10

0.15

0.20

U
nc

er
ta

in
ty

random
data
progress

(c) Random: NUNOR uncertainty

0.0 0.2 0.4 0.6 0.8 1.0
Number of epochs ×103

0

20

40

60

80

100

H
um

an
 n

or
m

al
iz

ed
 s

co
re

NUNOR

NUNO

(d) Medium: Score

0.0 0.2 0.4 0.6 0.8 1.0
Number of epochs ×103

0.2

0.3

0.4

0.5

U
nc

er
ta

in
ty

random
data
progress

(e) Medium: NUNO uncertainty

0.0 0.2 0.4 0.6 0.8 1.0
Number of epochs ×103

0.1

0.2

0.3

0.4

U
nc

er
ta

in
ty

random
data
progress

(f) Medium: NUNOR uncertainty

0.0 0.2 0.4 0.6 0.8 1.0
Number of epochs ×103

0

20

40

60

80

100

H
um

an
 n

or
m

al
iz

ed
 s

co
re

NUNOR

NUNO

(g) MR: Score

0.0 0.2 0.4 0.6 0.8 1.0
Number of epochs ×103

0.1

0.2

0.3

0.4

U
nc

er
ta

in
ty

random
data
progress

(h) MR: NUNO uncertainty

0.0 0.2 0.4 0.6 0.8 1.0
Number of epochs ×103

0.1

0.2

0.3

0.4
U

nc
er

ta
in

ty
random
data
progress

(i) MR: NUNOR uncertainty

0.0 0.2 0.4 0.6 0.8 1.0
Number of epochs ×103

0

25

50

75

100

H
um

an
 n

or
m

al
iz

ed
 s

co
re

NUNOR

NUNO

(j) ME: Score

0.0 0.2 0.4 0.6 0.8 1.0
Number of epochs ×103

0.1

0.2

0.3

0.4

U
nc

er
ta

in
ty

random
data
progress

(k) ME: NUNO uncertainty

0.0 0.2 0.4 0.6 0.8 1.0
Number of epochs ×103

0.1

0.2

0.3

0.4

U
nc

er
ta

in
ty

random
data
progress

(l) ME: NUNOR uncertainty

Figure 9: Training progression in D4RL Hopper: In the first column, we report the progression of
human normalized score in evaluation episodes during training. In the second and third columns, we
demonstrate how the uncertainty estimates of NSDEs in NUNO and NUNOR evolve when evaluated
with trained policies’ actions in one-step rollouts from states in the dataset. ’random’ and ’data’
refer to the uncertainty estimates of the learned model given actions from a random policy and the
dataset, respectively. Each row corresponds to progression in a different task: random, medium,
medium-replay, and medium-expert.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

0.0 0.2 0.4 0.6 0.8 1.0
Number of epochs ×103

0

10

20

30

40

50

H
um

an
 n

or
m

al
iz

ed
 s

co
re

NUNOR

NUNO

(a) Random: Score

0.0 0.2 0.4 0.6 0.8 1.0
Number of epochs ×103

0.1

0.2

0.3

0.4

U
nc

er
ta

in
ty

random
data
progress

(b) Random: NUNO uncertainty

0.0 0.2 0.4 0.6 0.8 1.0
Number of epochs ×103

0.1

0.2

0.3

U
nc

er
ta

in
ty

random
data
progress

(c) Random: NUNOR uncertainty

0.0 0.2 0.4 0.6 0.8 1.0
Number of epochs ×103

0

20

40

60

H
um

an
 n

or
m

al
iz

ed
 s

co
re

NUNOR

NUNO

(d) Medium: Score

0.0 0.2 0.4 0.6 0.8 1.0
Number of epochs ×103

0.2

0.4

0.6

0.8

1.0

U
nc

er
ta

in
ty

random
data
progress

(e) Medium: NUNO uncertainty

0.0 0.2 0.4 0.6 0.8 1.0
Number of epochs ×103

0.2

0.4

0.6

0.8

1.0

U
nc

er
ta

in
ty

random
data
progress

(f) Medium: NUNOR uncertainty

0.0 0.2 0.4 0.6 0.8 1.0
Number of epochs ×103

0

20

40

60

H
um

an
 n

or
m

al
iz

ed
 s

co
re

NUNOR

NUNO

(g) MR: Score

0.0 0.2 0.4 0.6 0.8 1.0
Number of epochs ×103

0.2

0.0

0.2

0.4

0.6

0.8

U
nc

er
ta

in
ty

random
data
progress

(h) MR: NUNO uncertainty

0.0 0.2 0.4 0.6 0.8 1.0
Number of epochs ×103

0.0

0.2

0.4

0.6
U

nc
er

ta
in

ty
random
data
progress

(i) MR: NUNOR uncertainty

0.0 0.2 0.4 0.6 0.8 1.0
Number of epochs ×103

0

20

40

60

80

100

H
um

an
 n

or
m

al
iz

ed
 s

co
re

NUNOR

NUNO

(j) ME: Score

0.0 0.2 0.4 0.6 0.8 1.0
Number of epochs ×103

0.2

0.4

0.6

0.8

1.0

U
nc

er
ta

in
ty

random
data
progress

(k) ME: NUNO uncertainty

0.0 0.2 0.4 0.6 0.8 1.0
Number of epochs ×103

0.2

0.4

0.6

0.8

1.0

U
nc

er
ta

in
ty

random
data
progress

(l) ME: NUNOR uncertainty

Figure 10: Training progression in D4RL HalfCheetah: In the first column, we report the progression
of human normalized score in evaluation episodes during training. In the second and third columns,
we demonstrate how the uncertainty estimates of NSDEs in NUNO and NUNOR evolve when evaluated
with trained policies’ actions in one-step rollouts from states in the dataset. ’random’ and ’data’
refer to the uncertainty estimates of the learned model given actions from a random policy and the
dataset, respectively. Each row corresponds to progression in a different task: random, medium,
medium-replay, and medium-expert.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

0.0 0.2 0.4 0.6 0.8 1.0
Number of epochs ×103

5

10

15

20

25

30

H
um

an
 n

or
m

al
iz

ed
 s

co
re

NUNOR

NUNO

(a) Random: Score

0.0 0.2 0.4 0.6 0.8 1.0
Number of epochs ×103

0.10

0.15

0.20

0.25

0.30

U
nc

er
ta

in
ty

random
data
progress

(b) Random: NUNO uncertainty

0.0 0.2 0.4 0.6 0.8 1.0
Number of epochs ×103

0.05

0.10

0.15

0.20

0.25

U
nc

er
ta

in
ty

random
data
progress

(c) Random: NUNOR uncertainty

0.0 0.2 0.4 0.6 0.8 1.0
Number of epochs ×103

0

20

40

60

80

H
um

an
 n

or
m

al
iz

ed
 s

co
re

NUNOR

NUNO

(d) Medium: Score

0.0 0.2 0.4 0.6 0.8 1.0
Number of epochs ×103

0.1

0.2

0.3

0.4

0.5

U
nc

er
ta

in
ty

random
data
progress

(e) Medium: NUNO uncertainty

0.0 0.2 0.4 0.6 0.8 1.0
Number of epochs ×103

0.1

0.2

0.3

0.4

0.5

U
nc

er
ta

in
ty

random
data
progress

(f) Medium: NUNOR uncertainty

0.0 0.2 0.4 0.6 0.8 1.0
Number of epochs ×103

0

20

40

60

80

100

H
um

an
 n

or
m

al
iz

ed
 s

co
re

NUNOR

NUNO

(g) MR: Score

0.0 0.2 0.4 0.6 0.8 1.0
Number of epochs ×103

0.1

0.2

0.3

0.4

0.5

U
nc

er
ta

in
ty

random
data
progress

(h) MR: NUNO uncertainty

0.0 0.2 0.4 0.6 0.8 1.0
Number of epochs ×103

0.1

0.2

0.3

0.4

0.5
U

nc
er

ta
in

ty
random
data
progress

(i) MR: NUNOR uncertainty

0.0 0.2 0.4 0.6 0.8 1.0
Number of epochs ×103

0

25

50

75

100

H
um

an
 n

or
m

al
iz

ed
 s

co
re

NUNOR

NUNO

(j) ME: Score

0.0 0.2 0.4 0.6 0.8 1.0
Number of epochs ×103

0.2

0.4

0.6

U
nc

er
ta

in
ty

random
data
progress

(k) ME: NUNO uncertainty

0.0 0.2 0.4 0.6 0.8 1.0
Number of epochs ×103

0.1

0.2

0.3

0.4

0.5

0.6

U
nc

er
ta

in
ty

random
data
progress

(l) ME: NUNOR uncertainty

Figure 11: Training progression in D4RL Walker2d: In the first column, we report the progression of
human normalized score in evaluation episodes during training. In the second and third columns, we
demonstrate how the uncertainty estimates of NSDEs in NUNO and NUNOR evolve when evaluated
with trained policies’ actions in one-step rollouts from states in the dataset. ’random’ and ’data’
refer to the uncertainty estimates of the learned model given actions from a random policy and the
dataset, respectively. Each row corresponds to progression in a different task: random, medium,
medium-replay, and medium-expert.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

0.0 0.2 0.4 0.6 0.8 1.0
Number of epochs ×103

10

20

30

H
um

an
 n

or
m

al
iz

ed
 s

co
re

NUNOR

NUNO

(a) Hopper-v3-Low-1000

0.0 0.2 0.4 0.6 0.8 1.0
Number of epochs ×103

0

20

40

60

80

100
H

um
an

 n
or

m
al

iz
ed

 s
co

re

NUNOR

NUNO

(b) Hopper-v3-Medium-1000

0.0 0.2 0.4 0.6 0.8 1.0
Number of epochs ×103

0

20

40

60

80

100

H
um

an
 n

or
m

al
iz

ed
 s

co
re

NUNOR

NUNO

(c) Hopper-v3-High-1000

0.0 0.2 0.4 0.6 0.8 1.0
Number of epochs ×103

0

20

40

60

H
um

an
 n

or
m

al
iz

ed
 s

co
re

NUNOR

NUNO

(d) HalfCheetah-v3-Low-1000

0.0 0.2 0.4 0.6 0.8 1.0
Number of epochs ×103

0

20

40

60

80

H
um

an
 n

or
m

al
iz

ed
 s

co
re

NUNOR

NUNO

(e) HalfCheetah-v3-Medium-1000

0.0 0.2 0.4 0.6 0.8 1.0
Number of epochs ×103

0

20

40

60

80

H
um

an
 n

or
m

al
iz

ed
 s

co
re

NUNOR

NUNO

(f) HalfCheetah-v3-High-1000

0.0 0.2 0.4 0.6 0.8 1.0
Number of epochs ×103

0

20

40

H
um

an
 n

or
m

al
iz

ed
 s

co
re

NUNOR

NUNO

(g) Walker2d-v3-Low-1000

0.0 0.2 0.4 0.6 0.8 1.0
Number of epochs ×103

0

20

40

60

H
um

an
 n

or
m

al
iz

ed
 s

co
re

NUNOR

NUNO

(h) Walker2d-v3-Medium-1000

0.0 0.2 0.4 0.6 0.8 1.0
Number of epochs ×103

0

20

40

60

H
um

an
 n

or
m

al
iz

ed
 s

co
re

NUNOR

NUNO

(i) Walker2d-v3-High-1000

Figure 12: Training progression in NeoRL tasks: Each subfigure reports the progression of human
normalized score in evaluation episodes during training.

26

	Introduction
	Related Work
	Preliminaries
	Markov Decision Processes
	Offline model-based RL
	Neural Stochastic Differential Equations as Dynamics Models

	NUNO
	Distance-Aware Uncertainty Estimator
	Physics-Inspired Neural SDEs
	Distance-Aware Regularized Offline RL

	Experimental Results
	How does NUNO perform in standard control benchmarks?
	D4RL
	NeoRL

	Can NUNO's uncertainty estimator effectively quantify uncertainty?
	How does NUNO address the model exploitation phenomenon?

	Conclusion
	Related Work - Extension
	Distance-Aware Uncertainty Estimator
	Proof of lem:convexity
	Illustration of the Distance-Aware Term on Toy 2-D Examples

	Experimental Details
	Benchmarks
	Policy Optimization
	Hyperparameters of NUNO
	Neural SDE Training

	Ablation Study for Uncertainty Estimators in Policy Training
	Detailed Results
	Model analysis
	Training Progression

