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ABSTRACT

Marginal-based methods achieve promising performance in the synthetic data
competition hosted by the National Institute of Standards and Technology (NIST).
To deal with high-dimensional data, the distribution of synthetic data is repre-
sented by a probabilistic graphical model (e.g., a Bayesian network), while the raw
data distribution is approximated by a collection of low-dimensional marginals.
Differential privacy (DP) is guaranteed by introducing random noise to each low-
dimensional marginal distribution. Despite its promising performance in practice,
the statistical properties of marginal-based methods are rarely studied in the lit-
erature. In this paper, we study DP data synthesis algorithms based on Bayesian
networks (BN) from a statistical perspective. We establish a rigorous accuracy
guarantee for BN-based algorithms, where the errors are measured by the total
variation (TV) distance or the L2 distance. Related to downstream machine learn-
ing tasks, an upper bound for the utility error of the DP synthetic data is also
derived. To complete the picture, we establish a lower bound for TV accuracy that
holds for every ϵ-DP synthetic data generator.

1 INTRODUCTION

In recent years, the problem of privacy-preserving data analysis has become increasingly important
and differential privacy (Dwork et al., 2006) appears as the foundation of data privacy. Differential
privacy (DP) techniques are widely adopted by industrial companies and the U.S. Census Bureau
(Johnson et al., 2017; Erlingsson et al., 2014; Nguyên et al., 2016; The U.S. Census Bureau, 2020;
Abowd, 2018).

One important method to protect data privacy is differentially private data synthesis (DPDS). In
the setting of DPDS, a synthetic dataset is generated by some DP data synthesis algorithms from
a real dataset. Then, one can release the synthetic dataset and the real dataset will be protected.
Recently, National Institutes of Standards and Technology (NIST) organized the differential privacy
synthetic data competition (NIST, 2018; 2019; 2020-2021). In the NIST competition, the state-of-
the-art algorithms are marginal-based (McKenna et al., 2021), where the synthetic dataset is drawn
from a noisy marginal distribution estimated by the real dataset. To deal with high-dimensional
data, the distribution is usually modeled by the probabilistic graphical model (PGM) such as the
Bayesian networks or Markov random fields (Jordan, 1999; Wainwright et al., 2008; Zhang et al.,
2017; Mckenna et al., 2019; Cai et al., 2021).

Despite its empirical success in releasing high-dimensional data, as far as we know, the theoretical
guarantee of marginal-based DPDS approaches is rarely studied in literature. In this paper, we focus
on a DPDS algorithm based on the Bayesian networks (BN) known as the PrivBayes (Zhang et al.,



Published as a conference paper at ICLR 2023

2017) that is widely used in synthesizing sparse data (sparsity measured by the degree of a BN that
will be defined later). A BN is a directed acyclic graph where each vertex is a low-dimensional
marginal distribution and each edge is the conditional distribution between two vertices. It approx-
imates the high-dimensional distribution of the raw data with a set of well-chosen low-dimensional
distributions. Random noise is added to each low-dimensional marginal to achieve differential pri-
vacy. We aim to analyze the marginal-based approach from a statistical perspective and measure the
accuracy of PrivBayes under different statistical distances including the total variation distance or
the L2 distance.

Another metric of synthetic data we are interested in is the utility metric related to downstream
machine learning tasks. Empirical evaluation of synthetic data in downstream machine learning
tasks is widely studied in literature. Existing utility metrics include Train on Synthetic data and Test
on Real data (TSTR, (Esteban et al., 2017)) and Synthetic Ranking Agreement (SRA, (Jordon et al.,
2018)). To our best knowledge, most of these utility evaluation methods are empirical without a
theoretical guarantee. Establishing the statistical learning theory of synthetic data is another concern
of this paper. Precisely, we focus on the statistical theory of PrivBayes based on the TSTR error.

Our contributions. Our contributions are three-fold. First, we theoretically analyze the marginal-
based synthetic data generation and derive an upper bound on the TV distance and L2 distance
between real data and synthetic data. The upper bounds show that the Bayesian network structure
mitigates the “curse of dimensionality”. An upper bound for the sparsity of real data is also derived
from the accuracy bounds. Second, we evaluate the utility of the synthetic data from downstream
supervised learning tasks theoretically. Precisely, we bound the TSTR error between the predictors
trained on real data and synthetic data. Third, we establish a lower bound for the TV distance
between the synthetic data distribution and the real data distribution.

1.1 RELATED WORKS AND COMPARISONS

Broadly speaking, our work is related to a vast body of work in differential privacy (Dinur & Nis-
sim, 2003; Dwork & Nissim, 2004; Blum et al., 2005; Dwork et al., 2007; Nissim et al., 2007; Barak
et al., 2007; McSherry & Talwar, 2007; Machanavajjhala et al., 2008; Dwork et al., 2015). For
example, McSherry & Talwar (2007) proposed the exponential mechanism that is widely used in
practice. Machanavajjhala et al. (2008) discussed privacy for histogram data by sampling from the
perturbed cell probabilities. However, these methods are not efficient for releasing high-dimensional
tabular data, since the domain size grows exponentially in the dimension (which is known as “the
curse of dimensionality”). The state-of-art method for this problem is the marginal-based approach
(Zhang et al., 2017; Qardaji et al., 2014; Zhang et al., 2021). Zhang et al. (2017) approximated the
raw dataset by a sparse Bayesian network and then added noise to each vertex in the graph. Zhang
et al. (2021) selected a collection of 2-way marginals and a gradually updating method was applied
to release synthetic data. Although most of them provide rigorous privacy guarantees, theoretical
analysis on accuracy is rare. Wasserman & Zhou (2010) established a statistical framework of DP
and derived the accuracy of distribution estimated by noisy histograms. Our setting is different from
theirs. Precisely, we analyze how noise addition and post-processing affect the conditional distri-
bution (Lemma 6.2). Moreover, our proof handles the non-trivial interaction between the Bayesian
network and noise addition.

Our lower bound (Theorem 5.1) is related to existing results of the worst case lower bounds under
the DP constraint in literature (Hardt & Talwar, 2010; Ullman, 2013; Bassily et al., 2014; Steinke
& Ullman, 2017). Hardt & Talwar (2010) established lower bounds for the accuracy of answering
linear queries with privacy budget ϵ. Ullman (2013) derived the worst-case result that in general, it is
NP-hard to release private synthetic data which accurately preserves all two-dimensional marginals.
Bassily et al. (2014) built on their result and further developed lower bounds for the excess risk
for every (ϵ, δ)-DP algorithm. Our result is novel since we consider private synthetic data and the
corresponding TV accuracy. Existing results for linear quires are not directly applicable to TV
accuracy since they heavily rely on the linear structure.
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2 DIFFERENTIAL PRIVACY

Differential privacy requires that any particular element in the raw dataset has a limited influence on
the output (Dwork et al., 2006). The definition is formalized as follows. Here the data domain is
denoted as Ω.

Definition 2.1 ((ϵ, δ)-differential privacy). Let A : Ωn → R be a randomized algorithm that takes
a dataset of size n as input, where the output space R is a probability space. For every ϵ, δ ≥ 0, A
satisfies (ϵ, δ)-differential privacy if for every two adjacent datasets D1 and D2, we have

P[A(D1) ∈ S] ≤ exp(ϵ)P[A(D2) ∈ S] + δ, for all measurable S ⊆ R.

Here D1 and D2 are datasets of size n. We say that they are adjacent if they differ only on a single
element, denoted as D1 ≃ D2.

For δ = 0, we abbreviate the definition as ϵ-differential privacy (ϵ-DP). A widely used meta-
mechanism to ensure ϵ-DP is the Laplace mechanism. The Laplace mechanism privatizes a function
f on the dataset D by adding i.i.d. Laplace noises (denoted as η ∼ Lap(λ) ) to each output value of
f(D). Here the probability density function of η is given by P[η = x] = 1

2λ exp(−|x|
λ ). Dwork &

Nissim (2004) show that it ensures ϵ-DP when λ ≥ ∆f/ϵ, where ∆f is the L1 sensitivity of f :

∆f = max
(D1,D2):D1≃D2

∥f(D1)− f(D2)∥1 .

3 MARGINAL-BASED DATA SYNTHESIS ALGORITHMS

In this section, we introduce DP marginal-based methods. For simplicity, we consider Boolean data
where Ω = {0, 1}d and |Ω| = 2d. It’s obvious that our theory can be generalized to any categorical
dataset with a finite domain size.

3.1 DIFFERENTIALLY PRIVATE ESTIMATE OF LOW-DIMENSIONAL MARGINAL
DISTRIBUTIONS

Given a dataset D = {x(i)}ni=1 ⊂ Ωn drawn independently from a distribution, the probability mass
function is estimated by

pD(x) =
1

n

n∑
i=1

1[x(i) = x], for all x ∈ Ω. (1)

Noise addition and post processing. We then sanitize pD(x) by the Laplace mechanism. Note that
the sensitivity of pD(x) is 1/n. Then, we define p̃D = pD + Lap(1/(nϵ)) and p̃D is ϵ-DP. Adding
noise leads to inconsistency. To be specific, some estimated probabilities may be negative and the
overall summation may not be 1. The following two kinds of post processing methods to address
the inconsistency are widely adopted in marginal-based methods (cf., (Mckenna et al., 2019; Zhang
et al., 2017)).

Normalization. We convert all the negative probabilities to zeros, and then normalize all the proba-
bilities by a scalar such that their summation is 1.

L2-projection. We project the inconsistent distribution onto the probability simplex using the L2

metric. Specifically, for an inconsistent distribution (a1, · · · , am), the output is

(b1, · · · , bm) := argmin
b̃i≥0,

∑
b̃i=1

m∑
i=1

(ai − b̃i)
2.

3.2 MARGINAL SELECTION AND BAYESIAN NETWORKS

It is well-known that marginal-based methods have the curse of dimensionality. One way to mitigate
the curse of dimensionality is adopting Bayesian networks (Zhang et al., 2017).

3
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Marginal selection. We first disassemble the raw dataset into a group of lower dimensional marginal
datasets. Precisely, PrivBayes (Zhang et al., 2017) uses a sparse Bayesian network {x1, · · · , xd} to
approximate the raw data. Each node xi corresponds to an attribute, and each edge from xj to xi

represents P[xi | xj ], which is the probability of xj causing xi. We denote Πi := {j | xj → xi},
which is the collection of all the attributes that affect xi. Zhang et al. (2017) also make the following
assumptions on the network structure. Here k is a pre-fixed parameter that is much smaller than d.
Assumption 3.1 (Sparsity). The degree of the Bayesian network is no more than k. Precisely, for
any i, the size of Πi is no more than k.

The second assumption ensures that the graph cannot contain loops, which aids sampling from the
graph.
Assumption 3.2. For any i, we have Πi ⊂ {x1, · · · , xi−1}.

For example, the Bayesian network in Figure 1 satisfies Assumption 3.1 for k = 2 and Assumption
3.2. The joint distribution is P(5 | 4, 3)P(4 | 3, 2)P(3 | 2, 1)P(2 | 1).

54

32

1

Figure 1: A Bayesian network over 5 attributes of degree 2

DP Bayesian networks. In a Bayesian network, each low-dimensional marginal distribution
P(xi,Πi) is estimated by the marginal function defined by (1). For privacy consideration, we add
Laplace noise Lap(d/nϵ) to the marginal P(xi,Πi) and obtain the DP distribution P̂[xi,Πi] by us-
ing post processing to the noisy marginal. Then the overall privacy budget can be calculated by the
composition property of DP (Dwork, 2008; Zhang et al., 2017) and is ϵ.

Generating synthetic data. The loop-free Bayesian network provides an efficient sampling ap-
proach. Precisely, we draw xi from P̂[xi | Πi] in an increasing order of i. Recall that Assumption
3.2 ensures that xj /∈ Πi for any j>i. Therefore, by the time xi is to be sampled, all nodes in Πi

must have been sampled. This verifies that the sampling approach is practical. Moreover, sampling
xi only needs the marginal P̂[xi,Πi], instead of the full distribution. By Assumption 3.1, it is a
marginal with size less than k + 1. This leads to a small computational load since k is small. With
this sampling method, one (Zhang et al., 2017) can show that the synthetic private distribution is
P̂[x1, · · · , xd] =

∏d
i=1 P̂[xi | Πi].

4 ACCURACY OF PRIVBAYES

In this section, we develop some theoretical results of the accuracy of PrivBayes. We discuss the
proof of these results briefly in Section 6.

4.1 STATISTICAL DISTANCES

The goal of this subsection is to establish the accuracy guarantee for PrivBayes with different post-
processing methods: normalization and L2-projection. By the term “accuracy”, we mean the TV or
the L2 distance between the synthetic distribution and the raw data distribution, respectively. Note
that the error comes from two sources: 1) approximating the raw data by a Bayesian network that

4
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satisfies Assumption 3.1 and Assumption 3.2 , 2) adding noise and post processing. The first error,
however, only relies on the sparsity of the raw data. Since we aim to establish our result for general
raw data, we only focus on the second one. Therefore, it is natural for us to make the following
assumption.

Assumption 4.1. We assume the raw data distribution can be represented by a Bayesian network
with d vertices that satisfies Assumption 3.1 and Assumption 3.2.

With this assumption, PrivBayes (normalization) has the following accuracy guarantee.

Theorem 4.1. Assuming that the raw dataset D is Boolean and satisfies Assumption 4.1, then we
have ∥∥∥P̂− P

∥∥∥
TV

≤ 12d222k(k + 1)

nϵ
log

2d

δ
,

with probability at least 1 − δ (with respect to the randomness of the Laplace mechanism and the
same below). Here P is the empirical distribution of D and P̂ is the output of PrivBayes (normal-
ization) with privacy budget ϵ.

Proof. See Section 6 for a proof sketch.

The other post-processing method (L2-projection) we studied is also efficient. The following result
verifies that PrivBayes (L2-projection) enjoys the similar accuracy guarantee in terms of the L2 dis-
tance. Here, with a little bit abuse of notations, we denote the L2 distance between two distributions
as the L2 distance between their density functions.

Theorem 4.2. Assuming the raw datasetD is Boolean and Assumption 4.1 is satisfied, then we have∥∥∥P̂− P
∥∥∥
L2

≤ 12d22k(k + 1)

nϵ
log

2d

δ
,

with probability at least 1 − δ. Here P is the empirical distribution of D and P̂ is the output of
PrivBayes (L2-projection) with privacy budget ϵ.

Proof. The proof is similar to Theorem 4.1. However it is still non-trivial and we discuss it in detail
in Appendix B.

Discussion. Theorem 4.1 and Theorem 4.2 achieves a bound that is consistent (tends to 0 as n tends
to infinity) if k ≪ log2(nϵ/d

2). Moreover, a smaller k leads to smaller upper bounds. Since we
assume that the real data and synthetic data share the same k, we conclude that PrivBayes achieve
better performance on sparser real datasets. The size of k is often rather small in real application.
For example, Zhang et al. (2017) chose k ≤ 4 in the simulation. Theorem 4.1 also characterizes the
reliance on the privacy budget ϵ. Precisely, tighter privacy budget means better privacy guarantee,
but leads to worse performance. Moreover, our rate is polynomial in the dimension d. Comparing
with directly applying the Laplace mechanism to the whole domain (see Theorem 4.3), our result
shows that by heavily deploying the network structure, the Bayesian network exponentially refines
the rate.

Theorem 4.3. Assuming that the raw dataset D is Boolean, then we have∥∥∥P̃− P
∥∥∥
TV

≤ d22d

nϵ
log

2

δ
,

with probability at least 1 − δ. Here P̃ is the synthetic distribution generated by directly applying
Laplace mechanism to the entire domain.

Proof. By the definition of Laplace mechanism, we add i.i.d. Lap(1/nϵ) noise to all the 2d choices
of P(x1, · · · , xd) and then normalize them.Then, Theorem 4.3 can be proved similarly as Lemma
6.1 with m = 2d.

5
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4.2 UTILITY ERRORS

In real world practice, the raw training data in supervised learning may contain sensitive information,
like personal preference of users. Therefore, it is not allowed to be released to the public. An
alternative is to release differentially private synthetic data instead of the raw data. A central problem
is the “utility” of synthetic training data, which means the evaluation of synthetic data in downstream
tasks. We explain the term utility in detail below.

Consider a dataset D = {x(i)}ni=1 drawn from the domain Ω with sample size n. We denote its
corresponding synthetic dataset as D̂ = {x̂(i)}n̂i=1 of size n̂. We use the empirical risk minimization
(ERM) model to capture the supervised learning. Precisely, the ERM estimators for the raw dataset
D and the synthetic data D̂ are defined as

θ̂ = argmin
θ∈C

1

n

n∑
i=1

ℓ(θ, x(i)) + λJ(θ),

θ̂syn = argmin
θ∈C

1

n̂

n̂∑
i=1

ℓ(θ, x̂(i)) + λJ(θ), (2)

respectively. Here C is a convex closed set. We assume the loss function ℓ(·, x) is convex on C and
is L-Lipschitz in x for some L ≥ 0. The regularization term J(·) is adopted to prevent over-fitting.
The model captures a wide range of applications. For example, given a data point x(i) = (ui, vi) ∈
{0, 1}d+1, by defining the hinge loss ℓ(θ, x(i)) = (1−⟨θ, ui⟩ · vi)+, we recover the popular support
vector machine (SVM) classifier. The loss is

√
d+ 1-Lipschitz in θ since

∥∥x(i)
∥∥
2
≤

√
d+ 1.

The utility of the synthetic dataset D̂ measures whether θ̂syn and θ̂ perform similarly on the predic-
tion task (Esteban et al., 2017). To be specific, the following metric is used to evaluate the utility,

U(D̂,D) :=
1

n

∣∣∣R(θ̂)−R(θ̂syn)
∣∣∣ , (3)

where R(θ) =
∑n

i=1 ℓ(θ, x
(i)) is the empirical risk on D ((Rankin et al., 2020; Hittmeir et al.,

2019)). Intuitively, the asymptotic behavior of U(D̂,D) is affected by the difference between distri-
butions of synthetic data and true data. This fact is characterized in Theorem 4.4.

We first make the following assumption on the bound of the loss function ℓ(·, ·), which is quite
natural due to its continuity (Bassily et al., 2014).
Assumption 4.2. For any θ ∈ C and any data point x in Ω, we have |ℓ(θ, x)| ≤ 1.

Generating synthetic dataset from PrivBayes. We still denote the raw dataset as D and denote
P its empirical distribution. Its corresponding output of PrivBayes is a distribution denoted as Q.
To generate the synthetic training data D̂, we draw n̂ i.i.d. samples from Q. The corresponding
empirical distribution is denoted as Q̂.

With the above preparation, we are now ready to state our result that characterizes the utility of
PrivBayes.
Theorem 4.4. If Assumption 4.1 and Assumption 4.2 hold and the raw dataset D is Boolean, then
we have

U(D̂,D) ≤ C(λ) + C1 ∥Q− P∥TV + 2RC +

√
log 1

δ

2n̂

≤ C(λ) + C1
22kd2(k + 1)

nϵ
ln

2d

δ
+ 2RC +

√
log 1

δ

2n̂
, (4)

with probability at least 1 − δ. Here RC is the Rademacher complexity of the function class {x 7→
ℓ(θ, x) | θ ∈ C} and C1 is a positive universal constant. The term C(λ) is non-negative and
vanishes when λ = 0, namely C(0) = 0.

Proof. See Section 6 for a proof sketch.

6
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Discussion. The term C(λ) comes from the regularization process. C(λ) = 0 if no regularization
is applied (λ = 0). In real practice, λ is often much smaller than d2/nϵ. Therefore C(λ) is also
relatively small. The Rademacher complexity in equation (4) comes from the sampling process.

Our result then implies that, when the sample size n and n̂ are sufficiently large and the regularization
parameter λ is sufficiently small, the quality loss caused by the private mechanism is rather small.
In other words, private synthetic data generated by PrivBayes performs similarly to raw data in
downstream learning tasks.

5 LOWER BOUND

In this section, we complete the picture by deriving a lower bound for the TV-distance between
synthetic private distribution and the raw data distribution.

Notations and conventions. As before, the raw datasetD is of size n with empricial distribution P.
The data domain is denoted as Ω. A synthetic data generator is a randomized algorithm that sends
a dataset of size n to a distribution over Ω. We also need the following assumption on the range of
the parameters.
Assumption 5.1. We assume that d/ϵ ≪ n ≪ |Ω|.

The first part of this assumption allows a rather wide choice of ϵ in practice. For instance, in two
real datasets ACS (Ruggles et al., 2015) and Adult (Bache & Lichman, 2013), the size n ≈ 40, 000,
the dimension d ≈ 40. Then Assumption 5.1 only requires ϵ ≥ 1/1, 000. Moreover, the size of Ω is
at least 2d, which is clearly much larger than n. Therefore, the second part of Assumption 5.1 holds
for real world datasets.

We now state Theorem 5.1 that establishes the lower bound for TV-distance.
Theorem 5.1. If Assumption 5.1 holds, then for any synthetic data generator A(·) with privacy
budget ϵ, and for any 0 ≤ δ ≤ 1/2, there exists a dataset D of size n, such that

∥A(D)− P∥TV ≥ 1

nϵ
log(δ|Ω|)

with probability at least 1− 2δ. Here P is the empirical distribution of D.

Proof. See Appendix D for a detialed proof.

Choosing δ = 1/4 in Theorem 5.1 yields the following corollary.
Corollary 5.2. If |Ω| ≥ 4 exp(d), then for any synthetic data generator A(·) with privacy budget ϵ,
there exists a dataset D of size n such that

∥A(D)− P∥TV ≥ d

nϵ
with probability at least 1/2. Here P is the empirical distribution of D.

Discussion and comparison. Comparison with the upper bound in Theorem 4.1, PrivBayes is sub-
optimal up to a d factor. The sub-optimality is caused by the composition property of DP (the dataset
is processed d times in a Bayesian network) and the structure of a Bayesian network.

6 PROOF SKETCH FOR THE TECHNICAL RESULTS

6.1 PROOF SKETCH FOR THEOREM 4.1

We begin with a technical lemma that characterizes the normalization process. See Appendix A for
its detailed proof.
Lemma 6.1. For a distribution (a1, · · · , am), we denote its outcome after adding i.i.d. Lap(d/nϵ)
noise and normalizing it as (b1, · · · , bm). Then, for all large n and all δ > 0, it holds that

max
i

|ai − bi| ≤
3md

nϵ
log

m

δ
,

with probability at least 1− δ.

7
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Lemma 6.1 characterizes the difference between P̂(xi,Πi) and P(xi,Πi). However, we need fur-
ther analysis to establish the conditional version of Lemma 6.1. To be specific, we need to bound∣∣∣P̂(xi | Πi)− P(xi | Πi)

∣∣∣. The following result serves for this goal.

Lemma 6.2. Consider two non-negative real vectors (a1, · · · , as) and (b1, · · · , bs) (not necessary
to be distributions). If, for some β ≥ 0, we have

max
j

|aj − bj | ≤ β, (5)

then, for any l ∈ {1, · · · , s}, the following result holds.∣∣∣∣∣ al∑s
j=1 aj

− bl∑s
j=1 bj

∣∣∣∣∣ ≤ sβ∑s
j=1 bj

. (6)

Proof. See Appendix A for a detailed proof.

Combining Lemma 6.1 and Lemma 6.2, the distance between the conditional distributions is
bounded in the following result.

Lemma 6.3. If D is boolean and satisfies Assumption 4.1, then we have∣∣∣P̂(xi | Πi)− P(xi | Πi)
∣∣∣ ≤ 6d2k(k + 1)

nϵ
log

2

δ

1

P(Πi)
, (7)

with probability at least 1− δ, simultaneously for all i and all choices of (xi,Πi).

Proof. Setting 

m = 2k+1,

s = 2,

a1 = P̂(1,Πi), a2 = P̂(0,Πi),

b1 = P(1,Πi), b2 = P(0,Πi),

β = 3md
nϵ log m

δ ,

in Lemma 6.1 and Lemma 6.2 concludes the proof.

To bound the TV-distance, we begin with rewriting it in telescoping series and applying Lemma
6.3. One technical impediment for estimation is the fraction term 1/P(Πi) in (7). To address this
challenge, we need to deploy the Bayesian network structure (Assumption 3.1 and Assumption 3.2).
Deploying the network structure is quite technical and lengthy, we defer the detail to Appendix A.

6.2 PROOF SKETCH FOR THEOREM 4.4

We begin with some notations. The non-regularized estimators trained on D and D̂ by an ERM
model are denoted as θ∗ and θ∗syn. Formally, we define

θ∗ := argmin
θ∈C

1

n

n∑
i=1

ℓ(θ, x(i)),

θ∗syn := argmin
θ∈C

1

n̂

n̂∑
i=1

ℓ(θ, x̂(i)).

We further define the prediction risk with respect to a certain distribution. For any distribution on Ω,
denoted as P , and any θ ∈ C we define

R(θ, P ) :=
∑
x∈Ω

ℓ(θ, x)P (x) (8)

as the prediction risk with respect to P . Then R(·) in (3) is equal to R(·,P).

8
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We are now ready to sketch the proof. The most important step of the proof is to decompose the
utility in (3 into the following seven terms

U(Q̂,P) ≤∣∣∣R(θ̂syn,P)−R(θ̂syn,Q)
∣∣∣︸ ︷︷ ︸

term (i)

+
∣∣∣R(θ̂syn,Q)−R(θ̂syn, Q̂)

∣∣∣︸ ︷︷ ︸
term (ii)

+
∣∣∣R(θ̂syn, Q̂)−R(θ∗syn, Q̂)

∣∣∣︸ ︷︷ ︸
term (iii)

+
∣∣∣R(θ∗syn, Q̂)−R(θ∗, Q̂)

∣∣∣︸ ︷︷ ︸
term (iv)

+
∣∣∣R(θ∗, Q̂)−R(θ∗,Q)

∣∣∣︸ ︷︷ ︸
term (v)

+ |R(θ∗,Q)−R(θ∗,P)|︸ ︷︷ ︸
term (vi)

+
∣∣∣R(θ∗,P)−R(θ̂,P)

∣∣∣︸ ︷︷ ︸
term (vii)

. (9)

Recall that Q is the output of PrivBayes and Q̂ is the empirical distribution of the n̂ samples drawn
independently from Q. Here term (i) and term (vi) come from the difference between the synthetic
distribution Q and the raw distribution P. They can be bounded above by the distance between the
synthetic distribution and the raw one. Term (ii) and term (v) come from sampling and are bounded
by classical Rademacher method. Term (iii) and term (vii) are derived from the regularization pro-
cess. They combine to be the C(λ) term. Bounding term (iv), however, is more tricky and requires
more detailed analysis. We discuss each group in detail in Appendix C.

7 DISCUSSIONS AND FUTURE TOPICS

We establish perhaps the first statistical analysis for the accuracy and utility of Bayesian network-
based data synthesis algorithms. We also derive a lower bound for the accuracy to complete the
picture. Compared with the lower bound, the accuracy bound we achieve is sub-optimal up to a d
factor. One way to improve the accuracy is to reduce the effects of random noise in releasing the
synthetic data through some post-processing procedures. However, it is still quite challenging to
develop a practical algorithm based on this idea, and we leave it for future work.
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