
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

Edge of Stochastic Stability:
Revisiting the Edge of Stability for SGD

Anonymous authors
Paper under double-blind review

Abstract

Recent findings by Cohen et al. (2021) demonstrate that when training
neural networks with full-batch gradient descent with step size η, the
largest eigenvalue λmax of the full-batch Hessian consistently stabilizes at
λmax = 2/η. These results have significant implications for convergence
and generalization. This, however, is not the case of mini-batch stochas-
tic gradient descent (SGD), limiting the broader applicability of its conse-
quences. We show that SGD trains in a different regime we term Edge of
Stochastic Stability (EoSS). In this regime, what stabilizes at 2/η is Batch
Sharpness: the expected directional curvature of mini-batch Hessians along
their corresponding stochastic gradients. As a consequence, λmax—which is
generally smaller than Batch Sharpness—is suppressed, aligning with the
long-standing empirical observation that smaller batches and larger step
sizes favor flatter minima. We further discuss implications for mathemati-
cal modeling of SGD trajectories.

1 Introduction
The choice of training algorithm is a key ingredient in the deep learning recipe. Extensive
evidence, e.g. (Keskar et al., 2016), indeed shows that performance consistently depends on
the optimizer and hyperparameters. What machinery induces this optimizer-dependence is
a central question of theory of deep learning.
Cohen et al. (2021; 2024) answered this question for Gradient Descent (GD): it optimizes
neural networks in a regime of instability, they termed Edge of Stability (EoS). With a
constant step size η, the highest eigenvalue of the Hessian of the full-batch loss—denoted
here as λmax—grows until 2/η and hovers right above, subject to small oscillations (Cohen
et al., 2021; 2022; Jastrzębski et al., 2019; 2020; Xing et al., 2018). Although, classical
convex optimization theory call this step size “too large”, the loss continues to decrease.
These works established a number of surprising facts: (1) we require an optimization theory
which works in more general scenarios then the classical η < 2/L; (2) what a source of
instability of (pre-)training is. (3) how location of convergence depends on the choice of
hyperparameters.
While real-world training is almost always mini-batch—given the large amounts of data—
existing EoS analyses explicitly do not apply to this case: no curvature-type quantities,
as λmax, are known to similarly affect SGD while training neural networks. We bridge this
gap by establishing that:

Mini-batch SGD trains in a similar regime of instability which we term Edge
of Stochastic Stability (EoSS). Precisely, Batch Sharpness, our notion of curvature,

Batch Sharpness (θ) := EB∼Pb

[
∇LB(θ)⊤ H(LB) ∇LB(θ)

∥∇LB(θ)∥2

]
, with LB loss on the

batch B sampled from Pb.

hovers around 2/η and implicitly functions as sharpness for SGD. This implies that:
stability for SGD is stability on the mini-batch landscape

1
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Figure 1: SGD at EoSS under different step sizes and batch sizes. MLP on an 8k subset
of CIFAR-10 with step size η > 0. Batch Sharpness stabilizes at the 2/η threshold across varying
batch sizes and step sizes.

Organization and Contributions. Section 2 reviews related work and outlines the key
open questions we tackle. Oscillations are central to these phenomena, as a necessary step, in
Section 3 we distinguish SGD oscillations between noise-driven (as in Robbins-Monro–type
of stochastic optimization when the step size is kept fixed) and curvature-driven—which
are the ones we are interested in. In Section 4, we introduce, properly characterize, and
empirically validate the phenomenon of Edge of Stochastic Stability. In Section 5 we give a
mathematical treatment of SGD stability. Finally, our results are yet another proof of the
fact that the dynamics of noise-injected GD or SDEs and the dynamics of mini-batch SGD
are qualitatively different and studying the firsts could be misleading for inducing properties
of the second. We discuss this implication in Section 6.
Throughout the rest of this paper B ⊂ D denotes a random mini-batch of size b drawn
from a fixed sampling distribution Pb. For model parameters θ ∈ Rd let LB(θ) =
1
b

∑
(xi,yi)∈BL̃

(
fθ(xi), yi

)
, L(θ) = EB∼Pb

[
LB(θ)

]
be the mini-batch and full-batch losses,

respectively. Write H(LB) = ∇2
θLB(θ).

2 Related Work

Progressive sharpening. Early studies observed that the local shape of the loss land-
scape changes rapidly at the beginning of the training, by means of growth of different
estimators of the curvature (Keskar et al., 2016; Jastrzębski et al., 2019; LeCun et al., 2012;
Achille et al., 2017; Jastrzębski et al., 2018; Fort and Ganguli, 2019; Sagun et al., 2016; Fort
and Scherlis, 2019). Subsequently, Jastrzębski et al. (2019; 2020) and Cohen et al. (2021)
precisely characterized this behavior, demonstrating a steady rise in λmax along GD and
SGD trajectories, typically following a brief initial decline. This phenomenon was termed
progressive sharpening by Cohen et al. (2021).

Full-batch edge of stability. Prior research (Goodfellow et al., 2016; Li et al., 2019; Jiang
et al., 2019; Lewkowycz et al., 2020) found that large initial learning rates often enhance
generalization despite delaying initial loss reduction. Jastrzębski et al. (2020) attributed this
effect to a phase transition, termed the break-even point, marking the end of progressive
sharpening. Unlike progressive sharpening, this phenomenon is considered to result from
algorithmic instability rather than inherent landscape properties. Indeed, Jastrzębski et al.
(2019; 2020); Cohen et al. (2021; 2022) demonstrated that this phase transition comes at
different points for different algorithms on the same landscapes. Cohen et al. (2021; 2022)
later showed that it comes at the instability thresholds, in the case of full-batch optimization
algorithms. Precisely, GD and full-batch Adam train in the EoS oscillatory regime (Cohen
et al., 2021; 2022), where the λmax stabilizes and oscillates around a characteristic value.
The name is due to the fact that, in the case of full-batch GD, the λmax hovers at 2/η
which is the stability threshold for optimizing quadratics. Observations from Cohen et al.
(2021; 2022) indicate that, under mean square error (MSE), the bulk of training dynamics
occur within this regime, effectively determining λmax of the final solution. Lee and Jang
(2023) explained why in this regime λmax often slightly exceeds 2/η: this deviation arises
primarily from nonlinearity of the loss gradient, which shifts the required value depending
on higher-order derivatives, and the EoS being governed by the Hessian along the gradient
direction, rather than λmax alone. A growing body of research analyzes the surprising
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mechanism underlying EoS dynamics observed during training with GD. Classically, when
gradients depend linearly on parameters, divergence occurs locally if η > 2

λmax
, as illustrated

by one-dimensional quadratic models (Cohen et al., 2021). In contrast, neural networks
often converge despite violating this classical stability condition, presumably due to the
problem’s non-standard geometry. Damian et al. (2023) propose an explanation under
some, empirically tested, assumptions of alignment of third derivatives and gradients.

The work on EoS is about full-batch methods. While the empirical behavior of EoS
for full-batch algorithms is relatively well-understood, neural networks are predominantly
trained using mini-batch methods. As explicitly noted by Cohen et al. (2021, Section 6,
Appendices G and H), their observations and analysis do not directly apply to mini-batch
training. In particular, they emphasize:

[...] while the sharpness does not flatline at any value during SGD (as it does
during gradient descent), the trajectory of the sharpness is heavily influenced
by the step size and batch size Jastrzębski et al. (2019; 2020), which cannot be
explained by existing optimization theory. Indeed, there are indications that the
“Edge of Stability” intuition might generalize somehow to SGD, just in a way
that does not center around the (full-batch) sharpness. [...] In extending these
findings to SGD, the question arises of how to model “stability” of SGD.

We show that the EoS phenomenon does indeed generalize to SGD, and we identify the
key quantity governing this generalization (Batch Sharpness in Definition 3). We model
stability of SGD on the neural networks landscapes: our answer is that SGD is stable if on
average the step is stable on the mini-batch landscape—not on the full-batch landscape.

Figure 2: SGD on CIFAR-10: η = 1/400.
The full-batch Hessian’s λmax plateaus be-
low 2/η. Smaller batch sizes lead to lower
plateau values.

What was empirically known for SGD. In
the context of mini-batch algorithms, (i) Jas-
trzębski et al. (2019; 2020) noticed that for SGD
the phase transition happens earlier for smaller
η or smaller batch size b, but they did not quan-
tify when. (ii) Cohen et al. (2021); Gilmer et al.
(2021) established that initialization and archi-
tecture choices affect stability of SGD, with-
out providing a definitive condition. (iii) When
λmax stabilizes, that always happens at a level
they could not quantify which is below the 2/η
threshold (Cohen et al., 2021; Keskar et al.,
2016), see Figure 2, often without a proper pro-
gressive sharpening phase. This leaves the most
basic questions open: In what way the location
of convergence of SGD acclimates to the choice
of hyperparameters? What are the key quantities involved? To be more specific, can we char-
acterize the training phenomena in (i), (ii), (iii) above? What determines them? Does
SGD train in an unstable regime?

Previous Works on SGD Stability. A series of works, Wu et al. (2018); Ma and Ying
(2021); Granziol et al. (2021); Wu et al. (2022); Mulayoff and Michaeli (2024), mathemat-
ically study stability for constant-step-size SGD on quadratic losses. However, (1) they do
not establish empirically whether—and in what sense—SGD trains in an EoS-like regime
or not for neural networks. Specifically, they compare to our Section 5 but not to the rest
of the article. And (2) there exist multiple different notions of stability for stochastic algo-
rithms, they discuss some of them, not the one we use here to describe EoSS1. It is also
important to remark that empirically, multiple works—e.g. Xing et al. (2018), Cohen et al.
(2021, Appendix H), Ahn et al. (2022), Lee and Jang (2023)—establish the presence of os-
cillations in the SGD trajectory for neural networks. However, did not distinguish between

1Moreover, some of them can not be tested in high-dimensional settings as neural networks.
Further discussion in Appendix B.1.
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noise and curvature-driven oscillations—the ones directly relevant to the question of how
the curvature adapts to the hyper parameters and the possible generalization of previous
EoS implications to SGD2. Agarwala and Pennington (2024) showed that for SGD, edge of
stability may be sensitive to the trace of the NTK rather than the λmax.

Flatness and Generalization. SGD-trained networks consistently generalize better than
GD-trained ones, with smaller batch sizes further enhancing generalization performance
(Keskar et al., 2016; LeCun et al., 2012; Jastrzębski et al., 2018; Goyal et al., 2017; Masters
and Luschi, 2018; Smith et al., 2021; Beneventano et al., 2024). This advantage has been
widely attributed to some notion of flatness of the minima (Jiang et al., 2019; Jastrzębski
et al., 2021; Hochreiter and Schmidhuber, 1994; Neyshabur et al., 2017; Wu et al., 2017;
Kleinberg et al., 2018; Xie et al., 2020). Training algorithms explicitly designed to find
flat minima have indeed demonstrated strong performance across various tasks (Izmailov
et al., 2019; Foret et al., 2021). Our result is inherently a result about mini-batch training
improving flatness. Specifically, we explain why: Training with smaller batches constraints
the dynamics to areas with smaller eigenvalues of the full-batch Hessian. This quantifies
and characterizes prior observations that SGD tends to locate flat minima and that smaller
batch sizes result in reduced Hessian sharpness (Keskar et al., 2016; Jastrzębski et al., 2021).

3 Preliminaries: Noise-Driven vs Curvature-Driven

The key defining aspect of EoS is about the solutions found by the algorithm adapting to
the optimizer’s hyperparameters. In the case of full-batch algorithms, this manifests through
the emergence of an oscillatory regime. Mini-batch SGD, however, always oscillates because
its gradient is noisy and the step size does not vanish. The central question, therefore,
is which oscillations signal curvature-limited dynamics (EoS-like). We define stable and
unstable oscillations based on the induction of catapults.
Definition 1 (Quadratic instability and Catapults). Consider the quadratic approximation
of all the data point loss landscapes 1

2 (θ−xi)⊤Hi(θ−xi). We say that a set of hyperparame-
ters is unstable if the trajectory exits all the compacts in which the quadratic approximation
holds up to O(η)3. We say the algorithm experienced a catapult when this event happened.

We define Type-1 (Noise-Driven Oscillation) those that are stable under the definition above,
e.g., when we increase the step size and the trajectory re-stabilizes within the neighborhood.
We call Type-2 (Curvature-induced) the oscillations which saturate stability, i.e., the ones
for which a small change in the hyperparameters induces a catapult as defined in Definition
1. Interestingly, both types of oscillation involve quantities stabilizing near the critical
threshold of 2/η, yet they differ.

(a) Trajectory (b) Step size sched. (c) Loss (d) Zoomed-in (e) GNI of Eq. (5)

Figure 3: Quadratics: Dynamics of SGD on a 1-D quadratic with N datapoints, L(x) =
1

2N

∑
i
(x − ai)2, where ai ∼ N (0, 1). Oscillations are present for any step size. Yet, only when the

step size becomes larger than 2/λmax = 2 (after the red line), the oscillations become unstable (d)
and the loss diverges (c). Meanwhile, GNI consistently stays at 2/η.

2As we discuss in Section 3, 5, and Appendix B and E.
3This means that either SGD seen as a linear dynamical system is diverging or that the re-

stabilization would happen be at a level which exits the largest region in which the quadratic
approximation holds and so the dyanmics changes region.
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3.1 Type-1: Noise-Driven Oscillation

SGD can wobble around a stationary point simply because gradients vary across batches and
the step size is not annealed. This occurs even if the Hessian is small as, with fixed step-size,
mini-batch noise has lower-bounded variance. Such noise-driven behavior is well-studied in
classical stochastic approximation (Robbins and Monro, 1951; Mandt et al., 2016; Bottou
et al., 2018; Mishchenko et al., 2020). We call Type-1 oscillations any stochastic or chaotic
trajectory which does not leave the region defined in Definition 1. Type-1 oscillations occur
even for simple quadratics—see Figure 3, Proposition 1, Appendix C.
Definition 2. Denote H the Hessian of L(θ). We define Gradient-Noise Interaction (GNI ):

Gradient-Noise Interaction (θ) :=
EB∼Pb

[
∇LB(θ)⊤H ∇LB(θ)

]
∥∇L(θ)∥2

4. (1)

GNI is defined by dividing the two terms in the Descent Lemmas. The trajectory oscillates,
no matter the reason, if and only if GNI ≈ 2/η, indeed:
Lemma 1. EB∼Pb

[
L(θt+1)

]
≈ L(θt) if and only if

−η∥∇L(θ)∥2 + η2

2 EB∼Pb

[
∇LB(θ)⊤H∇LB(θ)

]
≈ 0 ⇐⇒ GNI ≈ 2

η
. (2)

This regime has been previously documented by measuring the expected total loss decrease
by e.g., Cohen et al. (2021, Appendix H), Ahn et al. (2022), and Lee and Jang (2023) that
tracked GNI explicitly5. Notably, GNI is a quantity that is centered around 2/η whenever
the trajectory oscillates. No matter the reason of the oscillation, see Figure 5. In particular
GNI centers at 2/η over the stationary distribution if any, see Proposition 1.

3.2 Type-2: Curvature-Driven Oscillation

Once the local, or perceived, curvature saturates with respect to the hyperparameters, the
updates become unstable in a manner analogous to the classic EoS Cohen et al. (2021).
We define Type-2 oscillation the trajectory in the setting of Definition 1 of the optimizer
with hyperparameters at the boundary between stable and unstable6. Batch Sharpness
(Definition 3), instead of GNI (Definition 2), is the quantity that governs this saturation,
as we will see in Section 4 and 5.
Definition 3 (Batch Sharpness). We define Batch Sharpness as the ratio

Batch Sharpness (θ) := EB∼Pb

[
∇LB(θ)⊤ H(LB) ∇LB(θ)

∥∇LB(θ)∥2

]
7. (3)

Batch Sharpness is thus the expectation of the Rayleigh quotient between the mini-batch
gradient ∇LB and the mini-batch Hessian H(LB). It therefore measures the expected direc-
tional curvature of the mini-batch loss surface along the step induced by it.

Relation to earlier notions: (i) Lee and Jang (2023) noted that the ratio
∇L⊤H∇L/∥∇L∥2 settles at 2/η during EoS and coincides with λmax(H) only when the
gradient aligns with the top eigenvector—this eventually happens in the quadratic case, but
not in the general case. Batch Sharpness extends that directional viewpoint to the stochas-
tic setting by replacing (∇L, H) with their mini-batch counterparts

(
∇LB , H(LB)

)
before

taking expectations8. (ii) As we show in Section 5, Batch Sharpness, generalizes λmax as "if
greater than 2/η, the norm squared of the mini-batch gradients explode", see Theorem 1.

4Note that both the Hessian H and the gradient at the denominator are on the full-batch loss.
5In their notations tr(HSb)/ tr(Sn). See Appendix B for further comparison with previous work.
6These exist whenever we search hyperparameters in a compact set.
7We used bold for the "B" to highlight the difference with GNI in Definition 2.
8Importantly, see Appendix Q, the right notion of curvature/stability for mini-batch algorithms

has to depend on different statistics or moments of the mini-batch Hessians, not simply on the
average of the Hessians as in full-batch.
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Importantly, a reason why EoSS was difficult to observe, is that the measure of curvature
does not generalize λmax, (iii) Also, up to higher orders in the step size, single mini batch
step is stable on the mini-batch landscape (seen as full-batch step on a restricted dataset
B) if the ratio within the expectation of Batch Sharpness is smaller than 2/η:

∇L⊤
BH(LB)∇LB

∥∇LB∥2 ≤ 2
η

⇐⇒ −η∥∇LB∥2 + η2

2 ∇L⊤
BH(LB)∇LB ≤ 0. (4)

4 SGD Typically Occurs at the EoSS

We characterize here the phenomenon of the Edge of Stochastic Stability. We verify the
emergence of EoSS across of a range of step sizes, batch sizes and architectures (Figure 6
and Appendix R); datasets (CIFAR-10 and SVHN, Appendix S); and dataset sizes (8k and
32k subsets, Figure 7).

1. Stabilization of Batch Sharpness. SGD typically traind in an EoS-like regime:
SGD tends to train in a regime we call Edge of Stochastic Stability. Precisely, after a
phase of progressive sharpening, Batch Sharpness reaches a stability level of 2/η, and

hovers there.

In particular, the level of plateau of Batch Sharpness is 2/η independent of the batch
size (Figure 1). Importantly, Type-1 oscillations happen throughout most of the training as
highlighted by the quantity of Proposition 1, see Figure 5, but they do not impact progressive
sharpening which leads to the second phase of EoSS stabilization and Type-2 oscillations.
Importantly, analogously to EoS, training continues and the loss continues to decrease while
Batch Sharpness is constrained by the step size magnitude.

2. Stabilization of λmax and GNI. Crucially, stabilization of Batch Sharpness around
2/η happens while GNI has stabilized at 2/η already, and induces a corresponding sta-
bilization of λmax. However, λmax consistently settles at a lower level, due to a batch-
size–dependent gap between the two. This is also influenced by the specific optimization
trajectory, Figures 6 and 7. See Section J for factors determining their gap.

Figure 4: Catapults at EoSS. During EoSS,
Batch Sharpness goes through cycles of progres-
sive sharpening and stabilizations. Notations
follow Figure 6.

3. Catapults. Unlike in EoS, in the EoSS
regime what is stabilized is the expectation of
a quantity which the algorithm sees one ob-
servation at time. Occasionally, a sequence
of sampled batches exhibits anomalously high
sharpness–that is too high for the stable
regime–and steps overshoot, triggering a cat-
apult effect, where Batch Sharpness spikes
before rapidly decreasing (Figure 4). This
is typically followed by renewed progressive
sharpening, eventually returning to the EoSS
regime. This results in a catapult phase for
the training loss, aligning with, and maybe
explaining, previous observations about cata-
pult behaviors, e.g., (Lewkowycz et al., 2020; Zhu et al., 2024).

4.1 Batch Sharpness Governs EoSS

Following Cohen et al. (2021) and the discussion in Section 3, we track how the training
dynamics change when perturbing the hyperparameters mid-training. Overall, we find that
Batch Sharpness governs EoSS behavior—mirroring how λmax operates in the full-batch
EoS—while the full-batch λmax lags behind or settles inconsistently, underlining the mini-
batch nature of SGD stability, see Appendix J. Increasing the step size η or decreasing the
batch size b triggers a catapult spike in all the quantities in considerations and the training
loss, before Batch Sharpness re-stabilizes near the updated threshold 2/η, see Figures 7a

6
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(a) LR increased early (b) LR increased late (c) Batch decr. early (d) Batch decr. late

Figure 5: (1) The whole training happens with Type-1 oscillations (see Proposition 1, GNI≈ 2/η),
however, (2) GNI being 2/η does not govern Type-2 oscillations—in particular, highlighting the
difference in the two types of oscillations. (3) Batch Sharpness is instead an indicator of Type-2
oscillations, as illustrated by the fact that catapults happen only when the shift in hyperparametes
occurs after Batch Sharpness reaches 2/η.

Figure 6: Comparing different sharpness measures. Red: observed sharpness on the current
step’s mini batch—essentially Batch Sharpness without the expectation; Green: Batch Sharpness
(Definition 3); Blue: full-batch λmax. Top row: MLP (2 hidden layers of width 512); middle: 5-layer
CNN; bottom: ResNet-14; all trained on an 8k subset of CIFAR-10.

(a) Increasing step (b) Decreasing batch (c) Decreasing step (d) Increasing batch
Figure 7: Effects of changing step size or batch size in EoSS. Catapults: (a) Increasing the
step size η causes a catapult spike before Batch Sharpness re-settles at the new 2/η. (b) Decreasing
the batch size b increases Batch Sharpness and causes a catapult. Restarting PS: (c) Decreasing
η prompts renewed progressive sharpening. (d) Increasing b lowers Batch Sharpness and re-starts
progressive sharpening. The experiments are conducted on a 32k subset of CIFAR-10 to ensure
sufficient complexity remains in the dataset, which is necessary for observing renewed progressive
sharpening, consistent with observations by Cohen et al. (2021).

and 7b. This therefore pushes λmax lower. Conversely, reducing η raises the 2/η threshold.
Analogously, increasing the batch size leaves λmax unchanged but reduces Batch Sharpness.
These changes prompt a new phase of progressive sharpening, see Figures 7c and 7d. Notice
that, instantaneously, the change in batch size does not change the full-batch loss landscape,
but only changes the mini-batch landscapes—the fact that this causes a catapult/restarts PS
is an indicator that it is indeed the mini-batch landscape (and therefore Batch Sharpness)
that governs the stability/instability of SGD. Here, λmax also rises, but ultimately stabilizes
at a lower value than if the entire training had run with the smaller step size/larger. Again,
if stability was governed by λmax, this step-size adjustment would have had the same effect
as starting from scratch with the new step size.

7
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5 On Stability

The previous section empirically demonstrated that mini-batch SGD generally settles into
the EoSS regime, where Batch Sharpness hovers around 2/η. In classical (full-batch) gra-
dient descent, the condition η < 2/λmax guarantees local stability by preventing divergence
along the direction of the largest eigenvalue of a fixed Hessian. Here, is Batch Sharpness
at 2/η saturating the stability regime? We answered positively empirically by showing that
when you perturb hyperparameters you have explosions, see Figure 7. This proves em-
pirically that we are at the Edge of Stability according to Definition 1. We show this
mathematically in this section. Analogously, is Batch Sharpness hovering at 2/η the cause
of EoSS or a byproduct of something else happening?. We already established empirically
that the stabilization of λmax is a byproduct of it, see Figure 7 and Section J. We establish
this causality proving Theorem 1 and Proposition 1 below. Precisely, Theorem 1 shows that
the trajectory is unstable with respect to Definition 1 when Batch Sharpness is bigger than
2/η and Proposition 1 shows that even in the case of stable trajectories GNI is eventually
centered at 2/η but Batch Sharpness is smaller than that.
Importantly, there exist many stochastic notions of stability, depending on different moments
of the random variable H(LB). Some of which, depend on quantities that can not be
computed in high-dimensional experiments. See Appendix B.1 for a discussion. One of our
findings is essentially that the good one is the one of Definition 1.

5.1 Type-2 is about Batch Sharpness

The next theorem implies that SGD is unstable on quadratics also when λmax < 2/η if
Batch Sharpness is bigger than 2/η.
Theorem 1. Let η ≤ 2/λmax. There exists a absolute constant c > 0 such that if Batch
Sharpness is strictly bigger than 2/η + cη then E[∥∇LB∥2] locally increases exponentially
with the SGD step and the trajectory is unstable in the sense of Definition 1.

The proof relies on Jensen and Cauchy-Schwarz inequalities, see Appendix G and Propo-
sition 5. The use of these inequalities is its main limitation—we can not show the if and
only if. However, Theorem 1 is the first (in)stability results that relies on a quantity we can
efficiently estimate or compute in high-dimensional settings as neural networks. Note indeed
that stability for quadratics is classically established by checking when E[∥θ∥2] diverges and
when does not, see (Ma and Ying, 2021; Mulayoff and Michaeli, 2024) and Appendix B.1.
Batch Sharpness is not directly related to these proofs and to the size of E[∥θ∥].

5.2 Type-1 is about GNI

In Proposition 1 (proof in Appendix C) we show that when SGD is performed with a stable
fixed step size converges to a stationary distribution π—as known since Robbins’ analysis
(Robbins and Monro, 1951; Mandt et al., 2016; Bottou et al., 2018; Mishchenko et al., 2020).
For θ ∼ π, the distribution of GNI (θ) is centered in 2/η, however with big variance.
Proposition 1. Around a local minimum θ∗, fix η > 0 such that H(LB) satisfy that ∥(I −
ηH)2 + η2

b EB [H(LB)2 − H2]∥2
2 < 1. Then the trajectory of SGD settles in a stationary

distribution θ ∼ π characterized by Type-1 oscillations but not Type-2 and satisfying
Eθ∼π

[
EB∼Pb

[
∇LB(θ)⊤H ∇LB(θ)

]]
Eθ∼π

[
∥∇L(θ)∥2

] = 2
η

[
1 + O(η)

]
, (5)

Independently of the moments of the Hessians H and H(LB).

Crucially, the appearance of some quantity—GNI—being 2/η implies the system is oscillat-
ing, not why. It does not mean, in principle, that the landscape or the curvature adapted to
the hyper parameters. In the case of Type-1, 2/η is about the ratio between the covariance
of the gradients and the size of the full-batch gradient. Importantly, in this setting by per-
turbing the hyper parameters the system does not show catapults (as defined in Definition
1). When the size of oscillations increases (bigger step or smaller batch) the dynamics just
increases the size of the oscillations—quickly restabilizing.
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6 Implications: How Noise-Injected GD Differs from SGD

Figure 8: SGD vs. Noisy GD vs SDE.
Only noise preserving the mini-batch structure
of SGD leads to λmax plateauing below 2/η
(akin to EoSS and as observed by (Keskar et al.,
2016)). Noise injection fails to reproduce this
behavior even with the same covariance SGD’s.

SGD vs. Noisy Gradient Descent. A
common belief is that SGD’s regulariza-
tion stems from its “noisy” gradients, which
find flatter minima. Our analysis high-
lights how the noise in the Hessians as cru-
cial. To test this, we compare mini-batch
SGD (batch size 16) against three noisy
GD variants9: (i) Gaussian reweighting on
the samples (Wu et al., 2020) which main-
tains the noise structure in the Hessians; (ii)
Isotropic/Anisotropic diagonal noise (Zhu
et al., 2019); and SDE dynamics (Li et al.,
2017). As shown in Figure 8 and Appendix H,
only noise which maintains the higher mo-
ments of the Hessian(s) (and thus implicitly
preserves the mini-batch landscape structure)
leads to an EoSS-like regime with λmax sta-
bilizing well below 2/η. Classical analyses of neural network optimization often assume
noisy trajectories on a single, static, landscape. This is a further proof that the community
has to be careful when modeling SGD as noise-injected GD or SDEs.

7 Conclusions, Limitations, and Future Work

Conclusions. We have addressed the longstanding question of if and how mini-batch
SGD enters a regime reminiscent of the “Edge of Stability” previously observed in full-batch
methods. Contrary to the usual focus on the global Hessian’s top eigenvalue, we uncovered
that Batch Sharpness—the expected directional curvature of the mini-batch landscape in the
direction of its own gradient—consistently rises (progressive sharpening) and then hovers
around 2/η, independent of batch size. This behavior characterizes a new regime “Edge
of Stochastic Stability”, which explains how mini-batch training can exhibit catapult-like
surges and settle into flatter minima even when the full-batch Hessian remains below 2/η.
Our analysis clarifies why smaller batch sizes and larger step sizes both constrain the final
curvature to a lower level, thereby linking these hyperparameters to flatter solutions and
often improved generalization. Furthermore, we show that this phenomenon depends on the
noise injected into the Hessians by mini-batch optimizers, highlighting important limitations
of SDE-based approximations. Overall, the EoSS framework unifies several empirically
observed effects—catapult phases, dependence on batch size, and progressive sharpening—
under a single perspective focused on the mini-batch landscape and its directional curvature.

Limitations. (i) We have tested only image-classification tasks, leaving open whether
similar phenomena arise in NLP, RL, or other domains. (ii) Our experiments mainly use
fixed step sizes and standard architectures, so very large-scale or large-batch settings re-
main less explored. (iii) We have not analyzed momentum-based or adaptive methods (e.g.
Adam), even though full-batch EoS has been seen there (Cohen et al., 2022).

Future Work. Beyond addressing these limitations, several directions remain: Under-
standing (i) where λmax stabilizes; (ii) how EoSS and EoS affect performances and the
features learned by the neural network, e.g. (Lyu et al., 2023; Arora et al., 2022; Ahn et al.,
2023; Zhu et al., 2023; Wang et al., 2022; Beneventano and Woodworth, 2025); (iii) con-
sequently if it is benign effect or not; (iv) what the other sources of instability are there
in the (pre-)training; (v) better describing the phenomenon of progressive sharpening; and
(vi) understanding its causes.

9See details in Appendix M.
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B Comparison with Previous Stability Work

B.1 Stability of SGD

Stochastic stability notions are not unique. Cohen et al. (2021) introduces EoS
making an argument about convergence vs divergence of the loss, studying L(θt+1) ≶ L(θt).
This is the correct thing to do and does not limit the applicability of their theory, when
the loss is approximately quadratic with full-batch GD any quantity diverges or converges
given the relationship between η and λmax.
In the case of SGD the story is different (but still quadratic), different moments of the Hessian
may appear. As an example, in the setting of Definition 1, with loss 1

2 (θt − xi)⊤Hi(θt − xi)
at the step t, the evolution of the expectation of the norm squared of the gradients of the
mini batch loss is

−2ηEi,j

[
(θt − xi)⊤H2

i Hj(θt − xj)
]

+ η2Ei,j

[
(θt − xj)⊤HjH2

i Hj(θt − xj)
]
, (6)

from time t to t + 1, and the one for the full batch loss is

−ηEi,j

[
(θt − xi)⊤HiHj(θt − xj)

]
+ η2

2 Ei,j

[
(θt − xj)⊤HjHiHj(θt − xj)

]
. (7)

The stability of the expectation of Eq. (7) reduces to GNI≶ 2/η, the one of Eq. (6) is about
higher moments. One can in principle find examples in which they behave differently. The
picture becomes even more nuanced for non-quadratics: the third order terms are different
and vary in size.

Seeking the correct (or a computable) one. It is non-trivial which the correct one
is and that it may be different for different tasks. Even more, the correct one may be not
computable. For instance, previous work by Cohen et al. (2021, Appendix H), Ahn et al.
(2022), and Lee and Jang (2023) study the behavior of the loss of SGD—Eq. (7), GNI—and
show that in the final part of the training it oscillates without decreasing. We show that
GNI gets to threshold 2/η extremely early on but that does not saturate the progressive
sharpening, Figure 5. This implies that the loss stability is not the right quantity to look at
under the type of progressive sharpening we have in deep learning. Further previous work,
Wu et al. (2018); Ma and Ying (2021); Wu et al. (2022) analyzes the stability threshold for
the quantity E[∥θ∥2]. The threshold is η such that ∥(I − ηH)2 + η2

b EB [H(LB)2 − H2]∥2
2 ≶ 1

(Ma and Ying, 2021). This threshold is not computable in practice in high dimensional
settings, indeed, it entails actually checking quantities which are d2 dimensional. This lead
Mulayoff and Michaeli (2024) to develop computable bounds on η, i.e., quantities X such
that ∥(I − ηH)2 + η2

b EB [H(LB)2 − H2]∥2
2 ≶ 1 when approximately η ≶ X. Batch Sharpness

is the first quantity proposed, to our knowledge, that is computable in high dimension
(invertible in the step size in the sense above) and has been linked to the saturation of the
stable region, as in to Type-2 oscillations.

Path dependency and implications on progressive sharpening. understanding the
inner working and the phenomenology of progressive sharpening is a key open ingredient to
understand stability and location of convergence of optimization algorithms. In principle,
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instability could emerge while moving toward infinity in any possible direction on the space.
Previous work dealt with sufficient and necessary conditions for the stability of SGD in
general, (Ma and Ying, 2021; Mulayoff and Michaeli, 2024), i.e., when does SGD become
unstable given any possible notion of progressive sharpening. We show that the trajectory
goes to infinity in precise directions even if we can not properly characterize it. The fact
that Batch Sharpness is the quantity to look at implies that progressive sharpening is acting
in a certain way on the datapoint Hessians. Precisely, that progressive sharpening takes the
trajectory in that place of the boundary of the high dimensional open set of stability such
that GNI = BatchSharpness = 2/η. Empirically, indeed, the iterates become unstable
precisely because of Batch Sharpness reaching 2/η, not because of, e.g., λmax increasing but
its variance remaining stable (which would keep Batch Sharpness < GNI−constant until the
instability threshold. This, we think, shows one more time why it is key for a deep learning
optimization theory to advance to focus on path-dependent properties of the correct paths.
Importantly, in Appendix F we also establish exactly when GNI ≥ Batch Sharpness. This
fact depends only on the kurtosis of the gradients (which rarely changes much), E[∥H(LB)−
H∥2

2], and the alignment of the steps with the full-batch Hessian. We conjecture that Batch
Sharpness reaches GNI at 2/η by means of increasing E[∥H(LB) − H∥2

2] more than the
alignment of gradients with the top eigenvectors the full-batch Hessian. This would imply
that progressive sharpening increases the variance of the Hessian over the batches at least
as fast as λmax. This conjecture would agree with the red cloud amplifying around the green
line in Figure 6.

B.2 Previous Empirical Work

(a) Constant step size (b) Step size increased early (c) Step size increased late

Figure 9: We demonstrate that the saturation of GNI does not govern a sharpness-related
regime of instability typical of Type-2 oscillations - and in particular, highlighting the dif-
ference in the two types of oscillations. When we double the step size after batch sharpness
is at least half of 2/η threshold (so that it is beyond the new 2/η level), training exhibits
a catapult surge in the loss (c). But if we make the same change before batch sharpness
crosses that level—despite GNI already saturating—no catapult occurs. (b)

(a) Constant batch size (b) Batch size decreased early (c) Batch size decreased late

Figure 10: Similarly, reducing the batch size only triggers catapults if batch sharpness, not
GNI, exceeds the threshold.

Lee and Jang (2023) introduce several quantities crucial for understanding neural network
training dynamics. Below, we discuss the relationships among λmax, Batch Sharpness, and
Interaction-Aware Sharpness (IAS, Lee and Jang (2023)), emphasizing that a comprehensive
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theory of mini-batch dynamics should explain their distinct plateau timings and intercon-
nected behaviors. We conjecture that a complete theory of stochastic gradient descent
(SGD) dynamics would elucidate these metrics’ precise interrelations and their different
plateau timings.

Interaction-Aware Sharpness Lee and Jang (2023) introduce Interaction-Aware Sharp-
ness (IAS), denoted ∥H∥Sb

:

∥H∥Sb
:=

EB∼Pb

[
∇LB(x)⊤H ∇LB(x)

]
EB∼Pb

[
∥∇LB∥2

] .

This quantity shares structural similarities with both Batch Sharpness (Definition 3) and
the Gradient-Noise Interaction (Proposition 1), differing from the latter only in the denom-
inator. The key distinction from Batch Sharpness lies in which Hessian is evaluated: IAS
measures the directional curvature of the full-batch loss landscape L along mini-batch gra-
dient directions, while Batch Sharpness measures the directional curvature of mini-batch
loss landscape LB along their corresponding gradients. This distinction is crucial, as mini-
batch Hessians vary with batch selection while the full-batch Hessian remains fixed.
Notably, with full-batch GD, IAS serves as a directional alternative to the maximal Hessian
eigenvalue, λmax, introduced by Cohen et al. (2021). IAS aligns closely with the 2/η thresh-
old, unlike λmax, which often remains slightly above this threshold during EoS, especially
at the beginning of it. Since IAS measures directional curvature, we have ∥H∥Sn ≤ λmax.
Consequently, in the mini-batch setting, IAS stabilizes below 2/η, consistent with empirical
observations from Jastrzębski et al. (2019; 2020); Cohen et al. (2021) and our Figure 2. No-
tably, when B = n, our Batch Sharpness coincides with IAS rather than λmax, reinforcing
the interpretation of Batch Sharpness as the relevant metric stabilizing at 2/η even under
full-batch conditions.

Relation to Gradient-Noise Interaction Another metric from Lee and Jang (2023) is
defined as:

tr(HSb)
tr(Sn) =

EB∼Pb

[
∇LB(x)⊤H ∇LB(x)

]
∥∇L∥2

which coincides exactly with our definition of GNI (Proposition 1). As detailed in Section
3 and Appendix C, the stabilization of GNI around 2/η signals the presence of oscillations,
at least Type-1 oscillations. Lee and Jang (2023) provide extensive empirical evidence
demonstrating that neural networks spend much of their training within this oscillatory
regime (see also Figures 9a and 10a). This contrasts traditional theoretical analyses (Bottou
et al. (2018); Mandt et al. (2016)), which consider oscillations only near the manifold of
minima.

Distinguishing oscillation types It is crucial to note that GNI around 2/η does not
inherently indicate instability. As clarified in Sections 3, 4 and Appendix C, not all oscil-
lations are inherently unstable. Figures 5, 9b, 10b illustrate that altering hyperparameters
when GNI is around 2/η typically does not trigger instability (catapult-like divergence),
contrary to expectations if the system was in an EoS-like regime of instability. Instead, as
shown in Figures 5, 9c, 10c, Batch Sharpness more reliably predicts a regime of instabil-
ity. Additionally, Figure 11 highlights GNI’s independence from progressive sharpening, a
necessary precursor to Type-2 (curvature-driven) oscillations and EoS-like instabilities, as
detailed in Appendix E.

Missing Progressive Sharpening. Extensively, both in our experiments and in the ones
of Lee and Jang (2023), GNI grows to 2/η in a few initial steps (and sometimes from the
very beginning if the intialization size is large) without ever being in subject to a phase of
progressive sharpening unlike Batch Sharpness and λmax. The phase of growth of GNI is
generally short and independent of the size, the behavior, and the phase in which Batch
Sharpness and λmax are.
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Figure 11: We construct a 32k-point "easy" CIFAR-10, where we "pull apart" all the 10
classes, so the classes become linearly separable. In this case, there is virtually no "learning"
to be done, and therefore, there is barely any progressive sharpnening happening (as estab-
lished Cohen et al. (2021), progressive sharpening does not happen if the dataset "is not
complex enough"). Yet, GNI still stabilizes at the initial level of 2/η. More importantly,
when we decrease and then increase the step size, the GNI measure restabilizes to the corre-
sponding new thresholds, while λmax does not change. That means that GNI is independent
of the curvature of the loss landscape and is unrelated to progressive sharpening, and thus
Type-2 oscillations and EoS-like instability regimes.

C On the Two Types of Oscillations in SGD Dynamics

A fundamental challenge in analyzing SGD compared to GD stems from the inherent os-
cillations induced by mini-batch gradient noise. This appendix, together with Appendix E
(also see proofs in D and G), extends the discussion in Section 3 by formally distinguish-
ing between two distinct types of oscillations: noise-driven (Type-1) and curvature-driven
(Type-2). This distinction is crucial because Type-1 oscillations occur independently of the
loss landscape’s curvature and thus do not exert a regularizing effect on the sharpness of
the final solution. In contrast, Type-2 oscillations are directly caused by landscape curva-
ture and induce an implicit regularization effect by discouraging convergence towards sharp
minima.
We begin with a minimalistic example to illustrate the nature of Type-1

C.1 A Minimalistic Quadratic Example.

Consider a regression problem with two datapoints, 1 and −1, and a linear model f(x) = x
under the quadratic loss. The (scaled) full-batch loss is given by:

L(x) = 1
4(x − 1)2 + 1

4(x + 1)2.

Batch-1 SGD updates with step-size 0 < η < 2 result in oscillatory behavior around the
optimum x = 0 due entirely to gradient noise, with amplitude approximately

√
η

2−η . Cru-
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cially, the Hessian in this example is small ( d2L
dx2 = 1), demonstrating that these persistent

oscillations are entirely noise-driven (Type-1).
Formally, the SGD update is:

xt+1 = xt − η∇ℓit
= (1 − η)xt + ηξt

where lit
s are the individual datapoint losses, and ξts are i.i.d Rademacher random variables.

Thus, we obtain the first two moments explicitly:

E[xt] = (1 − η)E[xt−1] = (1 − η)tx0

E[x2
t ] = (1 − η)2E[x2

t−1] + η2 = (1 − η)2tx0 + η2

1 − (1 − η)2

(
1 − (1 − η)2t

)
This implies convergence in expectation for 0 < η < 2, with a limiting variance given by:

lim
t→∞

E[x2
t ] = η

2 − η

and divergence for η > 2.
A key observation is that increasing η to any value η1 < 2 merely changes the amplitude
of oscillations to

√
η1

2−η1
without triggering any catapult-like behavior. The only step size

for which we observe Type-2 (curvature-driven) oscillations and an EoS-like10 instability is
precisely η = 2, where the dynamics effectively become a random walk, and any larger step
size leads to divergence.
See Figure 3 for a plot of this phenomena for a one-dimensional example with many data-
points, with the same stability thresholds (also see Example 3.1 in Bottou et al. (2018)).

Crucially, when η < 2 oscillations occur persistently on the full-batch loss, despite the
individual steps on the mini-batch loss remaining stable.

The oscillation is due to the fact that the mini-batch loss landscape shifts from step to step,
not to the fact that the steps are unstable.

C.2 General Case: From One-Dimensional Toy to Multidimensional
Lyapunov Analysis

The simple one-dimensional regression in §C.1 already demonstrates how noise-driven
(Type-1) oscillations can persist indefinitely and yield a stable “two-cycle” around the op-
timum, independent of the actual Hessian magnitude. In higher dimensions, the story is
similar: when the step size η is fixed, the randomness in mini-batch gradients still injects a
continual “kick” at each iteration, causing the iterates to hover in a noisy neighborhood of
the minimum. The main difference is that now there can be many directions—some with
higher curvature than others, or even flat (λ = 0) directions. Nonetheless, the essential
mechanism remains:

∆t+1 =
(
I − η H

)
∆t − η ξt,

where ∆t = xt − x⋆ is the displacement from the optimum, H is the Hessian at x⋆, and ξt

encodes the random fluctuation (gradient noise). Once ∆t settles into a stationary distri-
bution, the covariance Σx can be found by solving a discrete Lyapunov equation similar to
the one-dimensional case.

10The key difference between these oscillations and genuine EoS behavior in neural networks is
that, in the quadratic case, the full-batch loss does not decrease, making this scenario inherently
less informative. In contrast, neural networks exhibit a surprising, albeit non-monotonic, decrease
in loss within this instability regime, an effect arising from the multidimensional nature of their
optimization landscape (Damian et al., 2023)
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Key References and the Road Ahead. A number of works formalize this “SGD noise
equilibrium” by viewing the updates as a linear Markov chain in a neighborhood of x⋆.
Classical references include Mandt et al. (2016) for the stochastic differential analogy (Orn-
stein–Uhlenbeck process), and Bottou et al. (2018) for a thorough discussion of how the
constant stepsize prevents exact convergence. Intuitively, the argument for Proposition 1
goes thus as follows:

1. The iterates oscillate with a stationary covariance Σx around x∗.
2. Full-batch (expected) gradient is zero at x∗ and grows roughly linearly with distance

for small deviations (by Taylor expansion ∇L(x) ≈ H(x − x∗)). So on average over the
iterations we have

Ek[∥∇L(xk)∥2] = Tr
(
HΣxH).

3. The stationary covariance of the gradients is Σg satisfies:

Σx ≈ η

2 (H−1Σg).

Putting all together, this implies that Σg of the gradients is about 2
η H−1 bigger than the

full-batch ∇L∇L⊤. Precisely the following quantity (where Li is the loss on the i − th data
point):

Ei

[
∇Li(x)⊤H∇Li(x)

]
∥∇L∥2 =

Tr
(
HΣg

)
Tr
(
HΣxH)

, (8)

and this can be rewritten as

Gradient-Noise Interaction (GNI) =
Ei

[
∇Li(x)⊤H∇Li(x)

]
∥∇L∥2 = 2

η
·

Tr
(
HΣxH

)
Tr
(
HΣxH)︸ ︷︷ ︸

=1

= 2
η

. (9)

This 2/η thus comes out of the only fact of oscillating and it is unrelated to the Hessian
value. Moreover, EoS happens only in the eigenspace of the highest eigenvalue, Type-1
noise on the whole subspace spanned by the eigenspaces of the non-negative eigenvalues.

On Stability For this reason, linear stability analyses of stochastic gradient descent and
noise-injected gradient descent on quadratic objectives–originally explored by Wu et al.
(2018) and further developed by Ma and Ying (2021); Wu et al. (2022); Mulayoff and
Michaeli (2024)—explicitly exclude Type-1 oscillations by categorizing them as stable.
Specifically, Ma and Ying (2021) restrict their analysis to interpolating minima, where all
individual gradients vanish, thus effectively eliminating noise-driven oscillations and isolat-
ing the curvature-driven (Type-2 ) scenario. Mulayoff and Michaeli (2024) extends this to
a more general class of minima by restricting the analysis to the orthogonal complement
of the null space of the Hessian, and demonstrating that the noise-driven oscillations do
not affect stability. Lee and Jang (2023) empirically established that Gradient-Noise Inter-
action (GNI ) consistently remains around 2/η throughout training. From the above, this
implies that most training occurs in an oscillatory regime (at least Type-1 )—see Figure
10 and Appendix B.2. In contrast, our study specifically investigates the emergence and
implications of Type-2 oscillations, given their significant role in implicitly regularizing the
loss landscape.

From Informal to Formal. In the next Appendix D, we present a general discrete Lya-
punov proof of Lemma 1, allowing H ⪰ 0 to be possibly degenerate and not necessarily
commuting with the noise covariance. The result is summarized in Proposition 2, show-
ing rigorously that GNI ≈ 2/η arises under any stable constant-stepsize mini-batch SGD
orbit. This “ 2

η -law” is precisely the high-dimensional extension of the toy one-dimensional
phenomenon above.
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In particular, we show here that the appearance of some quantity being 2/η means
that the system is oscillating but does not mean in principle that the landscape or the
curvature adapted to the hyper parameters.

D Proof of Proposition 1

Setup and Notation. Let

L(x) = 1
n

n∑
i=1

ℓi(x)

be twice–continuously differentiable with a (possibly non–isolated) minimiser x⋆. Denote
by H := ∇2L(x⋆) ⪰ 0 the positive–semidefinite Hessian at x⋆. Decompose the ambient
space Rd into

Rd = E+ ⊕ E0, E+ := Im(H), E0 := ker(H),
with corresponding orthogonal projectors P+, P0. Let H† denote the Moore–Penrose pseu-
doinverse of H. It will be convenient to define the Kronecker–sum operator

K : Rd×d → Rd×d, K(X) = H X + X H11.

Assumptions Near x⋆. We work under the following assumptions in a neighborhood of
x⋆.

(A1) Local linearity. Each ℓi is (locally) twice differentiable, and in a sufficiently small
neighborhood of x⋆ we have

∇ℓi(x) = ∇ℓi

(
x⋆
)

+ H
(
x − x⋆

)
+ O

(
∥x − x⋆∥2), H = ∇2L

(
x⋆
)

⪰ 0.

(A2) Finite, compatible noise. Define

Σg = Ei

[
∇ℓi(x⋆) ∇ℓi(x⋆)⊤

]
(finite matrix).

We assume that in the flat subspace ker(H), there is no large random forcing. For-
mally, either

P0 Σg P0 = 0, where P0 is the orthogonal projector onto ker(H),

or else ∥P0 Σg P0∥ ≲ η so that the random walk does not blow up in flat directions.
(A3) Stepsize stability. Let

λ+
max := max

{
λ > 0 : λ ∈ σ(H)

}
.

We take a constant stepsize η such that

0 < η <
2

λ+
max

.

This guarantees mean–square stability on the subspace Im(H), since ρ
(
I − η H

)
≤

1 − η λ+
min.

Remark 1 (Remarks on the assumptions).

Exact vs. Lipschitz Hessian (on (A1)) When each ℓi is strictly quadratic, the local linear-
ity ∇ℓi(x) = ∇ℓi(x⋆) + H (x − x⋆) holds exactly. In general, if ∇2ℓi is L2–Lipschitz, the
second–order expansion yields a small O(∥x−x∗∥2) remainder. For small η, typical SGD
iterates remain within O(√η ) of x⋆, causing only O(η2) corrections in the Lyapunov
equation—less than the main O(η) term.

11When H is diagonalizable (e.g. symmetric PSD), it admits an eigenbasis {vi}. Then K is
diagonalizable in the basis {vi ⊗ vj} with eigenvalues λi + λj . Thus K† acts as 1

λi+λj
on vi ⊗ vj ,

and zero if λi + λj = 0.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Small drift in flat directions (on (A2)) The condition P0 Σg P0 = 0 can be relaxed to
∥P0 Σg P0∥ ≤ δ. A discrete–Lyapunov analysis shows that Σx remains finite provided
δ = O(η). Concretely, if ∥P0 Σg P0∥ ≤ 1

2 b λ+
min η, then the null–space covariance Σ00

x
does not diverge, matching the same O(η) scale in Im(H).

Near–critical slow mixing (on (A3)) As η → 2/λ+
max from below, the mixing time τmix ∼

1/(η λ+
min) can become quite large. Reviewers may appreciate a remark that we assume

ηλ+
min ≪ 1, so that the chain quickly enters stationarity and the covariance arguments

hold.

Mini–Batch SGD and Gradient Noise. For each iteration t, sample a mini–batch Bt

of size b (either i.i.d. or well–shuffled from a finite dataset) and define

gt := 1
b

∑
i∈Bt

∇ℓi

(
xt

)
, xt+1 := xt − η gt.

Let
∆t := xt − x⋆, ξt := gt − ∇L(x⋆).

Then E[ξt] = 0 and E[ξt ξ⊤
t ] = 1

b Σg. In particular, for with–replacement (i.i.d.) sampling
we have E[ξt | xt] = 0, so the cross–term E[ξt ∆⊤

t ] = 0. For without–replacement sampling,
one can show E[ξt ∆⊤

t ] remains O(η) (Smith et al., 2021; Beneventano, 2023; Mishchenko
et al., 2020), hence appearing only at order O(η2) in the final covariance.
Proposition 2 (General Gradient–Noise Interaction). Under the above Setup/Notation and
assumptions (A1)–(A3), consider the mini–batch SGD updates

xt+1 = xt − η gt, gt = 1
b

∑
i∈Bt

∇ℓi(xt), Bt
i.i.d.∼ Pb.

Then the linearized error process ∆t := xt − x⋆ admits a unique stationary covariance Σx

on E+ = Im(H). In particular,

Σx = η

b
K†(Σg

)
+ O(η2), K(X) = H X + X H, (10)

and, under stationarity,

EπEB

[
∇LB(xt)⊤ H ∇LB(xt)

]
Eπ

[
∥∇L(xt)∥2

] = 2
η

[
1 + O(η)

]
. (11)

Furthermore, all hidden constants scale at most linearly in ∥Σg∥ and inversely in λ+
min and

one can make the constant in O(η) explicit by Lipschitz bounds on H.

In particular, this implies Proposition 1

GNI(x) :=
EB[ ∇LB(x)⊤ H ∇LB(x)

]
∥∇L(x)∥2 ≈ 2

η
.

Proof of Proposition 2.
Linearized Dynamics and Lyapunov Equation. By (A1) (or its Lipschitz extension)
we have ∇L(xt) = H ∆t + O(∥∆t∥2). Restricting to the leading linear term, the recursion
is

∆t+1 =
(
I − η H

)
∆t − η ξt.

At stationarity, let Σx := E[∆t ∆⊤
t ]. Taking outer products in the linear approximation

gives the discrete Lyapunov equation

Σx =
(
I − η H

)
Σx

(
I − η H

)⊤ + η2

b
Σg + O(η3), (12)

where higher–order terms come from the O(∥∆t∥2) nonlinearity and possible small correla-
tion E[ξt ∆⊤

t ]. These can be shown to contribute only at order O(η2) or higher in Σx.
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Vectorization and Solving for Σx. Define vec(·) so that vec(A X B) = (B⊤⊗A) vec(X).
Then (12) rewrites as[

I −
(
I − η H

)
⊗
(
I − η H

)]
vec(Σx) = η2

b
vec
(
Σg

)
+ O(η3).

Since (I −η H)⊗2 = I −η K+O(η2), the bracket equals η K+O(η2). Restricting to E+ ⊗E+,
the operator K is positive–definite, so its Moore–Penrose inverse K† exists there (while K = 0
on null directions). Hence

vec(Σx) = η K†
(

1
b vec(Σg)

)
+ O(η2).

Reverting to matrix form proves the key statement Σx = η
b K†(Σg) + O(η2).

Full–Batch vs. Mini–Batch Gradients. Next, we compare the second–moment of
∇L(xt) versus ∇LB(xt). By definition,

∇LB(xt) = ξt + ∇L(xt).

Under i.i.d. sampling, ξt is conditionally uncorrelated with ∆t, hence also with ∇L(xt) =
H ∆t. We then get:

EB

[
∇LB(xt)⊤ H ∇LB(xt)

]
= 1

b tr
(
H Σg

)
+ tr

(
H Σx H

)
.

Meanwhile,
E
[
∥∇L(xt)∥2] = tr

(
H Σx H

)
.

Substituting Σx ≈ η
b K†(Σg) makes both terms proportional to tr(H Σg), and one finds

EB

[
∇L⊤

B H ∇LB

]
E
[
∥∇L(xt)∥2

] = 2
η

(
1 + O(η)

)
.

This completes the proof of (11) and Proposition 2.

Remark 2 (Discussion and Constants).

• Explicit constants in O(η). If ∥H∥ ≤ L2 and λ+
min > 0, then ∥K†∥ ≲ (λ+

min)−1.
Consequently, the O(η2) terms in (10) scale linearly with ∥Σg∥ and at most quadratically
with (λ+

min)−1. Concretely,∥∥Σx − η
b K†(Σg)

∥∥
2 ≤ Cnonlin η2 ∥Σg∥2, where Cnonlin = L2(

2 λ+
min
)2 ,

and thus ∥Σx∥2 ≤ η

2 b λ+
min

∥Σg∥2 + O(η2).

• Without–replacement sampling. For large n or for well–shuffled datasets, the corre-
lation introduced by sampling without replacement typically appears only in the cross–
term E[ξt ∆⊤

t ] at order O( b
n η), which is again absorbed into O(η2) at the level of Σx.

Hence all conclusions remain valid to leading order O(η).

• Flat directions. If ∥P0 Σg P0∥ is nonzero but ≲ η, the same discrete Lyapunov analysis
shows there is still a finite stationary Σx with O(η) scale in E+ and at most O(η) in E0.
If ∥P0 Σg P0∥ ≫ η, the iterates execute an unbounded random walk in the null space
and the stationary covariance diverges in those directions.

Remark 3.

1. Universality. The factor 2/η emerges without assuming [H, Σg] = 0 or H ≻ 0; commu-
tativity affects only the size of the O(η) remainder. Thus every stable constant–stepsize
SGD orbit satisfies the Gradient–Noise Interaction (GNI) rule.

2. Flat directions. Condition P0ΣgP0 = 0 in (A2) is essential: if violated, the iterates
execute an uncontrolled random walk in E0, for which no finite stationary covariance
exists and the ratio is undefined.
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3. Edge of Stability. Observing GNI ≈ 2/η in practice is therefore necessary but not
sufficient for curvature–driven (“Edge-of-Stability”) dynamics. One must additionally
check that the top Hessian eigenvalue λ+

max itself approaches 2/η.
4. Higher–order corrections. Retaining the η2(H ⊗H) term in the Neumann expansion

of (I − ηH)⊗2 refines Σx and hence the GNI ratio; see (Mandt et al., 2016; Bottou et al.,
2018) for explicit bounds.

Discussion of Key Assumptions & Broader Context. (1) Local linearity and
neighborhood size. We rely on the locally linear approximation ∇ℓi(x) ≈ ∇ℓi(x⋆) +
H
(
x−x⋆

)
from Assumption (A1), which is exact in the strictly quadratic case and otherwise

follows from a second-order Taylor expansion with Lipschitz Hessians. In practice, as long
as the step size η is small enough, the SGD iterates remain close to x⋆. Consequently, the
higher-order (O(∥x−x⋆∥2)) terms contribute only O(η2) to the discrete Lyapunov equation,
negligible compared to our main O(η) term. A related subtlety is that our stationarity result
is exact for the linearized process; transferring it to the fully nonlinear dynamics requires
“small-noise ergodicity” arguments (e.g. Rhee and Glynn, 2017; Meyn and Tweedie, 2009),
ensuring that for sufficiently small η, the nonlinear SGD inherits nearly the same stationary
covariance.
(2) Flat directions and step-size stability. Assumption (A2) states P0 Σg P0 = 0 (or at
least ∥P0 Σg P0∥ ≲ η) to prevent unbounded drift along ker(H). If there is too much noise in
flat directions, the covariance Σx diverges, and the notion of a stable “oscillation” no longer
holds. Assumption (A3) with η < 2/λ+

max ensures ∆t is mean-square stable in the curved
subspace E+ = Im(H). In changing or “progressively sharpening” landscapes, one must still
check that η remains safely below 2/λ+

max. Another practical concern is whether ξt is truly
independent of xt. For i.i.d. mini-batches, the tower property E[ξt | xt] = 0 justifies the
cross-term in the Lyapunov approach; without-replacement sampling, one obtains a small
correlation bounded by O( b

n η), still absorbed by our O(η2) remainder.
(3) Universal ratio vs. Edge-of-Stability. A key outcome is that the ratio

EB

[
∇LB(x)⊤ H ∇LB(x)

]
∥∇L(x)∥2 ≈ 2

η

holds broadly once the system is in a stable constant-stepsize regime. However, by itself it
does not guarantee that the top Hessian eigenvalue is exactly 2/η. Both curvature-driven
and noise-driven oscillations can produce the same measured ratio. Thus, to detect a genuine
“Edge-of-Stability” (EoS), one must also verify that λ+

max(H) ≈ 2/η. Otherwise, the 2/η
ratio simply reflects noise-dominated plateaus.

Historical note on the 2/η law and Lyapunov analysis. The observation that fixed–
stepsize SGD does not converge to a point but rather equilibrates at a noise–controlled
“temperature” originates in classical stochastic approximation. Already in the seminal paper
of Robbins and Monro (1951) a diminishing step was prescribed precisely to avoid this
residual variance. In the neural–network community, Bottou (1991) drew the first explicit
analogy between a constant step size and the temperature of a thermodynamic system,
noting that the algorithm must reach a stationary distribution whose spread scales with η.
This qualitative picture foreshadows the

E[∇L⊤
BH ∇LB ]

∥∇L∥2 ≈ 2
η

identity proved in Proposition 1.

Control–theoretic formalization. A rigorous derivation of the stationary covariance
appeared with the discrete–time Lyapunov treatment of Mandt et al. (2016), who viewed
constant–stepsize SGD on a local quadratic as a Markov chain converging to an Ornstein–
Uhlenbeck law. Solving the Lyapunov equation yields Σx = η

b K†(Σg) + O(η2), and, after a
short calculation, the gradient–noise interaction plateaus at ≈ 2/η. For strongly convex ob-
jectives this covariance was independently derived in the comprehensive optimisation survey
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of Bottou et al. (2018, Thm. 4.6), who emphasised that the full–batch gradient cannot decay
below a floor proportional to η Tr(HΣg). The commutativity and invertibility constraints of
these early analyses were removed by Yaida (2018), who solved the exact discrete Lyapunov
equation in the general non–normal, possibly degenerate case. His fluctuation–dissipation
relation shows that even without [H, Σg] = 0 (or H ≻ 0) the first–order term in η still
enforces the same 2/η ratio proved in our Lemma.

D.1 Full- vs. mini-batch gradient norms

Lemma 2 (Bias–variance identity.). For every θ ∈ Rd

EB

[
∥∇LB∥2] = ∥∇L∥2 + EB

[
∥∇LB − ∇L∥2]. (13)

Proof. Expand ∥∇LB∥2 = ∥∇L + (∇LB − ∇L)∥2 and take EB [·]. The cross term vanishes
because EB [∇LB ] = ∇L.

Explicit variance. Let Σ(θ) := Cov(x,y)∼D[ ∇LB(θ) ], B ∼ Pb, b = 1, be the covariance
of a single sample gradient. Then, for i.i.d. batches of size b,

EB

[
∥∇LB − ∇L∥2] = 1

b
tr
(
Σ(θ)

)
.

For a finite dataset of size n sampled without replacement the factor 1/b is replaced by
(n − b)/

(
b (n − 1)

)
.

Stationary, small-step regime. In Appendix D we solved the discrete Lyapunov equa-
tion and obtained (first order in the step size η):

∥∇L(θ)∥2 = η

b
tr
(
HK†(Σ)H

)
+ O(η2)

where K(X) = HX +XH and K† is its Moore–Penrose inverse on Im H⊗Im H. This implies
that

∥∇L∥2

EB [∥∇LB∥2] = η
tr(HK†(Σ)H)

tr(Σ) + η tr(HK†(Σ)H) + O(η2). (14)

Spectral bounds on the bias–variance ratio. Let the eigen–decomposition of the
full-batch Hessian be H =

∑r
i=1 λi viv

⊤
i with strictly positive eigen-values 0 < µ := λ1 ≤

· · · ≤ λr = λmax and let P+ :=
∑r

i=1 viv
⊤
i be the projector onto Im H. Define the

curved-subspace covariance Σ+ := P+ΣP+. Then, up to the O(η2) term already displayed,

µ

2 tr(Σ+) ≤ tr
(
H K†(Σ) H

)
≤ λmax

2 tr(Σ+) ≤ λmax

2 tr(Σ). (15)

Consequently
Lemma 3 (Bound on the ratio). In the oscillatory regime, we have

∥∇L∥2

EB [∥∇LB∥2] = η
tr(HK†(Σ)H)

tr(Σ) + η tr(HK†(Σ)H) + O(η2)

and
η µ

2
tr(Σ+)

tr(Σ) + ηλmax
2 tr(Σ+)

≤ ∥∇L∥2

EB [∥∇LB∥2] ≤ η λmax

2
tr(Σ+)

tr(Σ) + ηµ
2 tr(Σ+) .

If the gradient noise has no component in the null-space of H (Σ+ = Σ),

ηµ

2 + ηµ
≤ ε2(θ) ≤ ηλmax

2 + ηλmax
,

∥∇L∥2

EB [∥∇LB∥2] ) ∈
[

ηµ
2 , ηλmax

2
]

+ O(η2).
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Proof. Write Σ =
∑

i,j sij viv
⊤
j . Because K†(viv

⊤
j ) = (λi + λj)−1viv

⊤
j for λi + λj > 0,

H K†(Σ) H =
∑
i,j

λiλj

λi + λj
sij viv

⊤
j .

Taking the trace removes all off-diagonal terms and gives

tr
(
H K†(Σ) H

)
=

r∑
i=1

λ2
i

2λi
sii = 1

2

r∑
i=1

λi sii.

Each coefficient λi lies between µ and λmax, while
∑

i sii = tr(Σ+). This yields the two
inequalities in (15). Insert them into the fraction η tr(HK†(Σ)H)/

[
tr(Σ) + η tr(HK†(Σ)H)

]
and simplify.

E On the Two Types of Oscillations in NNs

Differentiating Oscillations in Neural Network Optimization Our analytical treat-
ment of SGD on one-dimensional quadratic objectives in Appendix C.1 leverages the sim-
plicity of having a single curvature measure–the second derivative–which facilitates a precise
landscape characterization and explicit stability conditions. However, extending this analy-
sis to multidimensional quadratics already introduces significantly more intricate dynamics,
necessitating advanced analytical frameworks as developed by (Wu et al., 2018; Ma and
Ying, 2021; Mulayoff and Michaeli, 2024). Transitioning further to neural network opti-
mization increases this complexity dramatically, since training predominantly occurs away
from the manifold of minima, including the EoS-like instabilities themselves (as evidenced
by the continuous reduction in loss)—and therefore requires to go beyond linear stability of
quadratics near the manifold of minima.
Given the current absence of robust theoretical tools to comprehensively analyze such dy-
namics, distinguishing between curvature-driven and noise-driven oscillations necessitates
empirical experimentation. Specifically, we probe the dynamics by systematically vary-
ing hyperparameters (e.g., step size or batch size), as illustrated in Figure 3, allowing us
to differentiate curvature-induced (Type-2) oscillations from purely noise-induced (Type-1)
oscillations (Figure 5).

Type-2 Oscillations Are Unique to NN Optimization This complexity inherent in
neural network optimization is not merely an analytical inconvenience; rather, it is intrinsi-
cally tied to the emergence and significance of Type-2 oscillations and EoS-style phenomena.
Notably, Type-2 oscillations emerge naturally12 only in the case of neural network optimiza-
tion, but not in the case of quadratic objectives. In the one-dimensional quadratic scenario
analyzed previously, curvature-driven oscillations require the step size to precisely match the
stability threshold 2/λmax, or exceed it, in which case we have divergence—in either case, it
means that optimization of quadratics does naturally enter a regime of instability. In con-
trast, neural network optimization uniquely exhibits progressive sharpening, a third-order
derivative phenomenon (Damian et al., 2023), where curvature naturally increases during
training. This progressive increase in curvature means that training with a fixed step size
can transition into an EoS-like regime of instability without any explicit adjustment of
the hyperparameters, and stay there due to self-stabilization effects (Damian et al., 2023).
Hence, Type-2 oscillations emerge naturally and robustly within neural network training
dynamics due to this intrinsic change of the loss landscape. Consequently, Type-2 oscilla-
tions and EoS-like regimes are fundamentally driven by progressive sharpening, which does
not happen in quadratics, making it a purely neural network optimization phenomena.

12We define an as emerging naturally if it arises inherently from the training dynamics, and not a
result of precisely-selected hyperparameters or initializations, reflecting a fundamental characteristic
of the optimization process itself. Formally, it needs to happen over a range of hyperparameter
choices and initializations.
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E.1 On the Importance of Type-2 Oscillations Compared to Type-1

Noise-induced (Type-1) oscillations are not unstable when introducing slight perturbations
(increase step size or decrease batch size), as showcased in Figure 9 and 10. Therefore, they
do not constitute an EoS-type phenomena, where slight perturbations do cause divergence
(”complete” divergence as long as we consider just the quadratic terms and can ignore higher
terms — the fact that it doesn’t fully diverge is exactly the higher-terms effect). Instead,
after a perturbation, noise-induced oscillations quickly re-stabilize at a higher level.
Crucially, a lack of such divergence means that noise-induced oscillations wouldn’t exhibit
the self-stabilization mechanism of Damian et al. (2023) characteristic of EoS (differing it
from classical convex optimization). Moreover, as shown in the quadratic example and in
the proofs, noise-induced oscillations happen for any quadratic, for a wide range of step
sizes, making them inherently “unsurprising”, while EoS is a beyond-quadratic phenomena
(and, as far as we know, a deep-learning-specific phenomena), as it relies on both progressive
sharpening and the aforementioned self-stabilization, both being an effects of higher order
terms. And the reason why we care specifically about effects of beyond-quadratic terms is
specifically the adaptation of the landscape to the hyper-parameters, which is, by definition,
an effect of higher order terms. That is the reason we specifically care about curvature-driven
oscillations.
Now, with all of the above, GNI, being an indicator of those noise-induced oscillations, is
therefore not an indicator of EoS-like regime. This is despite the fact that GNI in SGD
comes from the same place as λmax/Rayleigh quotient in GD — i.e. from the descent
lemma; yet, it does not mean that the two quantities serve the same role. Instead, it is
the presence of the natural noise in SGD that makes the analysis much more complex.
Instead, GNI has its usefulness as a measure of the level of noise coming from SGD. That
is, noise-induced oscillations are influenced by the Hessian, but are also strongly influenced
by the ratio between the noise covariance and the norm of full batch gradient, with the
latter being the leading cause of change. In particular, GNI is decoupled from the Hessian,
and can change drastically without any change of landscape sharpness, as showcased in our
experiments. Lastly, another important consequence of EoS is that the landscape adapts to
the hyper-parameters (rather than the other way around in classical optimization). With
GNI being decoupled from the Hessian, GNI being at 2/eta is not an indication of landscape
adopting to the hyper-parameters, as is the case with λmax being at 2/η during GD.

F Quadratic Setting: Batch Sharpness and GNI

This appendix serves as a set-up of the setting for the proof of Theorem 1 in Appendix G.

F.1 Setting: Data and risk.

Intuitively, we minimise a random quadratic loss whose curvature changes with each sample.
Let (Hi, xi)i≥1 be i.i.d. with

Hi ∈ Rd×d, Hi ⪰ 0, xi ∈ Rd, E
[
∥Hi∥4

F + ∥xi∥4]
< ∞.

Define13

H := E[Hi], G := E[Hixi], θ⋆ := H−1G.

The population risk is L(θ) := Ei

[
(θ − xi)⊤Hi(θ − xi)

]
.

F.2 SGD dynamics.

With constant stepsize η satisfying

0 < η <
2

λmax(H) , (16)

13All eigenvalues of H := E[Hi] are positive because λmin(H) > 0 is assumed; the ‘+’ superscript
in earlier drafts is therefore redundant.
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the update
θt+1 = θt − 2η Hit

(
θt − xit

)
, (17)

where it
i.i.d.∼ Unif{1, . . . , n} and it ⊥⊥ θt, generates a Markov chain that is geometrically

ergodic (Meyn and Tweedie, 2009). Let πη denote its unique stationary law and write
mη := Eπη

[θ], Ση := Covπη
(θ).

Key intuition: the stochastic gradient g(θ, i) := 2Hi(θ − xi) is unbiased, Ei[g(θ, i)] =
∇L(θ) = 2H(θ − θ⋆), so the mean iterate should coincide with θ⋆.

F.3 Stationary mean and covariance.

The discussion in Appendix C implies that in this setting
Lemma 4 (Lyapunov solution). For any stepsize satisfying (16),

mη = θ⋆, (18)

Ση = η

2 H−1ΣgH−1 + O(η2), Σg := 4 Vari

[
Hi(θ⋆ − xi)

]
, (19)

where the O(η2) constant depends polynomially on λmin(H)−1 and on the 4th-moment bound
above.

Sketch. Set ∆t := θt − θ⋆ and ξt := 2Hit
(θ⋆ − xit

) (mean 0, variance Σg). Subtracting (17)
at θ⋆ gives

∆t+1 = (I − 2ηH)∆t − η ξt − 2η
(
Hit

− H
)
∆t. (20)

Mean. Taking expectations and using it ⊥⊥ θt, E[∆t+1] = (I − 2ηH)E[∆t], whose unique
fixed point is 0, proving mη = θ⋆ (18).

Covariance. Let St := E[∆t∆⊤
t ]. Multiplying (20) by its transpose and exploiting E[∆t] = 0,

one obtains the discrete Lyapunov recursion St+1 = (I −2ηH)St(I −2ηH)⊤+η2Σg +Rt with
∥Rt∥ = O(η3) thanks to E∥Hi∥4

F < ∞. Passing to the limit and inverting
[
I − (I − 2ηH)⊗2]

by a Neumann series yields (19).

Take-away. Constant-stepsize SGD is unbiased in the mean but has an O(η) stationary
variance that blows up if η is too large; the 2/λmax(H) is thus necessary for avoiding the
blowup, although not sufficient.

F.4 Per-sample residuals.

Define, for any θ ∈ Rd,

Yi(θ) := Hi(θ − xi), µ(θ) := Ei[Yi(θ)] = Hθ − G.

At stationarity write Y := Yi(θ), µ := µ(θ), and set

Ỹ := Y − Ei[Y | θ] = Y − µ =⇒ Ei[Ỹ | θ] = 0.

Finally define the scalars14

A := Ei,π

[
Y⊤HiYi

]
, B := Ei,π

[
Y⊤HYi

]
, C := Ei,π

[
∥Yi∥2]

,

C0 := Ei,π

[∥∥∥Ỹi

∥∥∥2]
, D := µ⊤Ei,π

[
HiYi

]
.

(21)

Why these symbols? A is the average loss at stationarity; B and C act as mixed-moment
controls that will upper-bound A via a trace inequality.

14Notation: Ei,π integrates i and θ ∼ πη.
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F.5 Bounding curvature–fluctuation interaction.

Lemma 5 (Cross term). Let ∆̃ := Ei,π

[
Ỹ⊤(Hi − H)Ỹ

]
and ∆ := A − B = Ei,π

[
Y⊤(Hi −

H)Y
]
. Then ∆ := A − B = ∆̃ + 2D,

∆̃ ≤
√

Ei[∥Hi − H∥2
2]
√
Eπ[∥Ỹ ∥4], (22)

and
∆ ≤

√
Ei[∥Hi − H∥2

2]
√
Eπ[∥Ỹ ∥4] + 2C0∥µ∥2 + ∥µ∥4. (23)

Proof. In the following two steps we establish the first inequality.
Step 1 (Cauchy - Schwarz). For any matrix A and vector v, |v⊤Av| ≤ ∥A∥2 ∥v∥2. With
A := Hi − H and v := Y :

| Ỹ⊤(Hi − H)Ỹ | ≤ ∥Hi − H∥2 ∥Ỹ ∥2.

Note that this is sharp if and only if Ỹ aligns with the eigenvectors of the maximal eigenvalues
of Hi − H.
Step 2 (Average and separate: Jensen). Independence of i and θ at stationarity
implies, taking the expectation that

|∆| ≤
√
Ei[∥Hi − H∥2

2]
√
Eπ[∥Ỹ ∥4].

Second inequality. Note that
Y⊤(Hi − H)Y − Ỹ⊤(Hi − H)Ỹ = 2µ⊤(Hi − H)Ỹ + µ⊤(Hi − H)µ︸ ︷︷ ︸

centered

. (24)

Note that the fact that µ⊤(Hi − H)µ is centered in zero, implies that
A = B + ∆̃ + 2D. (25)

This establish the first thesis of the lemma and implies that

|Y⊤(Hi − H)Y | ≤ ∥Hi − H∥2

(
∥Ỹ ∥2 + 2|µ⊤Ỹ | + ∥µ∥2

)
.

Taking the expectation we have

|∆| ≤
√
Ei[∥Hi − H∥2

2]
√
Eπ[∥Ỹ ∥4] + 2∥µ∥2

2 · Eπ[∥Ỹ ∥2] + ∥µ∥4
2.

This concludes the proof of the lemma.

∆ measures how curvature noise (Hi − H) correlates with noise Y . Lemma 5 shows this
interaction cannot exceed the root product of the moments of two natural quantities.

F.6 Main trace inequality

Proposition 3. We have that Batch Sharpness is smaller than GNI if and only if
BC0 ≥ ∥µ∥2

2 · (∆̃ + 2D). (26)
In particular,

B C − A ∥µ∥2 ≥ BC0 −
√
Ei[∥Hi − H∥2

2]
√

Eπ[∥Ỹ ∥4] + 2C0∥µ∥2 + ∥µ∥4∥µ∥2. (27)

This implies that Batch Sharpness is smaller than GNI up to O(η) at the stationary distri-
bution when

C0 ≥ η

2

√
Ei[∥Hi − H∥2

2]
√
Eπ[∥Ỹ ∥4] + 2C0∥µ∥2 + ∥µ∥4. (28)

Proof. Note that A∥µ∥2 ≤ B∥µ∥2 + |∆|∥µ∥2. Applying Lemma 5 and noticing that C =
C0 + ∥µ∥2 concludes the proof of (27). Next note that up to O(η) we have that GNI
= B/∥µ∥2 = 2/η at the stationary distribution. This proves the second part (28) and
establishes Proposition 3.
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F.7 The moments of the oscillations

1. Centering first simplifies the ratio Because C0 is defined with the centred residual
Ỹ , we compare

Eπ[∥Ỹ ∥4] + 2C0∥µ∥2 + ∥µ∥4

C2
0

= E[∥Ỹ ∥4]
C2

0
+ 2 ∥µ∥2

C0
+ ∥µ∥4

C2
0

.

The first term is the kurtosis-type ratio κY := E[∥Ỹ ∥4]/C2
0 .

2. Exact formula in the Gaussian quadratic setting Assume:
• xi |Hi ∼ N (θ⋆, Σx) – an isotropic sampling model for simplicity;
• Hi is deterministic, i.e. Hi ≡ H ⪰ 0.

Then ξ := Y = H(θ⋆ − xi) ∼ N
(
0, S

)
with S := HΣxH and Ỹ ≡ Y because µ = 0. By

Isserlis’ theorem
E[∥Y ∥4] = (tr S)2 + 2 tr(S2), C0 = tr S.

Therefore

κGauss
Y = 1 + 2 tr(S2)

(tr S)2 ∈
[

1 + 2
d , 3

]
. (29)

• Isotropic case S = σ2Id =⇒ κ = 1 + 2
d , e.g. = 3 in d = 1, = 1.4 in d = 5, → 1 for

large d.
• Rank-one noise S = σ2uu⊤ (∥u∥ = 1) =⇒ κ = 3 – the maximal value compatible

with Gaussianity.
• The interval bounds follow from tr(S2) ∈ [ 1

d (tr S)2, (tr S)2].

3. Effect of random curvature Hi If Hi varies but is independent of xi and of θ a
priori, the second moment becomes

C0 = EH

[
tr(HΣxH)

]
,

while
E[∥Y ∥4] = EH

[
(tr(HΣxH))2 + 2 tr

(
(HΣxH)2)].

Define a := EH [tr(HΣxH)], b := EH [tr(HΣxH)2], c := EH [tr((HΣxH)2)]. Then

κY = 1 + 2 c

a2 + b − a2

a2 . (30)

The last term is a curvature-variance correction that vanishes when Hi is deterministic. By
Cauchy-Schwarz, 0 ≤ b−a2 ≤ Var

(
tr(HΣxH)

)
, so κY ∈ [1+ 2

d , 3+κ̃H ] where κ̃H := b−a2

a2 ≥ 0
depends solely on the spread of tr(HΣxH).

F.8 Closing up

In the setting above, thus, we can transform (28) in the following inequality

1 ≥ η

2

√
Ei[∥Hi − H∥2

2]

√
Eπ[∥Ỹ ∥4] + 2C0∥µ∥2 + ∥µ∥4

C2
0

(31)

and the previous subsection tells us that there exists a universal constant κY which is a
form of kurtosis of our steps (which depends on our distribution) such that Batch Sharpness
is smaller than GNI whenever√

Ei[∥Hi − H∥2
2] ≤ 2

η(κY + O(η)) . (32)

Proposition 4 (Stationary trace inequality). For every η such that 0 < η < 2/λmax we
have

A ∥µ∥2 ≤ B C (33)
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up to O(η) when √
Ei[∥Hi − H∥2

2] ≤ 2
ηκY

+ O(η). (34)

In particular, at the beginning of the training for randomly initialized weights this is the case
as the expectation of the LHS is O(log(d)) where d is the number of parameters.

Proof. The theorem follows from (32) and (30).

Interpretation. Inequality (33) says: “the loss under random curvature cannot align too
strongly with the squared prediction bias.” When either (i) the stationary iterate is unbiased
(µ = 0) or (ii) the curvature is deterministic, the bound is tight.

G Gradients explode above the EoSS: Proof of Theorem 1

We now compute the update of the norm of the gradients Ei[∥Yi∥2
2] after one step in the set-

ting in which we are at the EoSS. Precisely we are computing here the value of EtEi[∥Y t+1
i ∥2

2]
so the average over the iterations of the update to the quantity C above. Precisely we here
prove the following Proposition.
Proposition 5. In the setting and notations of Appendix F.1 and F.4. Assume η ≤
2/λmax(H). Then there exists an absolute constant c > 0 such that when Batch Sharpness
> 2/η+cη, then C increases in size exponentially and the trajectory diverges (is quadratically
unstable, see Definition 1). Note that assumptions on GNI are not necessary.

Proof. In the proof we use the notations of Appendix F.

Step 1: One step on the gradient’s second moment . Remind that the SGD iterate
satisfy

θt+1 = θt − η Yjt
(θt), it

i.i.d.∼ D,

and define a fresh, independent index j used only for the outer expectation in Ct+1. Because
j ⊥ it we may write

Yi(θt+1) = Hi

(
θt+1 − xi

)
= Yi(θt) − η HiYjt(θt).

Squaring, expanding, and averaging over j gives

Ct+1 = Ei

∥∥Yi(θt) − ηHiYjt
(θt)

∥∥2

= Ct − 2η Ei,jt

[
Yi(θt)⊤HiYjt(θt)

]︸ ︷︷ ︸
cross term

+η2 Ei,jt

[
Yjt(θt)⊤H2

i Yjt(θt)
]︸ ︷︷ ︸

variance term

. (35)

Step 2: Decoupling the indices. Note that (25) in the proof of Lemma 5 establishes
that

2Ei,jt

[
Yi(θt)⊤HiYjt

(θt)
]

= A − B − ∆̃. (36)
This implies that we can rewrite

Ct+1 = Ct − η (A − B − ∆̃) + η2 (variance term). (37)

Next note that if we are at the EoSS, then A ≈ 2
η (1 + δ)C for some δ ∈ R. This implies

that we can rewrite the term above as
Ct+1 ≈ −(1 + 2δ) Ct + ηB + η∆̃ + η2 (variance term)︸ ︷︷ ︸

rest

. (38)

Let us know understand the size of the rest, the trajectory diverges if and only if:
ηB + η∆̃ + η2Ei,jt

[
Yjt(θt)⊤H2

i Yjt(θt)
]

> 2(1 + δ) Ct. (39)
Next note that by applying Jensen inequality to the term multiplied by η2 we obtain that√

Ei,jt

[
Yjt

(θt)⊤H2
i Yjt

(θt)
]︸ ︷︷ ︸

variance term

·Ei

[
Yi(θt)⊤Yi(θt)

]︸ ︷︷ ︸
C

≥ Ei,jt

[
Yjt

(θt)⊤Hi · Yi(θt)
]︸ ︷︷ ︸

D

. (40)
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Step 3: Final algebra. Plugging this above, we obtain that the trajectory diverges when

ηB + η∆̃ + η2 D2

C
> 2(1 + δ) C. (41)

Again applying (36) we obtain that this is equivalent to

ηB + η∆̃ + η2
(
A − B − ∆̃

)2

4C
> 2(1 + δ) C. (42)

Since ηA = 2(1 + δ)C, then η2A2 = 4(1 + δ)2C2 to asking

ηB + η∆̃ + η2 B2 + ∆̃2 − 2A∆̃ − 2AB + 2B∆̃
4C

> 2(1 + δ) C − 4(1 + δ)2C2

4C
. (43)

Furthermore, equivalent to asking

ηB + η∆̃ − 2(1 + δ)
2 η∆̃ − 2(1 + δ)

2 ηB + η2 B2 + ∆̃2 + 2B∆̃
4C

> (1 − δ + δ2) C (44)

or, even further simplified

ηδ(B + ∆̃) + η2 (B + ∆̃)2

4C
> (1 − δ + δ2) C. (45)

Here we plug in (25) again and we can rewrite this as

ηδ(A − 2D) + η2 (A − 2D)2

4C
> (1 − δ + δ2) C. (46)

By plugging, as before, ηA = 2(1 + δ)C we obtain

2δ(1 + δ)C − 2ηδ2D − 2η(1 + δ)D + η2 D2

C
>
(
1 − δ + δ2 − (1 + δ)2) C (47)

which simplifies as

2η(1 + 2δ)D︸ ︷︷ ︸
O(η2)

− η2 D2

C︸ ︷︷ ︸
O(η4)

< δ(5 + 2δ) C︸︷︷︸
Oη(1)

. (48)

Thus there exists a constant c > 0, such that if δ > cη2 the trajectory diverges exponentially,
if δ < cη2 the trajectory is stable.

H When Hi ≡ H: Pure Gradient–Noise Oscillations

Set–up. Assume in the Setting of Appendix F every sample shares the same curvature:
Hi ≡ H ⪰ 0 for all i. SGD still sees noisy gradients gt = H∆t + ξt with Eit

[ξt] = 0,
Varit

(ξt) = Σg, but now there is no curvature noise.

Batch Sharpness is capped by λmax(H). For any vector v, v⊤Hv ≤ λmax(H) ∥v∥2.
Averaging over the mini–batch therefore yields

Batch Sharpness(θ) = Ei[g⊤Hg]
Ei[∥g∥2] ≤ λmax(H) ∀θ. (49)

Hence, as long as the classical stability condition η < 2/λmax(H) holds,

Batch Sharpness <
2
η

, no Type–2 oscillations arise.
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Gradient–Noise Interaction still plateaus at 2
η . The derivation in Appendix C did

not use Hi −H fluctuations, only the fixed stepsize. Consequently the stationary covariance
satisfies Σx = η K†(Σg) + O(η2), and

GNI = Ei[g⊤Hg]
∥∇L∥2 = 2

η

[
1 + O(η)

]
. (50)

Thus SGD still wiggles with the universal Type–1 ratio 2/η, even though the curvature
never adapts.

Instability threshold reverts to λmax(H). Because (49) enforces Batch Sharpness ≤
λmax(H), the only way to reach the critical value 2/η is to push the stepsize past the
quadratic limit:

η >
2

λmax(H) =⇒ divergence exactly as in full-batch GD.

Summary. With Hi ≡ H the dynamics exhibits only noise–driven (Type–1) oscillations:

• GNI→2/η at stationarity (same as the general case);
• Batch Sharpness remains below 2/η, bounded by λmax(H);
• the classical GD threshold η = 2/λmax(H) once again marks the onset of true instability.

In short, removing curvature variability collapses the Edge-of-Stochastic Stability back to
the familiar quadratic picture.

I Mini-Batch Without Replacement

The main text and Appendix C—G treated SGD with i.i.d. sampling. Here we show how
the two key quantities

GNI =
EB

[
g⊤Hg

]
∥∇L∥2 , Batch Sharpness = EB [g⊤HBg]

EB [∥g∥2] ,

behave when each epoch is a random permutation of the n samples (batch size b, k := n/b
steps per epoch).
We argue that without replacement sampling does not shift the EoSS in any practically
relevant way. The only visible effect is a 1 − b−1

n−1 reduction in gradient-noise variance,
which cancels in the GNI and Batch Sharpness and appears only as a second-order O(b/n)
correction. The differences in effect between with and without replacements are thus about
speed of convergence (Mishchenko et al., 2020; Gürbüzbalaban et al., 2021) or in terms of
traveling of the manifold of minima (Smith et al., 2021; Beneventano, 2023), not in terms
of EoSS.

Noise statistics under permutation sampling. Fix θ and set ḡ := ∇L(θ) =
1
n

∑n
i=1 ∇ℓi(θ). For a single batch B drawn without replacement

gB := 1
b

∑
i∈B

∇ℓi(θ) = ḡ + ξB , E[ξB | θ] = 0,

and the conditional covariance is (Mishchenko et al., 2020; Beneventano, 2023)

Var[ξB | θ] = n − b

b(n − 1) Σg(θ), Σg(θ) := 1
n

n∑
i=1

(
∇ℓi − ḡ

)(
∇ℓi − ḡ

)⊤
.

Key point: compared to i.i.d. sampling the variance is simply scaled by αb,n := n−b
n−1 ∈ (0, 1].
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Updated Lyapunov solution. Denote ∆t := θt − θ⋆ and keep the stepsize fixed. The
error recursion for a batch update is

∆t+1 = (I − ηH)∆t − ηξBt
, ξBt

⊥⊥ θt.

Exactly as in Appendix C, the discrete Lyapunov equation now reads
Σx = (I − ηH)Σx(I − ηH) + η2 αb,n Σg + O(η3),

so that
Σx = η αb,n K†(Σg) + O(η2).

Correlation between ξBt
and ∆t enters only at O

(
b
n η
)

and is absorbed into the O(η2)
remainder (see Beneventano, 2023, App. E).

Gradient–Noise Interaction is mostly unchanged. Plugging the equation above into
the ratio EB [g⊤Hg]/∥∇L∥2 shows that the common factor αb,n cancels:

GNIw/o repl. = 2
η

[
1 + O(η) + O

(
b
n

)]
.

Hence the plateau 2/η persists up to tiny O(b/n) corrections.

Batch Sharpness and the instability edge.

1. Variable curvature (Hi ̸≡H). The numerator and the denominator of BatchSharpness
contain the same prefactor αb,n, so their ratio—like GNI—is unchanged at first order:

BatchSharpnessw/o repl. = 2
η

[
1 + O(η) + O

(
b
n

)]
.

Consequently EoSS still appears once the directional curvature meets 2/η; the O(b/n)
shift is negligible whenever n ≫ b.

2. Constant curvature (Hi ≡ H). The bound BatchSharpness ≤ λmax(H) of Appendix
H is unaltered, so the classical quadratic threshold η = 2/λmax(H) remains the unique
instability point.

J On the fate of λmax

In this section we examine how λmax behaves once EoSS is reached and clarify its rela-
tionship to Batch Sharpness. A key aspect of the original EoS analysis is, indeed, that
the controlling quantity—the largest eigenvalue of the full-batch Hessian λmax—has an im-
mediate geometric interpretation. There exists an extensive literature about λmax size and
role in neural networks, and it is a main ingredient of any proof of convergence. The EoSS
picture replaces λmax with Batch Sharpness, a statistic whose connection to generalization
and role in optimization theory is largely unexplored.

J.1 Empirical facts

Below the phenomena we extensively observe in vision classification tasks trained with MSE,
ablating on batch sizes, step sizes, architectures, datasets. See Figure 6 for a good reference
of what generally goes on.

• Fact 1: Progressive Sharpening. λmax increases at most as long as Batch Sharpness
increases.

• Fact 2: Phase Transition. Once Batch Sharpness plateaus at 2/η, λmax stops
increasing. If it moves, it only decreases from this time on.

• Fact 3: Path-dependence. If changes to hyper parameters are made, Batch Sharpness
changes abruptly or restart growing and λmax also changes. Stabilization of both happen
as Batch Sharpness reaches 2/η. The trajectory of λmax is not fully determined by the
size of hyper parameters (see Figure 7). That is, the level of λmax is path-dependent: it
inherits the history of progressive sharpening up to the moment EoSS is reached.
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(a) MLP, η = 0.01 (b) MLP, η = 0.004 (c) CNN, η = 0.03

Figure 12: Stabilisation level of λmax across step sizes and architectures. Top:
final-epoch λmax vs. batch size. Bottom: log–log plots of the gap 2/η − λmax for the same
runs. All experiments use CIFAR-10 8k.

• Fact 4: Smaller batches ⇒ flatter minima. Across every setting we tested,
reducing the batch size monotonically decreases the plateau level of λmax. This aligns
with the long-standing empirical observation that smaller batches locate flatter minima
see, e.g., Keskar et al. (2016); Jastrzębski et al. (2021)).

• Fact 5: A critical batch size marks the SGD → GD crossover. Each curve in
Figure 12 exhibits a bend at b ≈ bc(η): for b < bc the plateau falls rapidly with b, while for
b > bc it flattens and approaches the full-batch value. This bc corresponds to the regime
in which the mini-batch landscapes approximate well enough the full-batch landscape,
restoring GD-like dynamics (Appendix J.2).

• Fact 6: No universal power law. From static analysis, one would expect a scaling
2/η − λmax = O(b−α) for some α, see Appendix K. The log–log plots (bottom row of
Figure 12) show no robust straight-line behaviour, ruling out such law for any possible
exponent −α.

J.2 Critical Batch Size

We can characterize two regimes for the stabilization levels (see Figure 13):
(i) Small-batch regime (b ≤ bc): λmax stabilizes well below the full-batch threshold 2/η,

signaling strong implicit regularization by SGD. The stabilization level rises steeply
with batch size, so even modest changes in b materially affect the final curvature of the
loss landscape of the solution

(ii) Large-batch regime (b ≥ bc): the growth of λmax with b becomes much slower and the
curve asymptotically approaches 2/η from below, mirroring full-batch gradient descent
and reflecting weak implicit regularization.

The critical batch size bc is therefore the point at which the training dynamics cross over
into a full-batch-like regime. Works as Zhang et al. (2024) study the following notion of
critical batch size: "the point beyond which increasing batch size may result in computational
efficiency degradation". Likewise, works focusing on generalization performance depending
on the batch size (Masters and Luschi, 2018) identify a cut-off batch sizes above which test
performance degrades significantly. We conjecture there may be a relation between these
quantities and leave a systematic investigation to future work.
The limited characterization of the level of stabilization of λmax comes from analysis of λb

max:

λb
max := EB∼Pb

[
λmax(H(LB))

]
.
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(a) λmax stabilization level (linear) (b) gap to stability threshold (log–log)

Figure 13: Baseline MLP: stabilization of λmax as a function of batch size. Baseline
MLP (2 hidden layers, width 512) trained on an 8k-subset of CIFAR-10 with step size 0.004
until convergence. (a) Final λmax (linear axes). Smaller batches settle to flatter minima.
For batch sizes below the critical batch size bc the level of stabilization is significantly below
the 2/η level of full-batch, indicating strong implicit regularization. Moreover, the curve
is steep, making the the final landscape sensitive to the choice of batch size. For larger
batches (b>bc) the slope flattens and λmax plateaus close to 2/η, so the dynamics resemble
full-batch GD, implicit regularization is weak. (b) Log–log plot of the gap 2/η − λmax,
used to test for any power-law decay.

In particular, λb
max also stabilizes at a level [2/η, 4/η], see Appendix T. We analyze the level

of stabilization λmax through the dependence of the difference λb
max − λmax on the batch

size (see Appendix K and L).

J.3 Why 2/η − C/bα fails.

From linear stability analyses near the manifold of minima (Wu et al., 2018; Ma and Ying,
2021; Granziol et al., 2021; Mulayoff and Michaeli, 2024) or random matrix theory (see
Appendix K) (together with the fact that we have Batch Sharpness stabilize at 2/η) one
would expect to have a law of the form λmax ≈ 2/η − O(1/bα). Log-log plots of the gap
2/η −λmax in Figure 13b shows no robust power law (for the lack of any linear dependency),
invalidating this prediction (see also Figures 14-20). Importantly, this does not invalidate
the findings of those theories, instead showcases the insufficiency of a static analysis. In-
deed, those estimates are taken from changing the batch size statically, without making any
training steps. In particular, linear stability analisys does accommodate virtually any law,
as long as there is change in alignment between the mini-batch gradients. The fact that
the static law does not apply means that there is a change to the alignment also happen-
ing. Therefore, as will be discussed further in detail, the fact that these estimates do not
apply means that to give faithful description of the loss landscape at convergence one has
to undertake an analysis that is path-dependent.

J.4 Conclusion & Outlook: Why Path-Dependence Matters

With all of the above, we arrive at a negative answer to the question posed at the start:

There is no single, path-independent law that fixes the stabilization level of
λmax from basic hyper-parameters alone.

J.5 Implications and Open Questions

The findings above lead to the following main conclusions.
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(a) λmax stabilization level (lin-
ear)

(b) λmax stabilization level
(log–log)

(c) gap to stability threshold
(log–log)

Figure 14: Effect of weight-scale at initialization on the EoSS stabilization of
λmax. We train the same network and dataset under identical hyperparameters, varying
only a global rescaling (×0.1, 0.2, 0.3 of He) of the initial weights. (a) Final-epoch λmax as
a function of batch size (linear axes). Smaller batches always converge to flatter solutions,
yet the absolute level—and the critical batch size at which the curve begins to approach the
full-batch limit 2/η (horizontal dashed line)—shift markedly with the initialization scale.
This demonstrates that the landscape geometry at convergence is already seeded by early-
training choices. (b) Same data in log-log scale. The three curves exhibit distinct slopes,
ruling out a single power-law exponent and confirming strong path-dependence. Linear fit
is provided to the linear portion (c) Log–log plot of the gap , 2/η − λmax,. The absence of a
straight line contradicts the prediction 2/η − λmax ∝ b−α that follows from linear stability
analyses near a minimum.

(a) λmax stabilization level (lin-
ear)

(b) λmax stabilization level
(log–log)

(c) gap to stability threshold
(log–log)

Figure 15: Varying dataset size alters the EoSS plateau of λmax for a CNN. We
use the same setup as Fig. 14 but instead varying the number of training examples (2k,
8k, 32k). Larger datasets drive λmax to lower plateaus—i.e. flatter minima—and push the
critical batch size (the knee toward the full-batch limit 2/η) to higher b, as expected from
b/N scaling. Plateau heights also differ from the MLP results in Fig. 14 or 13, highlighting
architectural sensitivity. Panel order and axes mirror Fig. 14; see that caption for sub-plot
details.

(C1) λmax is not the stability limiter for mini-batch training. Batch Sharpness governs
EoSS; λmax follows. λmax is capped from above by the value it reaches at the phase
transition characterized by Batch Sharpness reaching 2/η. This and Facts 1—3 above
imply that:

The stabilization of λmax is a by-product of EoSS, not the quantity that governs
it.

(C2) A theory of λmax has to account for the correct progressive sharpening. By fixing
the model and changing batch size b, the gap between the maximal eigenvalue of
E
[
λmax(H(LB))

]
and λmax = λmax(H) = λmaxE[H(LB)] scales as 1/b, see a proof

in Appendix K. Any theory that keeps the parameter vector fixed and only varies b,
or anyways leads to a power law, misses the path-dependent descent that determines
where training arrives and where λmax stabilizes. Facts 3 and 6 thus imply that
analysis of λmax is insufficient if it does not account for (1) the precise and correct
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(a) λmax stabilization level (linear) (b) gap to stability threshold (log–log)

Figure 16: Level of stabilization of λmax. Same setup as Fig. 13 but the initial weights
are rescaled by 1/3; see Fig. 14 for the broader effect of initialization. (See Fig. 13 for sub-
plot explanations.)

(a) λmax stabilization level (linear) (b) gap to stability threshold (log–log)

Figure 17: Level of stabilization of λmax. Identical to Fig. 13 except for a larger step
size of 0.01. (See Fig. 13 for sub-plot explanations.)

effect of progressive sharpening on the higher moments of the Hessian and (2) the
correct alignment between mini-batch steps and Hessians.

Quantifying the plateau of λmax is thus still an (important) open problem. A complete ac-
count will require a dynamical theory through the progressive-sharpening phase and beyond.
Not just properties at its endpoint as for full-batch methods.

Figure 21: Final stabilizations vs batch size.

Remark: Why not λmaxE[H(LB)]. One
might hope that the largest eigenvalue of
each mini-batch Hessian could act as a
stochastic proxy for curvature. The rea-
son is that the step is generally not aligned
with the eigenvector of the largest eigen-
value and thus λmaxE[H(LB)] stabilizes
right above 2/η, however, the level of sta-
bilization slightly changes with b—see Ap-
pendix L—unlike for Batch Sharpness.
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(a) λmax stabilization level (linear) (b) gap to stability threshold (log–log)

Figure 18: Level of stabilization of λmax. Baseline network trained on a 32k-subset of
CIFAR-10 subset with step size 0.002. (See Fig. 13 for sub-plot explanations.)

(a) λmax stabilization level (linear) (b) gap to stability threshold (log–log)

Figure 19: Level of stabilization of λmax. Deeper MLP (the mlp_l: 4 hidden layers,
width 512) on the 8k-subset, step size 0.004. (See Fig. 13 for sub-plot explanations.)

(a) λmax stabilization level (linear) (b) gap to stability threshold (log–log)

Figure 20: Level of stabilization of λmax. Same deeper MLP as in Fig. 19 but trained
on a 32k subset. (See Fig. 13 for sub-plot explanations.)
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K On Largest Eigenvalues of Sums of Matrices

In this section we establish mathematically how the gap between λb
max and λmax scales

with the batch size. Precisely, what size we can expect from the λb
max − λmax gap for fixed

network.
In particular, the following linear algebra results collectively enhance our understanding of
the stability and scaling properties of the largest eigenvalues in the context of matrix sums.

K.1 Ordering the Largest Eigenvalues.

The largest singular value of the Hessian matrix derived from single data points is posi-
tive. This observation is crucial in establishing the following well-known property of matrix
eigenvalues.
Lemma 6. Let m, b ∈ N and consider m matrices M1, M2, . . . , Mb ∈ Rm×m satisfying
λmax > |λmin|. Then, the largest eigenvalue of their sum satisfies

λmax

(
b∑

i=1
Mi

)
≤

b∑
i=1

λmax (Mi) (51)

with equality only if all Mi are identical.

This lemma is a direct consequence of the convexity of the operator norm in matrices and
the fact that the largest eigenvalue is positive in our setting. In our setting, it implies
that with non-identical matrices, the maximum eigenvalue of the sum is strictly less than
the sum of the maximum eigenvalues of the individual matrices. To illustrate, consider
eigenvalue sequences for batch sizes that are powers of four, though the result generalizes
to any b1 < b2:

λ1
max < λ4

max < λ16
max < λ64

max < λ256
max < . . . (52)

K.2 Trends of λmax given b

Figure 22: The static difference between λb
max and λmax vs batch_size. The log-log plot is

above, indicating the 1/batch_size dependence. The plot with 1/batch_size is below. We
fix the parameters of the network at the end of training, and compute the λb

max using the
definition 3. This means that the λmax stays constant, and is subsracted for consistency.

As we discuss in Section L, while the behavior we observe for very small batches is not
surprising, for bigger batch sizes it is. In computer vision tasks where there are way more
parameters than datapoints, we observe that the gap between λb

max and λmax decreases
linearly with 1/b when evaluating the λb

max of any fixed model with different batch sizes,
see Figure 22. This 1/b scaling is also what we expect from our mathematical analysis in
Appendix K. We are indeed able to establish that for a fixed net, the gap scales as 1/b for
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small batch sizes, when the worst case λb
max is very different from λmax, and with 1/

√
b for

big batch sizes15. Indeed:
Proposition 6 (Expected Size of the Average of Matrices). In the notations of Lemma 6.
Under the same assumptions as Lemma 7, the spectral norm of the deviation of the average∥∥ 1

b

∑
i Mi − M

∥∥ from its expectation M satisfies:∥∥∥∥∥1
b

∑
i

Mi − M

∥∥∥∥∥ = Ob

(√
σ2 log m

b
+ B log m

b

)
where σ2 = 1

b max{∥E[
∑

i M⊤
i Mi∥, ∥E[

∑
i MiM

⊤
i ∥} is the expected second moment of the

matrices and B ≥ ∥Mi − M∥, for all i, is a bound to the biggest random matrix Mi.

K.3 Random Matrix Theory for Scaling Eigenvalues.

While Section J establishes mathematically the order of Batch Sharpness, it lacks of math-
ematical quantification of their magnitudes. Random matrix theory helps bridging this gap
at least for big batch sizes b in the Online SGD case where instead of the full-batch Hessian
we take as a reference its theoretical expectation.
Lemma 7 (Matrix Bernstein Inequality). Let n1, n2, b ∈ N, let M1, M2, . . . , Mb ∈ Rn1×n2

be independent random matrices satisfying E[Mi] = M and ∥Mi − M∥ ≤ B for all i, let
v = max{∥E[

∑
i M⊤

i Mi∥, ∥E[
∑

i MiM
⊤
i ∥} then for all t > 0

P (∥
∑

i Mi − M∥ ≥ t) ≤ (n1 + n2) · exp
(

− b2t2/2
v + Bbt/3

)
.

This lemma provides a probabilistic upper bound on the deviation of the largest eigenvalue
as the batch size increases. We now state a proposition that quantifies the expected spectral
norm of the average of b matrices Mi based on this inequality.

Proof of 6. The Matrix Bernstein inequality bounds the probability of deviation of
|
∑b

i=1(Mi − M)| by t. Rescaling by 1/b, we see that for the average M b := 1
b

∑b
i=1 Mi

we have
P
(∥∥M b − M

∥∥ ≥ t/b
)

≤ (n1 + n2) · exp
(

− b2t2/2
v + Bbt/3

)
.

To bound the expectation E[∥M b − M∥], we use the following general inequality for random
variables X with tail bounds:

E[X] ≤
∫ ∞

0
P(X ≥ t) dt.

For X = ∥M b − M∥, substitute the tail bound:

E[∥M b − M∥] ≤
∫ ∞

0
(n1 + n2) · exp

(
− b2t2/2

v + Bbt/3

)
dt.

We now, introduce a substitution to handle the exponential term. Let:

z = b2t2

v
, so that t =

√
vz

b2 and dt = 1
2

√
v

b2z
dz.

Rewriting the integral in terms of z:

E[∥M b − M∥] ≤ (n1 + n2)
∫ ∞

0
exp

− z

2 + Bb
3
√

vz
b2

 · 1
2

√
v

b2z
dz.

While this integral is complex in its full form, we focus on the dominant terms by examining
the asymptotics Large b:

15Although big b means such that the number of directions spanned in the parameter space by
the vectors ∇θf(θ, x) are repeated multiple times, and that may be practically unrealistic with the
current sizes of networks.
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• Variance Contribution: The v-term dominates when z is small. This leads to a con-
tribution proportional to:

O

(√
v log(n1 + n2)

b

)
.

• Max Norm Contribution: The B-term dominates when z is large. This leads to a
contribution proportional to:

O

(
B log(n1 + n2)

b

)
.

Combining these contributions gives:

E[∥M b − M∥] = O

(√
v log(n1 + n2)

b
+ B log(n1 + n2)

b

)
.

Next note that v = b · σ2. This concludes the proof of Proposition 6.

The proposition indicates that as b increases, the expected deviation of M b from M dimin-
ishes, with a leading-order term scaling as:

1. Variance Decay: The term
√

σ2/b reflects how the variance contribution decreases
as b increases (similar to 1/

√
b scaling for scalar averages).

2. Norm Bound Decay: The term B/b reflects how the worst-case individual matrix
norm affects the average.

3. Logarithmic Dimension Dependence: The log(n1 +n2) factor accounts for the
high-dimensional nature of the problem.

L Dependence of λb
max-λmax Gap on the Batch Size

L.1 Highest Eigenvalue of Mini-Batch Hessian

For a batch size b, denote by
λb

max := EB∼Pb

[
λmax(H(LB))

]
.

Then, we establish here that:

• Also λb
max stabilizes.

• λb
max stabilizes at a level that ranges between 4/η and 2/η. The level is lower for

very small and very large batch sizes.
• λb

max is always greater than λmax.
• We find that the level at which λmax stabilizes is characterized by two different

regimes. The threshold is what we call critical batch size. This critical batch size
depends on the complexity of the data-model.

• However, the gap between λb
max and λmax typically goes as 1/bα generally with

α = 0.70. This is surprising, as when fixing the network, the gap goes as 1/b or
1/b1/2. See Appendices K, L

Average λb
max for the mini-batch Hessians We establish that λb

max–the average over
the possible batches sampled of the highest eigenvalue of the mini-batch Hessian–generally
stabilizes at a value just bigger than 2/η. This happens on a wide range or models and
datasets. Refer to Appendix T
We observe that its stabilization levels is generally very close to 2/η for very small batch
sizes, it increases until the critical batch size, then it decreases again.
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In this appendix, we further discuss the dependence of the gap between λb
max and λmax from

the batch size. As mentioned earlier, there are two distinct cases - the static case, and the
"trained" case. In the former, we fix a model at some point of the training, and vary the
batch size. In particular, λmax stays constant, and the only variation comes from λb

max. In
the latter, we fix a batch size at the beginning of the training, and look at the λb

max-λmax
gap at the end of the training.

Figure 23: Log-log plots of (LHS) the gap between the maximum reached by the λmax and
the λmax vs batch size; (RHS) λb

max-λmax gap vs batch size.

L.2 The static case

For the static case, we first look at a network at the end of training. The network is a
preceptron with two hidden layers of dimension 512, trained with batch size of 256 on a
8k subset of CIFAR-10 to convergence. Log-log plot in Figure 24 confirms an approximate
1/batch_size dependence.
One can notice that at high batch sizes the observed slope is somewhat bigger (−1.1 if fitted
to the λb

max − λmax computed for batch sizes larger than 1000). Now, for a dataset of size
8k, a batch size of 1000 constitutes 1/8 of dataset, and thus has the λb

max very close to the
λmax. This might potentially reveal a different scaling regime for batch sizes that are closer
to dataset size. On the other hand, since the difference between λb

max and λmax becomes
increasingly small when batch size approaches dataset size (especially in comparison to the
value of each: λb

max − λmax being of order of 1, and each being around 500), the change in
scaling might just be an effect of noise in estimating the highest eigenvalue of the hessian.
Lastly, there is the effect of finiteness of the dataset size - that is, that the 1/b dependence
would turn to 0 only when b is infinite, although in reality the gap would be 0 when b is
equal to the dataset size. This dependence might effectively break the scaling. Answering
the above questions necessitates further investigation. Nonetheless, the 1/b dependence
appears to persist within the ’realistic’ SGD regime, characterized by batch sizes that are
substantially smaller than the dataset size.
The 1/b scaling appears to hold throughout the training. In particular, it also applies at
initialization, as showcased in the log-log in Figure 25.
Moreover, the 1/b dependence is also architecture-independent. As illustrated in the log-log
plot in Figure 26, it is also the case for a CNN architecture at convergence.

L.3 The trained case

As illustrated in Figure 27, the 1/batch_size dependence breaks down in the trained case,
holding only within specific ranges of batch sizes. Specifically, for batch sizes in the range
[10, 100] the gap appears to scale as 1/b0.7. Meanwhile, for batch sizes in [100, 1000], the
gap scales as 1/b. The corresponding regimes are depicted in Figure 28 and in Figure 29.
Similar to the static case, we again see that the anomalous region at batch sizes that are
larger than 1/8, requiring further investigation. A distinct scaling regime emerges for very
small batch sizes (< 10), differing from the patterns described above. In this regime, the
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Figure 24: Log-log plot of the λb
max-λmax for fixed model at convergence.

Figure 25: Log-log plot of the λb
max-λmax for a model at initialization

Figure 26: Log-log plot of the λb
max-λmax for fixed CNN model at convergence.
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Figure 27: Log-log plot of λb
max-λmax gap vs batch size at the EoSS. Notice how the scaling

breaks for very small and very large batch sizes

Figure 28: λb
max-λmax gap vs 1/

√
batch_size at the EoSS, for batch sizes in [10, 100].

Figure 29: λb
max-λmax gap vs 1/batch_size at the EoSS, for batch sizes in [100, 1000].

gap appears largely independent of the batch size. This anomaly might arise because, at
such small batch sizes, the λb

max starts at levels at or beyond the EoSS level, bypassing
the standard progressive sharpening phase and instead entering a regime where the λmax
decreases. Further investigation is necessary to rigorously characterize the scaling behavior
in this regime.

M Implications: How Noise-Injected GD Differs from SGD

SGD vs. Noisy Gradient Descent. A common belief is that SGD’s regularization stems
from its “noisy” gradients, which find flatter minima. However, our analysis points to the
“noisy” Hessians as crucial. To test this, we compare mini-batch SGD (batch size 16) against
three noisy GD variants: (see details in Appendix M)

• Anisotropic Sampling Noise: Gaussian reweighting on the samples (Wu et al., 2020),
which is different from SGD but maintains the mini-batch structure (and injects noise in
the Hessians).
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Figure 30: Version of Figure 8, with the loss curves added.

• Diagonal Noise: Gaussian noise restricted to the diagonal part of the SGD noise covariance
(Zhu et al., 2019).

• Isotropic Noise: Gaussian noise with isotropic covariance (Zhu et al., 2019).
• SDE dynamics integration (Li et al., 2017)
As shown in Figure 8 and Appendix H, only noise which maintains the higher moments of
the Hessian(s) (and thus preserves the mini-batch landscape structure) leads to an EoSS-
like regime with λmax stabilizing well below 2/η. More generic (e.g., diagonal or isotropic)
noise fails to reproduce this behavior. These experiments suggest that stability thresholds
differ fundamentally between mini-batch SGD (governed by Batch Sharpness) and noise-
injected GD (governed by λmax). Notably, these results are consistent with the findings
of Zhu et al. (2019)—although their focus is on generalization. Unsurprisingly, in the case
in which the noise affects only the gradients—not the Hessians—indeed, EoSS comes for
λmax = 2/η as for GD (Ma and Ying, 2021; Mulayoff and Michaeli, 2024). Even in the
quadratic setting, the appearance of Type-1 oscillations and GNI are not affected by the
structure and distribution of the Hessian on the mini-batches, see Appendix C. The stability
threshold, however, is affected. It depends on the Hessian’s higher moments, see Theorem
1 or (Ma and Ying, 2021; Mulayoff and Michaeli, 2024).

Challenges for SDE Modeling. Classical analyses of neural network optimization often
assume a single, static landscape: (i) Online perspective, modeling each step’s gradient as
a noisy unbiased estimator of the expected gradient, or (ii) Offline perspective, treating
the dataset as fixed and SGD as noisy GD on the empirical loss. In both views, it is the
full-batch Hessian that supposedly drives curvature. Our results instead highlight that each
update sees a Hessian H(LB) that generally differs significantly from H, leading to Batch
Sharpness stabilizing at 2/η when λmax is smaller.

Standard SDE—or analogous—approximations of SGD cannot thus describe the
location of convergence of SGD or its behavior for neural networks under the

assumption of progressive sharpening. Indeed, they typically ignore any statistics of
the Hessians except for the mean.

Prior works already note limitations of SDE-based approaches for SGD implicit regular-
ization: they may be mathematically ill-posed (Yaida, 2018), fail except under restrictive
conditions (Li et al., 2021), converge to qualitatively different minima (HaoChen et al.,
2020), or miss higher-order effects (Damian et al., 2021; Li et al., 2022). Recent discrete
analyses (Smith et al., 2021; Beneventano, 2023; Roberts, 2021) attempt to address some
of these issues. Nonetheless, our findings expose a deeper gap: when batch sizes are small,
the geometry of the mini-batch Hessian differs markedly from that of the full-batch, altering
both eigenvalues and eigenvector alignments. Conventional SDE models, which assume a
static or average Hessian, cannot easily capture these rapid fluctuations.

M.1 Noisy GD

We are running a number of noisy GD implementations.
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M.1.1 Noisy GD with Anisotropic Noise (Gaussian Resampling)

This version of noisy GD essentially preserves the mini-batch landscape structure by av-
eraging the landscapes using Gaussian sampling noise. In particular, it takes a Gaussian
sampling vector with the same first and second moments as the sampling vector of SGD.
Now, this trivially forces the expectation of the mini-batch Hessians to be the same between
SGD and Gaussian resampling (and essentially equal to the full-batch Hessians. Impor-
tantly, though, this also makes the covariance of the mini-batch Hessians to be the same
between SGD and GD with Gaussian resampling noise (as per linearity of the mini-batch
Hessians in the weights of the sampling vector). Together with the fact that GD with the
Gaussian resampling behaves in the same manner as SGD from the point of view of stability,
Batch Sharpness, and suppression of λmax—it is an indicator of the fact that it is the higher
moments of the mini-batch Hessians that determine the dynamics SGD; and it is indeed the
noise in the Hessians that creates the instability regime of EoSS and its consequences. As
a weaker consequence, it also preserves the covariance of the noise of SGD.
For implementation details refer to Wu et al. (2020). In summary, we re-draw the sampling
vector at each step with the corresponding covariance.

M.1.2 Noisy GD with Diagonal Noise

This implementation follows Zhu et al. (2019) — it recreates what they refer to as "GLD
diagonal". This is essentially noisy GD with the noise covariance being equal to the diagonal
of the covariance of the noise produced by SGD. This preserves each parameter’s marginal
variance while ignoring off-diagonal correlations. Conceptually, we are approximating SGD’s
noise by N

(
0, 1

b diag(Σ(θ)
)

and add it to the full-batch gradient before the optimizer step.
Essentially, this is one step further from a true SGD then the aforementioned GD with
anisotropic noise. In particular, it does not preserve the mini-batch landscape structure. As
a result, the behavior of GD with diagonal noise differs from SGD from the point of view of
λmax stabilizing below 2/η, and instead stabilizing at 2/η. We refer the reader to (Zhu et al.,
2019) for the details of implementation. In our implementation, we compute the diagonal
of the covariance every 30 steps and reuse it on those 30 steps (as it is too computationally
expensive to compute it at every step).

M.1.3 Noisy GD with Isotropic Noise

This implementation follows Zhu et al. (2019) — it recreates what they refer to as "GLD
dynamic". This is essentially noisy GD with the noise covariance being identity (hence the
"isotropic"), scaled such that the magnitude of the noise conincides with that of SGD. That
is, this is isotropic gradient noise that matches the average variance of SGD noise but ig-
nores both parameter-wise variability and correlations. Conceptually, we are approximating
SGD’s noise by N

(
0, σ2

b I
)

add it to the full-batch gradient before the optimizer step, where
σ2 = tr(Σ)

d is the mean per-parameter variance from the per-sample gradient covariance Σ, b
is the target batch size, and d is the number of parameters. This is one step "further" from
SGD then the noisy GD with diagonal noise. Consequently, this sort of noisy GD does not
preserve the regularization effect of SGD on λmax either.

M.2 SDE

We are taking the standard SDE approximation of SGD: (see e.g. Li et al. (2018))

dθt = −∇f(θt) dt + √
η Σ1/2(θt) dWt

where dWt is the standard d-dimensional Wiener process, and Σ is the covariance matrix of
mini-batch gradients.
To simulate its dynamics, we are using the Euler–Maruyama discretization with a step size
of 0.0005, chosen to be sufficiently small compared to η (1/20th of η = 0.01 in this example).
In Figure 31 we are showing a number of sample paths of the SDE trajectory illustrate the
similarity in the properties of the solutions found by those dynamics – in particular, that
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Figure 31: SDE sample paths Multiple realizations of SDE trajectory to showcase the
similarity of the solutions found by SDE dynamics

λmax stabilizes around 2/η, rather than below as it does for SGD dynamics. In all the
experiments, batch size is 16, and η is 0.01.

N EoSS and Trace of the Hessian

A number of works Ma and Ying (2021); Wu and Su (2023); Agarwala and Pennington
(2024) have linked the trace of the Hessian to implicit regularization by SGD. We plot in
Figure 32 and 33: λmax, Batch Sharpness, and the trace of the Hessian along the training for
a variety of models and batch sizes. We observe here that trace of the Hessian behaves very
similarly to the previously studies λmax. In particular, it doesn’t have a consistent stabi-
lization level, and depends significantly on the batch size—with smaller batch sizes leading
to lower stabilization level of the trace (aka flatter solutions). Also analogous to λmax, it
undergoes progressive sharpening, as long as Batch Sharpness is under 2/η. Analogously,
the stabilization of Batch Sharpness leads to stabilization of the trace. All of this showcases
that trace of the Hessian is not the quantity that governs stability of the SGD dynamics.
It is noteworthy that, in the context of MSE loss combined with piecewise-linear acti-
vation functions (e.g., ReLU), the trace of the full-batch loss Hessian coincides with the
trace of its Gauss–Newton approximation. Furthermore, under MSE loss, the trace of the
Gauss–Newton matrix is euqal to the trace of the NTK. Consequently, evaluating the trace
of the loss Hessian subsumes these cases.
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(a) batch size 4 (b) batch size 8

(c) batch size 16 (d) batch size 32

Figure 32: Trace of the Hessian. We plot the trace of the full-batch loss Hessian (red),
together with the usual Batch Sharpness (green) and λmax (blue). Notice that the scale of
the trace of the Hessian is much bigger than the rest of the quantities, and it follows the axis
on the right (in particular, has no particular relation to 2/η. The plots showcase that trace
behaves in a similar manner as λmax—its level of stabilization is highly dependent on the
batch size, it raises as long as Batch Sharpness is rising, and it is stabilizes as batch sharpness
stabilizes. Here, we are doing experiments with MLP on CIFAR-10-8k and η = 0.01

(a) batch size 8 (b) batch size 16

Figure 33: Trace of the Hessian. Similar to 32, but for CNN, and with η = 0.02

O Hardware & Compute Requirements

All experiments were executed on a single NVIDIA A100 GPU (80 GB) with 256 GB of
host RAM. The software stack comprises Python 3.12 and PyTorch 2.5.1 (built with the
default CUDA tool-chain supplied by the wheel).

Baseline MLP (2M parameters, Section R) Training for 100k steps on the 8 k-
image CIFAR-10 subset finishes in ≈ 5 min wall-clock while computing step sharpness every
8 steps, batch sharpness every 128 steps and λmax every 256 steps. Peak device memory
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is 14 GB during ordinary training and ≈ 70 GB while estimating λmax on a 32k subset,
comfortably fitting the 80 GB card.

Algorithmic caveats. We rely on power iteration for λmax; while Lanczos would reduce
the number of Hessian–vector products, the official PyTorch implementation remains CPU-
only. To offset the extra memory incurred by double backward, we cache the first forward
pass; batching λmax is left to future work.

P The Hessian and the Fisher Information Matrix Overlap

We show here empirically that at EoSS generally λb
max generally overlaps with the largest

eigenvalue of the averaged mini-batch NTK and 1
b J⊤

B JB , which corresponds with the FIM
in vision classification tasks. See Figure 34.
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Figure 34: Ranging different batch sizes, the λb
max corresponds to the largest eigenvalue

of the averaged mini-batch NTK and 1
b J⊤

B JB , which corresponds with the FIM in vision
classification tasks.

Q Exemplification Through a Simplified Models

A natural implicit notion of preceived curvature. We give here a qualitative heuris-
tic for which Batch Sharpness is a sensible notion of curvature along the step of SGD.
When the optimization dynamics occur on a fixed loss landscape, as in GD or noise-injected
GD, the stability criterion trivially reduces to examining a single Hessian. Stability in such
cases hinges directly on properties of this single Hessian, typically characterized by λmax,
or other norms. In contrast, mini-batch SGD inherently samples different landscapes–and
consequently different Hessians–at every iteration. Thus, it is non-trivial to identify which
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statistical properties of these sampled Hessians govern the stability dynamics. Contrary to
initial intuition, the average Hessian does not adequately characterize stability16.
A natural first guess for what statistic reaches the value of 2/η would be a statistic of the
maximum eigenvalue of the mini-batch Hessians, and not the maximum eigenvalue of the
averaged Hessian. Indeed, if one has a few outlier Hessians, those may induce divergence
even if the average Hessian is small. We also establish that is not the quantity to look
at—and is generally bigger than Batch Sharpness—in Appendix T. While the landscape on
the batch matter, the reason is that the (mis-)alignment of gradients and Hessians plays a
bigger role. λmax = 2/η is the instability threshold if and only if the landscape is quadratic
or the step is aligned with the eigenvector of the highest eigenvalue, here this is not the case.
Batch Sharpness emerges naturally as the relevant measure because it explicitly captures
the alignment between the gradient step direction and the curvature of the sampled mini-
batch landscape at each iteration, effectively measuring the curvature perceived by SGD on
each particular step.

Q.1 Stability cannot Depend on Full-Batch Quantities—Quadratics

We show here with an example that in the mini-batch setting the stability thresholds can not
depend only on full-batch Hessian or gradients, but it has to depend on the higher moments
of them over batch sampling, as we can always construct a counterexample which diverges
otherwise.
Imagine on two data points we have A1 = α · I + M and A2 = α · I − M , with α, γ > 0 and
M =

(
0 0
0 γ

)
, and b1 = b2 = 0. Here A is αI. A1 has eigenvalues α, α + γ and A2 has

eigenvalues α, α − γ.
Let us now look at possible full-batch stability results, as developed by Cohen et al. (2021).
If the right stability notion for mini-batch SGD depended on the full-batch Hessian or
gradients, then it would be independent on γ, and this can not be the case.
Thus a study of the stability of the system can not depend on the full-batch Hessian but has
to depend on how big the oscillations due to the size of γ are, i.e., on the higher moments
of the distribution of the mini-batch Hessian. Note that this situation would be even more
extreme if we had (as in the practice of deep learning) the top eigenvectors of the mini-batch
Hessians to point in completely different directions, not just to have high variance. As a
sanity check, any stability threshold dependent on the higher moments of the mini-batch
Hessian or gradients–as Batch Sharpness or EB [λmax(H(LB)]–would induce ηmax to depend
on γ too.

Q.2 Diagonal Linear Networks

Consider a simplified scenario involving a diagonal linear network trained on data from two
orthogonal classes. Assume (x, y) ∈ R2 × R is either z1 =

(
(1, 0), 1

)
or z2 =

(
(0, 1), −1

)
with probability 1/2. We learn this data with a diagonal linear network and MSE, precisely
where

f(x) = a⊤B · x, a ∈ R2, B ∈ R2×2.

Then with a diagonal initialization, gradient descent will converge almost surely to a neural
network of the following kind

f(x) = (a1, a2) ·
(

b1 0
0 b2

)
· x, where |a1 · b1| = |a2 · b2| = 1.

At convergence, the spectrum of the Hessian on the data point z1 is {λ1, 0, 0, 0, 0, 0}, with
λ1 := a2

1+b2
1, the Hessian on the data point z2 is instead {λ2, 0, 0, 0, 0, 0}, where λ2 := a2

2+b2
2,

and the two eigenvectors for these two eigenvalues are orthogonal between each other. This
16In Appendices Q.1 and Q.2 we provide two toy examples where is clear that stability has to

depend on higher moments or different statistics of the mini-batch Hessians and gradients and not
on the full-batch (averaged) quantities.
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implies that the Hessian of the full-batch loss has spectrum {λ1/2, λ2/2, 0, 0, 0, 0}, while the
Hessian on the mini batches of size one has either one of the spectra above.
This implies that

λmax = λmax

(
1
2H(z1) + 1

2H(z1)
)

= max
{

λ1

2 ,
λ2

2

}
(53)

This is smaller than the average largest eigenvalue of the mini-batch Hessian which is

λ1
max = 1

2λmax(H(z1)) + 1
2λmax(H(z2)) = λ1

2 + λ2

2 . (54)

• Smaller size: Thus setting λmax equal to λ means that the max between λ1 and λ2 is
exactly 2λ. Note that the fact that a1 · b1 = a2 · b2 = 1 and Cauchy-Schwarz imply that
λ1, λ2 ≥ 2. Setting λ1

max to λ thus implies that the maximum between λ1 and λ2 is at
most 2λ − 2, generally smaller.

• Higher alignment: Moreover, we have that the gradient ∇f(zi) on the data point zi

exactly aligns with the eigenvector vi of the highest eigenvalue λi of the Hessian in zi.
On the full batch, we are averaging them differently, precisely we have that there exist
two constants c1, c2 such that the gradient is c1

2 v1 + c2
2 v2. Thus, where WLOG λ1 > λ2

we have the alignments

H(z1) · ∇L(z1) ∼ c1λ2
1v1 but H · ∇f ∼ c1

2 λ2
1v1 (55)

Thus one half of it (batch size divided by number of data points).

This shows that in the same point of the gradient, SGD perceives the largest eigenvalue of
the Hessian bigger and more relevant to the gradient then GD.

R Illustration of EoSS in Variety of Settings: Batch
Sharpness

In this appendix, we provide further empirical evidence that EoSS arises robustly across a
variety of models, step sizes, and batch sizes. Consistent with our main observations, we
find that Batch Sharpness invariably stabilizes around 2/η.

MLP (2-Layer) Baseline. Figure 41 illustrates EoSS for our baseline network, an MLP
with two hidden layers of dimension 512, trained on an 8192-sample subset of CIFAR-10
with step size η = 0.004. As the training proceeds, Batch Sharpness stabilizes around 2/η,
whereas λmax plateaus strictly below Batch Sharpness. Decreasing the step size to η = 0.002
(see Figure 35) rescales the plateau of Batch Sharpness around the new threshold 2/η, in
line with the behavior discussed in the main text.

5-Layer CNN. We further confirm the EoSS regime in a five-layer CNN. As depicted in
Figures 45 and 36, Batch Sharpness continues to plateau near the instability threshold for
two distinct step sizes, while λmax once again settles at a lower level. Notably, as we vary
the batch size, the gap between Batch Sharpness and λmax increases for smaller batches,
mirroring the patterns described in Section J.

ResNet-14. Finally, we demonstrate that the EoSS regime also emerges for a canonical
architecture commonly used in computer vision: ResNet-14. Note that we are using a
version without Batc hNormalization. Figure 40 highlights the same qualitative behavior,
with Batch Sharpness stabilizing at 2/η.
Overall, these experiments provide further confirmation that EoSS is a robust phenomenon
across different architectures, step sizes, and batch sizes.
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Figure 35: MLP: 2 hidden layers, hidden dimension 512; step size 0.01, 8k subset of
CIFAR-10. Comparison between: the observed highest eigenvalue for the Hessian of the
mini-batch loss (red dots), the empirical Batch Sharpness (green line), the λmax (blue line).
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Figure 36: CNN: 5 layers (3 convolutional, 2 fully-connected), step size 0.03, 8k subset
of CIFAR-10. Comparison between: the observed highest eigenvalue for the Hessian of the
mini-batch loss (red dots), the empirical Batch Sharpness (green line), the λmax (blue line).
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Figure 37: ResNet-10, step size 0.005, 8k subset of CIFAR-10. Comparison between: the
observed highest eigenvalue for the Hessian of the mini-batch loss (red dots), the empirical
Batch Sharpness (green line), the λmax (blue line).
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S Illustration of EoSS for the SVHN dataset

Figure 38: MLP: 2 hidden layers, hidden dimension 512; step size 0.01, 8k subset of
SVHN. Comparison between: the observed highest eigenvalue for the Hessian of the mini-
batch loss (red dots), the empirical Batch Sharpness (green line), the λmax (blue line).
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Figure 39: CNN: 5 layers (3 convolutional, 2 fully-connected), step size 0.05, 8k subset
of SVHN. Comparison between: the observed highest eigenvalue for the Hessian of the
mini-batch loss (red dots), the empirical Batch Sharpness (green line), the λmax (blue line).
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Figure 40: ResNet-10, step size 0.005, 8k subset of SVHN. Comparison between: the
observed highest eigenvalue for the Hessian of the mini-batch loss (red dots), the empirical
Batch Sharpness (green line), the λmax (blue line).
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T Illustration of EoSS in Variety of Settings: λb
max

In this appendix, we provide additional empirical evidence that EoSS emerges robustly
across a diverse range of models, step sizes, and batch sizes. Consistent with our primary
findings, we observe that λb

max consistently stabilizes within the interval
[
2/η, 2 × 2/η

]
.

Furthermore, we note that the full-batch metric, λmax, remains strictly below λb
max, with

this gap expanding as the batch size decreases. Crucially, our findings demonstrate that
λb

max lacks a consistent stabilization level, reinforcing that Batch Sharpness is the metric
that reliably stabilizes around the 2/η threshold.

MLP (2-Layer) Baseline. Figure 41 illustrates EoSS for our baseline network, an MLP
with two hidden layers of dimension 512, trained on an 8192-sample subset of CIFAR-10
with step size η = 0.004. As the training proceeds, λb

max stabilizes in the range
[
2/η, 2×2/η

]
,

whereas λmax plateaus strictly below λb
max. Decreasing the step size to η = 0.002 (see

Figure 42) rescales the plateau of λb
max around the new threshold 2/η, in line with the

behavior discussed in the main text.

Deeper MLP (4-Layer). To assess whether increased depth alters the phenomenon, we
use a deeper MLP (MLP_L) with four hidden layers, training again on the same CIFAR-
10 subset. Figures 43 and 44 show that λb

max exhibits the same EoSS behavior for two
different step sizes, reinforcing that depth alone does not invalidate our findings.

5-Layer CNN. We further confirm the EoSS regime in a five-layer CNN. As depicted in
Figures 45 and 46, λb

max continues to plateau near the instability threshold for two distinct
step sizes, while λmax once again settles at a lower level. Notably, as we vary the batch
size, the gap between λb

max and λmax increases for smaller batches, mirroring the patterns
described in Section J.

ResNet-10. Finally, we demonstrate that the EoSS regime also emerges for a canonical
architecture commonly used in computer vision: ResNet-10. Figure 47 highlights the same
qualitative behavior, with λb

max stabilizing at
[
2/η, 2×2/η

]
and λmax remaining consistently

below λb
max.

Overall, these experiments provide further confirmation that EoSS is a robust phenomenon
across different architectures, step sizes, and batch sizes. Although the specific magnitude of
λmax and the exact “hovering” value of λb

max can vary, the overarching pattern of λb
max ≈ 2/η

and λmax < λb
max persists in all our tested settings.
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Figure 41: MLP, 2 hidden layers, hidden dimension 512, step size 0.004, 8k subset of
CIFAR-10. Comparison between: the observed highest eigenvalue for the Hessian of the
mini-batch loss (red dots), the empirical λb

max (green line), the λmax (blue dots).
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Figure 42: MLP: 2 hidden layers, hidden dimension 512; step size 0.01, 8k subset of
CIFAR-10. Comparison between: the observed highest eigenvalue for the Hessian of the
mini-batch loss (red dots), the empirical λb

max (green line), the λmax (blue dots).
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Figure 43: MLP_L: 4 hidden layers, hidden dimension 512, step size 0.002, 8k subset
of CIFAR-10. Comparison between: the observed highest eigenvalue for the Hessian of the
mini-batch loss (red dots), the empirical λb

max (green line), the λmax (blue dots).
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Figure 44: MLP_L, 4 hidden layers, hidden dimension 512, step size 0.004, 8k subset
of CIFAR-10. Comparison between: the observed highest eigenvalue for the Hessian of the
mini-batch loss (red dots), the empirical λb

max (green line), the λmax (blue dots).
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Figure 45: CNN, 5 layers (3 convolutional, 2 fully-connected), step size 0.02, 8k subset of
CIFAR-10. Comparison between: the observed highest eigenvalue for the Hessian of the
mini-batch loss (red dots), the empirical λb

max (green line), the λmax (blue dots).
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Figure 46: CNN, 5 layers (3 convolutional, 2 fully-connected), step size 0.005, 8k subset
of CIFAR-10. Comparison between: the observed highest eigenvalue for the Hessian of the
mini-batch loss (red dots), the empirical λb

max (green line), the λmax (blue dots).

Figure 47: ResNet-10, step size 0.005, 8k subset of CIFAR-10. Comparison between: the
observed highest eigenvalue for the Hessian of the mini-batch loss (red dots), the empirical
λb

max (green line), the λmax (blue dots).
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