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Abstract

Subject motion is one of the major challenges in clinical routine MR imaging. Despite
ongoing research, motion correction has remained a complex problem without a universal
solution. In advanced quantitative MR techniques, such as MR Fingerprinting, motion
does not only affect a single image, like in single-contrast MRI, but disrupts the entire
temporal evolution of the magnetization and causes parameter quantification errors due
to a mismatch between the acquired and simulated signals. In this work, we present a
deep learning-empowered retrospective motion correction for rapid 3D whole-brain mul-
tiparametric MRI based on Quantitative Transient-state Imaging (QTI). We propose a
patch-based 3D multiscale convolutional neural network (CNN) that learns the residual
error, i.e. after initial navigator-based correction, between motion-affected quantitative
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T1, T2 and proton density maps and their motion-free counterparts. For efficient model
training despite limited data availability, we propose a physics-informed simulation to ap-
ply continuous motion-patterns to motion-free data. We evaluate the performance of the
residual CNN on 1.5T and 3T MRI data of ten healthy volunteers. We analyze the gen-
eralizability of the model when applied to real clinical cases, including pediatric and adult
patients with large brain lesions. Our study demonstrates that image quality can be sig-
nificantly improved after correcting for subject motion. This has important implications
in clinical setups where large amounts of motion affected data must be discarded.

Keywords: 3D multiparametric MRI, motion correction, deep learning, residual learning,
multiscale CNN

1. Introduction

Motion robustness is a key feature for routine imaging in general. It is especially crucial for
pediatric or elderly patients and for patients affected by diseases that prevent them from
maintaining a still position throughout the acquisition. It is therefore a clinical priority
to develop techniques that effectively resolve motion artifacts. As their appearance highly
depends on the individual acquisition, e.g. the used readout schemes, the targeted clinical
question, the condition of the patient and the body region to be imaged, there is no universal
solution. Consequently, a number of conceptionally different correction methods have been
presented, ranging from prospective to retrospective, image-based methods (Zaitsev et al.,
2015; Godenschweger et al., 2016).

Fast 3D multiparametric MRI techniques based on transient-state MRI (Ma et al., 2018;
Gómez et al., 2020) are excellent candidates for the clinical practice, as they offer high
quantification accuracy together with high repeatability and reproducibility (Buonincontri
et al., 2021). Their reduced scan times enable improved motion robustness compared to
conventional quantitative MRI with lengthy scanning protocols. While motion artifacts are
generally reduced in these fast acquisition schemes, they are not entirely immune to motion.
In fact, subject movements do not only affect a single time point of the acquisition, but
corrupt the entire temporal magnetization evolution, captured by the acquired k-t space,
and therewith subsequent parameter estimation. While previous work on motion correction
for transient-state imaging has mainly concentrated on 2D acquisition schemes (Mehta et al.,
2018; Cruz et al., 2019; Xu et al., 2019), there is only little work on motion correction for
3D multiparametric MRI.

Kurzawski et al. (2020) presented a navigator-based retrospective rigid motion correc-
tion for a 3D Quantitative Transient-state Imaging (QTI) technique based on a segmented
readout scheme to acquire the k-t-space. Their proposed motion correction strategy relied
upon self-navigators embedded within each acquisition segment, which enabled the recovery
of a critical amount of the underlying parameter information degraded due to subject mo-
tion occurring between consecutive segments. Despite significant improvement of the image
quality, resulting quantitative T1, T2 and proton density (PD) maps showed remaining
artifacts originating from subject movements on a time-scale below the temporal resolution
of the self-navigators of 7 s.

Here, we propose a deep learning (DL) method to resolve artifacts due to continuous
motion that are not captured by the navigator-based approach. Our work is motivated by
recent advances of DL at the interface between MR physics and medical computer vision
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that have been demonstrated to make MR imaging more robust to subject motion (Us-
man et al., 2020; Oksuz, 2021; Gong et al., 2021; Pawar et al., 2018; Miao et al., 2016;
Hou et al., 2018a,b), e.g. by directly removing motion-induced artifacts or by estimating
the underlying motion parameters for subsequent realignment. We adopt the concept of
residual learning (Zhang et al., 2017; Jin et al., 2017; Liu et al., 2020) and propose a 3D
multiscale residual convolutional neural network (CNN) to improve on the previously pre-
sented navigator-based motion correction, presetting the following contributions: (1) We
propose a 3D multiscale residual CNN to learn the non-linear relationship between the
motion-corrupted T1, T2 and PD maps and the residual error maps, i.e. the deviation
from the motion-free counterpart that remained after navigator-based correction (Kurza-
wski et al., 2020). (2) We rely on a 3D CNN architecture that captures the intrinsically 3D
nature of the subject movements together with the 3D MR acquisition scheme to efficiently
resolve motion artifacts and infer high-quality T1, T2 and PD maps. (3) We present a
physics-informed simulation framework to retrospectively apply realistic continuous motion
patterns to motion-free datasets, enabling a supervised training setup without the necessity
for large amounts of paired acquisitions or fully sampled data. (4) We evaluate the perfor-
mance of the proposed method on 1.5T and 3T MRI data of ten healthy volunteers who
underwent QTI imaging twice: the first time they kept their head as still as possible, and
the second time they voluntarily moved their heads during acquisition. We also apply our
method to clinical cases, including pediatric and adult patients with large brain lesions, to
demonstrate its generalizability and capability to improve motion-affected datasets in cases
with pathological findings.

2. Material and methods

2.1. Residual learning for retrospective 3D motion correction

We propose a residual learning technique to resolve artifacts that could not be corrected by
the navigator-based method of Kurzawski et al. (2020), which is recapped below to present a
more complete picture. We demonstrate our method with its key components, the residual
CNN model and the physics-informed motion simulation, on data acquired with 3D QTI.

Navigator-based rigid motion correction The navigator-based correction identifies
motion-induced misalignment in the acquired image-time series. To do so, the full k-t-space
data is subdivided into subsequently acquired segments, from which we reconstruct equal-
contrast navigator images. These navigators are then aligned to the first baseline navigator
to estimate the spatial mismatch and to subsequently correct the k-t-space data accordingly.
The corrected k-t-space data is then fed into the reconstruction pipeline as described in 2.2
to yield the motion-corrected parametric maps. The massive spatial undersampling of the
fast 3D acquisition scheme limits the resolvable motion time-scale to 7 s as the lower SNR
in temporally higher resolved self-navigators hampers a correct realignment.

Residual learning CNN architecture and training We propose a 3D patch-based
multiscale residual CNN to learn the deviation of the motion-corrupted parameter maps
from the high-quality, motion-free reference. Learning a residual mapping has been shown
to be more effective than a direct mapping (Zhang et al., 2017; Tamada et al., 2019; Ulas
et al., 2018) as the residual maps capture a more sparse representations of the artifacts.
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Figure 1: The multiscale CNN receives the parametric maps after navigator-based correc-
tion as input and outputs the residual maps.

The proposed CNN architecture1 (Figure 1) receives a 3D input patch (24 × 24 × 24
voxels) of the quantitative maps degraded by motion artifacts that remained after navigator-
based correction. The quantitative T1, T2 and PD parameters are reflected by three input
channels. The model then spans out in a local and a global pathway. This dual pathway
structure was shown to efficiently account for spatial image information on multiple scales
(Kamnitsas et al., 2017; Kim et al., 2017; Ulas et al., 2018): The local path (with 3D con-
volutions and ReLU activations) processes more localized, spatially adjacent features. The
dilated 3D convolutional layers in the global path allow to gather more global, contextual
information due to an increased receptive field (Table A.2). Local and global features are
concatenated and fed into a block of fully-connected layers, efficiently processing the de-
coded spatial relationships. To maintain the spatial dimensions throughout the network,
the fully-connected layers are implemented as convolutional layers with 1 × 1 × 1 kernels,
to eventually output the residual maps, i.e. the difference of the navigator-corrected and
the motion-free maps. We trained the residual CNN based on in-vivo 3D QTI data from
ten healthy volunteers. For each subject, two datasets were acquired with the instruction
to hold still for the first scan and to rapidly move the head during the second session as
detailed by Kurzawski et al. (2020). All subjects were scanned on a 1.5T and a 3T scanner
(HDxt and MR750 scanners, GE Healthcare, Milwaukee, WI) with the sequence parameters
described in 2.2. For a supervised training setup, we only considered the motion-free data
and created a database of artificially motion-corrupted 3D QTI data as described below.
The in-vivo data with real motion was only used for testing. The DL-model was then trained
to learn the residual maps between the parametric maps with simulated motion artifacts
and the motion-free counterpart. The retrospectively corrupted data of seven subjects were
used for model training and two subjects’ data for validation, with 10, 000/3, 000 randomly
sampled 3D patches, respectively. The remaining subject data was held back for testing.
We trained the residual CNN for a maximum of 100 epochs with a batch size of 20, using
Adam optimization to minimize the L1 loss function with a learning rate of 1e−4, keeping
the model state with the best validation loss.

Physics-informed simulation of motion-corrupted data To allow the proposed DL-
model to learn how diverse motion patterns propagate to the inferred multiparametric

1. Code available on https://github.com/CarolinMA/MRP MoCo
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maps, we simulated motion-corrupted data from the motion-free 3D QTI acquisitions. To
do so, we applied continuous rigid motion patterns, i.e. translation and rotation, to the
individual time frames of the acquired k-t-space. To imitate continuous head movements,
we continuously varied the misalignment of consecutive k-t-space time points. We achieved
a realistic artifact appearance as we applied ranges of the artificial translation and rotation
patterns as experimentally observed by Kurzawski et al. (2020), i.e. translations −20 mm ≤
∆x,∆y,∆z ≤ 20 mm and rotations −20° ≤ ∆roll,∆pitch,∆yaw ≤ 20°. We then performed
a navigator-based correction to mitigate artifacts due to inter-segment movements in the
first place. The thereby obtained parametric maps with remaining artifacts due to intra-
segment movements, illustrated in Figure A.1, were the input to the CNN.

2.2. Data acquisition and processing

In-vivo data All in-vivo data presented in this study were acquired in accordance with
the 1964 Helsinki declaration and its later amendments or comparable ethical standards.
Approval was granted by the local ethics boards.

MR acquisition and reconstruction In-vivo data from ten healthy volunteers, a pedi-
atric and an adult patient were scanned with an inversion-prepared 3D SSFP QTI imple-
mentation (Gómez et al., 2020) with variable flip angle ramps, TI=18 ms, TE=0.5 ms and
TR=8.5 ms. The acquisition of transient state image series relies on in-plane spirals with
spherical rotations to sample the k-t-space (=3D+time, i.e. 225 × 225 × 225mm3 field of
view with 1.125 × 1.125 × 1.125mm3 isotropic voxel size and 880 time points). By design,
the acquisition is built by consecutive segments (n=56) of the same excitation scheme, each
with a duration of 7 s, and iteratively fills the k-t-space by randomly permuting in-plane and
spherical rotation angles of the readouts. The k-t-space data are then reconstructed using
zero-filling, followed by projection onto a low rank subspace, gridding onto a Cartesian grid,
3D inverse fast Fourier transform and subsequent coil sensitivity estimation and combina-
tion. Quantitative maps of T1, T2 and PD are estimated by matching the reconstructed
subspace images to a pre-computed dictionary with granularity and parameter ranges as
specified in Kurzawski et al. (2020).

2.3. Experimental setup

Cross-validation experiment on healthy volunteer data We evaluated the perfor-
mance of the residual CNN, trained on solely simulated motion, in a ten-fold cross-validation
experiment by repeating the training setup, as described in 2.1, ten times. Following this
leave-one-out scheme, the data of the held-back volunteer with real motion after initial
navigator-based correction was used for model testing in each instance. At test time, we
divided the parametric maps into 3D patches of 24 × 24 × 24 voxels, shifted along all three
dimensions with a step size of 4 voxels, for patch-wise CNN processing. Predicted residual
error patches are added to the motion-corrupted input and averaged to eventually yield the
full 3D motion-corrected T1, T2 and PD maps. We ran the cross-validation experiment
for 1.5T and 3T data individually. The obtained quantitative maps were compared to the
co-registered motion-free reference using the voxel-wise concordance correlation coefficient
(CCC) and coefficient of determination (R2) as performance metrics.
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Generalization analysis on clinical quantitative MRI For further performance anal-
ysis, we applied the best-performing model in the cross-validation experiment to clinical 3D
QTI scans of a pediatric (8-year old) patient with subtotal agenesis of the corpus callosum,
scanned at 1.5T, and an adult patient with glioblastoma, scanned at 3T.

3. Results and discussion

Cross-validation experiment on healthy volunteer data The proposed 3D residual
CNN, trained on purely artificially corrupted data, provided T1, T2 and PD maps with an
image quality comparable to the motion-free reference maps. This is observed when visually
comparing the quantitative maps of a representative test case of the cross-validation exper-
iment for both the 1.5T (Figure 2(a), Figure A.2) and 3T data (Figure 2(b), Figure A.3).

Quantitative evaluation of the cross-validation experiment by means of the CCC and R2

(Table A.1) substantiates the qualitative finding and reflects the improvement achieved by
the navigator-based realignment and the subsequent residual CNN. For both 1.5T and 3T
data, quantitative measures indicate that the residual CNN further improved the outcome of
the navigator-based correction for all parametric maps. As already visually observed, mean
CCC and R2 values reflect the higher impact of the DL-model on T2 and PD than T1 maps.
Furthermore, Table A.1 shows that after CNN-based motion-correction, we achieved better
correspondence with the motion-free reference for the 3T data than for the 1.5T scans.
However, from Figure 2(a) and Figure A.2 we observe that the residual CNN does not only
remove motion-induced artifacts, but additionally suppresses noise-like aliasing. This effect
is more pronounced for the 1.5T data with intrinsically lower SNR and image quality than
for a 3T field-strength with higher SNR. The additional denoising results in parametric
maps with image qualities that go beyond the motion-free reference, which in turn explains
the lower overall agreement observed with the motion-free reference acquisitions.

The cross-validation experiment shows that the combination of the residual CNN with
the navigator-based correction efficiently resolves head movements on two time-scales: 1)
The self-navigator-based estimation and subsequent realignment of motion-induced dis-
placements in the k-t-space has proven to recover a significant amount of the parameter
information corrupted by abrupt inter-segment movements. 2) With the 3D residual multi-
scale CNN, we reliably resolve residual artifacts and phase inconsistencies due to continuous
intra-segment movements that are unresolved by the limited temporal resolution of the self-
navigators, providing high-quality and artifact-free parameter maps.

The proposed physics-informed motion simulation allows us to retrospectively apply
continuous motion directly to the k-t-space and propagate it through the reconstruction
pipeline. We make implicit use of the forward encoding operator from k-space to parameter-
space to generate self-contained, paired training data for supervised model training. Thus,
we present an efficient training scheme that does not require large amounts of motion and
motion-free data pairs to be acquired. Also, in contrast to other physics-guided methods,
we do not rely on fully sampled data to be used as reference for supervised network training.
This is from particular practical relevance as the acquisition of fully-sampled 3D+time QTI
data is infeasible due to prohibitively long scan times (Yaman et al., 2020).

The 3D patch-based CNN implementation allowed us to fully capture the spatial corre-
lations that inevitably arise from 1) the subject movements in the 3D space, which cause
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(a) 1.5T

Motion Navigator Navigator + residual CNN No motion reference

(b) 3T

Figure 2: Proposed motion correction for representative volunteer scans at 1.5T (a) and
3T (b) (axial views). T1, T2 and PD maps show pronounced motion-induced
artifacts (Motion) compared to the No motion reference. Remaining artifacts
after Navigator -based correction are resolved by the residual CNN (Navigator +
residual CNN ), providing high-quality parameter maps.

spatially correlated image artifacts, and 2) the 3D design of the MR acquisition with spatial
undersampling and multicoil imaging that provoke a mixing of signal components. With
the adaption of the residual learning concept, we transferred the non-linear disentangling
of the primary parameter information and the secondary image artifacts into the sparse
representation of the residual maps.

Generalization analysis on clinical quantitative MRI For the clinical test cases at
1.5T and 3T, Figure 3, Figure A.4 and Figure A.5 indicate that the residual CNN yields
high-quality, artifact-free parametric maps. In both cases, the navigator-based approach
did not improve image quality of the parametric maps as much as seen for the volunteer
data (Figure 2, Figure A.2, Figure A.3). This is attributed to the fact that there were no
pronounced abrupt movements but the patients moved their heads continuously, i.e. on
a faster scale of what can be resolved by the self-navigators. The patient datasets also
showcase the generalization capabilities of the residual CNN. We observed reliable motion-
correction results in the presence of pathological findings in both adult and pediatric patients
whose brain anatomy differs from that of healthy adults in the training data.

Limitations and outlook Although the proposed multiscale CNN has shown convincing
efficiency and functionality in this proof of concept, more advanced DL architectures might
have the potential to improve on our baseline. We also plan to further investigate on
the intrinsic denoising capacities of our method as revealed by the 1.5T experiments. As
suggested from the clinical evaluation, patient data seemed to be affected by continuous head
movements without any abrupt position changes. It is hence subject to our current and
follow-up work to investigate what motion scales can be resolved by the residual CNN when
applied as a stand-alone tool. We also plan to explore potential application scenarios of the
presented DL-empowered motion correction in other body regions and motion patterns.

7



Residual learning for 3D motion corrected quantitative MRI

(a) Pediatric patient (1.5T) (b) Adult patient (3T)

Figure 3: Proposed motion correction for representative clinical test cases (axial views).
(a) Pediatric patient with subtotal agenesis of the corpus callosum and inter-
hemispheric cyst, scanned at 1.5T. (b) Adult patient with glioblastoma in the
temporo-parietal region with cystic-necrotic and hemorrhagic components, and
marked perilesional edema, scanned at 3T. For both patients, the residual CNN
improved image quality of all parametric maps (Navigator + residual CNN ),
mitigating image artifacts attributed to head movements during scan sessions.

4. Conclusion

In this work, we propose a 3D multiscale residual CNN for retrospective motion correction
in fast 3D whole-brain multiparametric MRI. We present a physics-informed motion sim-
ulation, allowing for efficient model training without the requirement of large amounts of
paired data. The 3D CNN architecture captures the intrinsically 3D relationships of the
motion-induced corruptions to reliably recover high-quality T1, T2 and PD maps. Taking
advantage of the sparsity in the residual maps, we can substantially improve the quality of
quantitative maps suffering from subject movement - in case of healthy volunteers but also
for pediatric and adult patients with pathological findings. This is particularly important in
clinical setups where scans frequently have to be repeated, possibly under sedation, because
of motion artifacts. With fast scanning time and higher motion-immunity, quantitative
MRI may become a standard for clinical practices.
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Appendix A. Supplementary figures and tables

A.1. Physics-informed simulation of motion-corrupted data
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(a) Axial views
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(b) Coronal views
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(c) Sagittal views

Figure A.1: Physics-informed motion simulation illustrated for a representative volunteer
dataset acquired at 3T. Continuous rigid, i.e. translation and rotation, motion
patterns are applied to the individual time frames of the acquired motion-
free k-t-space data (No motion reference), imitating continuous head move-
ments (Artificial motion). Navigator-based motion correction is then applied
to mitigate artifacts due to inter-segment movements in the first place (Naviga-
tor). The obtained parametric maps with remaining artifacts due to continuous
intra-segment movements are the input to the residual CNN.
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A.2. Cross-validation experiment on healthy volunteer data
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(a) Coronal views
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(b) Sagittal views

Figure A.2: Proposed motion correction for a representative volunteer test dataset acquired
at 1.5T (coronal and sagittal views).
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Figure A.3: Proposed motion correction for a representative volunteer test dataset acquired
at 3T (coronal and sagittal views).
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Table A.1: Quantitative evaluation of the cross-validation experiment for motion-corrupted,
measured volunteer data summarized by concordance correlation coefficient
(CCC) and coefficient of determination (R2) metrics between the result of the
respective correction method, i.e. only navigator-based correction (Navigator)
and navigator-based correction with subsequent residual CNN-based correction
(Navigator + residual CNN ), and the motion-free parameter maps as reference.

1.5T 3T
Correction Metrics T1 T2 PD T1 T2 PD
No correction 0.48 0.38 0.48 0.68 0.55 0.44
Navigator CCC 0.72 0.61 0.61 0.82 0.75 0.60
Navigator + residual CNN 0.78 0.71 0.71 0.87 0.83 0.83
No correction 0.51 0.38 0.5 0.68 0.56 0.78
Navigator R2 0.72 0.61 0.63 0.81 0.76 0.87
Navigator + residual CNN 0.79 0.72 0.76 0.87 0.84 0.91

A.3. Generalization analysis on clinical quantitative MRI

(a) Coronal views (b) Sagittal views

Figure A.4: Proposed motion correction for the pediatric case acquired at 1.5T (coronal
and sagittal views).
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(a) Coronal views
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(b) Sagittal views

Figure A.5: Proposed motion correction for the adult patient’s dataset acquired at 3T (coro-
nal and sagittal views).

A.4. Ablation study

Table A.2: Cross-validation experiment for quantitative comparison of the proposed multi-
scale CNN with global and local paths and a singlescale CNN comprising only
two local paths, both applied after initial Navigator -based correction. Motion-
correction performance is again summarized by concordance correlation coeffi-
cient (CCC) and coefficient of determination (R2) between the motion-corrected
and the motion-free parameter maps.

1.5T 3T
CNN implementation Metrics T1 T2 PD T1 T2 PD
Navigator + multiscale CNN
(global + local path)

CCC
0.78 0.71 0.71 0.87 0.83 0.83

Navigator + singlescale CNN
(2 local paths)

0.75 0.65 0.63 0.85 0.78 0.77

Navigator + multiscale CNN
(global + local pathway)

R2
0.79 0.72 0.76 0.87 0.84 0.91

Navigator + singlescale CNN
(2 local paths)

0.75 0.66 0.68 0.86 0.8 0.87

15


	Introduction
	Material and methods
	Residual learning for retrospective 3D motion correction
	Data acquisition and processing
	Experimental setup

	Results and discussion
	Conclusion
	Supplementary figures and tables
	Physics-informed simulation of motion-corrupted data
	Cross-validation experiment on healthy volunteer data
	Generalization analysis on clinical quantitative MRI
	Ablation study


