
Haste Makes Waste: Evaluating Planning Abilities of LLMs for
Efficient and Feasible Multitasking with Time Constraints

Anonymous ACL submission

Abstract001

While Large Language Model-based agents002
have demonstrated substantial progress in task003
completion, existing evaluation benchmarks004
tend to overemphasize single-task performance,005
with insufficient attention given to the crucial006
aspects of multitask planning and execution ef-007
ficiency required in real-world scenarios. To008
bridge this gap, we present RECIPE2PLAN,009
a novel benchmark framework based on real-010
world cooking scenarios. Unlike conventional011
benchmarks, RECIPE2PLAN challenges agents012
to optimize cooking time through parallel task013
execution while respecting temporal dependen-014
cies between steps. The benchmark emphasizes015
the delicate balance between maximizing con-016
current operations and adhering to critical tim-017
ing constraints, where overly aggressive local018
parallelization may disrupt subsequent time-019
sensitive steps, potentially compromising the020
entire cooking process. Extensive experiments021
with state-of-the-art models reveal challenges022
in maintaining this balance between efficiency023
and feasibility. The results highlight the need024
for improved temporal awareness and global025
multitasking capabilities in large language mod-026
els. We will open-source our benchmark and027
code to the community.028

1 Introduction029

Large Language Models (LLMs) (OpenAI, 2023;030

Team and Google, 2023; Touvron et al., 2023;031

Qwen Team, 2024) have demonstrated the ability032

to plan and reason step by step (Wei et al., 2022).033

Leveraging this ability, LLM-based agents can au-034

tomate complex real-world tasks (Yao et al., 2022b;035

Shinn et al., 2024; Sun et al., 2024).036

The effectiveness of LLM-based agents is pri-037

marily evaluated based on the feasibility of their038

plans in the scenarios of web browsing (Yao et al.,039

2022a; Zhou et al., 2023), tool usage (Qin et al.,040

2023; Li et al., 2023), computer manipulation (Xie041

et al., 2024b; Gou et al., 2024) and agent naviga-042

tion (Shridhar et al., 2020; Wang et al., 2022).043

However, the ability to manage concurrent ob- 044

jectives remains an often overlooked yet crucial 045

requirement in real-world applications, as exempli- 046

fied by everyday scenarios where humans prepare 047

multiple dishes simultaneously for a meal or con- 048

duct parallel laboratory experiments (Russell and 049

Norvig, 2010; Zhang et al., 2024; Wu et al., 2024). 050

Current planning benchmarks assume that models 051

execute tasks by decomposing the overall goal into 052

steps and achieving these subgoals sequentially, 053

one at a time (Liu et al., 2023; Ma et al., 2024). 054

Consequently, these datasets fail to account for the 055

duration of an action and the potential for multitask- 056

ing. The multitasking scenario proposes a different 057

objective in addition to feasibility. It challenges the 058

model to optimize the efficiency to reach multiple 059

goals simultaneously. 060

Time constraints are often imposed between cer- 061

tain steps in the recipe of dishes or experiments, in- 062

dicating specific actions must be performed within 063

a particular time interval after the preceding step is 064

completed. For instance, the pouring and dripping 065

actions for pour-over coffee must be carried out 066

in sequence without any delay, as recommended 067

by professionals (Hoffmann, 2018). This property 068

introduces a unique challenge for multitask plan- 069

ning apart from conventional benchmarks. The first 070

plan in Figure 1 illustrates that if the agent priori- 071

tizes maximizing efficiency by rushing to multitask 072

whenever it is idle, it may inadvertently violate fu- 073

ture time constraints. Consequently, the agent must 074

balance the need for efficiency with adherence to 075

time constraints to achieve feasible multitask plan- 076

ning as shown in the second plan in Figure 1. 077

We propose a new benchmark RECIPE2PLAN 078

based on real-world recipes and constraints to 079

evaluate the multitasking abilities of agents. We 080

highlight three main challenges as: (1) Common- 081

sense Reasoning: The agent must identify idle 082

periods from the recipe as opportunities for mul- 083

titasking while recognizing action dependencies 084

1

Recipe A: Iced Coffee

Recipe B: Hot Coffee

DripPour

Pour Drip

Pour

Pour

DripGrind Coffee

Boil Water

Grind Coffee

DripPour

Pour Drip

Pour

Pour

Drip Ice

Drip

Grind Coffee

Boil Water

Grind Coffee

Action of Recipe B can not be executed.
Agent is occupied.

Feedback

Both drippers are occupied.
The kettle is occupied, the temperature of water is 96.

Observation

Plan 2: Efficiency Feasibility

Boil Grind

Pour Drip Pour Drip

Ice

Pour Water Drip Coffee

Occupied Idle

Action

Time Constraints

Preparation

Brewing

Complete multiple recipes in the shortest time possible.

Multitask Agent

Plan 1: Efficiency Feasibility

Violation of time constraints

Boil Grind

Pour Drip Pour Drip

Time Constraints

Preparation

Brewing

Figure 1: A simplified demonstration of our benchmark RECIPE2PLAN. Actions will either occupy the agent or
leave it idle. The four steps of brewing must be executed sequentially as time constraints. The goal for the agent is
to plan multitasking to complete the recipes in the shortest time possible without violating any constraints. The first
plan illustrates a scenario where the agent attempts always to keep the agent occupied for higher efficiency, resulting
in violations of time constraints. The second plan maintains the balance between the efficiency and feasibility of the
plan by leaving the agent idle on purpose to maintain the time constraints for all actions.

and physical constraints to construct feasible ac-085

tion sequences. (2) Dynamic Local Planning: As086

recipe states evolve based on executed actions, the087

agent must continuously determine executable ac-088

tions at each timestep. Additionally, the agent must089

dynamically adapt its beliefs and revise the plan ac-090

cordingly if its initial assumptions about properties091

or constraints do not align with real-world condi-092

tions. (3) Strategic Global Planning: The agent is093

required to allocate the use of physical objects and094

schedule actions on a timeline to enable efficient095

multitasking. It is crucial to avoid planning mul-096

titasking in a purely local and greedy manner, as097

this could lead to violations of time restrictions. It098

challenges the agent to maximize efficiency while099

maintaining feasibility from a global perspective.100

Our benchmark provides a testbed for the101

efficiency of LLM-based agents, as they are102

approaching the upper limits of feasibility in103

current text-based agent benchmarks (Sun et al.,104

2024) and multitasking scenarios without time105

constraints (Table 3). By introducing time106

restrictions, our benchmark evaluates the planning107

abilities of agents to maintain a delicate balance108

between efficiency and feasibility, rather than109

simply maximizing efficiency in a greedy manner.110

RECIPE2PLAN aims to push the boundaries of111

current agent planning capabilities, making them112

more adept at handling complex real-world tasks.113

While our benchmark is constructed with cooking114

scenarios, its scope could notably extend to the 115

design of embodied agents in real-world multitask- 116

ing, such as automatic scientific discovery. The 117

high-throughout biomedical experiments (Yang 118

et al., 2021) share the same principles of our 119

benchmark, requiring the agents to deliver a 120

feasible plan that finishes all the goals efficiently. 121

In this study, we experiment with various sizes 122

of open-source models, such as Qwen2.5 (Qwen 123

Team, 2024) and Llama3.1 (Dubey et al., 2024), as 124

well as closed-source models, including Gemini- 125

1.5-Pro (Team et al., 2024) and GPT-4o (Ope- 126

nAI, 2023). Our experiments reveal that GPT-4o 127

achieves the highest success rate of only 21.5% 128

and the main failure source is the violation of time 129

constraints. It suggests that current LLMs fail to de- 130

liver feasible plans while attempting efficient mul- 131

titasking. We show that LLMs can deliver feasible 132

plans if time constraints are absent. However, their 133

efficiency still lags significantly behind a simple 134

heuristic method (§4). We also indicate that GPT- 135

4o can trade efficiency for success rate if focusing 136

solely on feasibility (§5.1). Overall, we demon- 137

strate that current LLMs struggle to balance effi- 138

ciency and feasibility when multitasking with time 139

constraints. We further analyze the commonsense 140

reasoning, local planning, and global planning ca- 141

pabilities of LLMs. By isolating each ability, we 142

identify global planning as the primary source of 143

task failure and inefficient multitasking (§5.3). 144

2

Our contributions are as follows:145

• We highlight the importance of the ability of146

agents to plan multitasking as balancing efficiency147

and feasibility. Compared with existing works fo-148

cusing on feasibility, our work offers a new per-149

spective to evaluate the planning abilities of LLMs.150

•We construct a benchmark RECIPE2PLAN based151

on real-world recipes for multitask planning. It152

challenges the model to allocate the usage of physi-153

cal objects and schedule the actions on the timeline154

to complete the recipes in the shortest time possible155

without violating time constraints.156

•We evaluate open-source and closed-source mod-157

els on our benchmarks. Our results show that158

LLMs struggle with planning multitasking under159

time constraints, resulting in a low success rate for160

the task. This highlights the need for further devel-161

opment in enhancing the temporal reasoning and162

global planning capabilities of LLM agents.163

2 Related Work164

Planning Benchmarks. To evaluate the planning165

abilities of LLM-based agents, researchers have166

proposed benchmarks across various domains such167

as web browsing (Yao et al., 2022a; Zhou et al.,168

2023; Deng et al., 2024), tool usage (Qin et al.,169

2023; Li et al., 2023), and computer manipula-170

tion (Xie et al., 2024b; Gou et al., 2024). These171

benchmarks assess an agent’s ability to execute a172

sequence of actions to achieve a general goal in a173

partially observable environment (Liu et al., 2023;174

Ma et al., 2024). However, these environments do175

not account for the duration of each action. Ad-176

ditionally, they evaluate planning abilities based177

solely on feasibility, without comparing the effi-178

ciency of task completion between different agents.179

Scheduling Benchmarks. Apart from the typi-180

cal planning task in which the agent interacts with181

a partially observable environment without prior182

knowledge of how to achieve the goal, the schedul-183

ing task provides the agent with a complete de-184

scription of the task. The objective is to deliver185

an action sequence from a small set of fixed ac-186

tions to meet the given objectives (Pinedo and Ha-187

davi, 1992; Smith et al., 2000; Valmeekam et al.,188

2024). Graph coloring (Stechly et al., 2024) investi-189

gates whether LLMs can self-critique their answers190

for violations of scheduling constraints. NATU-191

RALPLAN assesses scheduling abilities in contexts192

such as trip planning, meeting planning, and calen-193

dar scheduling. TravelPlan (Xie et al., 2024a) deals 194

with more complex commonsense constraints and 195

strict restrictions. TIMEARENA primarily evaluates 196

the multitasking capabilities of LLMs without time 197

constraints. Our benchmark focuses on assessing 198

the ability to balance efficiency and feasibility dur- 199

ing multitasking with time constraints. Please refer 200

to Table 1 for a detailed comparison. 201

Planning Methods. Different methods use feed- 202

back and instructions in various ways. Open-loop 203

methods such as Chain-of-Thought (Wei et al., 204

2022), least-to-most (Zhou et al., 2022) and plan- 205

and-solve (Wang et al., 2023) plan the action se- 206

quence without any feedback from the environ- 207

ment. This type of method is vulnerable to the 208

hallucination of execution constraints and environ- 209

ment dynamics. Closed-loop methods such as Re- 210

Act (Yao et al., 2022b) and Reflexion (Shinn et al., 211

2024) only refine local actions, which might re- 212

sult in global failure due to time constraints. Ada- 213

Planner (Sun et al., 2024) refines the entire plan 214

based on environmental feedback and past failures. 215

LLM-Modulo framework (Kambhampati, 2024) 216

surpasses existing baselines for complex schedul- 217

ing task (Gundawar et al., 2024b) by regenerating 218

the entire plan with detailed critiques. 219

3 RECIPE2PLAN 220

RECIPE2PLAN evaluates the planning ability of 221

LLMs for efficient and feasible multitasking un- 222

der constraints. Specifically, we provide the model 223

with multiple goals that can be achieved by follow- 224

ing recipes. Each recipe A is represented as a lin- 225

ear sequence of actions A = (a0, a1, ..., an), with 226

each action assigned a specific execution time tn. 227

The task is to plan the action sequence to complete 228

all goals in the shortest time possible, adhering to 229

the properties and constraints detailed in §3.1 and 230

§3.2. The statistics of our benchmark are presented 231

in Table 2. RECIPE2PLAN challenges the model to 232

apply commonsense reasoning to infer any unwrit- 233

ten constraints from the recipe, including action 234

concurrency, action dependencies, and resource 235

limitations while planning the action sequence to 236

minimize overall execution time. 237

3.1 Properties of Actions 238

Action Duration. This refers to the time required 239

for an agent to complete a specific action. For the 240

coffee recipes illustrated in Figure 1, the duration 241

3

Benchmark Commonsense
Reasoning

Temporal
Planning

Multitask
Planning

Time
Constraints

Harmonized
Planning

Graph Coloring (Stechly et al., 2024) ✗ ✗ ✗ ✗ ✗
NATURAL PLAN (Zheng et al., 2024) ✗ ✓ ✗ ✗ ✗
TravelPlanner (Xie et al., 2024a) ✓ ✓ ✗ ✗ ✗
TIMEARENA (Zhang et al., 2024) ✓ ✓ ✓ ✗ ✗

RECIPE2PLAN ✓ ✓ ✓ ✓ ✓

Table 1: Comparison with existing scheduling benchmarks. Two unique properties distinguish our benchmark:
(1) Complex Planning: Temporal multitasking recipes simultaneously require the blend of different abilities:
commonsense reasoning, dynamic local planning and strategic global planning; (2) Harmonized Planning: The
agent must balance efficiency and feasibility. While local-optimal planning for maximum efficiency might be
desirable, it must not compromise time constraints, as specific actions need to be performed within particular time
intervals following the preceding steps.

of actions such as pouring and dripping is fixed,242

and any deviation from these durations can result243

in spoiled flavor. Following this principle, each244

action in our benchmark is annotated with a spe-245

cific duration. The recipe in the dataset explicitly246

states this duration, allowing the agent to accurately247

schedule the timeline.248

Action Concurrency. Continuous actions, such249

as pour water, require the active involvement of250

the agent while the action is in progress. In con-251

trast, autonomous actions, like boil water, do not252

require the agent’s continuous attention, allowing253

the agent to remain idle and free to perform other254

tasks concurrently. Identifying autonomous actions255

and executing them simultaneously with other ac-256

tions is the key to efficient multitasking.257

Execution Interruptibility. We introduce this258

property by allowing actions, such as cut onions,259

to be completed by dividing the execution into two260

or more separate time intervals. Previous bench-261

marks generally do not consider duration (Ma et al.,262

2024) or treat the execution of actions as a certain263

time frame (Zhang et al., 2024). Execution inter-264

ruptibility enables the model to generate a more265

fine-grained plan by allocating the execution for266

one action across different intervals, thus enhanc-267

ing the efficiency and flexibility of multitasking.268

3.2 Multitasking Constraints269

Action Dependencies. The dependent relation-270

ships between actions are generally not explicitly271

stated in the recipe. Although the actions in a recipe272

are often presented in a linear sequence, the action273

dependencies might form a graph structure. For274

example, as illustrated in Figure 1, step 3 pour wa-275

ter depends on step 1 boil water and step 2 grind276

coffee, but steps 1 and 2 can be performed inde- 277

pendently of each other. If the agent discovers that 278

the dependency does not align with its initial un- 279

derstanding during execution, it must dynamically 280

adapt the plan based on the current status. 281

Resource Limitations. During planning, the 282

agent must recognize whether an object is occupied 283

at the current time and when it will be available 284

again. Different recipes may require different phys- 285

ical objects and conditions. As shown in Figure 1, 286

the pouring process for coffee requires water at a 287

specific temperature, so the agent can boil water 288

for both recipes simultaneously to speed up the pro- 289

cess. However, if different recipes require water or 290

an oven at different temperatures, the agent must se- 291

quentially prepare the object for each recipe based 292

on when it becomes available. This property neces- 293

sitates that the agent plan globally, scheduling the 294

use of different objects while considering the dura- 295

tion of actions and specific condition requirements. 296

Time Constraints. This property is crucial for 297

feasible multitasking of professional coffee prepa- 298

ration (Hoffmann, 2018) and delicate biomedical 299

experiments (Itoh et al., 2021), where specific ac- 300

tions must be executed within a precise time inter- 301

val following a preceding action. Failure to adhere 302

to these time constraints may alter the flavor of a 303

dish, or even cause the entire recipe or experiment 304

to fail. This realistic property imposes a significant 305

challenge on multitask planning. As depicted in 306

Figure 1, the agent can not simply follow a greedy 307

manner that prioritizes immediate actions without 308

considering the broader temporal constraints. The 309

incorporation of time constraints in the planning 310

process ensures that the agent must strategically 311

balance multitasking efficiency with feasibility. 312

4

3.3 Dataset Construction313

Recipe Annotation. We collect and clean recipes314

with annotated dependent relations from a website315

for cooking1. We ask three annotators to label the316

properties and constraints following the pipeline in317

Appendix A.1. The average kappa scores among318

annotators are 0.78 for action concurrency, 0.50319

for action interruptibility, 0.66 for time constraints,320

and 0.86 for resource limitations. Based on these321

results, we explicitly list action interruptibility322

and time constraints in the recipes, while keeping323

action concurrency and resource limitations as324

implicit properties that agents need to identify325

through commonsense reasoning. Finally, we326

prompt GPT-4o (Hurst et al., 2024) to annotate327

action durations and time intervals for restrictions,328

and all annotators have reviewed these annotations329

to ensure their reasonableness.330

Combine Recipes for Multitasking. We care-331

fully select recipe combinations to evaluate plan-332

ning abilities for efficient multitasking. To keep the333

action space and context length manageable, we334

only combine two recipes at a time. We then adapt335

a heuristic algorithm from Zhang et al. (2024) to336

plan action sequences for multitasking. Multitask-337

ing efficiency for each sequence is computed ac-338

cording to Equation 1. Instances are chosen for the339

benchmark based on the following criteria: (1) Op-340

portunities for multitasking: We include instances341

with multitasking efficiency higher than 80% when342

planning without time constraints, indicating signif-343

icant potential opportunities for multitasking. (2)344

Balance of efficiency and feasibility: We select in-345

stances in which the multitasking efficiency drops346

when time constraints are considered, suggesting347

that an efficient greedy planning strategy would348

likely violate these time constraints.349

3.4 Environment350

We implement an environment to provide feedback351

to the agent. The agent can choose to perform one352

action for a specified duration at a given time. If the353

agent determines that no action can be performed354

at the moment, it can choose the time for its next355

planned action. The environment then receives the356

action and checks for any constraint violations. If a357

constraint is violated, the environment will specify358

the type of violation. If the action is permissible,359

feedback from the environment includes the status360

1www.instructables.com

Recipe Statistics

Recipes 29
Avg. Actions per Recipe 13.1
Avg. Autonomous Actions per Recipe 3.4
Avg. Interruptible Actions per Recipe 3.9
Avg. time constraint per Recipe 3.1
Avg. Duration per Action (min) 5.7
Avg. Restriction Interval (min) 2.7

Multitasking Statistics

Instances 65
Avg. Executable Action per Step 3.1
Avg. Efficiency w/o time constraint (%) 92.3
Avg. Efficiency w/ time constraint (%) 80.1

Table 2: Statistics of recipes and multitasking instances
in our RECIPE2PLAN benchmark. The agent can choose
any timestamp for the next action, expanding the search
space beyond the number of executable actions solely.

of physical objects, completed actions, and ongo- 361

ing autonomous actions. We present examples of 362

observations and feedback in Appendix C.2. The 363

agent can use this feedback to revise its global plan 364

and decide on the next action. 365

4 Experiments 366

4.1 Baselines 367

Models. We evaluate several models, including the 368

open-source Llama-3.1 with parameter sizes of 8B 369

and 70B (Dubey et al., 2024), and Qwen2.5 with 370

parameter sizes of 7B, 32B and 72B (Qwen Team, 371

2024). Additionally, we assess the closed-source 372

models, GPT-4o-mini, GPT-4o (Hurst et al., 2024) 373

and Gemini-1.5-Pro (Team et al., 2024). The ver- 374

sions of the models are detailed in Appendix C.3. 375

Methods. We begin by prompting the model to 376

identify any unwritten properties and constraints 377

from each recipe. These identified elements 378

are then concatenated with the original descrip- 379

tion. Next, we employ a ReAct-style prompting 380

method (Yao et al., 2022b) on the models to plan 381

the action sequence. To evaluate the planning abil- 382

ities and mitigate the cascading errors from com- 383

monsense reasoning, we also experiment with an 384

oracle setting ReAct + Oracle that replaces the 385

identified constraints with the gold annotations. 386

Constraint Setting. We evaluate the agent under 387

without time constraints and with time constraints 388

settings to study the impact of time constraints on 389

the feasibility and efficiency of multitasking agents. 390

5

www.instructables.com

Model w/o Time Constraints w/ Time Constraints

Success Progress R-Efficiency S×E Success Progress R-Efficiency S×E

ReAct

Open-Source Models
Qwen2.5-7B 1.5 26.5 73.6 1.3 0.0 22.4 78.0 0.0
Llama-3.1-8B 0.0 9.7 47.8 0.0 0.0 10.3 44.9 0.0
Qwen2.5-32B 80.0 96.7 60.5 51.0 15.4 57.4 86.4 9.9
Llama-3.1-70B 72.3 88.8 65.9 50.5 13.8 55.5 79.3 9.8
Qwen2.5-72B 72.3 91.2 72.3 52.3 7.7 54.9 91.6 5.8

Closed-Source Models
GPT-4o-mini 3.1 51.8 53.6 2.0 1.5 36.0 63.4 0.4
Gemini-1.5-Pro 20.0 66.4 71.7 14.3 3.1 47.5 74.4 1.8
GPT-4o 90.8 99.1 81.0 75.3 21.5 64.0 102.6 19.5

ReAct + Oracle

Open-Source Models
Qwen2.5-7B 0.0 28.1 68.9 0.0 0.0 24.1 61.8 0.0
Llama-3.1-8B 0.0 10.8 60.6 0.0 0.0 10.0 49.1 0.0
Qwen2.5-32B 80.0 96.7 55.9 49.8 10.8 57.0 85.7 8.6
Llama-3.1-70B 73.8 89.0 61.6 49.9 6.2 52.9 78.9 2.5
Qwen2.5-72B 72.3 90.1 71.2 53.2 7.7 52.6 98.3 6.0

Closed-Source Models
GPT-4o-mini 10.8 55.8 54.0 3.9 1.5 35.0 64.8 1.5
Gemini-1.5-Pro 16.9 63.6 68.4 13.7 7.7 49.1 76.8 3.8
GPT-4o 95.4 99.4 78.2 76.3 27.7 60.6 104.0 20.3

Heuristics 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Table 3: Results of ReAct and ReAct + Oracle experiments on RECIPE2PLAN. We report average percentage of
success rate (Success), progress rate (Progress), relative multitask efficiency (R-Efficiency) and muititasking score
(S×E). Bold denotes the best performance and underline denotes the second-best performance.

4.2 Evaluation Metrics391

Success Rate. It measures the feasibility of the392

plans exclusively by evaluating whether the agent393

can deliver a plan that successfully completes all394

recipes. The agent might fail due to a violation of395

time constraints, reaching a maximum of execution396

errors, or being stuck in an endless dead loop.397

Progress Rate. This metric measures the propor-398

tion of successfully executed actions in the recipes.399

It evaluates the feasibility of the planning process400

with a more fine-grained perspective.401

Multitasking Efficiency. Opportunities to mini-402

mize execution time arise from autonomous actions403

within the recipes. We first calculate the time saved404

Tsave through multitasking relative to the total du-405

ration of all completed actions. We measure the406

multitasking efficiency for successfully executed407

actions as the proportion of saved time and the408

cumulative duration of the executed autonomous409

actions Tauto similar to Zhang et al. (2024).410

Efficiencyagent =
Tsave

Tauto
(1)411

We observe that the progress rate potentially in-412

fluences this metric. To address this, we perform a413

calibration based on the efficiency of plans derived 414

from the heuristic baseline (Efficiencyref), which 415

allows us to compute the relative multitasking effi- 416

ciency, with the rationale detailed in Appendix B. 417

R-Efficiency =
Efficiencyagent
Efficiencyref

(2) 418

Multitasking Score. We use this metric to present 419

the overall efficiency and feasibility of the plans 420

simultaneously. The score is computed as: 421

M.Score =

{
R-Efficiency Success = 1
0 otherwise

(3) 422

If the plan is successfully executed (Success = 1), 423

the multitasking score equals the R-Efficiency of 424

the plan; otherwise, the score is 0, indicating failure. 425

The rationale is that the agent should prioritize 426

ensuring the successful completion of the recipes 427

before aiming to achieve higher efficiency in task 428

execution. The overall score is computed as the 429

average of multitasking scores for each instance. 430

4.3 Main Results 431

LLMs can plan feasible multitasking in the ab- 432

sence of time constraints, but efficiency needs 433

6

Success Progress R-Efficiency S×E0

20

40

60

80

100

120 Multitasking with Different Priority
Heuristics
Balanced Priority
Feasibility Priority

Figure 2: Results of GPT-4o planning with different
priority. Balanced Priority: Blend feasibility and ef-
ficiency as in §4. Feasibility Priority: Only focus on
feasibility without considering efficiency.

improvement. In the ReAct setting, GPT-4o deliv-434

ers 90.8% feasible plans for multitasking, surpass-435

ing other tested models by a large margin. This436

demonstrates its ability to revise beliefs about un-437

written properties and constraints and to correct438

its actions to complete tasks. GPT-4o achieves a439

multitasking efficiency of 78.2%, indicating that440

there is still room for improvement in multitasking441

efficiency with LLMs.442

LLMs face challenges in balancing efficiency443

and feasibility for multitasking under time con-444

straints. The success rates and completion ratios445

of all models decrease significantly when multitask-446

ing with time constraints. GPT-4o only achieves447

a success rate of 21.5%. Interestingly, GPT-4o448

achieves a relative efficiency of 102.6%, which is449

higher than the heuristic baseline. This indicates a450

tendency to prioritize high efficiency during local451

planning. But the agent fails to maintain feasibility452

for time constraints from a global perspective while453

managing multitasking efficiency.454

Open-source models exhibit diverse prefer-455

ences for feasibility and efficiency. Surpris-456

ingly, Qwen2.5-32B outperforms Qwen2.5-72B457

and Llama-3.1-70B in success rate and progress458

rate, whereas the latter two exhibit higher efficiency.459

This highlights the varying preference towards fea-460

sibility and efficiency across different open-source461

models, even without time constraints. A similar462

trend is observed when multitasking under time463

constraints: Qwen2.5-32B achieves the second-464

highest success rate among all tested models, while465

Qwen2.5-72B attains the second-highest relative466

multitasking efficiency of 91.6%.467

Commonsense reasoning is not the bottleneck468

for feasible and efficient multitasking. The mod-469

els generally achieve F1 scores higher than 70% for470

Success S×E0

20

40

60

80

100

120 w/o Time Constraints
Heuristics
Oracle
Oracle + Hint

Success S×E0

20

40

60

80

100

120 w/ Time Constraints
Heuristics
Oracle
Oracle + Hint

Figure 3: Results of prompting GPT-4o under Oracle
setting: gold constraints, and Oracle + Hint setting:
gold constraints and executable actions at each step .

commonsense reasoning as detailed in Appendix D. 471

We investigate the impact of unidentified properties 472

and constraints in ReAct + Oracle setting. While 473

the success rate improves by 4.8% for GPT-4o in 474

the w/o time constraints setting, the relative effi- 475

ciency for GPT-4o decreases by 2.8%, indicating 476

that the model struggles to formulate an efficient 477

multitasking plan even with oracle constraints. In 478

the w/ time constraints setting, we observe the 479

success rate increases slightly for GPT-4o from 480

21.5% to 27.7%. This suggests misidentified con- 481

straints are not the primary errors leading to time 482

constraint violations. Overall, providing oracle con- 483

straints does not result in a significant performance 484

increase. Therefore, the main bottleneck for mul- 485

titasking is the planning abilities of the agents, as 486

we elaborate in the next section. 487

5 Analysis 488

5.1 Multitasking with Different Priority 489

Our experiments (§4) indicate that LLMs struggle 490

to complete the recipes with balanced priority of 491

feasibility and efficiency. Therefore, we evaluate 492

if LLMs can focus solely on the feasibility priority, 493

ensuring that recipes are completed without vio- 494

lating any constraints as detailed in Appendix C.4. 495

LLMs can ensure more task completion by trad- 496

ing efficiency for feasibility. The results in Fig- 497

ure 2 show that under the feasibility priority set- 498

ting, the success rate significantly increases from 499

27.7% to 49.2%, and the progress rate increases 500

from 60.6% to 85.7%. This indicates that focusing 501

on feasibility allows more recipes to be completed 502

and more steps to be executed within the given time 503

constraints. It further underscores the importance 504

of enhancing the planning abilities of LLM agents 505

to balance feasibility and efficiency. 506

7

Qwen2.5-32B Llama-3.1-70B Qwen2.5-72B

GPT-4o GPT-4o + Hint
Success
Action Mismatch
Action Concurrency
Action Duration
Action Dependency
Resource Limitation

Distribution of Valid and Invalid Actions

Qwen2.5-32B Llama-3.1-70B Qwen2.5-72B

GPT-4o GPT-4o + Hint

Success
Time Constraints
Stuck in Loop
Maximum Revisions
Early Finish

Distribution of Failure Sources

Figure 4: Analysis of the distribution of invalid actions and failure source of ReAct + Oracle agents planning with
time constraints. GPT-4o + Hint: We add all the executable actions in the prompt to help the agent choose the next
action during dynamic local planning.

5.2 Error Analysis507

In this section, we take a closer look at the dynamic508

local planning abilities of the agents by examining509

the distribution of valid and invalid actions. Invalid510

actions are categorized into: action mismatch (exe-511

cuting non-existing actions and repeating finished512

actions), and violations of other properties and con-513

straints. We distinguish time constraint as a source514

of failure separate from invalid actions, along with515

other types of failure in Figure 4.516

Action dependencies are the primary source of517

invalid actions. As illustrated in Figure 4, models518

with a high success rate under the w/o time con-519

straints setting consistently achieve a valid action520

ratio above 80% under time constraints. Despite all521

constraints being explicitly presented in the prompt522

during planning, the agent frequently violates these523

constraints, particularly those related to action de-524

pendencies. Upon examining the reasoning traces,525

we observe that LLMs often breach action depen-526

dencies constraints while attempting to optimize527

multitasking, consequently neglecting feasibility.528

Time constraints are the main sources of task529

failure. For the failure source of planning with530

time constraints, open-source models Llama-3.1531

and Qwen2.5 may still get stuck in loop or exceed532

maximum revisions for about 10% of the instances.533

But the main source for the failure of planning534

is due to time constraints, even GPT-4o fails to535

maintain time constraints in 70% of the cases.536

5.3 Planning with Hints of Executable Actions537

As LLMs can not handle action dependencies well538

while planning for efficient multitasking, we fur-539

ther add the executable actions for each step in the540

prompt. This allows us to evaluate global planning541

abilities directly.542

LLMs lack global planning ability for efficient 543

planning and maintaining time constraints. The 544

success rate and multitask score show minimal im- 545

provement in both settings, as illustrated in Fig- 546

ure 3. This indicates that while agents can select 547

a valid action for local planning (Figure 4), they 548

fail to consider the impact of their actions on the 549

overall feasibility and efficiency from a global per- 550

spective. Table 4 in the Appendix demonstrates 551

a case where GPT-4o fails to estimate the priority 552

of autonomous actions and leaves the agent idle 553

during the execution of the last two actions. Ta- 554

ble 5 in the Appendix provides an example where 555

GPT-4o rushes to heat up oil at the beginning of 556

the plan and executes this action concurrently with 557

others to maximize efficiency. This plan overlooks 558

ingredient preparation and results in the oil heated 559

for an extended period. It does not only violate the 560

time constraint but also risks catching fire. 561

6 Conclusions 562

Our paper introduces the RECIPE2PLAN bench- 563

mark, which evaluates the feasible and efficient 564

multitasking abilities of existing LLMs. This 565

benchmark pushes the limits of current agent plan- 566

ning capabilities beyond mere task completion to 567

include the optimization of time and resource man- 568

agement. Our experiments reveal that while strong 569

models like GPT-4o can generate feasible plans 570

without time constraints, their performance de- 571

creases sharply when time constraints are imposed. 572

This highlights a significant gap between current ca- 573

pabilities and the requirements for feasible and ef- 574

ficient multitasking. Our analysis identifies global 575

planning as the primary area needing improvement, 576

paving the way for future work to focus on enhanc- 577

ing temporal reasoning and strategic planning. 578

8

Limitations579

While multitasking is a practical application for580

LLM agents, our text-based environment does not581

fully capture the complexities of real-world cook-582

ing and experimentation. Our agent does not en-583

gage in physical exploration or interact with objects584

in the real world, focusing solely on the temporal585

planning aspects of multitasking. In our setting,586

the agent is assumed to perform every action with-587

out delay or failure. Introducing scenarios where588

the agent must search for ingredients in a kitchen589

or lab similar to Shridhar et al. (2020) and Wang590

et al. (2022) would present a more realistic and591

challenging environment. We plan to implement592

such a realistic environment in future work.593

The metric we use to evaluate efficiency by com-594

puting the speed of completion may be biased by595

the progress rate. To address this, we introduce a596

relative multitasking efficiency metric to calibrate597

our evaluation. However, the solution provided by598

our heuristic baseline does not guarantee the opti-599

mal plan for the task. The search space is complex600

because the model can choose to execute actions601

at arbitrary time stamps and split actions into ar-602

bitrary time intervals, making it beyond the scope603

of classical scheduling algorithms with time con-604

straints (Itoh et al., 2021). While existing schedul-605

ing algorithms may take a long time to execute, our606

heuristic algorithm quickly identifies a feasible and607

efficient plan, though it may be suboptimal. We608

believe this heuristic can still serve as a valuable609

baseline for evaluating the multitasking abilities610

of agents. For future work, we plan to explore611

scheduling algorithms that can better handle the612

complexities of multitasking with time constraints.613

References614

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Sam615
Stevens, Boshi Wang, Huan Sun, and Yu Su. 2024.616
Mind2web: Towards a generalist agent for the web.617
Advances in Neural Information Processing Systems,618
36.619

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,620
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,621
Akhil Mathur, Alan Schelten, Amy Yang, Angela622
Fan, et al. 2024. The llama 3 herd of models. arXiv623
preprint arXiv:2407.21783.624

Boyu Gou, Ruohan Wang, Boyuan Zheng, Yanan Xie,625
Cheng Chang, Yiheng Shu, Huan Sun, and Yu Su.626
2024. Navigating the digital world as humans do:627
Universal visual grounding for gui agents. arXiv628
preprint arXiv:2410.05243.629

Atharva Gundawar, Karthik Valmeekam, Mudit Verma, 630
and Subbarao Kambhampati. 2024a. Robust plan- 631
ning with compound llm architectures: An llm- 632
modulo approach. Preprint, arXiv:2411.14484. 633

Atharva Gundawar, Mudit Verma, Lin Guan, Karthik 634
Valmeekam, Siddhant Bhambri, and Subbarao Kamb- 635
hampati. 2024b. Robust planning with llm-modulo 636
framework: Case study in travel planning. arXiv 637
preprint arXiv:2405.20625. 638

James Hoffmann. 2018. The World Atlas of Coffee: 639
From beans to brewing-coffees explored, explained 640
and enjoyed. Hachette UK. 641

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam 642
Perelman, Aditya Ramesh, Aidan Clark, AJ Os- 643
trow, Akila Welihinda, Alan Hayes, Alec Radford, 644
et al. 2024. Gpt-4o system card. arXiv preprint 645
arXiv:2410.21276. 646

Takeshi D Itoh, Takaaki Horinouchi, Hiroki Uchida, 647
Koichi Takahashi, and Haruka Ozaki. 2021. Op- 648
timal scheduling for laboratory automation of life 649
science experiments with time constraints. SLAS 650
TECHNOLOGY: Translating Life Sciences Innova- 651
tion, 26(6):650–659. 652

Subbarao Kambhampati. 2024. Can large language 653
models reason and plan? Annals of the New York 654
Academy of Sciences, 1534(1):15–18. 655

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying 656
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gon- 657
zalez, Hao Zhang, and Ion Stoica. 2023. Efficient 658
memory management for large language model serv- 659
ing with pagedattention. In Proceedings of the 29th 660
Symposium on Operating Systems Principles, pages 661
611–626. 662

Minghao Li, Yingxiu Zhao, Bowen Yu, Feifan Song, 663
Hangyu Li, Haiyang Yu, Zhoujun Li, Fei Huang, 664
and Yongbin Li. 2023. Api-bank: A comprehensive 665
benchmark for tool-augmented llms. In Proceedings 666
of the 2023 Conference on Empirical Methods in 667
Natural Language Processing, pages 3102–3116. 668

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xu- 669
anyu Lei, Hanyu Lai, Yu Gu, Hangliang Ding, 670
Kaiwen Men, Kejuan Yang, Shudan Zhang, Xiang 671
Deng, Aohan Zeng, Zhengxiao Du, Chenhui Zhang, 672
Sheng Shen, Tianjun Zhang, Yu Su, Huan Sun, 673
Minlie Huang, Yuxiao Dong, and Jie Tang. 2023. 674
Agentbench: Evaluating llms as agents. Preprint, 675
arXiv:2308.03688. 676

Chang Ma, Junlei Zhang, Zhihao Zhu, Cheng Yang, 677
Yujiu Yang, Yaohui Jin, Zhenzhong Lan, Lingpeng 678
Kong, and Junxian He. 2024. Agentboard: An analyt- 679
ical evaluation board of multi-turn llm agents. arXiv 680
preprint arXiv:2401.13178. 681

OpenAI. 2023. Gpt-4 technical report. Preprint, 682
arXiv:2303.08774. 683

9

https://arxiv.org/abs/2411.14484
https://arxiv.org/abs/2411.14484
https://arxiv.org/abs/2411.14484
https://arxiv.org/abs/2411.14484
https://arxiv.org/abs/2411.14484
https://arxiv.org/abs/2308.03688
https://arxiv.org/abs/2303.08774

Liang-Ming Pan, Jingjing Chen, Jianlong Wu, Shaoteng684
Liu, Chong-Wah Ngo, Min-Yen Kan, Yugang Jiang,685
and Tat-Seng Chua. 2020. Multi-modal cooking686
workflow construction for food recipes. In Proceed-687
ings of the 28th ACM International Conference on688
Multimedia, pages 1132–1141.689

Michael Pinedo and Khosrow Hadavi. 1992. Schedul-690
ing: theory, algorithms and systems development. In691
Operations Research Proceedings 1991: Papers of692
the 20th Annual Meeting/Vorträge der 20. Jahresta-693
gung, pages 35–42. Springer.694

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan695
Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang,696
Bill Qian, et al. 2023. Toolllm: Facilitating large697
language models to master 16000+ real-world apis.698
arXiv preprint arXiv:2307.16789.699

Qwen Team. 2024. Qwen2.5: A party of foundation700
models.701

Stuart J Russell and Peter Norvig. 2010. Artificial intel-702
ligence a modern approach. London.703

Noah Shinn, Federico Cassano, Ashwin Gopinath,704
Karthik Narasimhan, and Shunyu Yao. 2024. Re-705
flexion: Language agents with verbal reinforcement706
learning. Advances in Neural Information Process-707
ing Systems, 36.708

Mohit Shridhar, Xingdi Yuan, Marc-Alexandre Côté,709
Yonatan Bisk, Adam Trischler, and Matthew710
Hausknecht. 2020. Alfworld: Aligning text and em-711
bodied environments for interactive learning. arXiv712
preprint arXiv:2010.03768.713

David E Smith, Jeremy Frank, and Ari K Jónsson. 2000.714
Bridging the gap between planning and scheduling.715
The Knowledge Engineering Review, 15(1):47–83.716

Kaya Stechly, Karthik Valmeekam, and Subbarao Kamb-717
hampati. 2024. On the self-verification limitations718
of large language models on reasoning and planning719
tasks. arXiv preprint arXiv:2402.08115.720

Haotian Sun, Yuchen Zhuang, Lingkai Kong, Bo Dai,721
and Chao Zhang. 2024. Adaplanner: Adaptive plan-722
ning from feedback with language models. Advances723
in Neural Information Processing Systems, 36.724

Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan725
Burnell, Libin Bai, Anmol Gulati, Garrett Tanzer,726
Damien Vincent, Zhufeng Pan, Shibo Wang, et al.727
2024. Gemini 1.5: Unlocking multimodal under-728
standing across millions of tokens of context. arXiv729
preprint arXiv:2403.05530.730

Gemini Team and Google. 2023. Gemini: A fam-731
ily of highly capable multimodal models. Preprint,732
arXiv:2312.11805.733

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-734
bert, Amjad Almahairi, Yasmine Babaei, Nikolay735
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti736
Bhosale, et al. 2023. Llama 2: Open founda-737
tion and fine-tuned chat models. arXiv preprint738
arXiv:2307.09288.739

Karthik Valmeekam, Kaya Stechly, Atharva Gundawar, 740
and Subbarao Kambhampati. 2024. Planning in 741
strawberry fields: Evaluating and improving the plan- 742
ning and scheduling capabilities of lrm o1. arXiv 743
preprint arXiv:2410.02162. 744

Lei Wang, Wanyu Xu, Yihuai Lan, Zhiqiang Hu, Yunshi 745
Lan, Roy Ka-Wei Lee, and Ee-Peng Lim. 2023. Plan- 746
and-solve prompting: Improving zero-shot chain-of- 747
thought reasoning by large language models. In Pro- 748
ceedings of the 61st Annual Meeting of the Associa- 749
tion for Computational Linguistics (Volume 1: Long 750
Papers), pages 2609–2634, Toronto, Canada. Associ- 751
ation for Computational Linguistics. 752

Ruoyao Wang, Peter Jansen, Marc-Alexandre Côté, and 753
Prithviraj Ammanabrolu. 2022. ScienceWorld: Is 754
your agent smarter than a 5th grader? In Proceedings 755
of the 2022 Conference on Empirical Methods in 756
Natural Language Processing, pages 11279–11298, 757
Abu Dhabi, United Arab Emirates. Association for 758
Computational Linguistics. 759

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten 760
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, 761
et al. 2022. Chain-of-thought prompting elicits rea- 762
soning in large language models. Advances in neural 763
information processing systems, 35:24824–24837. 764

Zhiyong Wu, Chengcheng Han, Zichen Ding, Zhenmin 765
Weng, Zhoumianze Liu, Shunyu Yao, Tao Yu, and 766
Lingpeng Kong. 2024. Os-copilot: Towards gener- 767
alist computer agents with self-improvement. arXiv 768
preprint arXiv:2402.07456. 769

Jian Xie, Kai Zhang, Jiangjie Chen, Tinghui Zhu, Renze 770
Lou, Yuandong Tian, Yanghua Xiao, and Yu Su. 771
2024a. Travelplanner: A benchmark for real-world 772
planning with language agents. In Forty-first Interna- 773
tional Conference on Machine Learning. 774

Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan 775
Li, Siheng Zhao, Ruisheng Cao, Toh Jing Hua, Zhou- 776
jun Cheng, Dongchan Shin, Fangyu Lei, et al. 2024b. 777
Osworld: Benchmarking multimodal agents for open- 778
ended tasks in real computer environments. arXiv 779
preprint arXiv:2404.07972. 780

Liangliang Yang, Sara Pijuan-Galito, Hoon Suk Rho, 781
Aliaksei S Vasilevich, Aysegul Dede Eren, Lu Ge, 782
Pamela Habibovic, Morgan R Alexander, Jan de Boer, 783
Aurelie Carlier, et al. 2021. High-throughput meth- 784
ods in the discovery and study of biomaterials and ma- 785
teriobiology. Chemical reviews, 121(8):4561–4677. 786

Shunyu Yao, Howard Chen, John Yang, and Karthik 787
Narasimhan. 2022a. Webshop: Towards scalable 788
real-world web interaction with grounded language 789
agents. Advances in Neural Information Processing 790
Systems, 35:20744–20757. 791

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak 792
Shafran, Karthik Narasimhan, and Yuan Cao. 2022b. 793
React: Synergizing reasoning and acting in language 794
models. arXiv preprint arXiv:2210.03629. 795

10

https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2312.11805
https://doi.org/10.18653/v1/2023.acl-long.147
https://doi.org/10.18653/v1/2023.acl-long.147
https://doi.org/10.18653/v1/2023.acl-long.147
https://doi.org/10.18653/v1/2023.acl-long.147
https://doi.org/10.18653/v1/2023.acl-long.147
https://doi.org/10.18653/v1/2022.emnlp-main.775
https://doi.org/10.18653/v1/2022.emnlp-main.775
https://doi.org/10.18653/v1/2022.emnlp-main.775

Yikai Zhang, Siyu Yuan, Caiyu Hu, Kyle Richard-796
son, Yanghua Xiao, and Jiangjie Chen. 2024.797
Timearena: Shaping efficient multitasking language798
agents in a time-aware simulation. arXiv preprint799
arXiv:2402.05733.800

Huaixiu Steven Zheng, Swaroop Mishra, Hugh Zhang,801
Xinyun Chen, Minmin Chen, Azade Nova, Le Hou,802
Heng-Tze Cheng, Quoc V Le, Ed H Chi, et al. 2024.803
Natural plan: Benchmarking llms on natural lan-804
guage planning. arXiv preprint arXiv:2406.04520.805

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei,806
Nathan Scales, Xuezhi Wang, Dale Schuurmans,807
Claire Cui, Olivier Bousquet, Quoc Le, et al. 2022.808
Least-to-most prompting enables complex reason-809
ing in large language models. arXiv preprint810
arXiv:2205.10625.811

Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou,812
Robert Lo, Abishek Sridhar, Xianyi Cheng, Yonatan813
Bisk, Daniel Fried, Uri Alon, et al. 2023. Webarena:814
A realistic web environment for building autonomous815
agents. arXiv e-prints, pages arXiv–2307.816

A Details for Dataset Construction817

A.1 Recipe Collection818

We collect cooking recipes from existing bench-819

mark MM-Res (Pan et al., 2020). MM-Res contains820

9,850 recipes from cooking websites and has anno-821

tated the dependent relationship between actions822

in the recipe. To curate cases from the MM-Res823

dataset for the purpose of our benchmark. We sam-824

ple recipes that involve using a microwave, an oven825

or a stove and disregard those with more than 30826

actions. We remove actions that is a non-cooking827

steps, such as introductory phrases like today we828

want orka. Next, we ensure there are no temporal829

inconsistencies between steps. Optional statements830

are either removed or converted into mandatory831

steps. For example, You can use a spoon to get832

all the contents if needed is revised to exclude if833

needed. Actions are split for clarity if needed. for834

instance, boil water and pour water into a cup be-835

comes boil water and pour water into a cup, to836

separate the autonomous and continuous actions.837

Conversely, steps that describe sequential actions838

in separate sentences are merged; for example, use839

water to strain and strain until the juices are gone840

are combined into a single step. The dependent841

relationships of the revised actions are adjusted842

accordingly.843

A.2 Details for Recipe Annotation844

We recruit three graduate students with cooking845

experience to annotate the action properties and846

constraints in the recipes following the guidelines 847

in Table 9. Each student identifies whether actions 848

were autonomous or continuous, marks actions as 849

interruptible or non-interruptible, and specifies any 850

physical or time constraints associated with each 851

action. To ensure consistency and accuracy, anno- 852

tations were cross-verified among the annotators, 853

with discrepancies resolved through discussion. 854

B Relative Multitask Efficiency 855

Figure 5: Demonstration of relative efficiency. The
efficiency is affected by the progress rate and we use
relative efficiency (relative efficiency) to calibrate the
metric.

We find that the efficiency metric is influenced 856

by the progress rate. As shown in Figure 5, if 857

the agent aborts the interaction midway, it will 858

achieve an efficiency of 100%. Conversely, an 859

agent that completes all tasks in the optimal manner 860

only obtains an efficiency of 87.5%. To address 861

this discrepancy, we use the plan from the heuristic 862

baseline as a reference to calibrate the efficiency. 863

We compute the efficiency for the part of the plan 864

that achieves the same progress rate as the agent. 865

The relative efficiency is computed as 866

R-Efficiency =
Efficiencyagent
Efficiencyref

867

C Implementation Details 868

C.1 Heuristic Baseline Algorithm 869

We adapt the heuristic method from Zhang et al. 870

(2024) to search for an efficient plan that is feasi- 871

ble. The details of the algorithm is presented in 872

Algorithm 1. 873

C.2 Environment 874

We implement an environment to provide feedback 875

to the agent. The examples of feedback are listed 876

in Table 14. If the action fits all the constraints, the 877

agent receives a message of the successful execu- 878

tion. And an observation of the action concurrency 879

of the executed action, current timestamp, status 880

11

of physical objects and the executing autonomous881

actions. If the action can not be executed, the envi-882

ronment will return an error message and detailed883

feedback about the violated constraint. We also884

provide a hint about executable actions to evaluate885

the global planning abilities of the agent solely in886

§5.3. During the interaction with the agent, the887

maximum number of revisions is 10. Exceeding888

this number will be considered as task failure. And889

we abort the multitasking process if the agent at-890

tempts to execute the same action three times or891

violates any time constraints.892

C.3 Model Details893

We use the Instruct version for all sizes of894

Qwen2.52 and Llama-3.13 models in our study. We895

use vllm (Kwon et al., 2023) to deploy Qwen2.5-896

7B, Llama-3.1-8B and Qwen-2.5-32B on a single897

A800 GPU, and Llama-3.1-70B and Qwen2.5-72B898

on four A800 GPUs. We use the gpt-4o-2024-08-899

06 for GPT-4o4, gpt-4o-mini-2024-07-18 for GPT-900

4o-mini5, Gemini-1.5-Pro-002 (2024-09-24) for901

Gemini-1.5-Pro6 .902

C.4 Planning Methods903

Commonsense Reasoning We prompt the model904

with the same guidelines in §A.1 and one exam-905

ple to generate the beliefs of action concurrency,906

action dependency and resource limitations. The907

temperature are set as 0 for all models. The max908

tokens for generation are set as 128.909

Open-Loop Planning We evaluate the open-loop910

planning methods to determine if current LLMs can911

plan action sequences without interacting with the912

environment. Given the complexity of our task, we913

implement a Plan-and-Solve baseline. In this ap-914

proach, the model generates beliefs about unwritten915

properties and constraints through commonsense916

reasoning and creates a coarse-grained plan to per-917

form actions simultaneously, aiming to reduce total918

execution time. Finally, the agent writes a fine-919

grained action sequence following one example for920

execution as shown in Table 11. The temperature921

is also set as 0 and the maximum generation tokens922

is 2048.923

2https://huggingface.co/Qwen
3https://huggingface.co/meta-llama
4https://platform.openai.com/docs/models#

gpt-4o
5https://platform.openai.com/docs/models#

gpt-4o-mini
6https://ai.google.dev/gemini-api/docs/models/

gemini#gemini-1.5-pro

Closed-Loop Planning with ReAct In this ap- 924

proach, we add the beliefs of unwritten constraints 925

from commonsense reasoning to the recipe descrip- 926

tion. Then the agent performs one action at a time 927

and predicts the next action based on interaction 928

with the environment. The agent receives feedback 929

after each interaction. If an action fails, detailed 930

feedback is provided, prompting the model to re- 931

flect on its beliefs about unwritten properties and 932

constraints and adapt its multitasking plan dynam- 933

ically. The interaction continues until the agent 934

believes all recipes are completed or the interaction 935

is aborted by the environment. We set the temper- 936

ature as 0 and the maximum generation tokens as 937

512. We parse the response to get the first action 938

to avoid action trying to execute multiple actions 939

during one interaction. The prompt for the react 940

setting is detailed in Table 12. The prompt for Re- 941

Act with feasibility priority setting is detailed in 942

Table 13. In this setting, we prompt the model to 943

finish recipes one by one to avoid violations of time 944

constraints due to multitasking. 945

D Commonsense Reasoning Evaluation 946

We present the results of our evaluation for iden- 947

tifying unwritten properties and constraints in Ta- 948

ble 8. Most of the tested models display an F1 949

score above 80% for identifying action dependency 950

and object occupancy, with GPT-4o demonstrat- 951

ing robust performance by achieving F1 scores 952

of 90.34% and 91.12%, respectively. Qwen2.5- 953

32B and Qwen2.5-72B also exhibit strong com- 954

monsense capabilities in action dependency and 955

resource limitations. However, the task of identify- 956

ing autonomous actions poses a greater challenge. 957

GPT-4o-mini achieves the highest recall at 82.18%, 958

while Gemini-1.5-Pro exhibits the highest precision 959

at 88.33%. While the models perform commend- 960

ably in identifying action dependencies and object 961

occupancy, there is a clear need for improvement 962

in identifying autonomous actions, which present 963

significant opportunities for multitasking. 964

E Open-Loop Planning Results 965

LLMs cannot plan feasible multitasking with- 966

out environmental feedback. In the Plan-and- 967

Solve setting, the model is prompted to plan an 968

action schedule without feedback from the envi- 969

ronment. The results in Table 7 show that even 970

GPT-4o achieves only a success rate of 3.1% and a 971

complete ratio of 21.7% in the w/o time constraints 972

12

https://huggingface.co/Qwen
https://huggingface.co/meta-llama
https://platform.openai.com/docs/models#gpt-4o
https://platform.openai.com/docs/models#gpt-4o
https://platform.openai.com/docs/models#gpt-4o-mini
https://platform.openai.com/docs/models#gpt-4o-mini
https://ai.google.dev/gemini-api/docs/models/gemini#gemini-1.5-pro
https://ai.google.dev/gemini-api/docs/models/gemini#gemini-1.5-pro

scenario. When time constraints are added, the973

success rate and complete ratio drop further. Many974

generated plans attempt to execute continuous ac-975

tions simultaneously, leading to plan failure. This976

suggests that current LLMs lack the planning abil-977

ity to schedule multitasking without environmental978

feedback.979

F Planning Multitasking with Iterations980

The LLM-Modulo framework (Gundawar et al.,981

2024a; Kambhampati, 2024) has demonstrated that982

large language models (LLMs) can effectively plan983

complex schedules with the help of critics, as984

seen in benchmarks like TravelPlanner (Xie et al.,985

2024a), which includes multiple soft and hard con-986

straints. In our experiments described in §4, the987

agent cannot recover from time constraint viola-988

tions. This section evaluates whether the LLM-989

Modulo framework can improve model perfor-990

mance by providing detailed critiques of the entire991

plan, thus enabling more robust global planning,992

correcting time constraint violations, and achieving993

efficient and feasible multitasking.994

Rather than using a step-by-step evaluation as995

in §4, we design different critics to assess each996

property and constraint outlined in §3.1 and §3.2997

for detailed feedback on the whole plan including998

the actions after the step that the plan fails. Fol-999

lowing the approach in Gundawar et al. (2024b),1000

we use a reformatter to control the output format1001

and concatenate the feedback from these critics and1002

incorporate it into the initial prompt, performing1003

10 iterations. We evaluate GPT-4o and the latest1004

o1-mini under this framework.1005

Iterations of critics can help LLMs plan feasi-1006

ble multitasking. We sample 20 cases from our1007

benchmark which GPT-4o fails to solve in ReAct1008

setting. To evaluate the global planning abilities1009

with iterations fairly, we prompt the models with1010

the same plan and let the model revise the plan. We1011

find that GPT-4o and o1-mini can deliver 3 feasible1012

plans after 10 iterations. Out of the feasible plans,1013

o1-mini achieves a relative efficiency of 98.89%1014

which is very close to a heuristic baseline.1015

LLMs can not adjust a feasible plan for higher1016

multitasking efficiency without breaking feasi-1017

bility We prompt the model with 18 feasible plans1018

from GPT-4o under ReAct setting, we then prompt1019

the model to determine whether the plan can be fur-1020

ther optimized for higher multitasking efficiency.1021

GPT-4o and o1-mini can only maintain the feasi-1022

bility of half of the plans and the relative efficiency 1023

of these also decreases compared with the initial 1024

plans. 1025

13

Algorithm 1: Heuristic Algorithm for Mul-
titasking with time constraints
Input: Set of actions A, Durations T ,

Dependencies p(A).
Output: Heuristic minimal time Tmin.

1 Define autonomous actions A∗ and
continuous actions A′ from A.

2 Sort A∗ by T in descending order.
3 A ← concatenate(A∗,A′).
4 Initialize Action_list as an empty list.
5 foreach ai ∈ A do
6 P ← BFS(ai, p(ai)) to collect

prerequisites.
7 foreach pi ∈ P do
8 if pi ∈ A then
9 Action_list.append(pi).

10 Remove pi from A.
11 end
12 end
13 Action_list.append(ai).
14 end
15 Define function DFS(A∗, A′, Tmin): if

Action_list is empty then
16 return Tmin.
17 end
18 foreach ai ∈ Action_list do
19 if check_constraint(ai) then
20 if ai ∈ A∗ then
21 A∗ ← A∗ \ {ai}.
22 Tmin ← Tmin.
23 end
24 else
25 A′ ← A′ \ {ai}.
26 Tmin ← Tmin + T (ai).
27 end
28 result← DFS(A∗, A′, Tmin)
29 if result is not failure then
30 return result.
31 end
32 end
33 end
34 return failure.
35 Tmin ← 0.
36 result← DFS(A∗, A′, Tmin)
37 if result is failure then
38 return "No feasible schedule found."
39 end
40 else
41 return result.
42 end

14

Recipe 1:Tacos
Step 0 (3 min): Place the fish in a cooking pot with enough
water to cover them.
Step 1 (20 min): Let it boil for around 20 minutes.
Step 2 (3 min): Drain them and put them in a bowl.
Step 3 (3 min): Use a fork to smash them.
Step 4 (5 min): Chop the onion and tomato in little squares.
Step 5 (2 min): Put the onion in a pan with a little oil.
Step 6 (5 min): Let it cook a little for 5 minutes.
Step 7 (2 min): Place the tomato and stir.
Step 8 (5 min): Let it cook for 5 minutes stirring constantly.
Step 9 (5 min): When it’s ready put the fish in the pan and
mix well.
Step 10 (1 min): Add salt and pepper to taste.
Step 11 (15 min): Let it cool down.
Step 12 (1 min): Warm the tortillas for 1 minute in the
microwave.
Step 13 (2 min): Put the fish we made in the middle of the
tortilla using a spoon and make sure it doesn’t reach the edge.
Step 14 (2 min): Fold the tortilla in half and put one toothpick
on each side to hold it closed.
Step 15 (10 min): Fry them in a pan with oil
Step 16 (2 min): Take the toothpicks off and serve when they
are still warm.

Interrutable steps: 3, 4.
Autonomous actions: step 1, 6, 11, 12, 15.
Action Dependency: 0->1, 1->2, 2->3, 4->5, 5->6, 6->7, 7->8,
3->9, 8->9, 9->10, 10->11, 12->13, 11->13, 13->14, 14->15,
15->16.
Steps 1, 6, 7, 8, 9, 10, 15 require stove, Steps 12 requires
microwave.

Recipe 2:Smore-Bars
Step 0 (10 min): Preheat your oven to 350 degrees fahrenheit.
Step 1 (3 min): Grease a 9x13 inch pan.
Step 2 (1 min): Melt your 1 cup of butter in the microwave
until it is completely melted.
Step 3 (5 min): crush 2 cups (approximately 2 sleeves) of
graham crackers.
Step 4 (3 min): Mix the melted butter and crushed graham
crackers together.
Step 5 (5 min): Take about 3/4 (doesn’t need to be exact) of
your butter/graham cracker mixture and press into the bottom
of your greased pan.
Step 6 (2 min): Unwrap your candy bars and arrange them.
Step 7 (3 min): Evenly spread out your bag of mini marshmal-
lows across entire pan.
Step 8 (2 min): Sprinkle your remaining butter/graham cracker
mixture across pan.
Step 9 (15 min): Place pan in oven for 15 minutes.
Step 10 (2 min): Cut and Enjoy!
Interrutable steps: 1, 3, 5, 6, 7, 8, 10.
Autonomous actions: step 0, 2, 9.
Action Dependency: 2->4, 3->4, 1->5, 4->5, 5->7, 6->7, 7->8,
0->9, 8->9, 9->10.
Steps 0, 9 require oven, Steps 2 requires microwave.

0 20 40 60 80
Time (min)

Ac
tio

n
or

de
r

0
0

1
2

1
3

4
5

6
7

2
8

9
3

4
5

6
7

8
9

10
11

10
12

13
14

15
16

0
12

0
1

2
4

5
1

3
4

6
6

2
3

7
8

9
10

11
5

7
8

9
13

14
15

10
16

GPT-4o

Heuristic BaselineTacos
Smore-Bars
Autonomous
Continuous

Table 4: Case study of GPT-4o planning without time constraints. GPT-4o result in a lower efficiency compared
with the heuristic baseline. The primary difference is that GPT-4o prioritizes different autonomous actions and
leaves the agent idle during the execution of the last two actions

15

Recipe 1: Vada
Step 0 (5 min): First, start with blending the chilies, ginger
and coriander along with some cumin seeds.
Step 1 (3 min): Partially blend the chana dal with the mixture
from the previous step.
Step 2 (5 min): Slice the onions.
Step 3 (3 min): Once the mixture is ready, you need to mix
the mixture with cut onion.
Step 4 (3 min): Later add some coriander and curry leaves
and continue mixing.
Step 5 (5 min): Heat up some oil in a pan.
Step 6 (5 min): Shape the paste into circular disk-shaped
chunks.
Step 7 (5 min): Deep fry the shaped chunks in the hot oil.
Step 8 (10 min): Fry the vada in oil until it turns golden
brown.
Step 9 (5 min): Serve the dish hot and along with some
ketchup and some mint chutney.

Interruptible steps: 0, 1, 2, 3, 4, 6.
Autonomous actions: step 5, 7, 8.
Action Dependency: 0->1, 1->3, 2->3, 3->4, 4->6, 5->7, 6->7,
7->8, 8->9.
Time Constraints: 5-7 (5 min), 7->8 (5 min), 8->9 (5 min).
Steps 5, 7, 8 require stove.

Recipe 2:Daikon-Radish
Step 0 (5 min): Peel the skin from the radishes and rinse them.
Step 1 (5 min): Slice them into thin circular slices.
Step 2 (5 min): Chop napa cabbage into thin slices.
Step 3 (5 min): Peel the skin off the onions and slice into
cubes.
Step 4 (3 min): Thinly slice the green onions.
Step 5 (8 min): In a large non-stick pan, sauté the onion until
slightly golden brown.
Step 6 (2 min): Once the onion is cooked, place the sliced
napa cabbage onto the pan.
Step 7 (2 min): Stir fry for about 2 minutes.
Step 8 (8 min): Add the radish into the pan and stir fry until
soft.
Step 9 (2 min): To season and garnish, add a couple of
teaspoons of soy sauce, half a teaspoon of sesame oil, and a
pinch of salt and pepper.
Step 10 (3 min): Place the bacon slices onto a pan.
Step 11 (10 min): Cook until crispy.
Step 12 (5 min): Slice into smaller pieces to make bacon bits.
Step 13 (2 min): Top the radish dish with some bacon bits.

Interruptible steps: 0, 1, 2, 3, 4, 12, 13.
Autonomous actions: step 5, 11.
Action Dependency: 0->1, 1->2, 2->3, 3->4, 4->5, 5->6, 6->7,
7->8, 8->9, 10->11, 11->12, 12->13, 9->13.
Time Constraints: 5->6 (2 min), 6->7 (1 min), 7->8 (3 min),
8->9 (2 min).
Steps 5, 6, 7, 8, 9, 11 require stove.

0 5 10 15 20 25 30
Time (min)

Ac
tio

n
or

de
r

5

0

0

1

2

3

4

6

0

2

1

3

5

4

6

7

GPT-4o

Heuristic BaselineVada
Daikon-Radish
Autonomous
Continuous

Table 5: Case study of planning with time constraints. We only show part of the plan to focus on the source of
task failure. GPT-4o plans to execute step 5 of Vada first to maximize local efficiency which leads to violation of
time constraints between step 5 and step 7 of Vada. The heuristic plan strategically starts step 5 of Vada until other
prerequisite actions of step 7 are nearly finished.

16

Model Pass Cases R-Efficency∗

Fix Failed Plans

GPT-4o 3 / 20 84.50
o1-mini 3 / 20 98.89

Optimize Feasible Plans

GPT-4o 10 / 18 93.53 (-2.62)
o1-mini 8 / 18 89.41 (-3.87)

Table 6: Results of LLM-Modulo framework on gen-
erating feasible or more efficient plans. We report a
number of feasible cases and the relative efficiency. ∗:
Average R-Efficiency for feasible plans.

.

17

Model w/o time constraint w/ time constraint

Success Progress R-Efficiency S×E Success Progress R-Efficiency S×E

Plan-and-Solve

Llama-3.1-8B 0.0 6.2 30.3 1.9 0.0 6.6 35.7 2.3
Qwen2.5-7B 0.0 7.5 46.1 3.5 0.0 6.3 36.2 2.3
Qwen2.5-32B 0.0 8.6 54.5 4.7 0.0 8.8 54.7 4.8
Llama-3.1-70B 0.0 11.3 55.0 6.2 0.0 10.1 55.3 5.6
Qwen2.5-72B 1.5 17.2 65.6 11.3 0.0 13.3 63.6 8.4
GPT-4o-mini 1.5 13.4 50.0 6.7 0.0 10.3 56.7 5.8
GPT-4o 3.1 21.7 70.2 15.2 1.5 17.4 69.7 12.2

Heuristics 100 100 100 100 100 100 100 100

Table 7: Results of Plan-and-Solve setting. We report Success Rate (Success), Average Progress Rate (Progress),
Relative Multitask Efficiency (R-Efficiency) and Muititasking Ability (S×E).

Constraint Model Recall Precision F1

Action Concurrency

Qwen2.5-7B 57.68 62.98 60.21
Llama-3.1-8B 58.26 50.87 54.31
Qwen2.5-32B 67.92 79.96 73.45
Llama-3.1-70B 81.09 75.83 78.37
Qwen2.5-72B 74.04 70.92 72.44
GPT-4o-mini 82.18 68.27 74.58

Gemini-1.5-Pro 40.48 88.33 55.51
GPT-4o 73.10 79.39 76.12

Action Dependency

Qwen2.5-7B 69.67 78.15 73.67
Llama-3.1-8B 79.68 82.61 81.12
Qwen2.5-32B 87.41 92.18 89.73
Llama-3.1-70B 91.57 92.58 92.07
Qwen2.5-72B 92.18 92.82 92.50
GPT-4o-mini 78.38 82.82 80.54

Gemini-1.5-Pro 88.36 90.09 89.22
GPT-4o 89.94 92.33 91.12

Resource Limitations

Qwen2.5-7B 69.82 91.26 79.12
Llama-3.1-8B 85.31 88.96 87.10
Qwen2.5-32B 91.28 96.15 93.65
Llama-3.1-70B 88.30 97.21 92.54
Qwen2.5-72B 92.22 95.04 93.61
GPT-4o-mini 92.10 89.56 90.81

Gemini-1.5-Pro 79.95 95.45 87.02
GPT-4o 85.30 96.02 90.34

Table 8: Results of commonsense reasoning for unwritten properties and constraints.

18

Action Concurrency
Please identify if the action is autonomous or continuous.

- Autonomous Action: The action can be performed alongside other actions, allowing the agent to perform multiple tasks
simultaneously. (e.g. preheat oven).

- Continuous Action: The step requires active involvement of the agent to complete and must be executed independently
without overlapping with other tasks (e.g., ’Crack 3 eggs into a bowl’).

Execution Interruptibility
A step classified as non-interruptible means that it cannot be split into two separate periods, and no other actions can be
started during the execution of this action. Identify whether an action in a process can be interrupted or not

- If the action is logically interruptible (e.g., ’Dice the onions’), classify it as interruptible.
- If the action requires the agent to finish in one go(e.g., ’Keep stirring...’), classify it as non-interruptible.
- If the action involves heating (e.g., ’Melt the chocolate over low heat’), classify it as non-interruptible to ensure that the

heating time is not extended.
- If the action can be executed in a short time (e.g., ’Pour water into a cup’ or ’Add something into something’), classify

it as non-interruptible.

Resource Limitations
Annotate the steps that use one of the following physical objects.

- Oven: You should always preheat the oven to a specific temperature before using it. If the oven is already preheated by
a previous step, you can skip the preheat action.

- Microwave: Use this tool to heat something quickly. You can only microwave for one recipe at the same time.
- Stove: Use the heater to warm your pan or pot for cooking.

time constraints
Identify pairs of actions if there is a time constraint between them.

- If the object of action has been heated, the time interval between steps should be some value to avoid extending the
heating time (e.g., ’Fry the okra’ -> ’Mix the onion with okra’). Steps involving cooling allow for more flexible time
intervals.

- If the state of an object will change over time (e.g., ’Melt butter’ -> ’Mix with something’), the next step should occur
within a specific time frame to ensure the desired outcome

- Please only consider the actions with the direct dependent relationship. And you do not need to specify the time interval.

Table 9: Guidelines for recipe annotation.

Recipe 1:Baked-Potato
Step 0 (10 min): Preheat the oven to 425 degrees.
Step 1 (2 min): Pierce the potato several times with a fork.
Step 2 (5 min): Bake the potato in the preheated oven.
Step 3 (1 min): Melt butter in the microwave.
Step 4 (10 min): Remove potato from the oven and use a sharp knife to make decorative cuts on the top of the potato.
Step 5 (1 min): Pour melted butter over the potato and serve.

- You can minimize the execution time based on the following properties:
You can execute only part of the action duration to pause steps 1, 4 for more efficient multitasking. But other actions must
be finished without interruption.

- Do not violate any following constraints when executing this recipe:
Step 5 must be performed within 2 min after Step 3 is finished.

Thoughts on the recipe:
The agent can perform autonomous actions step 0, 2, 3 in parallel with other actions to speed up the process.
The action before the arrow must be completed before the action after the arrow can be started: 0->2, 1->2, 2->4, 3->5, 4->5
The following actions would occupy the corresponding physical objects. The agent can not perform the action if the object
is occupied. The properties such as volume and temperature of the object should also match the requirement of the recipe:
Steps 0, 2 require oven, Steps 3 requires microwave

Table 10: Demonstration of recipe description. For the oracle setting, we replace the thoughts on the unwritten
thoughts with the actual properties and constraints from the recipe

19

You are a multitask planner. You will plan an action sequence to finish some recipes as quickly as possible without violating
any constraints.

Recipes
Each recipe is a sequence of actions designed to achieve a specific goal. Each action is a textual description companied with
the duration to finish the action. Each recipe has autonomous actions such as boiling water that let the agent be idle during
execution. They can be executed in parallel with other actions to speed up the process Continuous actions such as pouring
water occupy the agent and only one continuous action can be executed at the same time across all recipes.

Task Description
Your task is to complete all of the recipes as quick as possible while following the recipe. The key to success is to follow
the recipe and constraints, then complete the steps in the correct order while minimizing the execution time by executing
the autonomous actions concurrently. First, let’s analyze the recipe and create a concise plan on how to perform actions
simultaneously to reduce the total execution time. Then write your action sequence following the plan. Your action should
be a list of ’Step(step_num, recipe_name, time, timestamp)’ which indicates the performing the given step for the given
time at the timestamp. Your time and timestamp should be written as HH:MM:SS.

/*
Recipe 1:Baked-Potato
Description for baked potatoes

Recipe 2:Cheese-Sandwich
Description for cheese sandwiches

Plan
Start by preheating the oven for both recipes simultaneously, since they require the same temperature and preheating is an
autonomous action. This allows the agent to perform other actions while the oven is preheating.

While the oven is preheating, start the preparation steps that do not need the oven. I can pierce the potato (step 1 for
Baked-Potato) and prepare the Cheese-Sandwich by buttering the bread (Step 1) and then placing the cheese between the
slices (Step 2). These steps only take 5 minutes, then wait for the oven to preheat.

At 00:10:00, the oven should be preheated. Bake the potato (Step 2 for Baked-Potato) and heat soup (Step 4 for Cheese-
Sandwich) simultaneously. And wait for the autonomous actions to finish at 00:15:00 since the oven and microwave are
occupied and no other actions can be performed.

At 00:15:00, start baking the sandwich (Step 3 for Cheese-Sandwich) and making decorative cuts on the potato (Step 4 for
Baked-Potato) simultaneously. Step 4 of Baked-Potato is interruptible, so the agent can pause this action and perform step 5
of Cheese-Sandwich at 00:20:00 to serve the sandwich with the soup without violating the constraints. And the agent can
continue to finish the potato with executing autonomous action step 3 and continuous action step 4 simultaneously and serve
the potato at 00:26:00.

Action Sequence
Step(0, Baked-Potato, 10 min, 00:00:00), Step(0, Cheese-Sandwich, 10 min, 00:00:00), Step(1, Baked-Potato, 2 min,
00:00:00), Step(1, Cheese-Sandwich, 2 min, 00:02:00), Step(2, Cheese-Sandwich, 1 min, 00:04:00), Step(2, Baked-Potato,
5 min, 00:10:00), Step(4, Cheese-Sandwich, 5 min, 00:10:00), Step(3, Cheese-Sandwich, 5 min, 00:15:00), Step(4, Baked-
Potato, 5 min, 00:15:00), Step(5, Cheese-Sandwich, 1 min, 00:20:00), Step(4, Baked-Potato, 4 min, 00:21:00), Step(3,
Baked-Potato, 1 min, 00:25:00), Step(4, Baked-Potato, 1 min, 00:25:00), Step(5, Baked-Potato, 1 min, 00:26:00)
*/
Please follow the example to generate the action sequence for the following recipes.
/*
Recipe 1:
Description

Recipe 2:
Description

Plan

Table 11: Prompt for Plan-and-Solve setting.

20

You are a multitask planner. You will plan an action sequence to finish some recipes as quickly as possible without violating
any constraints.

Recipes
Each recipe is a sequence of actions designed to achieve a specific goal. Each action is a textual description companied with
the duration to finish the action. Each recipe has autonomous actions such as boiling water that let the agent be idle during
execution. They can be executed in parallel with other actions to speed up the process Continuous actions such as pouring
water occupy the agent and only one continuous action can be executed at the same time across all recipes.

Task Description
You are required to analyze the current status of the environment and decide the next action to take so that you can finish
the recipes in the shortest time without violating constraints. Give your thoughts on the given status, action history and
observation. Your analysis should be within 100 words starting with ’Thought:’. Then you should choose your next action.
If you think you have already completed all the recipes, please output ’Action: Finish’. Write your action as ’Action:
Step(step_num, recipe_name, time, timestamp)’ - Perform the given step for the given time at the timestamp. Your time and
timestamp should be written as HH:MM:SS. You can only perform one action each time. Do not repeat actions that are
already in progress. If you choose to wait for current actions to finish, please state the time you will wait for. Then write
your next action as ’I will wait and perform the next action at HH:MM:SS. Action: Step(step_num, recipe_name, time,
timestamp).

/*
Recipe 1:Baked-Potato
Description for baked potatos

Recipe 2:Cheese-Sandwich
Description for cheese sandwichs

Action Sequence
...
Observation: Continuous action executed successfully. The current timestamp is 0:5:0. Status of physical objects: oven is
occupied, temperature is 425.0; microwave is not occupied; stove is not occupied; You are currently executing the following
autonomous actions: step 0 of Baked-Potato (will finish at 0:10:0), step 0 of Cheese-Sandwich (will finish at 0:10:0)
Thought: I have completed the preparatory steps for the Cheese-Sandwich. Since both recipes are still preheating in the
oven, I should wait for the preheating to complete. After preheating, both recipes are ready for the next baking step. Step 4
of the Baked-Potato is a long continuous step that can be executed in parallel with steps 3 and 4 of the Cheese-Sandwich.
So I should bake the Baked-Potato first.
I will wait and perform the next action at 00:10:00. Action: Step(2, Baked-Potato, 00:05:00, 00:10:00)
...
Observation: Autonomous action started successfully. The current timestamp is 0:15:0. Status of physical objects: oven is
occupied, temperature is 425.0; microwave is not occupied; stove is not occupied; You are currently executing the following
autonomous actions: step 4 of Cheese-Sandwich (will finish at 0:20:0)
Thought: With the Cheese-Sandwich currently baking in the oven, I can now focus on the the Baked-Potato. I will remove
the Baked-Potato from the oven and prepare it for serving. I should not start melting the butter for the Baked-Potato before
nearly finishing the Step 4 of Baked-Potato to avoid the butter cooling down. So I will start making decorative cuts on the
top of the potato first. And I will stop at 0:20:00 to serve the Cheese-Sandwich to avoid violating the time constraint.
Action: Step(4, Baked-Potato, 00:05:00, 00:15:0)
...
Observation: Continuous action executed successfully. The current timestamp is 0:21:0. Status of physical objects: oven is
occupied, temperature is 425.0; microwave is not occupied; stove is not occupied
Thought: I have served the Cheese-Sandwich and can now continue with the Baked-Potato. I will prepare the melted butter
and pour it over the potato to complete the recipe. Since the step 5 must be performed within 2 min after Step 3, I will start
melting the butter when step 4 is nearly finished in 1 minute. Now I would continue with the decorative cuts on the top of
the potato.
Action: Step(4, Baked-Potato, 00:04:00, 00:21:0)
...
Observation: Continuous action executed successfully. The current timestamp is 0:27:0. Status of physical objects: oven is
occupied, temperature is 425.0; microwave is occupied; stove is not occupied
Action: Finish
*/
Please follow the example to generate the action sequence for the following recipes.
/*
Recipe 1:
Description

Recipe 2:
Description

Action Sequence

Table 12: Prompt for ReAct-style action sequence generation.

21

You are a multitask planner. You will plan an action sequence to finish some recipes without violating any constraints.

Recipes
Each recipe is a sequence of actions designed to achieve a specific goal. Each action is a textual description companied
with the duration to fininsh the action. Each recipe has autonomous actions such as boiling water that lets the agent be idle
during execution. They can be executed in parallel with other actions to speed up the process Continuous actions such as
pouring water occupy the agent and only one continuous action can be executed at the same time across all recipes.

Task Description
You are required to analyze the current status of the environment and decide the next action to take so that you can finish the
recipes without violating constraints. Do not rush to complete the recipes. Take your time to execute the actions without
violating constraints. especially the time constraints. You should prioritize on not violating the time constraints and ensure
the recipe is completed successfully.

Give your thoughts on the given status, action history and observation. If you find your initial thoughts of the recipes does
not align with the current status, you can revise your initial thoughts. Your analysis should starts with ’Thought:’. Then you
should choose your next action. If you think you have already completed all the recipes, please output ’Action: Finish’.
Write your action as ’Action: Step(step_num, recipe_name, time, timestamp)’ - Perform the given step for the given time at
timestamp. Your time and timestamp should be written as HH:MM:SS. You can only perform one action each time. Do not
repeat actions that are already in progress. If you choose to wait for current actions to finish, please state the time you will
wait for. Then write your next action as ’I will wait and perform the next action at HH:MM:SS. Action: Step(step_num,
recipe_name, time, timestamp).

/*
Recipe 1:Baked-Potato
Description for baked potatos
Observation: The current timestamp is 00:00:00. Status of physical objects: oven is not occupied, is not preheated;
microwave is not occupied; stove is not occupied
Thought: I will preheat the oven. This will allow me to perform other actions while the oven is preheating.
Action: Step(0, Baked-Potato, 00:10:00, 00:00:00)

Observation: The current timestamp is 00:00:00. Status of physical objects: oven is occupied, temperature is 425.0;
microwave is not occupied; stove is not occupied; You are currently executing the following autonomous actions: step 0 of
Baked-Potato (will finish at 00:10:00)
Thought: Since the oven is preheating, I can start piercing the potato for the Baked-Potato recipe. And this does not risk
violating any time constraints.
Action: Step(1, Baked-Potato, 00:02:00, 00:02:00)

Observation: The current timestamp is 00:04:00. Status of physical objects: oven is occupied, temperature is 425.0;
microwave is not occupied; stove is not occupied; You are currently executing the following autonomous actions: step 0 of
Baked-Potato (will finish at 00:10:00), step 0 of Cheese-Sandwich (will finish at 00:10:00)
Thought: Step 1 of the Baked-Potato is complete. I will now move on to step 2 of the Baked-Potato. This does not risk
violating any time constraints.
Action: Step(2, Baked-Potato, 00:05:00, 00:10:00)

Observation: The current timestamp is 00:10:00. Status of physical objects: oven is occupied, temperature is 425.0;
microwave is not occupied; stove is not occupied; You are currently executing the following autonomous actions: step 2 of
Baked-Potato (will finish at 00:15:00)
Thought: Step 2 of the Baked-Potato is complete. Since Step 5 depends on both Step 3 and Step 4 and Step 5 must be
performed within 2 minutes after Step 3 is complete, and. Executing Step 3 first will result in violation of time constraints
since Step 4 is a long continuous step. I will now first finish Step 4 of the Baked-Potato to ensure the time constraints are
followed.
Action: Step(4, Baked-Potato, 00:10:00, 00:15:00)

...

Observation: The current timestamp is 00:26:00. Status of physical objects: oven is not occupied, temperature is 425.0;
microwave is not occupied; stove is not occupied
Thought: The recipe is completed.
Action: Finish

*/
Please follow the example to generate the action sequence for the following recipes.
/*
Recipe 1:
Description

Action Sequence

Table 13: Prompt for ReAct-style action sequence generation with feasibility priority.

22

Feedback

Wrong Recipe Recipe C is not one of our goals. Please select actions from our recipes A and B
Wrong Action There is no step X in recipe A.

Time Error The current time is HH:MM:SS. You can not perform any actions before the current times-
tamp.

Infeasible Multitask You can not perform step X of Recipe A and step Y of Recipe B simultaneously since they
are all continuous actions.

Object Occupancy Object M is currently occupied.
Object Temperature The Property of the Object is α, but step X of recipe A needs β.

Object Volume The object only has a volume of water. It is not enough for this action.
Dependency Step Y of recipe A can not be performed because prerequisite step X is not completed. (The

expected finish time is HH:MM:SS)
Repeated Action Prerequisite step X is already used for the next action step Y in recipe A. You should not

execute the same step twice. If you insist, please complete all the previous steps first.
time constraint The time interval between Step X and Step Y in Recipe A exceeds the allowed time limit t

min.
Action Duration Your plan execution time t min exceeds the time needed to perform the action.

Execution Interruptibility Step X of Recipe A is not interruptable. You should finish the action in one go.

Observation

Success Execution Autonomous / Continuous action executed successfully. Stove is not occupied; Oven is not
occupied, temperature is t. You are executing step X of recipe A.

Failed Execution Step X of Action A can not be executed.

Hint

Executable Actions The following actions are ready to be executed after HH:MM:SS, Step X of Recipe A, Step
Y of Recipe B.

Table 14: Examples of observation, feedback and hints from the environment.

Critic Example

Critic for the plan:

Plan Completeness: The following actions are missing in your plan: step 2 of Cobbler; step 3 of Cobbler; step 4 of Cobbler;
step 5 of Cobbler; step 6 of Pancakes; step 7 of Pancakes. Include them in the plan to complete the recipe.

Action Duration: The duration of the following actions do not align with the action duration: Pancakes step 9; Pancakes
step 10; Pancakes step 14; Pancakes step 12. Make sure the duration of the actions are correct.

Action Concurrency: You can not start another action while executing a continuous action. In your plan, the following
actions can not be performed simultaneously with each other: step 0 of Pancakes and step 1 of Pancakes; step 1 of Pancakes
and step 5 of Pancakes ; step 6 of Cobbler and step 3 of Cobbler . Please adjust the timeline to avoid the conflict.

Action Interruption: The following actions should not be interrupted in your plan: step 14 of Pancakes. Make sure they
are finished in one go.

Action Dependency: step 1 of Pancakes can be performed only after prerequisite action step 0 of Pancakes is finished. You
should complete the prerequisites before performing the next action.

Time constraint: The following action pairs violate the time constraint: step 5 of Cobbler should start within 2 min after
step 3 of Cobbler is finished; step 14 of Pancakes should start within 2 min after step 12 of Pancakes is finished. Reschedule
the actions to meet the time constraint.

Physical Object: Step 14 of Pancakes can not be performed at time 00:02:00 due to Object stove is occupied. Adjust the
use of the physical objects to meet the requirements.

Multitasking Efficiency The plan is feasible. The agent is idle during the following timestamps: HH:MM:SS and
HH:MM:SS. You can assign continuous actions to the agent to optimize the plan for a shorter execution time. If you think
the plan is optimal, you can answer Action: Done to finish the task.

Table 15: Critic example for LLM-Modulo framework.

23

	Introduction
	Related Work
	Recipe2Plan
	Properties of Actions
	Multitasking Constraints
	Dataset Construction
	Environment

	Experiments
	Baselines
	Evaluation Metrics
	Main Results

	Analysis
	Multitasking with Different Priority
	Error Analysis
	Planning with Hints of Executable Actions

	Conclusions
	Details for Dataset Construction
	Recipe Collection
	Details for Recipe Annotation

	Relative Multitask Efficiency
	Implementation Details
	Heuristic Baseline Algorithm
	Environment
	Model Details
	Planning Methods

	Commonsense Reasoning Evaluation
	Open-Loop Planning Results
	Planning Multitasking with Iterations

