Haste Makes Waste: Evaluating Planning Abilities of LLMs for
Efficient and Feasible Multitasking with Time Constraints

Anonymous ACL submission

Abstract

While Large Language Model-based agents
have demonstrated substantial progress in task
completion, existing evaluation benchmarks
tend to overemphasize single-task performance,
with insufficient attention given to the crucial
aspects of multitask planning and execution ef-
ficiency required in real-world scenarios. To
bridge this gap, we present RECIPE2PLAN,
a novel benchmark framework based on real-
world cooking scenarios. Unlike conventional
benchmarks, RECIPE2PLAN challenges agents
to optimize cooking time through parallel task
execution while respecting temporal dependen-
cies between steps. The benchmark emphasizes
the delicate balance between maximizing con-
current operations and adhering to critical tim-
ing constraints, where overly aggressive local
parallelization may disrupt subsequent time-
sensitive steps, potentially compromising the
entire cooking process. Extensive experiments
with state-of-the-art models reveal challenges
in maintaining this balance between efficiency
and feasibility. The results highlight the need
for improved temporal awareness and global
multitasking capabilities in large language mod-
els. We will open-source our benchmark and
code to the community.

1 Introduction

Large Language Models (LLMs) (OpenAl, 2023;
Team and Google, 2023; Touvron et al., 2023;
Qwen Team, 2024) have demonstrated the ability
to plan and reason step by step (Wei et al., 2022).
Leveraging this ability, LLM-based agents can au-
tomate complex real-world tasks (Yao et al., 2022b;
Shinn et al., 2024; Sun et al., 2024).

The effectiveness of LLM-based agents is pri-
marily evaluated based on the feasibility of their
plans in the scenarios of web browsing (Yao et al.,
2022a; Zhou et al., 2023), tool usage (Qin et al.,
2023; Li et al., 2023), computer manipulation (Xie
et al., 2024b; Gou et al., 2024) and agent naviga-
tion (Shridhar et al., 2020; Wang et al., 2022).

However, the ability to manage concurrent ob-
jectives remains an often overlooked yet crucial
requirement in real-world applications, as exempli-
fied by everyday scenarios where humans prepare
multiple dishes simultaneously for a meal or con-
duct parallel laboratory experiments (Russell and
Norvig, 2010; Zhang et al., 2024; Wu et al., 2024).
Current planning benchmarks assume that models
execute tasks by decomposing the overall goal into
steps and achieving these subgoals sequentially,
one at a time (Liu et al., 2023; Ma et al., 2024).
Consequently, these datasets fail to account for the
duration of an action and the potential for multitask-
ing. The multitasking scenario proposes a different
objective in addition to feasibility. It challenges the
model to optimize the efficiency to reach multiple
goals simultaneously.

Time constraints are often imposed between cer-
tain steps in the recipe of dishes or experiments, in-
dicating specific actions must be performed within
a particular time interval after the preceding step is
completed. For instance, the pouring and dripping
actions for pour-over coffee must be carried out
in sequence without any delay, as recommended
by professionals (Hoffmann, 2018). This property
introduces a unique challenge for multitask plan-
ning apart from conventional benchmarks. The first
plan in Figure 1 illustrates that if the agent priori-
tizes maximizing efficiency by rushing to multitask
whenever it is idle, it may inadvertently violate fu-
ture time constraints. Consequently, the agent must
balance the need for efficiency with adherence to
time constraints to achieve feasible multitask plan-
ning as shown in the second plan in Figure 1.

We propose a new benchmark RECIPE2PLAN
based on real-world recipes and constraints to
evaluate the multitasking abilities of agents. We
highlight three main challenges as: (1) Common-
sense Reasoning: The agent must identify idle
periods from the recipe as opportunities for mul-
titasking while recognizing action dependencies

Action Multitask Agent

- Observation
Pour Water Drip Coffee
our W P Cottes Complete multiple recipes in the shortest time possible. X .
Both drippers are occupied.
A i The kettle is occupied, the temperature of water is 96.
B e — . Feedback
Action of Recipe B can not be executed.
Agent is occupied.
ipe A: 1 £f 4
Recipe ced Coffee Violation of time constraints
Preparation
oo Plan 1: Efficiency Feasibility X
S c A Boil Water
l Pour | Drip | Pour | Drip | .
| grind Coffee | Pour | Drip | Pour orip |
Brewing Time Constraints l Grind Coffee ‘ Pour | Drﬁ Pour]
Recipe B: Hot Coffee
Preparation Plan 2: Efficiency Feasibility
— | Grind Coffee | [Pour [Drip | Pour | Drip | Ice |
[(Powr [orip [Powr i) Grind Coffee [Pour [oip [Pouwr [Dip |

Brewing Time Constraints

Figure 1: A simplified demonstration of our benchmark RECIPE2PLAN. Actions will either occupy the agent or
leave it idle. The four steps of brewing must be executed sequentially as time constraints. The goal for the agent is
to plan multitasking to complete the recipes in the shortest time possible without violating any constraints. The first
plan illustrates a scenario where the agent attempts always to keep the agent occupied for higher efficiency, resulting
in violations of time constraints. The second plan maintains the balance between the efficiency and feasibility of the
plan by leaving the agent idle on purpose to maintain the time constraints for all actions.

and physical constraints to construct feasible ac-
tion sequences. (2) Dynamic Local Planning: As
recipe states evolve based on executed actions, the
agent must continuously determine executable ac-
tions at each timestep. Additionally, the agent must
dynamically adapt its beliefs and revise the plan ac-
cordingly if its initial assumptions about properties
or constraints do not align with real-world condi-
tions. (3) Strategic Global Planning: The agent is
required to allocate the use of physical objects and
schedule actions on a timeline to enable efficient
multitasking. It is crucial to avoid planning mul-
titasking in a purely local and greedy manner, as
this could lead to violations of time restrictions. It
challenges the agent to maximize efficiency while
maintaining feasibility from a global perspective.

Our benchmark provides a testbed for the
efficiency of LLM-based agents, as they are
approaching the upper limits of feasibility in
current text-based agent benchmarks (Sun et al.,
2024) and multitasking scenarios without time
constraints (Table 3). By introducing time
restrictions, our benchmark evaluates the planning
abilities of agents to maintain a delicate balance
between efficiency and feasibility, rather than
simply maximizing efficiency in a greedy manner.
RECIPE2PLAN aims to push the boundaries of
current agent planning capabilities, making them
more adept at handling complex real-world tasks.
While our benchmark is constructed with cooking

scenarios, its scope could notably extend to the
design of embodied agents in real-world multitask-
ing, such as automatic scientific discovery. The
high-throughout biomedical experiments (Yang
et al., 2021) share the same principles of our
benchmark, requiring the agents to deliver a
feasible plan that finishes all the goals efficiently.

In this study, we experiment with various sizes
of open-source models, such as Qwen2.5 (Qwen
Team, 2024) and Llama3.1 (Dubey et al., 2024), as
well as closed-source models, including Gemini-
1.5-Pro (Team et al., 2024) and GPT-40 (Ope-
nAl, 2023). Our experiments reveal that GPT-4o0
achieves the highest success rate of only 21.5%
and the main failure source is the violation of time
constraints. It suggests that current LLMs fail to de-
liver feasible plans while attempting efficient mul-
titasking. We show that LLMs can deliver feasible
plans if time constraints are absent. However, their
efficiency still lags significantly behind a simple
heuristic method (§4). We also indicate that GPT-
40 can trade efficiency for success rate if focusing
solely on feasibility (§5.1). Overall, we demon-
strate that current LLMs struggle to balance effi-
ciency and feasibility when multitasking with time
constraints. We further analyze the commonsense
reasoning, local planning, and global planning ca-
pabilities of LLMs. By isolating each ability, we
identify global planning as the primary source of
task failure and inefficient multitasking (§5.3).

Our contributions are as follows:

e We highlight the importance of the ability of
agents to plan multitasking as balancing efficiency
and feasibility. Compared with existing works fo-
cusing on feasibility, our work offers a new per-
spective to evaluate the planning abilities of LL.Ms.
e We construct a benchmark RECIPE2PLAN based
on real-world recipes for multitask planning. It
challenges the model to allocate the usage of physi-
cal objects and schedule the actions on the timeline
to complete the recipes in the shortest time possible
without violating time constraints.

e We evaluate open-source and closed-source mod-
els on our benchmarks. Our results show that
LLMs struggle with planning multitasking under
time constraints, resulting in a low success rate for
the task. This highlights the need for further devel-
opment in enhancing the temporal reasoning and
global planning capabilities of LLM agents.

2 Related Work

Planning Benchmarks. To evaluate the planning
abilities of LLM-based agents, researchers have
proposed benchmarks across various domains such
as web browsing (Yao et al., 2022a; Zhou et al.,
2023; Deng et al., 2024), tool usage (Qin et al.,
2023; Li et al., 2023), and computer manipula-
tion (Xie et al., 2024b; Gou et al., 2024). These
benchmarks assess an agent’s ability to execute a
sequence of actions to achieve a general goal in a
partially observable environment (Liu et al., 2023;
Ma et al., 2024). However, these environments do
not account for the duration of each action. Ad-
ditionally, they evaluate planning abilities based
solely on feasibility, without comparing the effi-
ciency of task completion between different agents.

Scheduling Benchmarks. Apart from the typi-
cal planning task in which the agent interacts with
a partially observable environment without prior
knowledge of how to achieve the goal, the schedul-
ing task provides the agent with a complete de-
scription of the task. The objective is to deliver
an action sequence from a small set of fixed ac-
tions to meet the given objectives (Pinedo and Ha-
davi, 1992; Smith et al., 2000; Valmeekam et al.,
2024). Graph coloring (Stechly et al., 2024) investi-
gates whether LLMs can self-critique their answers
for violations of scheduling constraints. NATU-
RALPLAN assesses scheduling abilities in contexts
such as trip planning, meeting planning, and calen-

dar scheduling. TravelPlan (Xie et al., 2024a) deals
with more complex commonsense constraints and
strict restrictions. TIMEARENA primarily evaluates
the multitasking capabilities of LLMs without time
constraints. Our benchmark focuses on assessing
the ability to balance efficiency and feasibility dur-
ing multitasking with time constraints. Please refer
to Table 1 for a detailed comparison.

Planning Methods. Different methods use feed-
back and instructions in various ways. Open-loop
methods such as Chain-of-Thought (Wei et al.,
2022), least-to-most (Zhou et al., 2022) and plan-
and-solve (Wang et al., 2023) plan the action se-
quence without any feedback from the environ-
ment. This type of method is vulnerable to the
hallucination of execution constraints and environ-
ment dynamics. Closed-loop methods such as Re-
Act (Yao et al., 2022b) and Reflexion (Shinn et al.,
2024) only refine local actions, which might re-
sult in global failure due to time constraints. Ada-
Planner (Sun et al., 2024) refines the entire plan
based on environmental feedback and past failures.
LLM-Modulo framework (Kambhampati, 2024)
surpasses existing baselines for complex schedul-
ing task (Gundawar et al., 2024b) by regenerating
the entire plan with detailed critiques.

3 RECIPE2PLAN

RECIPE2PLAN evaluates the planning ability of
LLMs for efficient and feasible multitasking un-
der constraints. Specifically, we provide the model
with multiple goals that can be achieved by follow-
ing recipes. Each recipe A is represented as a lin-
ear sequence of actions A = (ag, a1, ..., a,), with
each action assigned a specific execution time t,,.
The task is to plan the action sequence to complete
all goals in the shortest time possible, adhering to
the properties and constraints detailed in §3.1 and
§3.2. The statistics of our benchmark are presented
in Table 2. RECIPE2PLAN challenges the model to
apply commonsense reasoning to infer any unwrit-
ten constraints from the recipe, including action
concurrency, action dependencies, and resource
limitations while planning the action sequence to
minimize overall execution time.

3.1 Properties of Actions

Action Duration. This refers to the time required
for an agent to complete a specific action. For the
coffee recipes illustrated in Figure 1, the duration

Benchmark Commonsense Temporal Multitask Time Harmonized
Reasoning Planning Planning Constraints Planning
Graph Coloring (Stechly et al., 2024) X X X X X
NATURAL PLAN (Zheng et al., 2024) X X X X
TravelPlanner (Xie et al., 2024a) X X X
TIMEARENA (Zhang et al., 2024) X X

RECIPE2PLAN

Table 1: Comparison with existing scheduling benchmarks. Two unique properties distinguish our benchmark:
(1) Complex Planning: Temporal multitasking recipes simultaneously require the blend of different abilities:
commonsense reasoning, dynamic local planning and strategic global planning; (2) Harmonized Planning: The
agent must balance efficiency and feasibility. While local-optimal planning for maximum efficiency might be
desirable, it must not compromise time constraints, as specific actions need to be performed within particular time

intervals following the preceding steps.

of actions such as pouring and dripping is fixed,
and any deviation from these durations can result
in spoiled flavor. Following this principle, each
action in our benchmark is annotated with a spe-
cific duration. The recipe in the dataset explicitly
states this duration, allowing the agent to accurately
schedule the timeline.

Action Concurrency. Continuous actions, such
as pour water, require the active involvement of
the agent while the action is in progress. In con-
trast, autonomous actions, like boil water, do not
require the agent’s continuous attention, allowing
the agent to remain idle and free to perform other
tasks concurrently. Identifying autonomous actions
and executing them simultaneously with other ac-
tions is the key to efficient multitasking.

Execution Interruptibility. We introduce this
property by allowing actions, such as cut onions,
to be completed by dividing the execution into two
or more separate time intervals. Previous bench-
marks generally do not consider duration (Ma et al.,
2024) or treat the execution of actions as a certain
time frame (Zhang et al., 2024). Execution inter-
ruptibility enables the model to generate a more
fine-grained plan by allocating the execution for
one action across different intervals, thus enhanc-
ing the efficiency and flexibility of multitasking.

3.2 Multitasking Constraints

Action Dependencies. The dependent relation-
ships between actions are generally not explicitly
stated in the recipe. Although the actions in a recipe
are often presented in a linear sequence, the action
dependencies might form a graph structure. For
example, as illustrated in Figure 1, step 3 pour wa-
ter depends on step 1 boil water and step 2 grind

coffee, but steps 1 and 2 can be performed inde-
pendently of each other. If the agent discovers that
the dependency does not align with its initial un-
derstanding during execution, it must dynamically
adapt the plan based on the current status.

Resource Limitations. During planning, the
agent must recognize whether an object is occupied
at the current time and when it will be available
again. Different recipes may require different phys-
ical objects and conditions. As shown in Figure 1,
the pouring process for coffee requires water at a
specific temperature, so the agent can boil water
for both recipes simultaneously to speed up the pro-
cess. However, if different recipes require water or
an oven at different temperatures, the agent must se-
quentially prepare the object for each recipe based
on when it becomes available. This property neces-
sitates that the agent plan globally, scheduling the
use of different objects while considering the dura-
tion of actions and specific condition requirements.

Time Constraints. This property is crucial for
feasible multitasking of professional coffee prepa-
ration (Hoffmann, 2018) and delicate biomedical
experiments (Itoh et al., 2021), where specific ac-
tions must be executed within a precise time inter-
val following a preceding action. Failure to adhere
to these time constraints may alter the flavor of a
dish, or even cause the entire recipe or experiment
to fail. This realistic property imposes a significant
challenge on multitask planning. As depicted in
Figure 1, the agent can not simply follow a greedy
manner that prioritizes immediate actions without
considering the broader temporal constraints. The
incorporation of time constraints in the planning
process ensures that the agent must strategically
balance multitasking efficiency with feasibility.

3.3 Dataset Construction

Recipe Annotation. We collect and clean recipes
with annotated dependent relations from a website
for cooking!. We ask three annotators to label the
properties and constraints following the pipeline in
Appendix A.1. The average kappa scores among
annotators are (.78 for action concurrency, 0.50
for action interruptibility, 0.66 for time constraints,
and 0.86 for resource limitations. Based on these
results, we explicitly list action interruptibility
and time constraints in the recipes, while keeping
action concurrency and resource limitations as
implicit properties that agents need to identify
through commonsense reasoning. Finally, we
prompt GPT-4o0 (Hurst et al., 2024) to annotate
action durations and time intervals for restrictions,
and all annotators have reviewed these annotations
to ensure their reasonableness.

Combine Recipes for Multitasking. We care-
fully select recipe combinations to evaluate plan-
ning abilities for efficient multitasking. To keep the
action space and context length manageable, we
only combine two recipes at a time. We then adapt
a heuristic algorithm from Zhang et al. (2024) to
plan action sequences for multitasking. Multitask-
ing efficiency for each sequence is computed ac-
cording to Equation 1. Instances are chosen for the
benchmark based on the following criteria: (1) Op-
portunities for multitasking: We include instances
with multitasking efficiency higher than 80% when
planning without time constraints, indicating signif-
icant potential opportunities for multitasking. (2)
Balance of efficiency and feasibility: We select in-
stances in which the multitasking efficiency drops
when time constraints are considered, suggesting
that an efficient greedy planning strategy would
likely violate these time constraints.

3.4 Environment

We implement an environment to provide feedback
to the agent. The agent can choose to perform one
action for a specified duration at a given time. If the
agent determines that no action can be performed
at the moment, it can choose the time for its next
planned action. The environment then receives the
action and checks for any constraint violations. If a
constraint is violated, the environment will specify
the type of violation. If the action is permissible,
feedback from the environment includes the status

"www. instructables. com

Recipe Statistics

Recipes 29
Avg. Actions per Recipe 13.1
Avg. Autonomous Actions per Recipe 34
Avg. Interruptible Actions per Recipe 3.9
Avg. time constraint per Recipe 3.1
Avg. Duration per Action (min) 5.7
Avg. Restriction Interval (min) 2.7

Multitasking Statistics

Instances 65
Avg. Executable Action per Step 3.1
Avg. Efficiency w/o time constraint (%) 92.3
Avg. Efficiency w/ time constraint (%) 80.1

Table 2: Statistics of recipes and multitasking instances
in our RECIPE2PLAN benchmark. The agent can choose
any timestamp for the next action, expanding the search
space beyond the number of executable actions solely.

of physical objects, completed actions, and ongo-
ing autonomous actions. We present examples of
observations and feedback in Appendix C.2. The
agent can use this feedback to revise its global plan
and decide on the next action.

4 Experiments

4.1 Baselines

Models. We evaluate several models, including the
open-source Llama-3.1 with parameter sizes of 8B
and 70B (Dubey et al., 2024), and Qwen2.5 with
parameter sizes of 7B, 32B and 72B (Qwen Team,
2024). Additionally, we assess the closed-source
models, GPT-40-mini, GPT-40 (Hurst et al., 2024)
and Gemini-1.5-Pro (Team et al., 2024). The ver-
sions of the models are detailed in Appendix C.3.

Methods. We begin by prompting the model to
identify any unwritten properties and constraints
from each recipe. These identified elements
are then concatenated with the original descrip-
tion. Next, we employ a ReAct-style prompting
method (Yao et al., 2022b) on the models to plan
the action sequence. To evaluate the planning abil-
ities and mitigate the cascading errors from com-
monsense reasoning, we also experiment with an
oracle setting ReAct + Oracle that replaces the
identified constraints with the gold annotations.

Constraint Setting. We evaluate the agent under
without time constraints and with time constraints
settings to study the impact of time constraints on
the feasibility and efficiency of multitasking agents.

www.instructables.com

w/o Time Constraints

w/ Time Constraints

Model
Success Progress R-Efficiency SxXE Success Progress R-Efficiency SxE
ReAct
Open-Source Models
Qwen2.5-7B 1.5 26.5 73.6 1.3 0.0 224 78.0 0.0
Llama-3.1-8B 0.0 9.7 47.8 0.0 0.0 10.3 44.9 0.0
Qwen2.5-32B 80.0 96.7 60.5 51.0 154 574 86.4 9.9
Llama-3.1-70B 72.3 88.8 65.9 50.5 13.8 55.5 79.3 9.8
Qwen2.5-72B 72.3 91.2 723 523 7.7 54.9 91.6 5.8
Closed-Source Models
GPT-40-mini 3.1 51.8 53.6 2.0 1.5 36.0 63.4 0.4
Gemini-1.5-Pro 20.0 66.4 71.7 14.3 3.1 47.5 74.4 1.8
GPT-40 90.8 99.1 81.0 75.3 21.5 64.0 102.6 19.5
ReAct + Oracle
Open-Source Models
Qwen2.5-7B 0.0 28.1 68.9 0.0 0.0 24.1 61.8 0.0
Llama-3.1-8B 0.0 10.8 60.6 0.0 0.0 10.0 49.1 0.0
Qwen2.5-32B 80.0 96.7 55.9 49.8 10.8 57.0 85.7 8.6
Llama-3.1-70B 73.8 89.0 61.6 49.9 6.2 52.9 78.9 2.5
Qwen2.5-72B 72.3 90.1 71.2 532 7.7 52.6 98.3 6.0
Closed-Source Models
GPT-40-mini 10.8 55.8 54.0 3.9 1.5 35.0 64.8 1.5
Gemini-1.5-Pro 16.9 63.6 68.4 13.7 7.7 49.1 76.8 3.8
GPT-40 95.4 99.4 78.2 76.3 27.7 60.6 104.0 20.3
Heuristics 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Table 3: Results of ReAct and ReAct + Oracle experiments on RECIPE2PLAN. We report average percentage of
success rate (Success), progress rate (Progress), relative multitask efficiency (R-Efficiency) and muititasking score
(SxE). Bold denotes the best performance and underline denotes the second-best performance.

4.2 Evaluation Metrics

Success Rate. It measures the feasibility of the
plans exclusively by evaluating whether the agent
can deliver a plan that successfully completes all
recipes. The agent might fail due to a violation of
time constraints, reaching a maximum of execution
errors, or being stuck in an endless dead loop.
Progress Rate. This metric measures the propor-
tion of successfully executed actions in the recipes.
It evaluates the feasibility of the planning process
with a more fine-grained perspective.
Multitasking Efficiency. Opportunities to mini-
mize execution time arise from autonomous actions
within the recipes. We first calculate the time saved
Tsave through multitasking relative to the total du-
ration of all completed actions. We measure the
multitasking efficiency for successfully executed
actions as the proportion of saved time and the
cumulative duration of the executed autonomous
actions Ty, similar to Zhang et al. (2024).

T.
Efficiency ggent = Tsa:e (1)
auto

We observe that the progress rate potentially in-
fluences this metric. To address this, we perform a

calibration based on the efficiency of plans derived
from the heuristic baseline (Efficiency,.), which
allows us to compute the relative multitasking effi-
ciency, with the rationale detailed in Appendix B.

Efficiency ;e

R-Efficiency = ()

Efficiency, s
Multitasking Score. We use this metric to present
the overall efficiency and feasibility of the plans
simultaneously. The score is computed as:

R-Efficiency Success = 1

M. Score = { 0 otherwise

3)
If the plan is successfully executed (Success = 1),
the multitasking score equals the R-Efficiency of
the plan; otherwise, the score is 0, indicating failure.
The rationale is that the agent should prioritize
ensuring the successful completion of the recipes
before aiming to achieve higher efficiency in task
execution. The overall score is computed as the
average of multitasking scores for each instance.

4.3 Main Results

LLMs can plan feasible multitasking in the ab-
sence of time constraints, but efficiency needs

120 Multitasking with Different Priority

---- Heuristics
100 + == Balanced Priority .__
N Feasibility Priority

80

60

Success

Progress R-Efficiency SXE

Figure 2: Results of GPT-40 planning with different
priority. Balanced Priority: Blend feasibility and ef-
ficiency as in §4. Feasibility Priority: Only focus on
feasibility without considering efficiency.

improvement. In the ReAct setting, GPT-40 deliv-
ers 90.8% feasible plans for multitasking, surpass-
ing other tested models by a large margin. This
demonstrates its ability to revise beliefs about un-
written properties and constraints and to correct
its actions to complete tasks. GPT-40 achieves a
multitasking efficiency of 78.2%, indicating that
there is still room for improvement in multitasking
efficiency with LLMs.

LLMs face challenges in balancing efficiency
and feasibility for multitasking under time con-
straints. The success rates and completion ratios
of all models decrease significantly when multitask-
ing with time constraints. GPT-40 only achieves
a success rate of 21.5%. Interestingly, GPT-40
achieves a relative efficiency of 102.6%, which is
higher than the heuristic baseline. This indicates a
tendency to prioritize high efficiency during local
planning. But the agent fails to maintain feasibility
for time constraints from a global perspective while
managing multitasking efficiency.

Open-source models exhibit diverse prefer-
ences for feasibility and efficiency. Surpris-
ingly, Qwen2.5-32B outperforms Qwen2.5-72B
and Llama-3.1-70B in success rate and progress
rate, whereas the latter two exhibit higher efficiency.
This highlights the varying preference towards fea-
sibility and efficiency across different open-source
models, even without time constraints. A similar
trend is observed when multitasking under time
constraints: Qwen2.5-32B achieves the second-
highest success rate among all tested models, while
Qwen2.5-72B attains the second-highest relative
multitasking efficiency of 91.6%.

Commonsense reasoning is not the bottleneck
for feasible and efficient multitasking. The mod-
els generally achieve F1 scores higher than 70% for

w/o Time Constraints w/ Time Constraints

120 120
-- Heuristics
mmA Oracle

100 1--==---~ “S’ NN Oracle + Hint
80 s

-- Heuristics
mmE Oracle
B e M Oracle + Hint

80
60 60
40 40

20 20

N

Success

N
SxE

Success SXE

Figure 3: Results of prompting GPT-40 under Oracle
setting: gold constraints, and Oracle + Hint setting:
gold constraints and executable actions at each step .

commonsense reasoning as detailed in Appendix D.
We investigate the impact of unidentified properties
and constraints in ReAct + Oracle setting. While
the success rate improves by 4.8% for GPT-4o0 in
the w/o time constraints setting, the relative effi-
ciency for GPT-40 decreases by 2.8%, indicating
that the model struggles to formulate an efficient
multitasking plan even with oracle constraints. In
the w/ time constraints setting, we observe the
success rate increases slightly for GPT-4o0 from
21.5% to 27.7%. This suggests misidentified con-
straints are not the primary errors leading to time
constraint violations. Overall, providing oracle con-
straints does not result in a significant performance
increase. Therefore, the main bottleneck for mul-
titasking is the planning abilities of the agents, as
we elaborate in the next section.

5 Analysis

5.1 Multitasking with Different Priority

Our experiments (§4) indicate that LLMs struggle
to complete the recipes with balanced priority of
feasibility and efficiency. Therefore, we evaluate
if LLMs can focus solely on the feasibility priority,
ensuring that recipes are completed without vio-
lating any constraints as detailed in Appendix C.4.
LLMs can ensure more task completion by trad-
ing efficiency for feasibility. The results in Fig-
ure 2 show that under the feasibility priority set-
ting, the success rate significantly increases from
27.7% to 49.2%, and the progress rate increases
from 60.6% to 85.7%. This indicates that focusing
on feasibility allows more recipes to be completed
and more steps to be executed within the given time
constraints. It further underscores the importance
of enhancing the planning abilities of LLM agents
to balance feasibility and efficiency.

Distribution of Valid and Invalid Actions
Qwen2.5-32B

Llama-3.1-70B

Qwen2.5-72B

N

o

GPT-40

GPT-40 + Hint

B Success

- Action Mismatch
B Action Concurrency
BN Action Duration
m Action Dependency
BN Resource Limitation

Figure 4: Analysis of the distribution of invalid actions and failure source of ReAct + Oracle agents planning with

time constraints. GPT-40 + Hint: We add all the executable actions in the prompt to help the agent choose the next
action during dynamic local planning.

5.2 Error Analysis

In this section, we take a closer look at the dynamic
local planning abilities of the agents by examining
the distribution of valid and invalid actions. Invalid
actions are categorized into: action mismatch (exe-
cuting non-existing actions and repeating finished
actions), and violations of other properties and con-
straints. We distinguish time constraint as a source
of failure separate from invalid actions, along with
other types of failure in Figure 4.

Action dependencies are the primary source of
invalid actions. As illustrated in Figure 4, models
with a high success rate under the w/o time con-
straints setting consistently achieve a valid action
ratio above 80% under time constraints. Despite all
constraints being explicitly presented in the prompt
during planning, the agent frequently violates these
constraints, particularly those related to action de-
pendencies. Upon examining the reasoning traces,
we observe that LLMs often breach action depen-
dencies constraints while attempting to optimize
multitasking, consequently neglecting feasibility.
Time constraints are the main sources of task
failure. For the failure source of planning with
time constraints, open-source models Llama-3.1
and Qwen2.5 may still get stuck in loop or exceed
maximum revisions for about 10% of the instances.
But the main source for the failure of planning
is due to time constraints, even GPT-4o fails to
maintain time constraints in 70% of the cases.

5.3 Planning with Hints of Executable Actions

As LLMs can not handle action dependencies well
while planning for efficient multitasking, we fur-
ther add the executable actions for each step in the
prompt. This allows us to evaluate global planning
abilities directly.

Distribution of Failure Sources

Qwen2.5-32B Llama-3.1-70B Qwen2.5-72B
GPT-40 GPT-40 + Hint

EmE Success

mmm Time Constraints
Stuck in Loop

B Maximum Revisions

s Early Finish

> I

LLMs lack global planning ability for efficient
planning and maintaining time constraints. The
success rate and multitask score show minimal im-
provement in both settings, as illustrated in Fig-
ure 3. This indicates that while agents can select
a valid action for local planning (Figure 4), they
fail to consider the impact of their actions on the
overall feasibility and efficiency from a global per-
spective. Table 4 in the Appendix demonstrates
a case where GPT-4o fails to estimate the priority
of autonomous actions and leaves the agent idle
during the execution of the last two actions. Ta-
ble 5 in the Appendix provides an example where
GPT-4o rushes to heat up oil at the beginning of
the plan and executes this action concurrently with
others to maximize efficiency. This plan overlooks
ingredient preparation and results in the oil heated
for an extended period. It does not only violate the
time constraint but also risks catching fire.

6 Conclusions

Our paper introduces the RECIPE2PLAN bench-
mark, which evaluates the feasible and efficient
multitasking abilities of existing LLMs. This
benchmark pushes the limits of current agent plan-
ning capabilities beyond mere task completion to
include the optimization of time and resource man-
agement. Our experiments reveal that while strong
models like GPT-40 can generate feasible plans
without time constraints, their performance de-
creases sharply when time constraints are imposed.
This highlights a significant gap between current ca-
pabilities and the requirements for feasible and ef-
ficient multitasking. Our analysis identifies global
planning as the primary area needing improvement,
paving the way for future work to focus on enhanc-
ing temporal reasoning and strategic planning.

Limitations

While multitasking is a practical application for
LLM agents, our text-based environment does not
fully capture the complexities of real-world cook-
ing and experimentation. Our agent does not en-
gage in physical exploration or interact with objects
in the real world, focusing solely on the temporal
planning aspects of multitasking. In our setting,
the agent is assumed to perform every action with-
out delay or failure. Introducing scenarios where
the agent must search for ingredients in a kitchen
or lab similar to Shridhar et al. (2020) and Wang
et al. (2022) would present a more realistic and
challenging environment. We plan to implement
such a realistic environment in future work.

The metric we use to evaluate efficiency by com-
puting the speed of completion may be biased by
the progress rate. To address this, we introduce a
relative multitasking efficiency metric to calibrate
our evaluation. However, the solution provided by
our heuristic baseline does not guarantee the opti-
mal plan for the task. The search space is complex
because the model can choose to execute actions
at arbitrary time stamps and split actions into ar-
bitrary time intervals, making it beyond the scope
of classical scheduling algorithms with time con-
straints (Itoh et al., 2021). While existing schedul-
ing algorithms may take a long time to execute, our
heuristic algorithm quickly identifies a feasible and
efficient plan, though it may be suboptimal. We
believe this heuristic can still serve as a valuable
baseline for evaluating the multitasking abilities
of agents. For future work, we plan to explore
scheduling algorithms that can better handle the
complexities of multitasking with time constraints.

References

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Sam
Stevens, Boshi Wang, Huan Sun, and Yu Su. 2024.
Mind2web: Towards a generalist agent for the web.
Advances in Neural Information Processing Systems,
36.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Boyu Gou, Ruohan Wang, Boyuan Zheng, Yanan Xie,
Cheng Chang, Yiheng Shu, Huan Sun, and Yu Su.
2024. Navigating the digital world as humans do:
Universal visual grounding for gui agents. arXiv
preprint arXiv:2410.05243.

Atharva Gundawar, Karthik Valmeekam, Mudit Verma,
and Subbarao Kambhampati. 2024a. Robust plan-
ning with compound llm architectures: An llm-
modulo approach. Preprint, arXiv:2411.14484.

Atharva Gundawar, Mudit Verma, Lin Guan, Karthik
Valmeekam, Siddhant Bhambri, and Subbarao Kamb-
hampati. 2024b. Robust planning with llm-modulo
framework: Case study in travel planning. arXiv
preprint arXiv:2405.20625.

James Hoffmann. 2018. The World Atlas of Coffee:
From beans to brewing-coffees explored, explained
and enjoyed. Hachette UK.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam
Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford,
et al. 2024. Gpt-4o system card. arXiv preprint
arXiv:2410.21276.

Takeshi D Itoh, Takaaki Horinouchi, Hiroki Uchida,
Koichi Takahashi, and Haruka Ozaki. 2021. Op-
timal scheduling for laboratory automation of life
science experiments with time constraints. SLAS
TECHNOLOGY: Translating Life Sciences Innova-
tion, 26(6):650-659.

Subbarao Kambhampati. 2024. Can large language
models reason and plan? Annals of the New York
Academy of Sciences, 1534(1):15-18.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gon-
zalez, Hao Zhang, and Ion Stoica. 2023. Efficient
memory management for large language model serv-
ing with pagedattention. In Proceedings of the 29th
Symposium on Operating Systems Principles, pages
611-626.

Minghao Li, Yingxiu Zhao, Bowen Yu, Feifan Song,
Hangyu Li, Haiyang Yu, Zhoujun Li, Fei Huang,
and Yongbin Li. 2023. Api-bank: A comprehensive
benchmark for tool-augmented llms. In Proceedings
of the 2023 Conference on Empirical Methods in
Natural Language Processing, pages 3102-3116.

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xu-
anyu Lei, Hanyu Lai, Yu Gu, Hangliang Ding,
Kaiwen Men, Kejuan Yang, Shudan Zhang, Xiang
Deng, Aohan Zeng, Zhengxiao Du, Chenhui Zhang,
Sheng Shen, Tianjun Zhang, Yu Su, Huan Sun,
Minlie Huang, Yuxiao Dong, and Jie Tang. 2023.
Agentbench: Evaluating llms as agents. Preprint,
arXiv:2308.03688.

Chang Ma, Junlei Zhang, Zhihao Zhu, Cheng Yang,
Yujiu Yang, Yaohui Jin, Zhenzhong Lan, Lingpeng
Kong, and Junxian He. 2024. Agentboard: An analyt-
ical evaluation board of multi-turn llm agents. arXiv
preprint arXiv:2401.13178.

OpenAl. 2023. Gpt-4 technical report.
arXiv:2303.08774.

Preprint,

https://arxiv.org/abs/2411.14484
https://arxiv.org/abs/2411.14484
https://arxiv.org/abs/2411.14484
https://arxiv.org/abs/2411.14484
https://arxiv.org/abs/2411.14484
https://arxiv.org/abs/2308.03688
https://arxiv.org/abs/2303.08774

Liang-Ming Pan, Jingjing Chen, Jianlong Wu, Shaoteng
Liu, Chong-Wah Ngo, Min-Yen Kan, Yugang Jiang,
and Tat-Seng Chua. 2020. Multi-modal cooking
workflow construction for food recipes. In Proceed-
ings of the 28th ACM International Conference on
Multimedia, pages 1132—-1141.

Michael Pinedo and Khosrow Hadavi. 1992. Schedul-
ing: theory, algorithms and systems development. In
Operations Research Proceedings 1991: Papers of
the 20th Annual Meeting/Vortrdige der 20. Jahresta-
gung, pages 35-42. Springer.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan
Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang,
Bill Qian, et al. 2023. Toolllm: Facilitating large
language models to master 16000+ real-world apis.
arXiv preprint arXiv:2307.16789.

Qwen Team. 2024. Qwen2.5: A party of foundation
models.

Stuart J Russell and Peter Norvig. 2010. Artificial intel-
ligence a modern approach. London.

Noah Shinn, Federico Cassano, Ashwin Gopinath,
Karthik Narasimhan, and Shunyu Yao. 2024. Re-
flexion: Language agents with verbal reinforcement
learning. Advances in Neural Information Process-
ing Systems, 36.

Mohit Shridhar, Xingdi Yuan, Marc-Alexandre CG6té,
Yonatan Bisk, Adam Trischler, and Matthew
Hausknecht. 2020. Alfworld: Aligning text and em-
bodied environments for interactive learning. arXiv
preprint arXiv:2010.03768.

David E Smith, Jeremy Frank, and Ari K Jénsson. 2000.
Bridging the gap between planning and scheduling.
The Knowledge Engineering Review, 15(1):47-83.

Kaya Stechly, Karthik Valmeekam, and Subbarao Kamb-
hampati. 2024. On the self-verification limitations
of large language models on reasoning and planning
tasks. arXiv preprint arXiv:2402.08115.

Haotian Sun, Yuchen Zhuang, Lingkai Kong, Bo Dai,
and Chao Zhang. 2024. Adaplanner: Adaptive plan-
ning from feedback with language models. Advances
in Neural Information Processing Systems, 36.

Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan
Burnell, Libin Bai, Anmol Gulati, Garrett Tanzer,
Damien Vincent, Zhufeng Pan, Shibo Wang, et al.
2024. Gemini 1.5: Unlocking multimodal under-
standing across millions of tokens of context. arXiv
preprint arXiv:2403.05530.

Gemini Team and Google. 2023. Gemini: A fam-
ily of highly capable multimodal models. Preprint,
arXiv:2312.11805.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

10

Karthik Valmeekam, Kaya Stechly, Atharva Gundawar,
and Subbarao Kambhampati. 2024. Planning in
strawberry fields: Evaluating and improving the plan-
ning and scheduling capabilities of Irm ol. arXiv
preprint arXiv:2410.02162.

Lei Wang, Wanyu Xu, Yihuai Lan, Zhigiang Hu, Yunshi
Lan, Roy Ka-Wei Lee, and Ee-Peng Lim. 2023. Plan-
and-solve prompting: Improving zero-shot chain-of-
thought reasoning by large language models. In Pro-
ceedings of the 61st Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 2609-2634, Toronto, Canada. Associ-
ation for Computational Linguistics.

Ruoyao Wang, Peter Jansen, Marc-Alexandre Coté, and
Prithviraj Ammanabrolu. 2022. ScienceWorld: Is
your agent smarter than a 5th grader? In Proceedings
of the 2022 Conference on Empirical Methods in
Natural Language Processing, pages 11279—-11298,
Abu Dhabi, United Arab Emirates. Association for
Computational Linguistics.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in neural
information processing systems, 35:24824-24837.

Zhiyong Wu, Chengcheng Han, Zichen Ding, Zhenmin
Weng, Zhoumianze Liu, Shunyu Yao, Tao Yu, and
Lingpeng Kong. 2024. Os-copilot: Towards gener-
alist computer agents with self-improvement. arXiv
preprint arXiv:2402.07456.

Jian Xie, Kai Zhang, Jiangjie Chen, Tinghui Zhu, Renze
Lou, Yuandong Tian, Yanghua Xiao, and Yu Su.
2024a. Travelplanner: A benchmark for real-world
planning with language agents. In Forty-first Interna-
tional Conference on Machine Learning.

Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan
Li, Siheng Zhao, Ruisheng Cao, Toh Jing Hua, Zhou-
jun Cheng, Dongchan Shin, Fangyu Lei, et al. 2024b.
Osworld: Benchmarking multimodal agents for open-
ended tasks in real computer environments. arXiv
preprint arXiv:2404.07972.

Liangliang Yang, Sara Pijuan-Galito, Hoon Suk Rho,
Aliaksei S Vasilevich, Aysegul Dede Eren, Lu Ge,
Pamela Habibovic, Morgan R Alexander, Jan de Boer,
Aurelie Carlier, et al. 2021. High-throughput meth-
ods in the discovery and study of biomaterials and ma-
teriobiology. Chemical reviews, 121(8):4561-4677.

Shunyu Yao, Howard Chen, John Yang, and Karthik
Narasimhan. 2022a. Webshop: Towards scalable
real-world web interaction with grounded language
agents. Advances in Neural Information Processing
Systems, 35:20744-20757.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik Narasimhan, and Yuan Cao. 2022b.
React: Synergizing reasoning and acting in language
models. arXiv preprint arXiv:2210.03629.

https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2312.11805
https://doi.org/10.18653/v1/2023.acl-long.147
https://doi.org/10.18653/v1/2023.acl-long.147
https://doi.org/10.18653/v1/2023.acl-long.147
https://doi.org/10.18653/v1/2023.acl-long.147
https://doi.org/10.18653/v1/2023.acl-long.147
https://doi.org/10.18653/v1/2022.emnlp-main.775
https://doi.org/10.18653/v1/2022.emnlp-main.775
https://doi.org/10.18653/v1/2022.emnlp-main.775

Yikai Zhang, Siyu Yuan, Caiyu Hu, Kyle Richard-
son, Yanghua Xiao, and Jiangjie Chen. 2024.
Timearena: Shaping efficient multitasking language
agents in a time-aware simulation. arXiv preprint
arXiv:2402.05733.

Huaixiu Steven Zheng, Swaroop Mishra, Hugh Zhang,
Xinyun Chen, Minmin Chen, Azade Nova, Le Hou,
Heng-Tze Cheng, Quoc V Le, Ed H Chi, et al. 2024.
Natural plan: Benchmarking llms on natural lan-
guage planning. arXiv preprint arXiv:2406.04520.

Denny Zhou, Nathanael Schirli, Le Hou, Jason Wei,
Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Claire Cui, Olivier Bousquet, Quoc Le, et al. 2022.
Least-to-most prompting enables complex reason-
ing in large language models. arXiv preprint
arXiv:2205.10625.

Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou,
Robert Lo, Abishek Sridhar, Xianyi Cheng, Yonatan
Bisk, Daniel Fried, Uri Alon, et al. 2023. Webarena:
A realistic web environment for building autonomous
agents. arXiv e-prints, pages arXiv—2307.

A Details for Dataset Construction

A.1 Recipe Collection

We collect cooking recipes from existing bench-
mark MM-Res (Pan et al., 2020). MM-Res contains
9,850 recipes from cooking websites and has anno-
tated the dependent relationship between actions
in the recipe. To curate cases from the MM-Res
dataset for the purpose of our benchmark. We sam-
ple recipes that involve using a microwave, an oven
or a stove and disregard those with more than 30
actions. We remove actions that is a non-cooking
steps, such as introductory phrases like foday we
want orka. Next, we ensure there are no temporal
inconsistencies between steps. Optional statements
are either removed or converted into mandatory
steps. For example, You can use a spoon to get
all the contents if needed is revised to exclude if
needed. Actions are split for clarity if needed. for
instance, boil water and pour water into a cup be-
comes boil water and pour water into a cup, to
separate the autonomous and continuous actions.
Conversely, steps that describe sequential actions
in separate sentences are merged; for example, use
water to strain and strain until the juices are gone
are combined into a single step. The dependent
relationships of the revised actions are adjusted
accordingly.

A.2 Details for Recipe Annotation

We recruit three graduate students with cooking
experience to annotate the action properties and

11

constraints in the recipes following the guidelines
in Table 9. Each student identifies whether actions
were autonomous or continuous, marks actions as
interruptible or non-interruptible, and specifies any
physical or time constraints associated with each
action. To ensure consistency and accuracy, anno-
tations were cross-verified among the annotators,
with discrepancies resolved through discussion.

B Relative Multitask Efficiency

1.00 Efficiency 0.87

| Pour | Drip Coffee Pour Drip Coffee Ice |

Pour | Drip Coffee Pour

@ R-Efficiency

Drip Coffee

1.00

Figure 5: Demonstration of relative efficiency. The
efficiency is affected by the progress rate and we use
relative efficiency (relative efficiency) to calibrate the
metric.

We find that the efficiency metric is influenced
by the progress rate. As shown in Figure 35, if
the agent aborts the interaction midway, it will
achieve an efficiency of 100%. Conversely, an
agent that completes all tasks in the optimal manner
only obtains an efficiency of 87.5%. To address
this discrepancy, we use the plan from the heuristic
baseline as a reference to calibrate the efficiency.
We compute the efficiency for the part of the plan
that achieves the same progress rate as the agent.
The relative efficiency is computed as
Efficiency ;e

R-Efficiency =
clency EfﬁcienCYref

C Implementation Details

C.1 Heuristic Baseline Algorithm

We adapt the heuristic method from Zhang et al.
(2024) to search for an efficient plan that is feasi-
ble. The details of the algorithm is presented in
Algorithm 1.

C.2 Environment

We implement an environment to provide feedback
to the agent. The examples of feedback are listed
in Table 14. If the action fits all the constraints, the
agent receives a message of the successful execu-
tion. And an observation of the action concurrency
of the executed action, current timestamp, status

of physical objects and the executing autonomous
actions. If the action can not be executed, the envi-
ronment will return an error message and detailed
feedback about the violated constraint. We also
provide a hint about executable actions to evaluate
the global planning abilities of the agent solely in
§5.3. During the interaction with the agent, the
maximum number of revisions is 10. Exceeding
this number will be considered as task failure. And
we abort the multitasking process if the agent at-
tempts to execute the same action three times or
violates any time constraints.

C.3 Model Details

We use the Instruct version for all sizes of
Qwen2.5% and Llama-3.13 models in our study. We
use vllm (Kwon et al., 2023) to deploy Qwen?2.5-
7B, Llama-3.1-8B and Qwen-2.5-32B on a single
A800 GPU, and Llama-3.1-70B and Qwen2.5-72B
on four A800 GPUs. We use the gpt-40-2024-08-
06 for GPT-40*, gpt-40-mini-2024-07-18 for GPT-
40-mini®, Gemini-1.5-Pro-002 (2024-09-24) for
Gemini-1.5-Pro® .

C.4 Planning Methods

Commonsense Reasoning We prompt the model
with the same guidelines in §A.1 and one exam-
ple to generate the beliefs of action concurrency,
action dependency and resource limitations. The
temperature are set as O for all models. The max
tokens for generation are set as 128.

Open-Loop Planning We evaluate the open-loop
planning methods to determine if current LLMs can
plan action sequences without interacting with the
environment. Given the complexity of our task, we
implement a Plan-and-Solve baseline. In this ap-
proach, the model generates beliefs about unwritten
properties and constraints through commonsense
reasoning and creates a coarse-grained plan to per-
form actions simultaneously, aiming to reduce total
execution time. Finally, the agent writes a fine-
grained action sequence following one example for
execution as shown in Table 11. The temperature
is also set as 0 and the maximum generation tokens
is 2048.

2https://huggingface.co/Qwen

3https://huggingface.co/meta—llama

4https://platform.openai.com/docs/models#
gpt-40

5https://platform.openai.com/docs/models#
gpt-40-mini

6https://ai.google.dev/gemini—api/docs/models/
gemini#gemini-1.5-pro

12

Closed-Loop Planning with ReAct In this ap-
proach, we add the beliefs of unwritten constraints
from commonsense reasoning to the recipe descrip-
tion. Then the agent performs one action at a time
and predicts the next action based on interaction
with the environment. The agent receives feedback
after each interaction. If an action fails, detailed
feedback is provided, prompting the model to re-
flect on its beliefs about unwritten properties and
constraints and adapt its multitasking plan dynam-
ically. The interaction continues until the agent
believes all recipes are completed or the interaction
is aborted by the environment. We set the temper-
ature as 0 and the maximum generation tokens as
512. We parse the response to get the first action
to avoid action trying to execute multiple actions
during one interaction. The prompt for the react
setting is detailed in Table 12. The prompt for Re-
Act with feasibility priority setting is detailed in
Table 13. In this setting, we prompt the model to
finish recipes one by one to avoid violations of time
constraints due to multitasking.

D Commonsense Reasoning Evaluation

We present the results of our evaluation for iden-
tifying unwritten properties and constraints in Ta-
ble 8. Most of the tested models display an F1
score above 80% for identifying action dependency
and object occupancy, with GPT-40 demonstrat-
ing robust performance by achieving F1 scores
of 90.34% and 91.12%, respectively. Qwen2.5-
32B and Qwen2.5-72B also exhibit strong com-
monsense capabilities in action dependency and
resource limitations. However, the task of identify-
ing autonomous actions poses a greater challenge.
GPT-40-mini achieves the highest recall at 82.18%,
while Gemini-1.5-Pro exhibits the highest precision
at 88.33%. While the models perform commend-
ably in identifying action dependencies and object
occupancy, there is a clear need for improvement
in identifying autonomous actions, which present
significant opportunities for multitasking.

E Open-Loop Planning Results

LLMs cannot plan feasible multitasking with-
out environmental feedback. In the Plan-and-
Solve setting, the model is prompted to plan an
action schedule without feedback from the envi-
ronment. The results in Table 7 show that even
GPT-40 achieves only a success rate of 3.1% and a
complete ratio of 21.7% in the w/o time constraints

https://huggingface.co/Qwen
https://huggingface.co/meta-llama
https://platform.openai.com/docs/models#gpt-4o
https://platform.openai.com/docs/models#gpt-4o
https://platform.openai.com/docs/models#gpt-4o-mini
https://platform.openai.com/docs/models#gpt-4o-mini
https://ai.google.dev/gemini-api/docs/models/gemini#gemini-1.5-pro
https://ai.google.dev/gemini-api/docs/models/gemini#gemini-1.5-pro

scenario. When time constraints are added, the
success rate and complete ratio drop further. Many
generated plans attempt to execute continuous ac-
tions simultaneously, leading to plan failure. This
suggests that current LLMs lack the planning abil-
ity to schedule multitasking without environmental
feedback.

F Planning Multitasking with Iterations

The LLM-Modulo framework (Gundawar et al.,
2024a; Kambhampati, 2024) has demonstrated that
large language models (LLMs) can effectively plan
complex schedules with the help of critics, as
seen in benchmarks like TravelPlanner (Xie et al.,
2024a), which includes multiple soft and hard con-
straints. In our experiments described in §4, the
agent cannot recover from time constraint viola-
tions. This section evaluates whether the LLM-
Modulo framework can improve model perfor-
mance by providing detailed critiques of the entire
plan, thus enabling more robust global planning,
correcting time constraint violations, and achieving
efficient and feasible multitasking.

Rather than using a step-by-step evaluation as
in §4, we design different critics to assess each
property and constraint outlined in §3.1 and §3.2
for detailed feedback on the whole plan including
the actions after the step that the plan fails. Fol-
lowing the approach in Gundawar et al. (2024b),
we use a reformatter to control the output format
and concatenate the feedback from these critics and
incorporate it into the initial prompt, performing
10 iterations. We evaluate GPT-40 and the latest
ol-mini under this framework.

Iterations of critics can help LLMs plan feasi-
ble multitasking. We sample 20 cases from our
benchmark which GPT-40 fails to solve in ReAct
setting. To evaluate the global planning abilities
with iterations fairly, we prompt the models with
the same plan and let the model revise the plan. We
find that GPT-40 and ol-mini can deliver 3 feasible
plans after 10 iterations. Out of the feasible plans,
ol-mini achieves a relative efficiency of 98.89%
which is very close to a heuristic baseline.

LLMs can not adjust a feasible plan for higher
multitasking efficiency without breaking feasi-
bility We prompt the model with 18 feasible plans
from GPT-40 under ReAct setting, we then prompt
the model to determine whether the plan can be fur-
ther optimized for higher multitasking efficiency.
GPT-40 and ol-mini can only maintain the feasi-

13

bility of half of the plans and the relative efficiency
of these also decreases compared with the initial
plans.

Algorithm 1: Heuristic Algorithm for Mul-
titasking with time constraints

1

2
3
4
5
6

10
11
12
13
14
15

Input: Set of actions A, Durations 7T,
Dependencies p(.A).
Output: Heuristic minimal time Tpp.

Define autonomous actions A* and
continuous actions A’ from A.
Sort A* by T in descending order.
A <+ concatenate(A*, A').
Initialize Action_list as an empty list.
foreach a; € A do
P «+ BFS(a;, p(a;)) to collect
prerequisites.
foreach p; € P do
if p; € A then
Action_list.append(p;).
Remove p; from A.
end
end
Action_list.append(a;).
end
Define function DFS(A*, A’, Trmin): if
Action_list is empty then
return 7.
end
foreach a; € Action_list do
if check_constraint(a;) then
if a; € A* then
A* — A\ {a;}.
7;r1in — 7;nin-

end

else

A AN\ {a;}.

7;r1in — 7;nin + T(az)

end

result < DFS(A*, A", Trin)

if result is not failure then
return result.

end

end

end
return failure.
7;nin < 0.
result <— DFS(A*, A', Trin)
if result is failure then
‘ return "No feasible schedule found."
end
else
‘ return result.
end

14

Recipe 1:Tacos

Step O (3 min): Place the fish in a cooking pot with enough
water to cover them.

Step 1 (20 min): Let it boil for around 20 minutes.

Step 2 (3 min):
Step 3 (3 min):
Step 4 (5 min):
Step 5 (2 min):
Step 6 (5 min):

Drain them and put them in a bowl.

Use a fork to smash them.

Chop the onion and tomato in little squares.
Put the onion in a pan with a little oil.

Let it cook a little for 5 minutes.

Step 7 (2 min): Place the tomato and stir.

Step 8 (5 min): Let it cook for 5 minutes stirring constantly.
Step 9 (5 min): When it’s ready put the fish in the pan and
mix well.

Step 10 (1 min): Add salt and pepper to taste.

Step 11 (15 min): Let it cool down.

Step 12 (1 min): Warm the tortillas for 1 minute in the
microwave.

Step 13 (2 min): Put the fish we made in the middle of the
tortilla using a spoon and make sure it doesn’t reach the edge.
Step 14 (2 min): Fold the tortilla in half and put one toothpick
on each side to hold it closed.

Step 15 (10 min): Fry them in a pan with oil

Step 16 (2 min): Take the toothpicks off and serve when they
are still warm.

Interrutable steps: 3, 4.

Autonomous actions: step 1, 6, 11, 12, 15.

Action Dependency: 0->1, 1->2, 2->3, 4->5, 5->6, 6->7, 7->8,
3->9, 8->9, 9->10, 10->11, 12->13, 11->13, 13->14, 14->15,
15->16.

Steps 1, 6, 7, 8, 9, 10, 15 require stove, Steps 12 requires
microwave.

Recipe 2:Smore-Bars

Step 0 (10 min): Preheat your oven to 350 degrees fahrenheit.
Step 1 (3 min): Grease a 9x13 inch pan.

Step 2 (1 min): Melt your 1 cup of butter in the microwave
until it is completely melted.

Step 3 (5 min): crush 2 cups (approximately 2 sleeves) of
graham crackers.

Step 4 (3 min): Mix the melted butter and crushed graham
crackers together.

Step 5 (5 min): Take about 3/4 (doesn’t need to be exact) of
your butter/graham cracker mixture and press into the bottom
of your greased pan.

Step 6 (2 min): Unwrap your candy bars and arrange them.
Step 7 (3 min): Evenly spread out your bag of mini marshmal-
lows across entire pan.

Step 8 (2 min): Sprinkle your remaining butter/graham cracker
mixture across pan.

Step 9 (15 min): Place pan in oven for 15 minutes.

Step 10 (2 min): Cut and Enjoy!

Interrutable steps: 1, 3, 5, 6, 7, 8, 10.

Autonomous actions: step 0, 2, 9.

Action Dependency: 2->4, 3->4, 1->5, 4->5, 5->7, 6->7, 7->8,
0->9, 8->9, 9->10.

Steps 0, 9 require oven, Steps 2 requires microwave.

71 Tacos

X3 Smore-Bars
Autonomous
Continuous

[=z

Heuristic Baseline

=16

Action order

GPT-40

=l
=

Time (min)

Table 4: Case study of GPT-40 planning without time constraints. GPT-4o result in a lower efficiency compared
with the heuristic baseline. The primary difference is that GPT-4o prioritizes different autonomous actions and
leaves the agent idle during the execution of the last two actions

15

Recipe 1: Vada

Step 0 (5 min): First, start with blending the chilies, ginger
and coriander along with some cumin seeds.

Step 1 (3 min): Partially blend the chana dal with the mixture
from the previous step.

Step 2 (5 min): Slice the onions.

Step 3 (3 min): Once the mixture is ready, you need to mix
the mixture with cut onion.

Step 4 (3 min): Later add some coriander and curry leaves
and continue mixing.

Step 5 (5 min): Heat up some oil in a pan.

Step 6 (5 min): Shape the paste into circular disk-shaped
chunks.

Step 7 (5 min): Deep fry the shaped chunks in the hot oil.
Step 8 (10 min): Fry the vada in oil until it turns golden
brown.

Step 9 (5 min): Serve the dish hot and along with some
ketchup and some mint chutney.

Interruptible steps: 0, 1, 2, 3, 4, 6.
Autonomous actions: step 5, 7, 8.

Action Dependency: 0->1, 1->3, 2->3, 3->4, 4->6, 5->7, 6->7,
7->8, 8->9.

Time Constraints: 5-7 (5 min), 7->8 (5 min), 8->9 (5 min).
Steps 5, 7, 8 require stove.

Recipe 2:Daikon-Radish

Step 0 (5 min): Peel the skin from the radishes and rinse them.
Step 1 (5 min): Slice them into thin circular slices.

Step 2 (5 min): Chop napa cabbage into thin slices.

Step 3 (5 min): Peel the skin off the onions and slice into
cubes.

Step 4 (3 min): Thinly slice the green onions.

Step 5 (8 min): In a large non-stick pan, sauté the onion until
slightly golden brown.

Step 6 (2 min): Once the onion is cooked, place the sliced
napa cabbage onto the pan.

Step 7 (2 min): Stir fry for about 2 minutes.

Step 8 (8 min): Add the radish into the pan and stir fry until
soft.

Step 9 (2 min): To season and garnish, add a couple of
teaspoons of soy sauce, half a teaspoon of sesame oil, and a
pinch of salt and pepper.

Step 10 (3 min): Place the bacon slices onto a pan.

Step 11 (10 min): Cook until crispy.

Step 12 (5 min): Slice into smaller pieces to make bacon bits.
Step 13 (2 min): Top the radish dish with some bacon bits.

Interruptible steps: 0, 1, 2, 3, 4, 12, 13.

Autonomous actions: step 5, 11.

Action Dependency: 0->1, 1->2, 2->3, 3->4, 4->5, 5->6, 6->7,
7->8, 8->9, 10->11, 11->12, 12->13, 9->13.

Time Constraints: 5->6 (2 min), 6->7 (1 min), 7->8 (3 min),
8->9 (2 min).

Steps 5, 6, 7, 8, 9, 11 require stove.

E ;Z?:on-Radlsh Heuristic Baseline 'Illlllll‘ 5
e 77777777}
/ls
(/A
(LA
VA
g VIS
'ﬁcj GPT-40 /‘6
V/ /D
V)
)
(A
VA
INOONNNNNNTe
A

15 20 25 30

Time (min)

Table 5: Case study of planning with time constraints. We only show part of the plan to focus on the source of
task failure. GPT-4o plans to execute step 5 of Vada first to maximize local efficiency which leads to violation of
time constraints between step 5 and step 7 of Vada. The heuristic plan strategically starts step 5 of Vada until other

prerequisite actions of step 7 are nearly finished.

16

Model Pass Cases R-Efficency”

Fix Failed Plans
GPT-40 3/20 84.50
ol-mini 3/20 98.89

Optimize Feasible Plans

GPT-40 10/18 93.53 (-2.62)
ol-mini 8/18 89.41 (-3.87)

Table 6: Results of LLM-Modulo framework on gen-
erating feasible or more efficient plans. We report a
number of feasible cases and the relative efficiency. *:
Average R-Efficiency for feasible plans.

17

w/o time constraint w/ time constraint

Model

Success Progress R-Efficiency SXE Success Progress R-Efficiency SxE

Plan-and-Solve

Llama-3.1-8B 0.0 6.2 30.3 1.9 0.0 6.6 357 2.3
Qwen2.5-7B 0.0 7.5 46.1 35 0.0 6.3 36.2 23
Qwen2.5-32B 0.0 8.6 54.5 4.7 0.0 8.8 54.7 4.8
Llama-3.1-70B 0.0 11.3 55.0 6.2 0.0 10.1 55.3 5.6
Qwen2.5-72B 1.5 17.2 65.6 11.3 0.0 13.3 63.6 8.4
GPT-40-mini 1.5 13.4 50.0 6.7 0.0 10.3 56.7 5.8
GPT-40 3.1 21.7 70.2 15.2 1.5 17.4 69.7 12.2
Heuristics 100 100 100 100 100 100 100 100

Table 7: Results of Plan-and-Solve setting. We report Success Rate (Success), Average Progress Rate (Progress),
Relative Multitask Efficiency (R-Efficiency) and Muititasking Ability (SxE).

Constraint Model Recall Precision F1

Qwen2.5-7B 57.68 62.98 60.21
Llama-3.1-8B 58.26 50.87 54.31
Qwen2.5-32B 67.92 79.96 73.45

Llama-3.1-70B 81.09 75.83 78.37
Qwen2.5-72B 74.04 70.92 72.44
GPT-40-mini 82.18 68.27 74.58
Gemini-1.5-Pro 40.48 88.33 55.51
GPT-40 73.10 79.39 76.12

Qwen2.5-7B 69.67 78.15 73.67
Llama-3.1-8B 79.68 82.61 81.12
Qwen2.5-32B 87.41 92.18 89.73
Llama-3.1-70B 91.57 92.58 92.07
Qwen2.5-72B 92.18 92.82 92.50
GPT-40-mini 78.38 82.82 80.54
Gemini-1.5-Pro 88.36 90.09 89.22
GPT-40 89.94 92.33 91.12

Qwen2.5-7B 69.82 91.26 79.12
Llama-3.1-8B 85.31 88.96 87.10
Qwen2.5-32B 91.28 96.15 93.65
Llama-3.1-70B 88.30 97.21 92.54
Qwen2.5-72B 92.22 95.04 93.61
GPT-40-mini 92.10 89.56 90.81
Gemini-1.5-Pro 79.95 95.45 87.02
GPT-40 85.30 96.02 90.34

Action Concurrency

Action Dependency

Resource Limitations

Table 8: Results of commonsense reasoning for unwritten properties and constraints.

18

Action Concurrency
Please identify if the action is autonomous or continuous.

- Autonomous Action: The action can be performed alongside other actions, allowing the agent to perform multiple tasks
simultaneously. (e.g. preheat oven).

- Continuous Action: The step requires active involvement of the agent to complete and must be executed independently
without overlapping with other tasks (e.g., ’Crack 3 eggs into a bowl’).

Execution Interruptibility
A step classified as non-interruptible means that it cannot be split into two separate periods, and no other actions can be
started during the execution of this action. Identify whether an action in a process can be interrupted or not

- If the action is logically interruptible (e.g., *Dice the onions’), classify it as interruptible.

- If the action requires the agent to finish in one go(e.g., ’Keep stirring...”), classify it as non-interruptible.

- If the action involves heating (e.g., "Melt the chocolate over low heat’), classify it as non-interruptible to ensure that the
heating time is not extended.

- If the action can be executed in a short time (e.g., ’Pour water into a cup’ or Add something into something’), classify
it as non-interruptible.

Resource Limitations
Annotate the steps that use one of the following physical objects.

- Oven: You should always preheat the oven to a specific temperature before using it. If the oven is already preheated by
a previous step, you can skip the preheat action.

- Microwave: Use this tool to heat something quickly. You can only microwave for one recipe at the same time.

- Stove: Use the heater to warm your pan or pot for cooking.

time constraints
Identify pairs of actions if there is a time constraint between them.

- If the object of action has been heated, the time interval between steps should be some value to avoid extending the
heating time (e.g., 'Fry the okra’ -> Mix the onion with okra’). Steps involving cooling allow for more flexible time
intervals.

- If the state of an object will change over time (e.g., "Melt butter’ -> *Mix with something’), the next step should occur
within a specific time frame to ensure the desired outcome

- Please only consider the actions with the direct dependent relationship. And you do not need to specify the time interval.

Table 9: Guidelines for recipe annotation.

Recipe 1:Baked-Potato

Step 0 (10 min): Preheat the oven to 425 degrees.

Step 1 (2 min): Pierce the potato several times with a fork.

Step 2 (5 min): Bake the potato in the preheated oven.

Step 3 (1 min): Melt butter in the microwave.

Step 4 (10 min): Remove potato from the oven and use a sharp knife to make decorative cuts on the top of the potato.
Step 5 (1 min): Pour melted butter over the potato and serve.

- You can minimize the execution time based on the following properties:
You can execute only part of the action duration to pause steps 1, 4 for more efficient multitasking. But other actions must
be finished without interruption.

- Do not violate any following constraints when executing this recipe:
Step 5 must be performed within 2 min after Step 3 is finished.

Thoughts on the recipe:

The agent can perform autonomous actions step 0, 2, 3 in parallel with other actions to speed up the process.

The action before the arrow must be completed before the action after the arrow can be started: 0->2, 1->2, 2->4, 3->5, 4->5
The following actions would occupy the corresponding physical objects. The agent can not perform the action if the object
is occupied. The properties such as volume and temperature of the object should also match the requirement of the recipe:
Steps 0, 2 require oven, Steps 3 requires microwave

Table 10: Demonstration of recipe description. For the oracle setting, we replace the thoughts on the unwritten
thoughts with the actual properties and constraints from the recipe

19

You are a multitask planner. You will plan an action sequence to finish some recipes as quickly as possible without violating
any constraints.

Recipes

Each recipe is a sequence of actions designed to achieve a specific goal. Each action is a textual description companied with
the duration to finish the action. Each recipe has autonomous actions such as boiling water that let the agent be idle during
execution. They can be executed in parallel with other actions to speed up the process Continuous actions such as pouring
water occupy the agent and only one continuous action can be executed at the same time across all recipes.

Task Description

Your task is to complete all of the recipes as quick as possible while following the recipe. The key to success is to follow
the recipe and constraints, then complete the steps in the correct order while minimizing the execution time by executing
the autonomous actions concurrently. First, let’s analyze the recipe and create a concise plan on how to perform actions
simultaneously to reduce the total execution time. Then write your action sequence following the plan. Your action should
be a list of *Step(step_num, recipe_name, time, timestamp)’ which indicates the performing the given step for the given
time at the timestamp. Your time and timestamp should be written as HH:MM:SS.

/%
Recipe 1:Baked-Potato
Description for baked potatoes

Recipe 2:Cheese-Sandwich
Description for cheese sandwiches

Plan
Start by preheating the oven for both recipes simultaneously, since they require the same temperature and preheating is an
autonomous action. This allows the agent to perform other actions while the oven is preheating.

While the oven is preheating, start the preparation steps that do not need the oven. I can pierce the potato (step 1 for
Baked-Potato) and prepare the Cheese-Sandwich by buttering the bread (Step 1) and then placing the cheese between the
slices (Step 2). These steps only take 5 minutes, then wait for the oven to preheat.

At 00:10:00, the oven should be preheated. Bake the potato (Step 2 for Baked-Potato) and heat soup (Step 4 for Cheese-
Sandwich) simultaneously. And wait for the autonomous actions to finish at 00:15:00 since the oven and microwave are
occupied and no other actions can be performed.

At 00:15:00, start baking the sandwich (Step 3 for Cheese-Sandwich) and making decorative cuts on the potato (Step 4 for
Baked-Potato) simultaneously. Step 4 of Baked-Potato is interruptible, so the agent can pause this action and perform step 5
of Cheese-Sandwich at 00:20:00 to serve the sandwich with the soup without violating the constraints. And the agent can
continue to finish the potato with executing autonomous action step 3 and continuous action step 4 simultaneously and serve
the potato at 00:26:00.

Action Sequence

Step(0, Baked-Potato, 10 min, 00:00:00), Step(0, Cheese-Sandwich, 10 min, 00:00:00), Step(1, Baked-Potato, 2 min,
00:00:00), Step(1, Cheese-Sandwich, 2 min, 00:02:00), Step(2, Cheese-Sandwich, 1 min, 00:04:00), Step(2, Baked-Potato,
5 min, 00:10:00), Step(4, Cheese-Sandwich, 5 min, 00:10:00), Step(3, Cheese-Sandwich, 5 min, 00:15:00), Step(4, Baked-
Potato, 5 min, 00:15:00), Step(5, Cheese-Sandwich, 1 min, 00:20:00), Step(4, Baked-Potato, 4 min, 00:21:00), Step(3,
Baked-Potato, 1 min, 00:25:00), Step(4, Baked-Potato, 1 min, 00:25:00), Step(5, Baked-Potato, 1 min, 00:26:00)

*/

Please follow the example to generate the action sequence for the following recipes.

/*

Recipe 1:

Description

Recipe 2:
Description

Plan

Table 11: Prompt for Plan-and-Solve setting.

20

You are a multitask planner. You will plan an action sequence to finish some recipes as quickly as possible without violating
any constraints.

Recipes

Each recipe is a sequence of actions designed to achieve a specific goal. Each action is a textual description companied with
the duration to finish the action. Each recipe has autonomous actions such as boiling water that let the agent be idle during
execution. They can be executed in parallel with other actions to speed up the process Continuous actions such as pouring
water occupy the agent and only one continuous action can be executed at the same time across all recipes.

Task Description

You are required to analyze the current status of the environment and decide the next action to take so that you can finish
the recipes in the shortest time without violating constraints. Give your thoughts on the given status, action history and
observation. Your analysis should be within 100 words starting with *Thought:’. Then you should choose your next action.
If you think you have already completed all the recipes, please output *Action: Finish’. Write your action as ’Action:
Step(step_num, recipe_name, time, timestamp)’ - Perform the given step for the given time at the timestamp. Your time and
timestamp should be written as HH:MM:SS. You can only perform one action each time. Do not repeat actions that are
already in progress. If you choose to wait for current actions to finish, please state the time you will wait for. Then write
your next action as ’I will wait and perform the next action at HH:MM:SS. Action: Step(step_num, recipe_name, time,
timestamp).

%
Recipe 1:Baked-Potato
Description for baked potatos

Recipe 2:Cheese-Sandwich
Description for cheese sandwichs

Action Sequence

Observation: Continuous action executed successfully. The current timestamp is 0:5:0. Status of physical objects: oven is
occupied, temperature is 425.0; microwave is not occupied; stove is not occupied; You are currently executing the following
autonomous actions: step 0 of Baked-Potato (will finish at 0:10:0), step 0 of Cheese-Sandwich (will finish at 0:10:0)
Thought: I have completed the preparatory steps for the Cheese-Sandwich. Since both recipes are still preheating in the
oven, [should wait for the preheating to complete. After preheating, both recipes are ready for the next baking step. Step 4
of the Baked-Potato is a long continuous step that can be executed in parallel with steps 3 and 4 of the Cheese-Sandwich.
So I should bake the Baked-Potato first.

I will wait and perform the next action at 00:10:00. Action: Step(2, Baked-Potato, 00:05:00, 00:10:00)

Observation: Autonomous action started successfully. The current timestamp is 0:15:0. Status of physical objects: oven is
occupied, temperature is 425.0; microwave is not occupied; stove is not occupied; You are currently executing the following
autonomous actions: step 4 of Cheese-Sandwich (will finish at 0:20:0)

Thought: With the Cheese-Sandwich currently baking in the oven, I can now focus on the the Baked-Potato. I will remove
the Baked-Potato from the oven and prepare it for serving. I should not start melting the butter for the Baked-Potato before
nearly finishing the Step 4 of Baked-Potato to avoid the butter cooling down. So I will start making decorative cuts on the
top of the potato first. And I will stop at 0:20:00 to serve the Cheese-Sandwich to avoid violating the time constraint.
Action: Step(4, Baked-Potato, 00:05:00, 00:15:0)

Observation: Continuous action executed successfully. The current timestamp is 0:21:0. Status of physical objects: oven is
occupied, temperature is 425.0; microwave is not occupied; stove is not occupied

Thought: I have served the Cheese-Sandwich and can now continue with the Baked-Potato. I will prepare the melted butter
and pour it over the potato to complete the recipe. Since the step 5 must be performed within 2 min after Step 3, I will start
melting the butter when step 4 is nearly finished in 1 minute. Now I would continue with the decorative cuts on the top of
the potato.

Action: Step(4, Baked-Potato, 00:04:00, 00:21:0)

Observation: Continuous action executed successfully. The current timestamp is 0:27:0. Status of physical objects: oven is
occupied, temperature is 425.0; microwave is occupied; stove is not occupied

Action: Finish

*/

Please follow the example to generate the action sequence for the following recipes.

/*

Recipe 1:

Description

Recipe 2:
Description

Action Sequence

Table 12: Prompt for ReAct-style action sequence generation.

21

You are a multitask planner. You will plan an action sequence to finish some recipes without violating any constraints.

Recipes

Each recipe is a sequence of actions designed to achieve a specific goal. Each action is a textual description companied
with the duration to fininsh the action. Each recipe has autonomous actions such as boiling water that lets the agent be idle
during execution. They can be executed in parallel with other actions to speed up the process Continuous actions such as
pouring water occupy the agent and only one continuous action can be executed at the same time across all recipes.

Task Description

You are required to analyze the current status of the environment and decide the next action to take so that you can finish the
recipes without violating constraints. Do not rush to complete the recipes. Take your time to execute the actions without
violating constraints. especially the time constraints. You should prioritize on not violating the time constraints and ensure
the recipe is completed successfully.

Give your thoughts on the given status, action history and observation. If you find your initial thoughts of the recipes does
not align with the current status, you can revise your initial thoughts. Your analysis should starts with *Thought:’. Then you
should choose your next action. If you think you have already completed all the recipes, please output *Action: Finish’.
Write your action as *Action: Step(step_num, recipe_name, time, timestamp)’ - Perform the given step for the given time at
timestamp. Your time and timestamp should be written as HH:MM:SS. You can only perform one action each time. Do not
repeat actions that are already in progress. If you choose to wait for current actions to finish, please state the time you will
wait for. Then write your next action as "I will wait and perform the next action at HH:MM:SS. Action: Step(step_num,
recipe_name, time, timestamp).

/*

Recipe 1:Baked-Potato

Description for baked potatos

Observation: The current timestamp is 00:00:00. Status of physical objects: oven is not occupied, is not preheated;
microwave is not occupied; stove is not occupied

Thought: I will preheat the oven. This will allow me to perform other actions while the oven is preheating.

Action: Step(0, Baked-Potato, 00:10:00, 00:00:00)

Observation: The current timestamp is 00:00:00. Status of physical objects: oven is occupied, temperature is 425.0;
microwave is not occupied; stove is not occupied; You are currently executing the following autonomous actions: step 0 of
Baked-Potato (will finish at 00:10:00)

Thought: Since the oven is preheating, I can start piercing the potato for the Baked-Potato recipe. And this does not risk
violating any time constraints.

Action: Step(1, Baked-Potato, 00:02:00, 00:02:00)

Observation: The current timestamp is 00:04:00. Status of physical objects: oven is occupied, temperature is 425.0;
microwave is not occupied; stove is not occupied; You are currently executing the following autonomous actions: step 0 of
Baked-Potato (will finish at 00:10:00), step 0 of Cheese-Sandwich (will finish at 00:10:00)

Thought: Step 1 of the Baked-Potato is complete. I will now move on to step 2 of the Baked-Potato. This does not risk
violating any time constraints.

Action: Step(2, Baked-Potato, 00:05:00, 00:10:00)

Observation: The current timestamp is 00:10:00. Status of physical objects: oven is occupied, temperature is 425.0;
microwave is not occupied; stove is not occupied; You are currently executing the following autonomous actions: step 2 of
Baked-Potato (will finish at 00:15:00)

Thought: Step 2 of the Baked-Potato is complete. Since Step 5 depends on both Step 3 and Step 4 and Step 5 must be
performed within 2 minutes after Step 3 is complete, and. Executing Step 3 first will result in violation of time constraints
since Step 4 is a long continuous step. I will now first finish Step 4 of the Baked-Potato to ensure the time constraints are
followed.

Action: Step(4, Baked-Potato, 00:10:00, 00:15:00)

Observation: The current timestamp is 00:26:00. Status of physical objects: oven is not occupied, temperature is 425.0;
microwave is not occupied; stove is not occupied

Thought: The recipe is completed.

Action: Finish

*/

Please follow the example to generate the action sequence for the following recipes.
/%

Recipe 1:

Description

Action Sequence

Table 13: Prompt for ReAct-style action sequence generation with feasibility priority.

22

Feedback

Wrong Recipe
Wrong Action
Time Error

Infeasible Multitask
Object Occupancy
Object Temperature
Object Volume
Dependency
Repeated Action

time constraint

Action Duration
Execution Interruptibility

Recipe C is not one of our goals. Please select actions from our recipes A and B

There is no step X in recipe A.

The current time is HH:MM:SS. You can not perform any actions before the current times-
tamp.

You can not perform step X of Recipe A and step Y of Recipe B simultaneously since they
are all continuous actions.

Object M is currently occupied.

The Property of the Object is «, but step X of recipe A needs /.

The object only has a volume of water. It is not enough for this action.

Step Y of recipe A can not be performed because prerequisite step X is not completed. (The
expected finish time is HH:MM:SS)

Prerequisite step X is already used for the next action step Y in recipe A. You should not
execute the same step twice. If you insist, please complete all the previous steps first.

The time interval between Step X and Step Y in Recipe A exceeds the allowed time limit t
min.

Your plan execution time t min exceeds the time needed to perform the action.

Step X of Recipe A is not interruptable. You should finish the action in one go.

Observation

Success Execution

Failed Execution

Autonomous / Continuous action executed successfully. Stove is not occupied; Oven is not
occupied, temperature is ¢. You are executing step X of recipe A.
Step X of Action A can not be executed.

Hint

Executable Actions

The following actions are ready to be executed after HH:MM:SS, Step X of Recipe A, Step

Y of Recipe B.

Table 14: Examples of observation, feedback and hints from the environment.

Critic Example

Critic for the plan:

Plan Completeness: The following actions are missing in your plan: step 2 of Cobbler; step 3 of Cobbler; step 4 of Cobbler;
step 5 of Cobbler; step 6 of Pancakes; step 7 of Pancakes. Include them in the plan to complete the recipe.

Action Duration: The duration of the following actions do not align with the action duration: Pancakes step 9; Pancakes
step 10; Pancakes step 14; Pancakes step 12. Make sure the duration of the actions are correct.

Action Concurrency: You can not start another action while executing a continuous action. In your plan, the following
actions can not be performed simultaneously with each other: step O of Pancakes and step 1 of Pancakes; step 1 of Pancakes
and step 5 of Pancakes ; step 6 of Cobbler and step 3 of Cobbler . Please adjust the timeline to avoid the conflict.

Action Interruption: The following actions should not be interrupted in your plan: step 14 of Pancakes. Make sure they
are finished in one go.

Action Dependency: step 1 of Pancakes can be performed only after prerequisite action step 0 of Pancakes is finished. You
should complete the prerequisites before performing the next action.

Time constraint: The following action pairs violate the time constraint: step 5 of Cobbler should start within 2 min after
step 3 of Cobbler is finished; step 14 of Pancakes should start within 2 min after step 12 of Pancakes is finished. Reschedule
the actions to meet the time constraint.

Physical Object: Step 14 of Pancakes can not be performed at time 00:02:00 due to Object stove is occupied. Adjust the
use of the physical objects to meet the requirements.

Multitasking Efficiency The plan is feasible. The agent is idle during the following timestamps: HH:MM:SS and
HH:MM:SS. You can assign continuous actions to the agent to optimize the plan for a shorter execution time. If you think
the plan is optimal, you can answer Action: Done to finish the task.

Table 15: Critic example for LLM-Modulo framework.

23

	Introduction
	Related Work
	Recipe2Plan
	Properties of Actions
	Multitasking Constraints
	Dataset Construction
	Environment

	Experiments
	Baselines
	Evaluation Metrics
	Main Results

	Analysis
	Multitasking with Different Priority
	Error Analysis
	Planning with Hints of Executable Actions

	Conclusions
	Details for Dataset Construction
	Recipe Collection
	Details for Recipe Annotation

	Relative Multitask Efficiency
	Implementation Details
	Heuristic Baseline Algorithm
	Environment
	Model Details
	Planning Methods

	Commonsense Reasoning Evaluation
	Open-Loop Planning Results
	Planning Multitasking with Iterations

