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Abstract

Imitation learning, wherein learning is performed by demonstration, has been stud-
ied and advanced for sequential decision-making tasks in which a reward function
is not predefined. However, imitation learning methods still require numerous
expert demonstration samples to successfully imitate an expert’s behavior. To im-
prove sample efficiency, we utilize self-supervised representation learning, which
can generate vast training signals from the given data. In this study, we propose
a self-supervised representation-based adversarial imitation learning method to
learn state and action representations that are robust to diverse distortions and
temporally predictive, on non-image control tasks. Particularly, in comparison with
existing self-supervised learning methods for tabular data, we propose a different
corruption method for state and action representations robust to diverse distortions.
The proposed method shows a 39% relative improvement over the existing adver-
sarial imitation learning methods on MuJoCo in a setting limited to 100 expert
state-action pairs. Moreover, we conduct comprehensive ablations and additional
experiments using demonstrations with varying optimality to provide the intuitions
of a range of factors.

1 Introduction

Imitation learning (IL) is widely used in sequential decision-making tasks, where the design of a
reward function is complicated or uncertain. When a reward is sparse [39] or an optimal reward
function is unknown, IL finds an optimal policy that relies only on expert demonstrations. Owing
to recent development in deep neural networks, the range of behaviors, which can be imitated, has
expanded. There are two main learning approaches for IL. The first approach trains a policy by
following actions from an expert in a supervised manner called behavioral cloning (BC) [36, 44].
However, error accumulation limits BC because it greedily imitates the demonstrated actions. The
second approach is inverse reinforcement learning (IRL) [3], inferring a cost function based on given
expert demonstrations. The IRL implements adversarial learning [16] to infer the cost function.
Therefore, an agent learns the policy to imitate expert demonstrations, whereas a discriminator learns
to differentiate between the expert’s behavior and that of the agent. The learned discriminator is used
as the cost function in the reinforcement learning (RL) phase.

Although IRL has led an advance in IL, it has key challenges. First, adversarial learning is known to
be delicate in practice. The min-max computational formulation of adversarial imitation learning
(AIL) often involves brittle approximation techniques. Second, the IL requires many demonstration
trajectories to recover an expert policy. Although IRL requires fewer demonstrations than BC, it still
requires considerable trajectories. Recently, many algorithms or techniques have been proposed to
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Figure 1: Overview of the proposed model. Details of each component and loss in the figure are
described in Section 2.

address the first challenge [10, 15, 35, 38, 39]; however, little work has been done to improve the
sample efficiency of expert demonstrations required [5, 55].

Self-supervised representation learning (SSL) has advanced sample efficiency in the image and
language domains [11, 17, 31]. It applies various transformations to the data and uses the transformed
data itself as supervision. Thus, it increases the sample efficiency by obtaining training signals
from auxiliary tasks or objectives that do not rely on labels. Specifically, InfoNCE [11, 21] and
asymmetric twin-based [12, 17] SSL approaches are known to be effective for learning robust feature
representations for different distortions of identical inputs. Recently, SSL has been utilized in image-
based RL algorithms [41, 43] and has shown significant improvement in performance. However,
transformation techniques applied to image-based RL are not directly adaptable to non-image control
benchmarks. This is because these approaches rely upon the semantic/spatial properties of data that
may generate either out-of-distribution examples or examples that supply only the same view when
directly applied to a continuous control (tabular) domain.

In this study, we propose a sample-efficient AIL method for non-image control benchmarks. The
proposed method leverages auxiliary training signals for learning state and action representations
that are temporally predictive and robust to diverse distortions. Based on the characteristics of each
domain and benchmark, an auxiliary task that can learn informative feature representations is different.
For RL, to address sequential decision-making tasks, the feature representation of a state and action
should contain temporally predictive information. To address this, we add an auxiliary task that
predicts the next state representation from the given current state and action representations.

Moreover, learning representations that discard information regarding nuisance variables improves
generalization and decreases required sample complexity. Previous transformation techniques for
tabular data [4, 52] generate transformed samples far from real samples. Therefore, we propose a
simple, effective corruption method that generates transformed samples showing diverse distortions
that are possible in-distribution. Empirically, we demonstrate that promoting temporally predictive
feature representations with robustness against diverse distortions significantly improves sample
efficiency.

2 Method

The core of RL is an agent and environment. An agent receives a reward from the environment based
on the actions determined by a policy. RL learns the optimal policy of a Markov decision process.
For IL, the agent learns the optimal policy where a pre-defined reward function does not exist by
relying only on given expert demonstrations. We define the IL scenario from a small number of
expert demonstrations. The expert demonstrations DE are sampled from a state-action density of an
expert, ρO, defined as follows:

DE = {(sn, an)}NE

n=1
i.i.d.∼ ρO(s, a), (1)
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where NE is the number of state-action pairs from ρO. We assume a scenario in which NE is less
than the number of one full trajectory. We denote a state-action pair by x = (s, a) where x ∈ X and
X = S ×A.

This study comprises the following six networks, as illustrated in Figure 1.

A policy πθ(·) parameterized by θ that generates actions a given states s based on a policy.

A value function V (·) that evaluates a current policy πθ. V is trained with rewards r from an
estimated cost function.

A state encoder SE(·) that extracts a feature representation of raw states s. zs = SE(s) ∈ Zs.

An action encoder AE(·) that extracts a feature representation of actions a. za = AE(a) ∈ Za.

A forward dynamics model F (·) that predicts the feature representation of the distorted version
of next states ẑst+1 from the feature representations of the current state and action, zst and zat , and
Gaussian noises N . ẑst+1 = F (zst ⊕ zat ⊕N ) ∈ Ẑt+1, where ⊕ is concatenation.

A discriminator Dω(·) parameterized by ω that discriminates agent demonstrations from expert
demonstrations DE . The input of Dω is zs ⊕ za. Dω is also called a cost function. In the RL phase,
Dω is the estimated cost function (r = −log(Dω(z

s ⊕ za)) ∈ R).

As shown in Algorithm 1 in the Supplementary S2, the proposed method comprises three major parts.
In Section 2.1, we explain how to train the cost function Dω using expert demonstrations DE (GAIL
in Algorithm 1). In Section 2.2, we describe how to use SSL in a non-image environment (REPR
in Algorithm 1). We implement trust region policy optimization [40] to train the agent policy πθ by
following the use in [22] (TRPO in Algorithm 1).

2.1 Generative Adversarial Imitation Learning

The proposed method is based on generative adversarial imitation learning (GAIL) [22]. GAIL
finds an optimal policy by matching an occupancy measure between expert E and the agent. The
optimization equation of GAIL can be derived in the form of the Jensen-Shannon divergence, which
is equal to the minimax equation of generative adversarial networks [16]. The minimax optimization
of GAIL is expressed as follows:

min
θ

max
ω

E
x∼Dπ

[logDω(x)] + E
x∼DE

[log(1−Dω(x))] , (2)

where Dπ and DE are the corresponding demonstrations from an agent policy πθ and expert policy
πE, respectively. In GAIL, the raw state and action are input to the discriminator. For the proposed
discriminator, state and action representations embedded by state and action encoders, SE(·) and
AE(·), are input. The discriminator loss is expressed as follows:

max
ω

E
x∼Dπ

[logDω(z)] + E
x∼DE

[log(1−Dω(z))] , (3)

where z = zs ⊕ za. Here, zs is a state representation embedded by SE(s), and za is an action
representation embedded by AE(a).

2.2 State and Action Representations

2.2.1 Modeling forward Dynamics

Each domain requires different ways of generating self-supervision depending on the properties
of the data. For example, BERT [14] leverages a training signal by predicting future words from
previous words. For RL, the prediction error of a forward dynamics model has been used as an
intrinsic reward [34, 41]. In tabular data, in contrast to data from an image, it is difficult to create
a distorted version of an original input without losing semantic information. Therefore, we posit
that maximizing the agreement between the distorted and original ones is more suitable for learning
meaningful features than maximizing the agreement between the two distorted versions of input in
tabular data. We propose a method that generates a distorted version of the input to learn or discard
the desired features and their corresponding loss function for RL.

The proposed method uses the forward dynamics model to predict the distorted version of the
next state representation from the given current state and action representations. First, the forward
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dynamics model is mathematically expressed as follows:

ẑst+1 = F (zst ⊕ zat ⊕N ), (4)

where zst = SE(st), zat = AE(at) at a time step t, and N (0, 1) is the Gaussian noise. The output
ẑst+1 represents a distorted version of the observed future representations zt+1. The choice of a
transformation controls what the representation learns. Thus, we apply a distortion by concatenating
Gaussian noise rather than using a corrupted state-action pair because corruption cannot guarantee
consistency in information with respect to temporality.

We use a contrastive loss for training. InfoNCE-based unsupervised contrastive learning (UCL)
methods learn a feature representation by maximizing the agreement between differently transformed
same input while minimizing that of the rest of the input (negative samples). The learned represen-
tation from UCL is invariant in unnecessary details; however, it contains maximal information by
maximizing a lower bound on the mutual information between the two views [37, 49]. We utilize the
InfoNCE loss to obtain as many temporally informative features as possible. The proposed forward
dynamics model is trained to maximize the agreement between the distorted and observed next state
representations while minimizing that of the rest of the state representations. This is expressed as
follows:

LF = −E

[
log

ecs(ẑs
i,t+1,z

s
i,t+1)/τ

ζ

]
, ζ =

BS∑
j=1

1j ̸=ie
cs(ẑs

i,t+1,z
s
j,t)/τ +

BS∑
j=1

1j ̸=ie
cs(ẑs

i,t+1,z
s
j,t+1)/τ ,

(5)

where (zst , z
s
t+1, ẑ

s
t+1) ∼ (Zs

t , Z
s
t+1, Ẑ

s
t+1) and cs(u, v) = u⊤v/||u|| ||v|| (j indexes the state or

next state representation in the batch, and BS is the batch size). Following SimCLR [11], we use the
other 2(BS − 1) representations in the batch as negative samples.

2.2.2 Corruption Method

Learning representations that can discard nuisance features is preferable to reduce sample complexity.
To help with this, we propose a corruption method that creates a distorted sample showing diverse
views that are possible in-distribution. The proposed method swaps the input features of each state-
action pair with the input features of the same indices of another state-action pair in a batch. For a
batch of state-action pairs sampled from the current policy, Xb, we generate a corrupted version x′i
for each state-action pair xi. The corrupted versions of state s and action a are generated, respectively.
However, for convenience of rationalization, we explain the method based on the state-action pair x.

First, we make a copy of Xb as Xc
b and permute Xc

b by changing the order of each state-action
pair in the batch at random, perm(Xc

b ). Second, we sample some indices of the state-action
pair without replacement, I ∈ {0, ..., dim(s⊕ a)− 1}q. q is the number of features to corrupt
(= ⌊c · dim(s⊕ a)⌋), where c is a corruption rate (c = cs + ca). Third, we duplicate I as a shape of
N(Xb)× q. Subsequently, we generate corrupted state-action pairs X ′ of a given batch as follows:

Xc
b [I] = perm(Xc

b )[I],

X ′
b = Xc

b ,
(6)

where X ′
b = ⟨S′

b ×A′
b⟩. For convenience, we omit subscripts b hereafter. We refer to this method

as the swapping corruption method. Empirically, we observed superior performance compared to
existing methods on non-image control benchmarks.

Numerous discrepancy measures can quantify the similarity between corrupted and original inputs.
For the state, we maximize the similarity between the representation of the distorted and observed
versions by minimizing the mean squared error (MSE) as follows:

LSC = E
∥∥∥zs − zs

′
∥∥∥2
2
, (7)

where (zs, zs
′
) ∼ (Zs, Zs′) and Zs = SE(S) and Zs′ = SE(S′). For the state representation,

temporally predictive features should be embedded well to minimize LF simultaneously. Thus, we
observed the best performance with MSE compared to other indirect discrepancy measures. For the
action representation, because the gradients from the LF are not sufficient to hinder collapse, we use
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the Barlow twins loss [53] that is robust against the constant embedding problem. The Barlow twins
loss draws the cross-correlation matrix close to the identity matrix. This is expressed as follows:

LAC =
∑
i

(1− Cii)2 −
∑
i

∑
j ̸=i

C 2
ij , Cij =

Za
i Z

a′

j√
(Za

i )
2
√
(Za′

i )2
(8)

where Za = AE(A) and Za′
= AE(A′). i, j index the vector dimensions of the action representa-

tions. Therefore, the Barlow twins loss prevents collapse by maximizing the similarity between the
representation of the distorted and observed versions of action and reducing entanglement between
the components of the representations. Ablations that can give more intuitions about losses are given
in Section 5. Consequently, the total loss for SSL is computed as follows.

LSS = λFLF + λSLSC + λALAC , (9)

where λF , λS , and λA are hyperparameters for each loss.

3 Related Work

3.1 Data-efficient Reinforcement Learning

In deep RL, studies have been conducted to improve sample efficiency. For continuous control,
several studies have suggested the use of reconstruction loss [18, 27]. However, most of the suggested
methods are RL benchmarks, which have a sparse reward or image state. Methods using a self-
supervised error as an intrinsic reward have been proposed to improve the sample efficiency in a
sparse reward scenario [32, 34, 42]. For the image state, various image augmentation techniques and
self-supervised objectives have been applied to reduce environmental interactions [19, 20, 25, 26,
30, 41, 43, 51]. To the best of our knowledge, this is the first IL method using SSL to improve the
sample efficiency of expert demonstrations.

3.2 Self-supervised Representation Learning

Currently, SSL is divided into three approaches. The first is a pretext task [33], which creates a pre-task
that can learn useful feature representations and use the learned representations on downstream tasks.
The second is UCL. Contrastive learning works on a simple push-pull principle, and it can be a sample
or cluster level [9]. The contrastive loss contrasts the neighboring instances with non-neighboring
ones [11, 21]. The third is asymmetric twin-based SSL. Unlike UCL, these methods do not use
negative samples during training. Asymmetric twin-based SSL methods learn robust representations
in such a way that differently transformed versions of input have the same representation. As
representative methods, BYOL [17] and Simsiam [12] used Siamese networks with weight sharing and
stop-gradient techniques to avoid collapse. Barlow twins [53] utilized a correlation matrix between
the representations of a differently transformed same input to maximize the similarity between them
while minimizing redundancy. VICReg [6] is effective for making the two representations similar
and reducing the embedding of non-informative factors.

There are two SSL methods for tabular data, VIME [52] and SCARF [4], which can be directly applied
to non-image control benchmarks. VIME uses a random corruption method and SCARF suggests
a method that replaces each feature dimension by a random draw from that feature dimension’s
empirical marginal distribution. The difference between our work is the corrupted data of swapping is
a mixture of only two state-action pairs because the replaced features are sampled from another single
state-action pair. Meanwhile, the corrupted data of SCARF is a mixture of varying state-action pairs,
resulting in possible out-of-distribution data. In the experiments, the proposed swapping corruption
method showed higher performance compared to the other two methods. We measured the variance
and outlier scores of the corrupted samples produced by VIME, SCARF, and the proposed method, to
confirm that the proposed method qualitatively generates more realistic and still varied samples.

3.3 Inverse Reinforcement Learning

Although IRL [1, 56] has made significant advances in IL, it encounters some challenges. First, there
is an unstable training issue for adversarial learning; improved algorithms have been proposed to
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Table 1: Final performance using 100 expert state-action pairs on Ant-v2, HalfCheetah-v2, and
Walker2d-v2 of MuJoCo. Best results are in bold. The proposed method outperforms existing
IRL methods by a significant margin. It succeeds at imitating the expert’s behavior on all three
benchmarks using only 100 expert state-action pairs.

BC GAIL AIRL VAIL EAIRL SQIL ASAF Ours

Ant 932.2±171.7 4198.2±72.6 3922.9±210.7 4216.8±31.0 3137.5±424.8 -141.4±427.6 1015.6±107.0 4554.8±162.6
HalfCheetah 1875.2±1623.3 2034.6±2384.6 -214.1±45.2 -1012.8±497.1 6.6±15.0 -238.0±22.5 1187.6±1935.9 5416.0±203.8

Walker2d 535.5±134.4 3513.4±172.9 909.7±695.8 3466.7±109.0 2084.9±2499.7 283.3±26.5 192.9±58.5 3527.6±131.4
Average 1114.3±688.1 3248.8±876.7 1539.5±317.2 2223.6±212.4 1743.0±979.8 -32.0±158.9 798.7±700.4 4499.4±165.9

Table 2: Final performance when using the proposed corruption method (Swapping) and existing
methods (NE = 100), and variance and predicted local outliers [7] of corrupted states. For measuring
the outlier factor of corrupted states, we make use of 10 neighbors from observed states.

Ant Random Mean Each dim Swapping

Cumulative rewards 4263.7±243.9 4482.0±127.4 4459.3±128.4 4554.8±162.6
Variance ↑ 0.765 0.756 0.843 0.843

Predicted local outliers (%) ↓ 90% 6% 26% 11%

overcome this problem. GAIL [22] is the first study drawing an analogy between IL and generative
adversarial networks [16]. AIRL [15] proposed an AIL method that is robust to changes in dynamics.
VAIL [35] improves the stability problem by constraining the information flow in the discriminator.
EAIRL [38] reduces the overfitting problem using empowerment (the information gain on action
entropies). These algorithms have been suggested to improve the stability and scalability of AIL.

Second, studies on the sample efficiency of expert demonstrations have not been sufficiently con-
ducted. SAILfO [47] covers the necessity of studying the sample efficiency of expert demonstrations,
and proposes a simple model-based algorithm. Recently, f-GAIL [55] showed that finding an appro-
priate discrepancy measure during training is better than using a predetermined measure to improve
sample efficiency. ASAF [5] is an algorithm in which training the discriminator could perform the
role of policy and showed that it helps improve sample efficiency. However, these methods require
at least five full trajectories to recover the expert policy on continuous control benchmarks such as
the MuJoCo physics engine. Unlike those methods, the proposed method successfully imitates the
expert’s behavior with less than one full trajectory.

In practice, it is difficult to collect perfectly optimal demonstrations because demonstrations are
commonly collected by crowdsourcing [23] or multiple experts [13]. The collected data from external
sources are normally imperfect—a mixture of optimal and non-optimal demonstrations. To address
these problems, algorithms for IL from imperfect demonstrations have been proposed [50, 54].
We demonstrate that combining the proposed method with other algorithms for IL from imperfect
demonstrations further improves them, thus, verifying the scalability of the proposed method.

4 Experiments

We assessed the performance of the proposed method on five continuous control benchmarks sim-
ulated by MuJoCo [46] (Ant-v2, HalfCheetah-v2, Hopper-v2, Swimmer-v2, and Walker2d-v2) in
four distinct settings: using expert demonstrations of less than one full trajectory with the optimality
of 25%, 50%, 75%, or 100%. We tested the sample efficiency of the proposed method in a scenario
where optimal demonstration samples of less than one full trajectory are available (≤ 100). Expert
demonstrations with optimalities of 25%, 50%, and 75% represent imperfect demonstrations - a
mixture of optimal and non-optimal demonstrations. Imperfect demonstrations DI are sampled from
a noisy state-action density ρ, expressed as follows: DI = {(sn, an)}NI

n=1
i.i.d.∼ ρ(s, a), where NI is

the number of state-action pairs from ρ. The noisy state-action density ρ can be expressed as follows:

ρ(s, a) = ψρO(s, a) +

n∑
i=1

viρi(s, a)

= ψρO(s, a) + (1− ψ)ρN (s, a),

(10)

where ρO is the state-action density of an expert, ρi is the state-action density of a single non-
expert, and n is the number of non-experts. Furthermore, ψ, satisfying 0 < ψ < 1, is an unknown
mixing coefficient of the optimal and non-optimal state-action densities, and ψ +

∑n
i=1 vi = 1;
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Figure 2: Final performance on five continuous control benchmarks with different optimality rates ψ.
Vertical axes denote cumulative rewards acquired during the last 1000 training iterations. Shaded
regions denote standard errors over three runs. Ours* = Ours + MM

that is, an optimality of 25% indicates that ψ = 0.25. More details on the experimental setting and
hyperparameters can be found in the Supplementary S1.

Optimality of 100% First, we evaluated the proposed method with a small number of perfect
expert demonstrations. We compared the method with seven existing IL methods: BC, GAIL, AIRL,
VAIL, EAIRL, SQIL, and ASAF. Table 1 shows that the proposed method outperforms other IL
methods on all three benchmarks. Particularly, the proposed method succeeded in perfectly imitating
the expert policy on HalfCheetah. Notably, GAIL and VAIL show higher performance than the
recently proposed ASAF in 100 state-action pairs. For f-GAIL, we conducted experiments using the
official GitHub; however, it failed to converge in less than one full trajectory. We surmise that this is
because a reasonable number of expert state-action pairs must be guaranteed to automatically learn
an appropriate discrepancy measure for the given pairs.

We also tested our method with varying expert data sizes. As provided in Table S5 in the Supplemen-
tary S4, there is a relatively small decrease in the performance up to NE = 20 on all three benchmarks.
However, when NE = 10, the performance is decreased by a large margin. To make the experimental
results stronger, we tested the reliability of the reported average using IQM [2]. We obtained IQM
4555.8 on Ant, IQM 5420.3 on HalfCheetah, and IQM 3527.9 on Walker2d, which are very close to
the reported average.

In addition, we tested the proposed method (without LAC) on two discrete control benchmarks of
OpenAI Gym [8] (BeamRider-ram-v0, and SpaceInvaders-ram-v0). We observed that the cumulative
rewards of the proposed method are superior to those of the GAIL. For the results on the two discrete
control benchmarks, please refer to the Supplementary S8. Moreover, the average cumulative rewards
of the expert policy that we obtained can be found in the Supplementary S1.1.

Corruption method We verified the performance of the swapping corruption method by comparing
it with the existing two corruption methods and additionally, a mean corruption method, which
replaces the features with the empirical marginal distribution’s mean, in cumulative rewards, variance,
and local outlier score. Table 2 shows that the proposed method shows a higher performance
compared with the three corruption methods. We observed that the proposed method generated
transformed samples that provide more diverse views compared with random and mean methods
and comparably diverse views compared with the method, obtaining each replaced feature from
varying state-action pairs (Each dim). We measured its diversity on the corrupted states using variance
σ2 : 1

1000

∑1000
i=1

(∑dim(s)
j=1 (s′i,j − s̄′i,j)

2
)

where s̄′ denotes the average of {s′i}
1000
i=1 .

Also, one potential concern about using corruption as a transformation technique is that the corrupted
samples are out-of-distribution, resulting in performance degradation. To evaluate this, we computed
the local outlier factor [7] of the corrupted states. We computed the percentage of corrupted samples
that are local outliers with respect to the observed states. Table 2 shows that for the random method,
the most corrupted states are predicted as outliers, despite the low variance. For the mean method,
the corrupted states are mostly realistic; however, the diversity is lower compared with the swapping
method, which limits the effectiveness of data augmentation. Replacing each feature with a feature
from a different combination has diversity, but it also creates more out-of-distribution data. The
proposed swapping method showed high variance and a relatively low percentage of local outliers.
As a result, we empirically confirmed that for control tasks, it is imperative to create meaningful
in-distribution data in the corruption process.

Optimality of 25%, 50%, or 75% We tested the performance of the proposed method in a more
practical scenario with imperfect demonstrations. In this environment, we combined the proposed
method with 2IWIL [50]. 2IWIL showed stable training compared to other IL algorithms for imperfect
demonstrations because they predict the confidence of given demonstrations in a pre-stage. Please
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Table 3: Final performance using 25 optimal and
75 non-optimal state-action pairs (ψ = 0.25) to test
improvement in sample efficiency.

Ablation Cumulative Rewards

MM Ours Ant HalfCheetah Walker2d

478.4±159.7 4573.1±194.4 1981.8±989.7
✓ 776.3±1805.1 4728.3±172.8 3436.0±15.8

✓ 3764.6±241.2 5217.4±29.7 3039.6±295.6
✓ ✓ 3966.0±26.2 5221.0±75.1 3403.0±52.5

Table 4: Ablation studies using 100 expert state-
action pairs to test the importance of LF and (LSC ,
LAC ). FD = Forward dynamics, and CR = Corrup-
tion.

Ablation Cumulative Rewards

FD CR Ant HalfCheetah Walker2d

4198.2±72.5 2034.6±2384.6 3513.4±172.9
✓ 3329.6±513.0 2330.3 ±3741.3 3524.5±17.3

✓ 2244.0±208.6 591.9±549.9 1028.6±15.4
✓ ✓ 4554.7±162.5 5415.9±203.8 3527.5±131.3

refer to the Supplementary S1.2 for detailed explanations about 2IWIL, other comparison methods,
and the collected imperfect demonstrations. The pseudo-code of the combined algorithm can be
found in the Supplementary S3.

Figure 2 shows the cumulative rewards on the five continuous control MuJoCo benchmarks with
different optimality rates. The proposed method combined with 2IWIL outperforms the other six
comparisons by a large margin in all optimality rates. Particularly, the relative improvement over
2IWIL and CAIL [54] on Ant is 288% and 208% on average, respectively. However, we observed a
decrease in the cumulative rewards when the noise rate was 0.75 on Ant and Walker2d benchmarks.
We surmise that this was caused by a deficiency in the number of locomotion movements from
the optimal policy. The degree of improvement in performance is dependent on a number of given
optimal demonstrations to some extent because SSL methods create an auxiliary training signal by
leveraging the given data.

Manifold mixup We applied a widely-used sample efficiency technique, manifold mixup
(MM) [48], to the combined method. In previous studies [28, 29], it is shown that MM in the
feature space enriched by SSL is further effective to improve performance. Through this experiment,
we would like to compare the efficiency of 1) MM, 2) the proposed method, and 3) using both as a
sample efficiency technique. MM increases the diversity of expert demonstrations by interpolating
the feature space output of the input data pair. We performed MM on the feature space as follows:
(z̄, ȳ) = (Mixλ(zi, zj),Mixλ(yi, yj)), where Mixλ(a, b) = λ · a+ (1− λ) · b. Here, (zi, zj) are the
feature representations of (xi, xj), and (yi, yj) are the estimated confidence by 2IWIL. Table 3 shows
that, when only MM was used, the performance on Walker2d improves; however, the performance on
Ant and HalfCheetah does not show a reasonable improvement. This indicates that it is difficult to
naturally learn representations that are temporally predictive and robust to diverse distortions from
training signals generated by synthetic data from MM. Conversely, when only the proposed method
was used, we observed a relatively small increase on Walker2d due to a deficiency in the number
of optimal locomotion movements. Consequently, as shown in Figure 2 and Table 3, we observed
near-optimal performance on all the benchmarks with varying optimalities when both ours and MM
were used.

5 Building Intuitions with Ablations

We conducted ablations on the proposed factors to provide an intuition of each role.

Importance of both LF and (LSC , LAC) Table 4 shows that LF and (LSC , LAC) are comple-
mentary to each other. When only LF is added to GAIL, we observed an increase on HalfCheetah
and Walker2d, not on Ant, and the gap in increase is small. Tian et al. [45] demonstrated that it is
not always good to learn maximal information using contrastive learning. Rather, it is important
to minimize nuisance information as much as possible using a strong transformation to maximize
task-specific information. However, a strong transformation without damaging semantic information
is impossible in continuous control data. Thus, LF mainly plays the role of maximally learning
temporally predictive information with a weak, reasonable transformation, and (LSC , LAC ) helps to
suppress the nuisance factors using the corruption method so as to maximize task-relevant features in
the proposed method.

Loss function of LF For the discriminator, Dω , temporally predictive features are important infor-
mation to distinguish the imitator (agent) from the expert. However, learning maximal information can
lead to learning nuisance information as well. Transformation techniques should be used to suppress
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this. For LF , we tested the concatenation of Gaussian noise and the corrupted state as transformation
techniques to generate the distorted version. The concatenation of Gaussian noise yields better results.

Table 5: Ablation studies using 50 optimal and 50
non-optimal state-action pairs on Ant-v2 to test the
role of a loss function of LF .

MSE BYOL Barlow twins SimCLR

LF 2793.4± 98.5 752.1±51.0 3602.7±1164.8 4384.7±49.2

Qualitatively, there was a 7.5% relative im-
provement when using the concatenation of
Gaussian noise. We surmise that this is be-
cause corruption can unavoidably change im-
portant input features with respect to tempo-
rality. In addition, to demonstrate the effec-
tiveness of Gaussian noise, we conducted an
experiment of not appending noise dimensions and observed a decrease on benchmarks, as provided
in the Supplementary S5. For the loss function of LF , in addition to the InfoNCE loss of SimCLR, we
tested MSE, and MSE with the stop-gradient of BYOL, and the Barlow twins loss. Table 5 presents
that SimCLR’s performance is superior to other methods by a significant margin.

Loss function of LSC and LAC We tested various SSL loss functions for both LSC and LAC .
Notably, for LSC , the MSE loss that is exposed to the collapsing problem shows the highest perfor-
mance on average. This is because LF cannot be minimized if the state representation is only the
same constant. For LAC , the Barlow twins and SimSiam losses showed the first- and second-best
performance on average, respectively. Detailed analysis and intuitions of SSL loss functions for a
state and action are provided in the Supplementary S6.

Sensitivity to corruption rate Recently, studies on the importance of the degree of transformation
have been proposed in SSL. Jing et al. [24] showed that a strong transformation can cause dimensional
collapse. To find an appropriate corruption rate, we studied the sensitivity to the corruption rate of
state and action and reported the results in Table S8 in the Supplementary S7.

6 Conclusion

The sample efficiency of expert demonstrations is desirable in IL because obtaining a large number of
expert demonstrations is often costly. Motivated by successes in SSL, we propose a sample-efficient
IL method that promotes learning feature representations that are temporally predictive and robust
against diverse distortions for continuous control. We evaluated our proposed method in various
control tasks with limited expert demonstration settings and showed superior performance compared
to existing methods.

In spite of the excellence with limited settings, the proposed method has some limitations. There is an
increase in model complexity and additional computational cost during training since three additional
networks and SSL losses are added.
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