
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

HESSIAN-AWARE TRAINING FOR ENHANCING MODEL
RESILIENCE FOR IN-MEMORY COMPUTING

Anonymous authors
Paper under double-blind review

ABSTRACT

Deep neural networks are not resilient to bitwise errors in their parameters: even a
single-bit error in their memory representation can lead to significant performance
degradation. This susceptibility poses great challenges in deploying models on
emerging computing platforms, such as in-memory computing devices, where
frequent bitwise errors occur. Most prior work addresses this issue with hardware
or system-level approaches, such as additional hardware components for checking
a model’s integrity at runtime. However, these methods have not been widely
deployed since they necessitate substantial infrastructure-wide modifications. In
this paper, we study a new approach to address this challenge: we present a novel
training method aimed at enhancing a model’s inherent resilience to parameter
errors. We define a model-sensitivity metric to measure this resilience and propose
a training algorithm with an objective of minimizing the sensitivity. Models trained
with our method demonstrate increased resilience to bitwise errors in parameters,
particularly with a 50% reduction in the number of bits in the model parameter
space whose flipping leads to a 90–100% accuracy drop. Our method also aids
in extreme model compression, such as lower bit-width quantization or pruning
∼70% of parameters, with reduced performance loss. Moreover, our method is
compatible with existing strategies to mitigate this susceptibility.

1 INTRODUCTION

Recent studies have shown that deep neural networks (DNNs) are not resilient to bitwise errors in their
parameters. For example, a single-bit error on the memory representation of a model parameters can
significantly reduce a DNN’s performance at inference (Hong et al., 2019; Rakin et al., 2019). This
lack of resilience poses a challenge for deploying DNN models to emerging computing platforms,
such as in-memory computing devices or neuromorphic computing platforms (Sebastian et al., 2020;
Xu et al., 2021; Aguirre et al., 2024), where bitwise errors in devices are frequent (Yao et al., 2020a).

Most prior work addresses this reliability issue by developing defensive mechanisms at the hardware-
level or system-level (Bennett et al., 2021; Rakin et al., 2021; Li et al., 2021; Di Dio et al., 2023; Zhou
et al., 2023a;b; Liu et al., 2023; Wang et al., 2023). While having demonstrated their effectiveness,
these approaches are often difficult to implement in practice as they require additional hardware
components or updates to system software, necessitating infrastructure-wide changes.

In this work, we study an orthogonal approach to address this resilience problem. We ask: How can
we train models to have increased resilience to bitwise errors in parameters? No prior work has
studied solutions to enhance the natural resilience of a model to bitwise errors in its parameters. Such
resilient models will also benefit model compression techniques, e.g., quantization, which involve
optimal parameter variations (LeCun et al., 1989). Moreover, when combined with existing solutions,
it will complement them and enable models to maintain stable performance in error-prone hardware.

Contributions. First, we present a novel training algorithm that enhances a DNN’s resilience to
bitwise errors in their parameters. We focus on a model’s second-order property—the sharpness—that
can approximate the sensitivity of a model’s performance to its parameter variations. We empirically
test various approaches to reducing the sharpness, from training with second-order optimizers (Yao
et al., 2021a) to training algorithms specifically designed to reduce the value (Foret et al., 2021).

Our extensive analysis shows that using the Hessian trace as a loss function is the most effective
in decreasing a model’s sharpness. However, computing the full Hessian matrix makes the training

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

process computationally intractable, especially when training ImageNet-scale models. To address
this challenge, we also develop an optimized training strategy that minimizes only the largest-p% of
the Hessian eigenvalues during training (for example, p is 10–50% in our evaluation).

Second, we comprehensively evaluate the effectiveness of our approach across multiple datasets
and network architectures including ones used in prior studies. We adapt the systematic resilience
analysis framework developed by Hong et al. (2019): the framework examines a single-bit error—an
atomic error that can occur in a DNN’s parameter representation in memory. It causes all possible
single-bit errors one-by-one and measure the accuracy on a validation set each time.

We demonstrate that our training algorithm significantly enhances a model’s resilience to (individual)
single-bit errors to its parameters. The number of parameters whose perturbations can cause the
accuracy drop over 10% are reduced by 5–15%. Particularly, we reduce by half the number of
parameters when a single-bit error in them causes the accuracy drop of 90–100%. ImageNet models,
fine-tuned only a few layers with our Hessian loss, show a similar decrease in such parameters.

We conduct an in-depth analysis of the increased resilience achieved by our approach. In our analysis
of visualized loss landscapes, we show that the sharpness is greatly decreased across all the layers
in a model. We find that our approach is particularly effective on fully-connected layers and the
convolutional layers in architectural blocks without skip connections. Moreover, we show that the
numerical changes in parameter values required to cause a significant accuracy drop has increased.

Third, we also demonstrate that the resilience enhanced by our approach can benefit the techniques
that rely on optimal brain damage, such as quantization (Fiesler et al., 1990) or pruning (Han et al.,
2015). Models trained with our algorithm achieve better test accuracy than regularly-trained models,
especially when lower bit-width quantization (e.g., 4- or 2-bit) is applied. In pruning, these models
preserve test accuracy even with extreme sparsity values (i.e., removing ∼70% of parameters).

Fourth, we discuss the compatibility of our approach with existing defensive mechanisms for im-
proving DNN resilience to bitwise errors in model parameters. For each of the hardware-level or
system-level mechanisms, we conceptually demonstrate how the models trained with our approach
can be combined with them and offer a synergy while reducing their deployment overheads.

2 RELATED WORK

LeCun et al. (1989) demonstrates the resilience of DNNs to optimal brain damage: one can remove a
large portion of the model parameters without causing any significant accuracy drop. This property
has enabled the success of model compression techniques, such as quantization (Fiesler et al., 1990;
Morgan et al., 1991; Courbariaux et al., 2015) and pruning (Hassibi and Stork, 1992; Han et al.,
2015; Li et al., 2017). Prior work further leverages this property to safeguard DNNs against potential
threats, such as adversarial examples (Zhou et al., 2018) while preserving the performance.

Recent work has also warned of the possibility of terminal brain damage (Hong et al., 2019; Yao
et al., 2020b), where even a few perturbations to parameters can cause significant performance loss. It
is also important to note that the prevalence of such failures: half of model parameters, when subject
to a bitwise corruption, cause the accuracy to drop over 10% (Hong et al., 2019). Beyond its impact
on model accuracy, follow-up works have shown that by perturbing parameters in specific ways, one
can achieve various adversarial outcomes (Rakin et al., 2019; Chen et al., 2021; Rakin et al., 2022).

There has been significant effort in mitigating the impact of adversarial perturbations on model
parameters through hardware (Kim et al., 2014; Bennett et al., 2021; Saileshwar et al., 2022; Di Dio
et al., 2023; Zhou et al., 2023b) and software (Liu et al., 2023; Li et al., 2021; Konoth et al., 2018)
level defenses. Hardware-level defenses utilize proactive row refreshing (Kim et al., 2014), in-
DRAM counter-based mitigation (Bennett et al., 2021), risky-row swapping (Saileshwar et al., 2022),
error-correction-codes (ECC) for swap triggering (Di Dio et al., 2023) and utilizing lock table for
high-risk rows inside a memory device (Zhou et al., 2023b) to mitigate adversarial bit-flipping on
model parameters. System-level defenses use techniques, such as luring adversary to manipulate
“honeypot" parameters (Liu et al., 2023), checksum-based runtime checks to detect changes in model
parameters (Li et al., 2021) and employing data-row isolation to safeguard a model’s parameters from
fault attacks (Konoth et al., 2018). A few works explore techniques for improving thefault tolerance
of DNNs. Buldu et al. (2022) adapts adversarial training to train models under bitwise errors. Chitsaz
et al. (2023) proposes learnable quantization to limit the impact of bitwise errors on DNN inference.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Our work does not focus on defending DNNs against adversarial bit-flip attacks. Instead, we are
concerned with unintended bitwise errors that frequently occur in emerging computing platforms.

3 EXPERIMENTAL SETUP

Datasets. We use three datasets designed for benchmarking image classification: MNIST (LeCun
et al., 2010), CIFAR-10 (Krizhevsky, 2009), and ImageNet (Russakovsky et al., 2015).

Models. We experiment with four different DNNs typically used in the prior work on evaluating the
resilience to parameter corruptions. For MNIST, we employ two feed-forward DNNs: one with two
convolutional layers and two fully-connected layers, and LeNet (Lecun et al., 1998). For CIFAR-10
and ImageNet, we consider a DNN architecture popular in the community, ResNets (He et al., 2016).
We also run our evaluation on a Transformer-based model: DeiT-Tiny (Touvron et al., 2021).

Metrics. We introduce the evaluation metrics here to establish a clear framework for assessing
our approach’s effectiveness before discussing our methodology. We follow the prior work (Hong
et al., 2019) to quantify the resilience of a model under bitwise errors in its parameters. To quantify
performance degradation, we measure the relative accuracy drop (RAD) that computes (Ac−Ap)/Ac,
where Ac is the classification accuracy of a model on a validation set and Ap is the accuracy of
the model under parameter corruptions. We also define a erratic parameter as the parameter under
a single-bit error can lead to RAD over 10%. Because most prior work considers a 10% RAD
significant, we use this 10% threshold to determine the resilience.

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
RAD (%)

0

500

1000

1500

2000

2500

3000

Nu
m

be
r o

f b
its

 w
ho

se
 fl

ip
pi

ng
 re

su
lts

 in
 R

AD

Base Model
Conventional Training
Our Method

Figure 1: The distribution plots. Each plot shows the
number of bits in a DNN’s parameters whose flipping
results in RAD specified in the x-axis.

We also define the distribution plot where
we count the number of bits in a model’s
memory representation whose flipping
leads to RAD specified in the x-axis. Fig-
ure 1 shows the distribution plots contrast-
ing the two MNIST models, one trained
with our Hessian-aware training method
and the other not. We use a 5% granular-
ity on the x-axis for our plots. The plot
shows that our training method can overall
reduce the total number of bits whose er-
rors result in a relative accuracy drop and
also decrease the number of bits whose flip-
ping leads to a 95–100% accuracy drop.
By using this plot, we gain a deeper un-
derstanding of the severity and impact of
parameter perturbations before and after the application of our training algorithm.

4 OUR APPROACH: HESSIAN-AWARE TRAINING

4.1 A DNN’S SENSITIVITY TO PARAMETER VARIATIONS

We first focus on functions that can quantify a model’s sensitivity to parameter value variations. Our
goal here is to use these functions as optimization objectives to minimize sensitivity during training.
Suppose that a model f uses a loss function L. The rate of change in the loss in a random direction v
in the parameter space can be expressed as the gradient ∂L/∂v. This value encodes how sensitive a
model will be when its parameter values are changed along the direction of v. During optimization,
the training algorithm seeks a minimum that reduces this rate of change. However, standard training
does not inherently offer the resilience of a model to parameter variations caused by bitwise errors.

Second-order derivative as a sensitivity metric. The loss curvature of a neural nework is typically
super-linear, forming a convex hull around the local minima in the parameter space (Li et al., 2018).
We thus use the second-order derivative of the loss function in a random direction v as a metric to
quantify a model’s sensitivity to parameter variations. We note that this property has been used in
prior work (Jiang et al., 2020; Mulayoff and Michaeli, 2020; Li et al., 2018; Keskar et al., 2017;
Neyshabur et al., 2017) as a measure of the sharpness or flatness of the loss landscape. Few prior

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

works (Foret et al., 2021; Dong et al., 2019; 2020; Yang et al., 2022) have also used second-order
property of DNNs to improve generalization, accuracy or model compression. Most prior work
studies the interaction between the sharpness and the generalization of a neural network, a few works
studies its connection to model resilience to bitwise errors in parameters.

Our work utilizes the Hessian trace, the sum of the eigenvalues of the Hessian matrix. This requires
computing the Hessian matrix, the second-order partial derivatives of a loss function, with respect to
its parameters. Recent work has also leveraged the Hessian trace to measure the quantizability of a
neural network (Dong et al., 2019; 2020; Yao et al., 2021b), and we follow this insight to measure
sensitivity. Due to the large number of model parameters (typically ranging from millions to billions),
computing the Hessian trace directly is computationally intractable. We use the Hutchinson’s method
(Bekas et al., 2007) to approximate the Hessian trace over a number of random vectors v. Following
these prior practices, we use the Hessian trace to quantify sensitivity to parameter value variations.

4.2 MINIMIZING A DNN’S SENSITIVITY TO PARAMETER VARIATIONS

We present our novel training algorithm for reducing the sensitivity of a model to its parameter value
variations. Our strategy is to employ the Hessian trace as an additional regularization term in the loss
function used for training. The training process is shown in Algorithm 1.

Algorithm 1 Hessian-aware Training
Input: A model f , Training data D, Training steps T ,
Learning rate η, Number of approximation steps Nv,
Regularization coefficient λ
Output: A trained model fθ

1: Initialize θ0
2: Initialize τ to 0
3: for t = 1, 2, ..., T do
4: Draw a mini-batch St from D
5: Compute the loss Lxe(St; fθt)
6: Trt, Et ← 0, ϕ
7: for i = 1, 2, ..., Nv do
8: Draw a vector vi
9: Compute the gradient gi of the loss Lxe

10: Compute the Hessian matrix Hi along vi
11: Compute their eigenvalues Ei and trace Tri
12: Trt, Et ← Trt + Tri, Et + Ei
13: end for
14: Trt, Et ← (1/Nv)Trt, (1/Nv)Et

15: if Median(Et) > τ then
16: Ltot ← Lxe(St; fθt) + λ ∗ Trt
17: else
18: Ltot ← Lxe(St; fθt)
19: τ ←Median(Et)
20: end if
21: Compute the gradient gt of Ltot
22: θt+1 ← θt + η · gt
23: end for
24: return a trained model fθ

The algorithm is an adaptation of the pop-
ular training method, mini-batch stochastic
gradient descent (SGD), to our Hessian-
aware training method. Any gradient-based
training methods can be adapted to our
Hessian-aware training. The changes we
made are highlighted in blue.

In each mini-batch (line 3–22):

(line 3–5, 20–21) We compute the loss L
of a model fθt and update the model pa-
rameters θt with its gradient gt. This step
is the same as the original mini-batch SGD.

(line 6–13) This step computes the Hessian
trace and eigenvalues with respect to the
model parameters θt. Computing the full
Hessian matrix and its trace is computa-
tionally expensive than standard training
(see Appendix B.7); we thus approximate
the trace and eigenvalues using single step
of the Hutchinson’s method (Hutchinson,
1989), following the technique employed
in prior work (Yao et al., 2020c; 2021a).

Suppose the Hessian H ∈ Rd×d and ran-
dom vector v ∈Rd satisfying E[vvT ] = I.
v is drawn from Rademacher distribution
which ensures half of the discrete probabil-

ities are positive and the other half is negative (P (v=±1)= 1/2). d denotes the total number of
parameters. In Hutchinson’s method, the Hessian trace is calculated over a set of random vectors:

Tr(H) = E[vTHv] =
1

Nv

Nv∑
i=1

vTi Hvi

where Nv is the number of random vectors used to approximate. We can obtain vTHv by computing
the gradient of the loss function L twice as follows:

vTHv = vT · ∂

∂θ

(∂L
∂θ

)
· v

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

We follow the prior work (Yao et al., 2020c) to compute set of Top-p% eigenvalues λp as follows:

λp =
vTk Hvk
∥vTk ∥

for k = 1, 2, · · ··, p

(line 14–19) In our experiments, we find that minimizing the Hessian trace computed on all eigen-
values can make the optimization process unstable. Instead, we take the p-largest eigenvalues to
compute the trace. There will be negligible impact since the eigenvalues consist of a few large values
(representing the sharpest directions in the loss surface) and many smaller ones.

Table 1: Comparing our method using the Hes-
sian trace from Top-p eigenvalues. Each row re-
ports the average mean and standard deviations of
the traces we compute over 1000 random samples,
repeated five times across five different models.

Training Methods Acc. Sensitivity

Baseline 98.55 ± 0.53 126.15 ± 63.59

Top-10% Eigenvalues 98.16 ± 0.21 128.58 ± 61.85
Top-25% Eigenvalues 97.96 ± 0.22 116.10 ± 53.77
Top-50% Eigenvalues 98.92 ± 0.20 86.94 ± 38.93

To identify an optimal p value, we compare the
effectiveness of computing only top-p eigenval-
ues in minimizing a model’s sensitivity to bit-
wise errors in parameters. Table 1 summarizes
our findings. We train MNIST models and mea-
sure the sensitivity by computing the Hessian
trace on a trained model. We observe that, when
we use top-50% of the eigenvalues, this results
in the higest average accuracy of 98.92% and
the lowest sensitivity (86.94%). We thus use
the top 50% of the eigenvalues for the rest of
our paper. In addition to using the top 50% of
eigenvalues, we track the trace values over the course of training and only regularize the model when
the trace computed for a mini-batch is greater than the average trace values observed previously.
These two strategies we employ help stabilize our training and allowing us to achieve reasonable
performance.

4.3 COMPARING WITH EXISTING APPROACHES TO MINIMIZING SHARPNESS

We next empirically evaluate and compare the effectiveness of our method with existing approaches to
reducing the sharpness of a model during training. We compare our approach to three representative
methods: (1) ℓ2-regularization, which has been shown empirically to reduce the sharpness of a
model in literature (Foret et al., 2021); (2) AdaHessian (Yao et al., 2021a), a second-order optimizer
demonstrated to be effective in reducing the sharpness; and (3) Sharpness-aware minimization
(SAM) (Foret et al., 2021), a training method specifically designed to reduce the sharpness.

Table 2: Comparison to existing training methods. We com-
pare the accuracy and the sensitivity from existing approaches
to our method. The metrics are computed across five different
models, and the sensitivity are computed over 1000 samples
randomly chosen from the training data.

Training Method MNIST CIFAR10
Acc. Sensitivity Acc. Sensitivity

Baseline 98.90 123.68 ± 63.79 92.43 3808.91 ± 803.19
L2-Regularization 97.30 128.23 ± 52.42 91.72 4117.33 ± 1032.42
AdaHessian 98.88 126.67 ± 70.82 92.68 3717.55 ± 931.80
SAM 97.15 134.08 ± 75.04 92.15 3676.89 ± 899.82
Hessian Trace (Min-max) 98.65 128.72 ± 68.50 92.34 3571.88 ± 924.67
Hessian Trace (Top-50, λ to 10−4) 98.78 126.67 ± 70.82 92.58 3543.33 ± 952.44
Hessian Trace (Top-50, λ to 1) 98.92 86.94 ± 38.93 —- —-
Hessian Trace (Top-50, λ to 10−2) —- —- 92.71 2729.53 ± 762.94

Methodology. We train MNIST and
CIFAR10 model and measure the
accuracy and sensitivity. For each
model, we compute the Hessian
trace five times on 1000 randomly
chosen training samples. For each
method, we run training five times
and report the average. Because we
empirically find that SGD struggles
with optimizing our second-order
objective across the hyperparame-
ters we use, we train our models
with the RMSProp optimizer unless
otherwise specified. We choose the
learning rate and regularization coefficient λ from {1, 0.1, 0.01, 0.001, 0.0001}, batch size from {32,
64}, and the number of Hutchinson’s steps for trace approximation from {1, 50, 100, 1000}. Through
extensive hyper-parameter search, we find that using only a single step to compute the Hessian trace
is the most effective.

Results. Table 2 summarizes our results. We show that compared to existing approaches, our hessian-
aware training is more effective in reducing a model’s sensitivity. We also test two techniques to
smooth out the Hessian regularization loss Trt that is fluctuating over training epochs: (1) Min-max
optimization: we normalize the loss based on the min and max values of the eigenvalues Et defined
by this formula: Trtnorm = Trt −min(Et)/max(Et)−min(Et), where Tr denotes the hessian

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

trace and t denotes the current step; and (2) the technique that only considers the loss when its value is
greater than the one τ observed in the previous epoch (see line 14–19 in Algorithm 1). We additionally
use this computationally inexpensive approach to determine and compare the impact of regularization
coefficient λ, and we show that setting λ to one for MNIST and to λ to 10−2 for Cifar10 achieves the
lowest sensitivity. For the rest of our experiments, we use this training configurations.

5 EMPIRICAL EVALUATION

Our evaluation focuses on answering the following research questions: (RQ 1) How resilient are
models trained with our algorithm to bitwise errors in parameters? (RQ 2) What characteristics of
these models make them resilient to parameter variations? (RQ 3) Beyond this parameter resilience
to bitwise errors, what benefits does our training approach offer? We evaluate comprehensively across
three datasets and five different network architectures (see Appendix A for more details).

5.1 ENHANCED MODEL RESILIENCE TO BITWISE ERRORS IN PARAMETERS

Methodology. We first compare our approach with prior works and determined that ours is most
effective in improving resilience against bitwise errors in parameters (see Appendix B.1). Then we
perform a quantitative analysis of the enhanced resilience of a model to bitwise errors in parameters.
We extensively examine a model’s resilience under a single bitwise corruption in its parameter space
because: (1) this approach allows us to test the most sensitive cases under atomic perturbations
that can occur in models deployed to real-world devices, and (2) it also enables us to simulate the
numerical value changes in all parameters under the smallest perturbation. We report the accuracy of
a model to demonstrate that our training algorithm does not harm its generalization ability. We report
the resilience of a DNN model by the number of erratic parameters that contain at least one bit whose
error can result in an accuracy drop of over 10% as defined by (Hong et al., 2019). We also report
their ratio to the total number of parameters. As the definition suggests, lesser erratic parameters
in a DNN constitutes greater resilience against bitwise errors in parameters. For MNIST (Base and
LeNet architecture), we test all bitwise errors in the model parameters and found that erratic bits are
only present in the exponents (Appendix B.8). Complete analysis of the model requires infeasible
computation time, for CIFAR model (ResNet18) ≈503 days and for ImageNet model (ResNet50)
≈1172 days. Based on our initial findings and the prohibitive computation time, we implemented
techniques to accelerate the process. In CIFAR-10, we examine the exponent bits and found only
few bits other than the MSB are responsible for RAD over 10%. For our ImageNet model, we test
only the most significant bit of the exponent in a randomly chosen 50% of parameters in all the
convolutions layers and all the parameters in the fully-connected layers.

Table 3: Effectiveness of our Hessian-aware training. We quantitatively compare the resilience of
models trained with and without our approach to a single-bit error in their parameter space. Ours
refers to the models trained with our approach, while Baseline is to the models trained without. Acc
for both these models refer to the validation accuracy.

Dataset Model Params Bits Baseline Ours
Acc. Err. Params Err. Param Ratio Acc. Err. Params Err. Param Ratio

MNIST BaseNet 21,840 698,880 98.73 10,544 48.27% 98.66 8,482 38.83%
LeNet 44,470 1.4M 99.61 20,712 46.57% 98.91 15,383 34.59%

CIFAR-10 ResNet18 11M 352M 92.43 4.4M 40.12% 93.68 3.7M 33.6%
ImageNet ResNet50 25.6M 819.2M 76.13 5,283,102 43.35% 75.09 4,459,141 36.59%

Results. Table 3 summarizes our results. We first find that our Hessian-aware training preserves the
generalization ability. In all cases, the acc columns show that, there are negligible differences in Top-1
classification accuracy between the baseline models and the models trained with our method. More
importantly, our approach reduces the number of erratic parameters by 5.2–11%: In MNIST and
CIFAR-10 models, we observe a 10% reduction, while the reduction is 6.76% in the ImageNet model.
We attribute this difference in reductions to the training strategy we employ for ImageNet-scale
models. Instead of fine-tuning all layers of an ImageNet model, we focus only on the last fully-
connected layer, which our analysis identifies as the most sensitive layer, to minimize the Hessian
trace.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
RAD (%)

0

1000

2000

3000

4000

5000

6000

7000

Nu
m

be
r o

f b
its

 w
ho

se
 fl

ip
pi

ng
 re

su
lts

 in
 R

AD

LeNet
Conventional Training
Our Method

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
RAD (%)

0.0

0.2

0.4

0.6

0.8

1.0

Nu
m

be
r o

f b
its

 w
ho

se
 fl

ip
pi

ng
 re

su
lts

 in
 R

AD

1e6 ResNet18
Conventional Training
Our Method

Figure 2: The distribution plots illustrating the enhanced resilience of a model under parameter
corruptions. We compare LeNet trained on MNIST (left) and ResNet18 trained on CIFAR-10 (right).

To gain a deeper understanding of the enhance resilience by our approach, we compare the distribution
plots between two models: one trained with our algorithm or the other without. Figure 2 illustrates
the comparison. The figure shows the plots from the LeNet and ResNet18 models; the plots from
the ImageNet models are provided in Appendix B.2. We analyze the distribution of accuracy drop
from 0–100% in 5% increments. Across the board, our approach reduces the accuracy drop in two
regions: (1) bits whose flipping leads to significant performance loss (90–100%) and (2) bits whose
corruptions result in a small accuracy drop (0–10%). This implies that we reduce the chances of a
model’s performance becoming random due to bitwise errors in parameters by almost half.

5.2 CHARACTERIZATION OF THE ENHANCED MODEL RESILIENCE

We delve deeper into how various properties of a model affect its resilience to bitwise errors.

Visualizing the loss landscape. We first analyze whether the models trained with our method have
a flatter loss surface than the baselines. We adopt the visualization technique proposed by Li et al.
(2018): We choose two random vectors with the same dimension as that of a model’s parameters and
incrementally increase the perturbations to each direction to the parameters while measuring the loss
value of the perturbed model. Figure 3 visualizes the loss landscape computed for each layer of the
LeNet models trained on MNIST. From left to right, we visualize the five layers from the input.

R
eg

ul
ar

Tr
ai
ni
ng

O
ur

A
pp

ro
ac
h

LeNet

R
eg

ul
ar

Tr
ai
ni
ng

O
ur

A
pp

ro
ac
h

LeNet

Figure 3: Visualizing the loss landscapes of LeNet. The upper row displays the loss landscapes of
the baseline LeNet, while the lower row shows those of the LeNet trained with our method. From left
to right, we visualize the first two convolutional layers followed by the three fully-connected layers.

We demonstrate that our training method effectively reduces the sharpness (i.e., the sensitivity of
a model to bitwise errors) across all layers. Our approach is particularly effective in reducing the
sharpness of the layers close to the output. In the last three columns of the figure, we observe that
the loss curvatures become flatter compared to other layers. These three columns correspond to the
fully-connected layers; thus, we further investigate whether fully-connected layers are particularly

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

less resilient without our training method (see the next paragraph). However, we also find that our
approach is less effective at reducing the sharpness of the convolutional layers within the residual
blocks (see Appendix B.3). This corroborates the observations made by Li et al. (2018) that residual
connections offer a flat loss landscape. Our method may not offer significant resilience for those
already-flat layers as the inherent flatness in their loss landscape is less sensitive to parameter
perturbations. Our method is most impactful in sensitive layers (Conv and Fully Connected) of a
DNN model, where the loss surface tends to be sharper.

Table 4: Comparing the effectiveness of our approach in convolutional (Conv.) and fully-
connected (FC) layers. Ours refers to the models trained with our approach, while Baseline is to
the models trained without. In Column 4, we show the # of parameters in Conv or FC layers, with the
parenthesis indicating their ratio in each model. All other numbers show erratic parameters and their
ratios as defined by Hong et al. (2019). The last two columns are the reduction in the two metrics.

Dataset Model Layers # Params Baseline Ours Reduction
#Err. Param Ratio #Err. Param Ratio #Err. Param Ratio

MNIST
BaseNet Conv. 5,280 (24.2%) 3,003 56.87% 2,695 51.04% 308 5.83%

FC 16,560 (75.8%) 7,544 45.55% 5,811 35.09% 1,733 10.46%

LeNet Conv. 2,616 (5.9%) 1,719 65.71% 1,475 56.38% 244 9.33%
FC 41,854 (94.1%) 20,013 47.81% 14,903 35.61% 5,110 12.20%

CIFAR-10 ResNet18 Conv. 11.2M (99.7%) 4.4M 40.07% 3.7M 33.57% 0.7M 6.50%
FC 5,120 (0.03%) 2,297 44.86% 1,321 25.80% 976 19.06%

ImageNet ResNet50 Conv. †23.5M (53.5%) 4,516,162 38.23% 3,802,648 32.19% 713,514 6.04%
FC 2.04M (46.5%) 766,940 37.59% 656,493 32.18% 110447 5.40%

Resilience of convolutional layers vs. fully-connected layers. Our previous analysis of the loss
surfaces shows that our approach tends to reduce the sensitivity (i.e., sharpness) of the later layers.
Since most feed-forward neural networks have convolutional layers followed by fully connected
layers for classification, we analyze whether the resilience has indeed increased in the fully connected
layers. Table 4 summarizes our findings. Across all models, we observe that the reduction in the
ratio of erratic parameters in fully connected layers is 2.4–13.4% greater than that in convolutional
layers. Particularly, for the ResNet18 trained on CIFAR-10, our Hessian-aware training reduces the
erratic parameter ratio by 19.1%. This result implies that network architectures with many fully
connected layers, such as BaseNet or LeNet, can benefit more from our method. But architectures
like ResNets, composed of 99% of convolutional layers (that is a feature extractor) followed by one or
two fully connected layers, may experience a reduced benefit. Given the recent paradigm shift from
feed-forward convolutional networks to Transformers composed of many fully-connected layers like
ViTs (Dosovitskiy et al., 2021), we believe that it is important to evaluate whether our training method
will be effective for these models. We apply our training method to fine-tune Deit-Tiny (Touvron
et al., 2021), a Transformer-based model, pre-trained on ImageNet (available at HuggingFace1) and
measure the improvement in resilience. Due to the page limit, we present our results on DeiT in
Appendix B.4. Our method reduces the number of erratic parameter ratio from 43.7% to 36.8%.

Figure 4: Comparison of numerical variations
required to cause a RAD drop over 10%. We
compare the distributions of numerical perturba-
tions to parameters that are needed to cause signif-
icant performance loss (RAD > 10%).

Resilience to parameter value changes. We
lastly analyze how resilient a model becomes to
actual parameter value changes caused by single
bitwise errors. Using the parameter values be-
fore any corruption and after causing a single-bit
error, we compute the changes in the numerical
values. Figure 4 shows our analysis results on
LeNet in MNIST. Due to the space limit, we in-
clude the rest plots in Appendix B.5. We demon-
strate that DNN models trained with our method
requires a greater numerical variations to cause
a RAD drop over 10% than those trained using
regular training methods. Based on our obser-
vation (see Appendix B.5) that most single-bit
errors cause a bit-flip in the most significant bit
of the exponent (i.e., the 31st-bit), the numerical

1DeiT-tiny: https://huggingface.co/facebook/deit-tiny-patch16-224

8

https://huggingface.co/facebook/deit-tiny-patch16-224


432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

variations required to cause a large performance
loss go beyond the range that floating-point representation in modern systems can hold.

5.3 ENHANCED MODEL RESILIENCE TO COMPRESSION

We now examine the additional benefits of our approach beyond parameter resilience to bitwise errors.
We are particularly interested in testing whether models trained with our method can achieve improved
performance under pruning (Han et al., 2015) or quantization (Fiesler et al., 1990). These techniques
reduce the size of neural networks through parameter reduction or compression, introducing optimal
parameter perturbations (LeCun et al., 1989). It is important to study the effectiveness of our method
in increasing the resilience of DNN models against these perturbations.

0.2 0.4 0.6 0.8
Sparsity

20

40

60

80

Te
st

 A
cc

ur
ac

y

ResNet18

Regular Training
Our Approach

Figure 5: Comparison of model performance
under various pruning ratios. We compare the
test accuracy of the ResNet18 models trained on
CIFAR-10. The magnitude-based iterative pruning
is used to achieve sparsity levels from 0–100%.

Pruning. In our evaluation, we employ global
unstructured pruning (Liu et al., 2017), which
operates at the individual weight level. This
technique first computes an importance score for
each weight and removes those with the lowest
scores. We apply this pruning technique with dif-
ferent sparsity levels ranging from 0–100%. Fig-
ure 5 shows our pruning results on the ResNet18
models trained on CIFAR-10. The rest of our re-
sults are in Appendix B.6. We demonstrate that
DNN models trained with our method retain
accuracy better than those trained using regu-
lar training methods. Both models retain their
original accuracy up to the point where 50% of
the parameters are pruned. Our approach sur-
prisingly maintains accuracy further, up to 70%
pruning, while at the same sparsity level, the
model trained with the conventional approach
completely loses accuracy (i.e., the accuracy dropping to ∼0%).

Quantization. Table 5 summarizes our quantization results for 8-, 4-, and 2-bit quantization of
the regularly-trained models and Hessian-aware trained models. We employ layer-wise, sym-
metric quantization, which is the default in most deep learning frameworks. Overall, the mod-
els trained with our approach achieve better test accuracy than the regularly trained models,
an additional benefit that hessian-aware training offers. Up to 4-bit quantization, both models
retain the performance of their floating-point counterparts. However, when we use 2-bit pre-
cision, the accuracy of all models decreases significantly. Our models under 2-bit precision

Table 5: Comparison of model performance under vari-
ous quantization ratios. We compare the test accuracy of
models after quantizing them with different bit-widths.

Dataset Model Acc.
8-bit 4-bit 2-bit Mixed

MNIST

Base 98.57 98.38 24.49 48.90
Base (Ours) 98.73 98.70 38.72 68.84

LeNet 99.10 98.70 11.85 57.03
LeNet (Ours) 98.90 97.37 24.78 73.90

CIFAR-10 ResNet18 92.53 88.01 9.96 68.19
ResNet18 (Ours) 92.36 90.26 10.28 78.69

consistently achieve 1.5–14% better
accuracy, indicating that these mod-
els have increased resilience to pa-
rameter value variations. Based on
our observation that fully-connected
layers are less sensitive than convo-
lutional layers (see the above analy-
sis), we employ mixed-precision quan-
tization with 2-bit precision in fully-
connected layers and 4-bit precision in
convolutional layers. We demonstrate
that our models achieve an accuracy
of 68.8–78.7%, while the regularly-
trained models achieve 48.9–68.2%

model accuracy.

6 DISCUSSION

Increase in computational demands. We evaluate the overhead of Hessian-aware training in terms
of actual training wall-time measured in PyTorch on a NVIDIA Tesla V100 GPU. In Appendix B.7

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

we present our results. Hessian-aware training incurs overhead that scales with the size of the model;
a 4–6× times increase in computations for MNIST models, and a 10× times increase in overhead for
CIFAR-10 models. Existing works utilizing second-order properties during training take a completely
different approach compute the Hessian and its eigenvalues: they employ weight perturbations (Foret
et al., 2021) or only the trace approximation (Yao et al., 2021a) to minimize sharpness of the loss
landscape. The increase in computation in our approach is primarily attributed to the large Hessian
and eigenvalues we need to compute with respect to model parameters, which is not optimized for
popular deep-learning frameworks. To reduce the computational overhead during training, we employ
a layer sampling technique. As prior work identifies the last layers to be most susceptible to bitwise
errors (Hong et al., 2019), we believe only computing Hessian trace on last few layers can aid resilient
model training. Our results for large-scale models, such as ResNet50 in ImageNet, show that this
technique significantly reduces the computational overhead from 10× times to 1.18× times, being
equally effective in enhancing model resilience. We leave further optimization as future work.

Now we discuss defensive mechanisms proposed by the community that can be integrated with our
approach to further enhance the resilience of models against bitwise errors in parameters. Our discus-
sion particularly focuses on hardware-level and system-level approaches, which can complement the
models trained with our Hessian-aware training by providing an additional layer of resilience.

Integration with system-level defenses. Liu et al. (2023) have proposed NeuroPot, which lures an
adversary into manipulating parameters whose perturbation does not lead to a significant accuracy
drop. Since our approach increases the number of unimportant parameters, the models we train are
well-suited for NeuroPot. Li et al. (2021) have proposed a checksum-based defense, which stores
golden signature for a group of weights and compares this signature at runtime with the current
model signature. Our approach can leverage this scheme by storing the golden signature of erratic
weights, thus enhancing resilience further during runtime. Konoth et al. (2018) have also focused on
utilizing data row isolation to protect a model against bitwise corruption to its parameters. Because
we reduce the number of erratic parameters, the number of data rows that need to be isolated in their
approach can also be greatly reduced when combined with our training method.

Integration with hardware-level defenses. Many hardware-level defenses are designed to mitigate
RowHammer (Kim et al., 2014), a software-induced attack that causes a targeted DRAM row to
leak capacitance by repeatedly accessing its neighboring rows. Kim et al. (2014) have proposed a
defense that proactively refreshes rows that are frequently accessed, as they are at higher risk of being
targeted by the attack. Panopticon (Bennett et al., 2021) leverages a similar idea: it employs hardware
counters for each data row in DRAM and refreshes the rows when the counter reaches a predefined
threshold. Instead of refreshing the rows at high risks, Saileshwar et al. (2022) propose swapping
them with safe memory regions. Di Dio et al. (2023) use the error correction codes as a mechanism
for triggering such swapping. DRAM-Locker (Zhou et al., 2023b) leverages a lock-table in SRAM.
If the addresses of the high-risk rows are stored in the lock-table, any access this addresses without
the unlock command will be denied. As we can see, these mechanisms protect data rows at high risk
of being targeted. Our work reduces the number of data rows in a model whose perturbations lead to
significant accuracy loss, and therefore, potentially decreasing their performance overheads.

7 CONCLUSION

Our work proposes a novel training algorithm that reduces a model’s sensitivity to parameter varia-
tions, thereby enhancing its resilience when deployed in error-prone computing environments. We
focus on the model’s second-order property, the Hessian trace, and design an objective function to
directly minimize it during training. We extensively compare our approach with existing methods
for reducing model sensitivity and demonstrate our effectiveness. We evaluate our approach by
testing a model’s performance under single-bit errors to its parameter representation in memory.
Our method reduces the number of erratic parameters by 10%, decreasing those whose corruption
causes a 90–100% RAD drop by almost half. Our method is particularly effective on fully connected
layers, and results in flatter loss surfaces. We also show improved performance at an extreme pruning
and quantization ratios. Our method is complementary to existing hardware-level or system-level
approaches to protecting models against parameter-corruption attacks. We finally discuss the potential
synergy of combining these mechanisms with our method. We hope our work will inspire future
work on the safe deployment of deep neural networks in emerging computing platforms.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Reproducability Statement. To make our work reproducible, we provide description of the dataset,
models, hyper-parameters and our Hessian-aware training method both in the main text and in
Appendix. Specifically, Sec 3 and Appendix A offer detailed discussion on our models, datasets
and training hyper-parameter settings. We discuss our proposed hessian-aware training algorithm
in Sec 4.2. We believe these detailed implementation descriptions will facilitate the successful
replication of our work. We will also release the source code to further ensure the reproducibility.

REFERENCES

Sanghyun Hong, Pietro Frigo, Yiğitcan Kaya, Cristiano Giuffrida, and Tudor Dumitras, . Terminal
brain damage: Exposing the graceless degradation in deep neural networks under hardware fault
attacks. In 28th USENIX Security Symposium (USENIX Security 19), pages 497–514, 2019.

Adnan Siraj Rakin, Zhezhi He, and Deliang Fan. Bit-flip attack: Crushing neural network with
progressive bit search. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pages 1211–1220, 2019.

Abu Sebastian, Manuel Le Gallo, Riduan Khaddam-Aljameh, and Evangelos Eleftheriou. Memory
devices and applications for in-memory computing. Nature nanotechnology, 15(7):529–544, 2020.

Xingyuan Xu, Mengxi Tan, Bill Corcoran, Jiayang Wu, Andreas Boes, Thach G Nguyen, Sai T
Chu, Brent E Little, Damien G Hicks, Roberto Morandotti, et al. 11 tops photonic convolutional
accelerator for optical neural networks. Nature, 589(7840):44–51, 2021.

Fernando Aguirre, Abu Sebastian, Manuel Le Gallo, Wenhao Song, Tong Wang, J Joshua Yang,
Wei Lu, Meng-Fan Chang, Daniele Ielmini, Yuchao Yang, et al. Hardware implementation of
memristor-based artificial neural networks. Nature Communications, 15(1):1974, 2024.

Peng Yao, Huaqiang Wu, Bin Gao, Jianshi Tang, Qingtian Zhang, Wenqiang Zhang, J Joshua Yang,
and He Qian. Fully hardware-implemented memristor convolutional neural network. Nature, 577
(7792):641–646, 2020a.

Tanj Bennett, Stefan Saroiu, Alec Wolman, and Lucian Cojocar. Panopticon: A complete in-dram
rowhammer mitigation. In Workshop on DRAM Security (DRAMSec), volume 22, page 110, 2021.

Adnan Siraj Rakin, Li Yang, Jingtao Li, Fan Yao, Chaitali Chakrabarti, Yu Cao, Jae-sun Seo, and
Deliang Fan. Ra-bnn: Constructing robust & accurate binary neural network to simultaneously
defend adversarial bit-flip attack and improve accuracy. arXiv preprint arXiv:2103.13813, 2021.

Jingtao Li, Adnan Siraj Rakin, Zhezhi He, Deliang Fan, and Chaitali Chakrabarti. Radar: Run-time
adversarial weight attack detection and accuracy recovery. In 2021 Design, Automation & Test in
Europe Conference & Exhibition (DATE), pages 790–795, 2021. doi: 10.23919/DATE51398.2021.
9474113.

Andrea Di Dio, Koen Koning, Herbert Bos, and Cristiano Giuffrida. Copy-on-flip: Hardening ecc
memory against rowhammer attacks. In NDSS, 2023.

Ranyang Zhou, Sabbir Ahmed, Adnan Siraj Rakin, and Shaahin Angizi. Dnn-defender: An in-
dram deep neural network defense mechanism for adversarial weight attack. arXiv preprint
arXiv:2305.08034, 2023a.

Ranyang Zhou, Sabbir Ahmed, Arman Roohi, Adnan Siraj Rakin, and Shaahin Angizi. Dram-locker:
A general-purpose dram protection mechanism against adversarial dnn weight attacks. arXiv
preprint arXiv:2312.09027, 2023b.

Qi Liu, Jieming Yin, Wujie Wen, Chengmo Yang, and Shi Sha. NeuroPots: Realtime proactive
defense against Bit-Flip attacks in neural networks. In 32nd USENIX Security Symposium (USENIX
Security 23), pages 6347–6364, Anaheim, CA, August 2023. USENIX Association. ISBN 978-1-
939133-37-3. URL https://www.usenix.org/conference/usenixsecurity23/
presentation/liu-qi.

11

https://www.usenix.org/conference/usenixsecurity23/presentation/liu-qi
https://www.usenix.org/conference/usenixsecurity23/presentation/liu-qi


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Jialai Wang, Ziyuan Zhang, Meiqi Wang, Han Qiu, Tianwei Zhang, Qi Li, Zongpeng Li, Tao Wei,
and Chao Zhang. Aegis: Mitigating targeted bit-flip attacks against deep neural networks. In 32nd
USENIX Security Symposium (USENIX Security 23), pages 2329–2346, Anaheim, CA, August
2023. USENIX Association. ISBN 978-1-939133-37-3. URL https://www.usenix.org/
conference/usenixsecurity23/presentation/wang-jialai.

Yann LeCun, John Denker, and Sara Solla. Optimal brain damage. Advances in neural information
processing systems, 2, 1989.

Zhewei Yao, Amir Gholami, Sheng Shen, Mustafa Mustafa, Kurt Keutzer, and Michael Mahoney.
Adahessian: An adaptive second order optimizer for machine learning. In proceedings of the AAAI
conference on artificial intelligence, volume 35, pages 10665–10673, 2021a.

Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware minimization
for efficiently improving generalization. In International Conference on Learning Representations,
2021. URL https://openreview.net/forum?id=6Tm1mposlrM.

Emile Fiesler, Amar Choudry, and H John Caulfield. Weight discretization paradigm for optical
neural networks. In Optical interconnections and networks, volume 1281, pages 164–173. SPIE,
1990.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections
for efficient neural network. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Gar-
nett, editors, Advances in Neural Information Processing Systems, volume 28. Curran Asso-
ciates, Inc., 2015. URL https://proceedings.neurips.cc/paper_files/paper/
2015/file/ae0eb3eed39d2bcef4622b2499a05fe6-Paper.pdf.

Nelson Morgan et al. Experimental determination of precision requirements for back-propagation
training of artificial neural networks. In Proc. Second Int’l. Conf. Microelectronics for Neural
Networks, pages 9–16. Citeseer, 1991.

Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Binaryconnect: Train-
ing deep neural networks with binary weights during propagations. In C. Cortes,
N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett, editors, Advances in Neural
Information Processing Systems, volume 28. Curran Associates, Inc., 2015. URL
https://proceedings.neurips.cc/paper_files/paper/2015/file/
3e15cc11f979ed25912dff5b0669f2cd-Paper.pdf.

Babak Hassibi and David Stork. Second order derivatives for network pruning: Optimal brain surgeon.
In S. Hanson, J. Cowan, and C. Giles, editors, Advances in Neural Information Processing Systems,
volume 5. Morgan-Kaufmann, 1992. URL https://proceedings.neurips.cc/paper_
files/paper/1992/file/303ed4c69846ab36c2904d3ba8573050-Paper.pdf.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for
efficient convnets. In International Conference on Learning Representations, 2017. URL https:
//openreview.net/forum?id=rJqFGTslg.

Yan Zhou, Murat Kantarcioglu, and Bowei Xi. Breaking transferability of adversarial samples with
randomness. arXiv preprint arXiv:1805.04613, 2018.

Fan Yao, Adnan Siraj Rakin, and Deliang Fan. DeepHammer: Depleting the intelligence of
deep neural networks through targeted chain of bit flips. In 29th USENIX Security Symposium
(USENIX Security 20), pages 1463–1480. USENIX Association, August 2020b. ISBN 978-1-
939133-17-5. URL https://www.usenix.org/conference/usenixsecurity20/
presentation/yao.

Huili Chen, Cheng Fu, Jishen Zhao, and Farinaz Koushanfar. Proflip: Targeted trojan attack with
progressive bit flips. In Proceedings of the IEEE/CVF International Conference on Computer
Vision (ICCV), pages 7718–7727, October 2021.

Adnan Siraj Rakin, Md Hafizul Islam Chowdhuryy, Fan Yao, and Deliang Fan. Deepsteal: Advanced
model extractions leveraging efficient weight stealing in memories. In 2022 IEEE Symposium on
Security and Privacy (SP), pages 1157–1174, 2022. doi: 10.1109/SP46214.2022.9833743.

12

https://www.usenix.org/conference/usenixsecurity23/presentation/wang-jialai
https://www.usenix.org/conference/usenixsecurity23/presentation/wang-jialai
https://openreview.net/forum?id=6Tm1mposlrM
https://proceedings.neurips.cc/paper_files/paper/2015/file/ae0eb3eed39d2bcef4622b2499a05fe6-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/ae0eb3eed39d2bcef4622b2499a05fe6-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/3e15cc11f979ed25912dff5b0669f2cd-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/3e15cc11f979ed25912dff5b0669f2cd-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1992/file/303ed4c69846ab36c2904d3ba8573050-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1992/file/303ed4c69846ab36c2904d3ba8573050-Paper.pdf
https://openreview.net/forum?id=rJqFGTslg
https://openreview.net/forum?id=rJqFGTslg
https://www.usenix.org/conference/usenixsecurity20/presentation/yao
https://www.usenix.org/conference/usenixsecurity20/presentation/yao


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk Lee, Chris Wilkerson,
Konrad Lai, and Onur Mutlu. Flipping bits in memory without accessing them: An experimental
study of dram disturbance errors. ACM SIGARCH Computer Architecture News, 42(3):361–372,
2014.

Gururaj Saileshwar, Bolin Wang, Moinuddin Qureshi, and Prashant J Nair. Randomized row-swap:
Mitigating row hammer by breaking spatial correlation between aggressor and victim rows. In
Proceedings of the 27th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 1056–1069, 2022.

Radhesh Krishnan Konoth, Marco Oliverio, Andrei Tatar, Dennis Andriesse, Herbert Bos, Cris-
tiano Giuffrida, and Kaveh Razavi. ZebRAM: Comprehensive and compatible software protec-
tion against rowhammer attacks. In 13th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 18), pages 697–710, Carlsbad, CA, October 2018. USENIX As-
sociation. ISBN 978-1-939133-08-3. URL https://www.usenix.org/conference/
osdi18/presentation/konoth.

Abdullah Murat Buldu, Alper Sen, Karthik Swaminathan, and Brian Kahne. Mbet: Resilience
improvement method for dnns. In 2022 IEEE International Conference On Artificial Intelligence
Testing (AITest), pages 72–78. IEEE, 2022.

Kamran Chitsaz, Goncalo Mordido, Jean-Pierre David, and François Leduc-Primeau. Training dnns
resilient to adversarial and random bit-flips by learning quantization ranges. Transactions on
Machine Learning Research, 2023.

Yann LeCun, Corinna Cortes, and CJ Burges. Mnist handwritten digit database. ATT Labs [Online].
Available: http://yann.lecun.com/exdb/mnist, 2, 2010.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, 2009.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. ImageNet
Large Scale Visual Recognition Challenge. International Journal of Computer Vision (IJCV), 115
(3):211–252, 2015. doi: 10.1007/s11263-015-0816-y.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998. doi: 10.1109/5.726791.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and Hervé
Jégou. Training data-efficient image transformers & distillation through attention. In International
conference on machine learning, pages 10347–10357. PMLR, 2021.

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the loss landscape
of neural nets. Advances in neural information processing systems, 31, 2018.

Yiding Jiang, Behnam Neyshabur, Hossein Mobahi, Dilip Krishnan, and Samy Bengio. Fantas-
tic generalization measures and where to find them. In International Conference on Learning
Representations, 2020. URL https://openreview.net/forum?id=SJgIPJBFvH.

Rotem Mulayoff and Tomer Michaeli. Unique properties of flat minima in deep networks. In
International conference on machine learning, pages 7108–7118. PMLR, 2020.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Peter
Tang. On large-batch training for deep learning: Generalization gap and sharp minima. In
International Conference on Learning Representations, 2017. URL https://openreview.
net/forum?id=H1oyRlYgg.

Behnam Neyshabur, Srinadh Bhojanapalli, David McAllester, and Nati Srebro. Exploring generaliza-
tion in deep learning. Advances in neural information processing systems, 30, 2017.

13

https://www.usenix.org/conference/osdi18/presentation/konoth
https://www.usenix.org/conference/osdi18/presentation/konoth
https://openreview.net/forum?id=SJgIPJBFvH
https://openreview.net/forum?id=H1oyRlYgg
https://openreview.net/forum?id=H1oyRlYgg


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Z. Dong, Z. Yao, A. Gholami, M. Mahoney, and K. Keutzer. Hawq: Hessian aware quantization of
neural networks with mixed-precision. In 2019 IEEE/CVF International Conference on Computer
Vision (ICCV), pages 293–302, Los Alamitos, CA, USA, nov 2019. IEEE Computer Society.
doi: 10.1109/ICCV.2019.00038. URL https://doi.ieeecomputersociety.org/10.
1109/ICCV.2019.00038.

Zhen Dong, Zhewei Yao, Daiyaan Arfeen, Amir Gholami, Michael W Mahoney, and Kurt
Keutzer. Hawq-v2: Hessian aware trace-weighted quantization of neural networks. In
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances in
Neural Information Processing Systems, volume 33, pages 18518–18529. Curran Asso-
ciates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/paper/
2020/file/d77c703536718b95308130ff2e5cf9ee-Paper.pdf.

Huanrui Yang, Xiaoxuan Yang, Neil Zhenqiang Gong, and Yiran Chen. Hero: Hessian-enhanced
robust optimization for unifying and improving generalization and quantization performance. In
Proceedings of the 59th ACM/IEEE Design Automation Conference, pages 25–30, 2022.

Zhewei Yao, Zhen Dong, Zhangcheng Zheng, Amir Gholami, Jiali Yu, Eric Tan, Leyuan Wang,
Qijing Huang, Yida Wang, Michael Mahoney, and Kurt Keutzer. Hawq-v3: Dyadic neural network
quantization. In Marina Meila and Tong Zhang, editors, Proceedings of the 38th International
Conference on Machine Learning, volume 139 of Proceedings of Machine Learning Research,
pages 11875–11886. PMLR, 18–24 Jul 2021b. URL https://proceedings.mlr.press/
v139/yao21a.html.

C. Bekas, E. Kokiopoulou, and Y. Saad. An estimator for the diagonal of a matrix. Appl. Numer.
Math., 57(11–12):1214–1229, nov 2007. ISSN 0168-9274. doi: 10.1016/j.apnum.2007.01.003.
URL https://doi.org/10.1016/j.apnum.2007.01.003.

Michael F Hutchinson. A stochastic estimator of the trace of the influence matrix for laplacian
smoothing splines. Communications in Statistics-Simulation and Computation, 18(3):1059–1076,
1989.

Zhewei Yao, Amir Gholami, Kurt Keutzer, and Michael W Mahoney. Pyhessian: Neural networks
through the lens of the hessian. In 2020 IEEE international conference on big data (Big data),
pages 581–590. IEEE, 2020c.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
In International Conference on Learning Representations, 2021. URL https://openreview.
net/forum?id=YicbFdNTTy.

Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng Yan, and Changshui Zhang. Learn-
ing efficient convolutional networks through network slimming. In Proceedings of the IEEE
international conference on computer vision, pages 2736–2744, 2017.

14

https://doi.ieeecomputersociety.org/10.1109/ICCV.2019.00038
https://doi.ieeecomputersociety.org/10.1109/ICCV.2019.00038
https://proceedings.neurips.cc/paper_files/paper/2020/file/d77c703536718b95308130ff2e5cf9ee-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/d77c703536718b95308130ff2e5cf9ee-Paper.pdf
https://proceedings.mlr.press/v139/yao21a.html
https://proceedings.mlr.press/v139/yao21a.html
https://doi.org/10.1016/j.apnum.2007.01.003
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A DETAILED EXPERIMENTAL SETUP

Here we describe our experimental setup in detail. All experiments use Python v3.11.42 with Pytorch
v2.1.03 and CUDA v12.14 for GPU acceleration. We run our experiments on two systems: (1) a node
with a 48-core Intel Xeon Processor, 768GB of memory, and 8 NVIDIA A40 GPUs. (2) a node with
a 56-core Intel Xeon Processor, and 8 Nvidia Tesla H100 GPUs. We achieve a substantial speed-up
in running our evaluation script by utilizing the parameter-level parallelism on the two systems.

We use the following hyper-parameters to train/fine-tune our models.

MNIST. We use a network architecture (Base) and LeNet in prior work (Hong et al., 2019). For
regular training, we used an SGD optimizer with a learning rate of 0.1 (adjusting by 0.25 every 10
epochs), batch size of 64, and 0.8 momentum. We train our models for 40 epochs. To train the same
network using our Hessian-aware training, we used λ (line 16 of algorithm 1) value of 1 as per our
findings in table 2. We use the RMSProp optimizer, keeping all the other hyper-parameters the same
as the regular training.

CIFAR-10. We use ResNet18. For the regular training of this model, we use SGD, 0.02 learning rate,
32 batch-size, 0.9 momentum. We train our models for 90 epochs. We adjust the learning rate by 0.5
every 15 epochs. We use the RMSProp optimizer and λ value of 10−2 to train the same model with
our training method.

ImageNet. We take the ResNet50 architecture pretrained on ImageNet (available at Torchvision
library5). Instead of retraining the ResNet50 from scratch, we fine-tune the model on the same
ImageNet dataset. In fine-tuning, computing the Hessian matrix has a high computational demand.
We thus leverage our previous observation and focus on the layers closer to the model output.
We only compute Hessian eigenvalues and trace on the last layer and fine-tune the entire model
using our training method. The hyper-parameters have been kept as Torchvision’s original training
hyper-parameters 6), but using the RMSProp optimizer. For fine-tuning the Diet-tiny ViT model on
ImageNet, we use similar technique for hessian and eigenvalue computation. We take the pre-trained
model from HuggingFace (available at 7) and fine-tune it using our approach. We adopt the original
training setup from (Touvron et al., 2021), that uses batch size of 32, learning rate 0.1 and reducing by
0.1 every 30 epoch, momentum of 0.9, weight decay 10−4 and 90 epochs training cycle except we use
the RMSProp optimizer. We experimentally found λ value of 10−3 to achieve better generalization
for our ImageNet model.

B ADDITIONAL EVALUATION RESULTS

B.1 COMPARING THE RESILIENCE IN OUR APPROACH AND PRIOR WORKS

Table 6: Comparing resilience of our approach with prior works on second-order methods. The
Base model is trained on MNIST using AdaHessian (Yao et al., 2021a), SAM (Foret et al., 2021),
and our method. Column 5 reports the number of erratic parameter and column 6 their ratio to the
total model parameters.

Training Method Model # Total Params Acc. Erratic Params Erratic Ratio

AdaHessian Base 21,840 98.88% 10,473 47.72%
SAM 97.15% 10,621 48.63%
Our 98.66% 8,482 38.83%

In Sec 5.1 we discuss our results on enhanced model resilience to bitwise errors in parameters. Here
we compare the resilience of our approach to prior works on sharpness minimization using second

2Python: https://www.python.org
3PyTorch: https://pytorch.org/
4CUDA: https://developer.nvidia.com/cuda-downloads
5Pre-trained PyTorch models: https://pytorch.org/vision/stable/models.html
6https://github.com/pytorch/vision/tree/main/references/classification
7DeiT-tiny: https://huggingface.co/facebook/deit-tiny-patch16-224

15

https://www.python.org
https://pytorch.org/
https://developer.nvidia.com/cuda-downloads
https://pytorch.org/vision/stable/models.html
https://github.com/pytorch/vision/tree/main/references/classification
https://huggingface.co/facebook/deit-tiny-patch16-224


810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

order method, SAM (Foret et al., 2021) and AdaHessian (Yao et al., 2021a). We measure resilience
in terms of the the number of erratic parameters and their ratios as defined in section 5.2. Table 6
shows our results. We find that our hessian aware training is more effective in enhancing resilience in
a DNN model. This finding is consistent with the results in table 2, where we show our approach
being the most effective in reducing sensitivity.

B.2 DISTRIBUTION PLOT COMPUTED ON IMAGENET MODELS

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
RAD (%)

0

25000

50000

75000

100000

125000

150000

175000

200000

Nu
m

be
r o

f b
its

 w
ho

se
 fl

ip
pi

ng
 re

su
lts

 in
 R

AD

ResNet50
Conventional Training
Our Method

Figure 6: The distribution plot computed on
ResNet50 in ImageNet. Note that our fine-tuning
only computes the Hessian trace from the last layer.

We show the distribution plot computed on the
ImageNet models in figure 6. We observe that
fine-tuning the pre-trained ResNet50 achieves
an enhanced resilience to bitwise errors in pa-
rameters. It reduces the number of corruptions
leading to an accuracy drop in the range between
0-30%. We also reduce the number of param-
eters whose bitwise error leads to an accuracy
drop of over 90% by half. Our result on Ima-
geNet is particularly interesting because, even if
we do not train our model with the Hessian trace
computed on the entire layers, we can offer en-
hanced resilience to a model. While in MNIST
and CIFAR-10 models, we see the number of
parameters causing accuracy loss of 0–5%, in

our fine-tuned ImageNet model, we find a greater number of parameters causing accuracy drops at
5–10% bin.

B.3 VISUALIZING LOSS LANDSCAPES OF LAYERS WITH RESIDUAL CONNECTIONS

Figure 7: Comparing loss landscapes of the convolutional layers within a residual block. The left
two are from the regularly-trained models, and the right ones are from those trained with our method.

Prior work (Li et al., 2018) has visually shown that convolutional layers with residual connections
tend to have flatter loss surfaces. In such layers, we hypothesize that our approach is less effective
in reducing the sensitivity. Figure 7 shows the loss landscapes from two convolutional layers in
ResNet18 models trained on CIFAR-10. We observe that the loss landscapes visually look similar to
each other, implying that our approach was less effective in reducing the Hessian trace of these layers.
This does not mean that these layers are particularly susceptible to bitwise errors in parameters.
On the other hands, these convolutional layers already have some resilience to bitwise errors in
parameters.

B.4 EFFECTIVENESS OF OUR APPROACH IN VISUAL TRANSFORMER MODEL

Evaluating our approach on Transformer-based models presents an interesting extension of this work.
Our initial hypothesis is that, in the context of computer vision, Transformer layers function as an
extension of fully-connected layers. Images are split into patches, flattened, and linearly projected (via
a fully-connected layer) to create patch embeddings, which are processed by a transformer encoder
using multi-head self-attention and feedforward networks (composed of fully-connected layers), and
the [CLS] token is passed through a final fully-connected layer for classification tasks (Dosovitskiy
et al., 2021). This hypothesis leads us to anticipate that the outcomes will align with our current
findings. Our results are shown in table 7.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 7: Comparing the effectiveness of our approach in enhancing resilience of visual trans-
former (ViT) model. We take the Baseline model pretrained on ImageNet. Ours refers to the
model fine-tuned with our approach. We report the resillience in terms of erratic parameter in both
these models.

Model # Total Params # Sampled Params Err. Params Err. Param Ratio

DeiT-tiny (Baseline) 5M 457,000 199,571 43.67%
DeiT-tiny (Ours) 168,358 36.84%

We fine-tune the last layer of the Diet-tiny model following the original hyper-parameter setup (Tou-
vron et al., 2021). We ran our resilience measurement analysis as defined in section 5.2. The results
demonstrate the effectiveness of our training method: the number of erratic parameters was reduced
by 6.83%, which is consistent with the results in our paper across different datasets and models.

B.5 NUMERICAL PERTURBATIONS CAUSING ACCURACY DROP OVER 10%

We examine the change in parameter values after a single bit corruption on the two Base models (one
regularly-trained, and the other trained with our approach). Figure 8 shows our results. We show our
results from the LeNet and ResNet18 models. Similar to our previous finding in the Base model,
larger models (LeNet and ResNet18) trained using our method also demonstrate parameter-level
resilience. To cause an accuracy drop over 10%, model trained using our method requires greater
numerical perturbations.

Figure 8: Comparison of numerical perturbations required to cause an accuracy drop over
10%. The left figure is computed on ResNet18, and the right one shows the result of LeNet.

B.6 ADDITIONAL PRUNING RESULTS

In section 5.3, we discuss the effectiveness of our Hessian-aware training in achieving DNN models
resilient to model compression in CIFAR-10. Here we show the results of pruning on our MNIST
models, specifically Base and LeNet in figure 9. Both models retains their original accuracy up to
65% parameters pruned. Beyond this point, as sparsity increases, we observe a steep decrease in
accuracy. The Base and LeNet models trained using our method shows better accuracy than the
regularly-trained models, indicating enhanced parameter-level resilience to bitwise errors.

B.7 OVERHEAD OF HESSIAN AWARE TRAINING

For all the models, we used the optimal hyper-parameter setup described in Appendix A. We run
training for 5 times, and report the per epoch training time. The measured values are presented in
Table 8. Result shows that hessian aware training has a 4x-6x overhead for MNIST model which
have comparatively smaller number of parameters. For the ResNet18 model trained on CIFAR-10,
the overhead increases further due to ResNet18’s larger architecture and higher number of parameters
compared to smaller models. We employ layer sampling technique to reduce this overhead. Prior
research (Hong et al., 2019) suggests that these final layers are the most susceptible layers against
parameter corruption, making this a viable strategy for applying our method to large-scale models,

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

0.2 0.4 0.6 0.8
Sparsity

20

30

40

50

60

70

80

90

100

Te
st

 A
cc

ur
ac

y

Base

Regular Training
Our Approach

0.2 0.4 0.6 0.8
Sparsity

20

40

60

80

100

Te
st

 A
cc

ur
ac

y

LeNet

Regular Training
Our Approach

Figure 9: Comparison of model performance under various pruning ratios. The left figure is
computed on the Base models, while the right ones are from the LeNet models.

Table 8: Comparing the training time of our method to baseline training in terms of runtime in
PyTorch. We report the per-epoch runtime (in seconds) for all our models trained across 3 datasets.

Model Dataset Training Time
Baseline Our Method

Base MNIST 0.335 ± 0.002 1.362 ± 0.0085
LeNet 0.432 ± 0.003 2.857 ± 0.0073

ResNet18 CIFAR10 36.244 ± 0.607 341.58 ± 9.81
ResNet50 ImageNet 7275.6 ± 18.41 8647.2 ± 25.43

such as those used for ImageNet. Our result shows that adopting this method has only 1.18x
computational overhead.We conduct additional experiment on the layer-sampling technique for larger
architecures like ResNet18 and ResNet50. Following the same overhaed measurement approach, We
applied Hessian regularization incrementally, starting with only the last layer and extending it to the
last 2, 3, and finally 4 layers of the model and compared the runtime with baseline training. Our
results are presented in Table 9.

Table 9: Comparing the training time of layer-sampling and baseline training in PyTorch. We
report the per-epoch runtime (in seconds).

Model Dataset Training Time (in seconds)
Baseline L1 L2 L3 L4

ResNet18 CIFAR10 36.244 ± 0.607 37.77 ± 0.39 43.24 ± 0.28 57.63 ± 0.44 78.24 ± 1.13
ResNet50 ImageNet 7275.6 ± 18.41 8647.2 ± 25.43 10134.7 ± 30.21 13289.5 ± 35.76 16547.8 ± 42.15

Results in Table 9 demonstrate that training overhead increases as we increase the “layers involved
in hessian-regularization.” However, using only the last 1 layer of the model, we can reduce the
overhead to almost the same as baseline training, making our method efficient for very large models.
We note that the increased computational time is not solely due to adopting our training method. The
additional time is primarily attributed to the computation of the large hessian trace and eigenvalues,
which is not fully optimized for use with popular deep learning frameworks such as PyTorch. Further
optimization of our approach will be an interesting future work.

B.8 ANALYSIS OF CORRUPTED BIT POSITION

The IEEE 754 standard defines the representation of floating-point numbers in modern computer
systems. In this format, a 32-bit number is represented with three fields: the 1-bit sign, the 8-bit
exponent, and the 23-bit mantissa. Similar to the prior work (Hong et al., 2019; Rakin et al., 2019;
Yao et al., 2020b), we analyze the location of bitwise corporations that lead to an accuracy drop over
10%. Figure 10 shows our analysis results. We use a logarithmic scale in the y-axis.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

32 31 30 29 28 27 26 25 24
Bit Position

103

104

Vu
ln

er
ab

le
 P

ar
am

et
er

s 
(l

og
 s

ca
le

)

Base
Base (Our Method)

32 31 30 29 28 27 26 25 24
Bit Position

101

102

103

104

Vu
ln

er
ab

le
 P

ar
am

et
er

s 
(l

og
 s

ca
le

)

LeNet
LeNet (Our Method)

32 31 30 29 28 27 26 25 24
Bit Position

102

103

104

105

106

107

Vu
ln

er
ab

le
 P

ar
am

et
er

s 
(l

og
 s

ca
le

)

ResNet18
ResNet18 (Our Method)

Figure 10: Comparison of the corrupted bit positions. From left to right, we show the analysis
result from Base (MNIST), LeNet (MNIST), and ResNet18 (CIFAR-10). We only examine the sign
bit and the exponent bits, as they change the numerical value of a parameter the most.

In all the models, corruption of the 31st bit mostly leads to an accuracy drop over 10%. These
corruptions account for ∼93% and ∼91.43% in the Base and LeNel models, respectively. We also
observe a few bits in the 26th and 27th position for both Base and LeNet models and a small number
of bits in the 28th location for the LeNet model. A consistent trend is observed in the ResNet18
models in CIFAR-10, with the 31st bit being identified as the most susceptible bit location. However,
in ResNet18, we identify a few bits positioned at the 30th and 29th location in the exponent. In
contrast to our observations from LeNet and ResNet18, there are no susceptible corruptions in the
30th, 29th, 28th, 25th and 24th bit positions in the Base model.

19


	Introduction
	Related Work
	Experimental Setup
	Our Approach: Hessian-aware Training
	A DNN's Sensitivity to Parameter Variations
	Minimizing A DNN's Sensitivity to Parameter Variations
	Comparing with Existing Approaches to Minimizing Sharpness

	Empirical Evaluation
	Enhanced Model Resilience to Bitwise Errors in Parameters
	Characterization of the Enhanced Model Resilience
	Enhanced Model Resilience to Compression

	Discussion
	Conclusion
	Detailed Experimental Setup
	Additional Evaluation Results
	Comparing the resilience in our approach and prior works
	Distribution Plot Computed on ImageNet Models
	Visualizing Loss Landscapes of Layers with Residual Connections
	Effectiveness of our approach in Visual Transformer model
	Numerical Perturbations Causing Accuracy Drop over 10%
	Additional Pruning Results
	Overhead of Hessian Aware Training
	Analysis of Corrupted Bit Position


