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ABSTRACT

Reinforcement learning (RL) policies deployed in real-world environments must
remain reliable under adversarial perturbations. At the same time, modern deep
RL agents are heavily overparameterized, raising costs and fragility concerns.
While pruning has been shown to improve robustness in supervised learning, its
role in adversarial RL remains poorly understood. We develop the first theoreti-
cal framework for certified robustness under pruning in state-adversarial Markov
decision processes (SA-MDPs). For Gaussian and categorical policies with Lips-
chitz networks, we prove that elementwise pruning can only tighten certified ro-
bustness bounds; pruning never makes the policy less robust. Building on this,
we derive a novel three-term regret decomposition that disentangles clean-task
performance, pruning-induced performance loss, and robustness gains, exposing
a fundamental performance–robustness frontier. Empirically, we evaluate magni-
tude and micro-pruning schedules on continuous-control benchmarks with strong
policy-aware adversaries. Across tasks, pruning consistently uncovers repro-
ducible “sweet spots” at moderate sparsity levels, where robustness improves sub-
stantially without harming—and sometimes even enhancing—clean performance.
These results position pruning not merely as a compression tool but as a structural
intervention for robust RL.

1 INTRODUCTION

Reinforcement learning (RL) has demonstrated impressive capabilities in domains ranging from
strategic games (Silver et al., 2017) to robotic control (Lillicrap et al., 2016). RL is now employed in
various safety-critical applications, such as for autonomous vehicles (Kendall et al., 2019), computer
network defence (Foley et al., 2022), and language model alignment (Ouyang et al., 2022), often
without human-in-the-loop supervision. It is therefore of crucial importance to consider how robust
RL policies are against malicious actors who would seek to adversarially manipulate their actions,
and how we might better defend against such attacks.

Modern model-free RL policies are typically over-parameterized (Sokar et al., 2023; Thomas, 2022),
which makes them more expensive to deploy and fragile to distribution shift (Kumar et al., 2022;
Menon et al., 2021). A natural solution is pruning, which has been widely explored in supervised
learning for model compression (Hayou et al., 2021), improved generalization (LeCun et al., 1989),
and robustness to adversarial attacks (Sehwag et al., 2020; Li et al., 2023). However, unlike in super-
vised learning, the relationship between pruning and robustness in RL remains largely unexplored
(Graesser et al., 2022; Zhang et al., 2020). Reinforcement learning poses unique challenges: per-
turbations to observations can propagate and accumulate over long-horizon trajectories, where even
small errors may compound into catastrophic failures (Weng et al., 2020).

In this work, we study sparse RL robustness to examine how pruning influences both benign perfor-
mance and adversarial robustness, and how these often competing objectives can be better aligned.
We model adversaries which perturb agent observations through a state adversarial Markov decision
process (Figure 1), building off work from Zhang et al. (2020). This can be used to show that prun-
ing offers theoretical guarantees, proving that element-wise pruning cannot worsen the bounds
of certified robustness. We derive a three-term regret decomposition that disentangles clean per-
formance, pruning-induced performance loss, and robustness gain.
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Figure 1: The SA-MDP framework. A victim
agent receives a perturbed observation from an ad-
versary trained to reduce its performance. The
true state st is emitted by the environment, tam-
pered by the adversary, and then passed to the vic-
tim.

We validate these predictions experimentally
using Proximal Policy Optimisation (PPO)
(Schulman et al., 2017) across multiple con-
tinuous control environments under a range of
strong policy-aware adversaries. Across set-
tings, pruning consistently uncovers a “sweet
spot” at intermediate sparsities where robust-
ness improves substantially without sacrificing
— and sometimes even enhancing — clean per-
formance. We combine pruning with state-
adversarial regularisation (Zhang et al., 2020)
to highlight its effectiveness as a complemen-
tary technique to existing robustness measures.
Across three MuJoCo benchmarks, pruning
achieves up to 25% higher certified robust-
ness while maintaining at least 95% of base-
line clean performance, consistently revealing
reproducible Pareto optima.

Our contributions.
Theoretical guarantees: We prove that pruning monotonically improves certified robustness in SA-
MDPs, establishing that sparsity cannot reduce adversarial resilience.
Trade-off characterization: We derive a three-term regret bound that formalizes the interplay be-
tween pruning, clean performance, and robustness, clarifying when these align or conflict.
Empirical validation: We show, across continuous-control benchmarks, that pruning consistently
uncovers reproducible “sweet spots” where robustness gains outweigh performance losses.

2 RELATED WORK

2.1 ADVERSARIAL ATTACKS AND ROBUSTNESS IN RL

Training-phase attacks. A first class of training-phase attacks are reward attacks. As rewards
formally characterize an agent’s purpose, altering the rewards logically changes the learned policies
of the agents. A reward-poisoning attack was proposed in batch RL (Zhang & Parkes, 2008; Zhang
et al., 2009), where rewards were stored in an unlocked, pre-collected dataset. This provided the
attacker with the opportunity to directly change the reward in the dataset. Variants of this attack
have also been proposed (Huang & Zhu, 2019; Rakhsha et al., 2020; 2021; Cai et al., 2022). These
variants use different oracle access to the model being attacked. It is further possible to attack
an RL agent, without tampering the reward. For example, Xu et al. (2021); Xu (2022) propose
an environment-poisoning attack, where the victim RL agent is misled by subtle changes to the
environment. RL agents can also be attacked by embedding triggers that elicit malicious behaviour
(Kiourti et al., 2020; Yu et al., 2022). Here, the attacker alters the training process so that the agent
learns to associate a rare pattern (the trigger) with an attacker-chosen behaviour. We remark that
training-phase attacks have also been studied for RL from Human Feedback (RLHF), mostly in the
context of LLMs fine-tuning, e.g., (Wang et al., 2024; Chen et al., 2024; Shi et al., 2023; Rando &
Tramèr, 2024; Zhao et al., 2024).

Test-phase attacks. Test-phase attacks aim to deceive a trained policy. One common approach
involves introducing perturbations into the state space at different points during execution (Huang
et al., 2017; Lin et al., 2017; Kos & Song, 2017). Beyond this, carefully crafted perturbation se-
quences can be designed to steer agents toward specific states Behzadan & Munir (2017); Lin et al.
(2017); Tretschk et al. (2018); Weng et al. (2020); Hussenot et al. (2020); Mo et al. (2023). Such
perturbation-based attacks, however, can be mitigated using techniques that reinforce cumulative re-
wards Chan et al. (2020). In addition, research has explored test-phase transferability attacks Huang
et al. (2017); Yang et al. (2020); Inkawhich et al. (2020), which exploit the empirical observation
that adversarial examples crafted to deceive one model (a surrogate) can also mislead other models,
even when those models differ in architecture, training data, or parameters. More recently, test-
phase attacks have also been devised to specifically target RLHF in LLMs (Wang et al., 2023; Xi
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et al., 2025; Liu et al., 2024; Zhu et al., 2023). For further information we refer interested readers to
surveys such as Das et al. (2025); Yao et al. (2023); Shayegani et al. (2023).

Robustness in RL. While robustness in RL has been extensively explored, studies specifically ad-
dressing adversarial robustness remain limited. Empirical robust learning typically uses heuristics
or evaluations to enhance model reliability. An effective way of improving robustness is to use
Adversarially Robust Policy Learning (ARPL), which incorporates physically plausible adversar-
ial examples during training (Mandlekar et al., 2017; Tessler et al., 2019; Zhou et al., 2024). It is
likewise possible to make agents more resilient, by altering the environment during training Jiang
et al. (2021); Parker-Holder et al. (2022); Dennis et al. (2020). Additional contributions include Ball
et al. (2021), showing that Augmented World Models improve generalization and Ball et al. (2020),
where agents use a context variable to adapt to changes in environment dynamics.

2.2 PRUNING

Sparsity is valuable not only for model compression and faster inference (Han et al., 2015;
Molchanov et al., 2017), but also for improving generalisation (LeCun et al., 1989; Hassibi & Stork,
1992; Bartoldson et al., 2020). Pruning design choices include whether to remove individual pa-
rameters (LeCun et al., 1989; Han et al., 2015) or use structured sparsity (Wen et al., 2016; Lasby
et al., 2024), and whether to prune statically (Frankle & Carbin, 2019) or dynamically during train-
ing (Evci et al., 2020; Mocanu et al., 2018; Prechelt, 1997). Criteria include random selection (Liu
et al., 2022), magnitude (LeCun et al., 1989), saliency (Hassibi & Stork, 1992), or evolutionary
strategies (Mocanu et al., 2018), often paired with Straight-Through Estimators (Vanderschueren &
Vleeschouwer, 2023; Bengio et al., 2013; Hinton, 2012) for gradient flow through binary masks.
For a detailed overview, see, e.g., Cheng et al. (2024).

For supervised learning, it has been empirically demonstrated that pruning can improve robustness
against adversarial attacks, both through the above methods and augmenting with additional adver-
sarial objectives. In Cosentino et al. (2019) lottery tickets (Frankle & Carbin, 2019), pruned up to
∼ 96%, can outperform the original network on adversarial accuracy. Work in Fu et al. (2021) ex-
tends Frankle & Carbin (2019); Malach et al. (2020) to show that tickets exist which can outperform
the dense network on adversarial examples, without any training. HYRDA (Sehwag et al., 2020)
creates a risk minimisation objective for pruning which optimises the pruning to be adversarially
robust. Conversely, Cosentino et al. (2019) separately applies pruning followed by adversarial train-
ing (Madry et al., 2018) to produce more robust sparse networks and Bair et al. (2024) introduces
a sharpness-aware pruning criterion to encourage flatter, more generalisable networks. In contrast,
far less work has been done to understand the interaction of sparsity and robustness for RL policies,
motivating this work.

3 ROBUSTNESS BOUNDS IN SA-MDPS

3.1 SETTING

We study a state-adversarial Markov decision process (SA-MDP) defined with perturbation sets
B(s) ⊆ S. A standard MDP is specified as a tuple (S,A, R, p, γ), where a stationary stochastic
policy is given by πθ : S → P(A) with density πθ(a|s). In the SA-MDP setting, the agent does
not act on the true state s but instead observes an adversarially perturbed state ν(s) ∈ B(s) and
selects actions according to πθ(·|ν(s)), while the environment transitions based on the true state
through p(·|s, a). Consequently, an SA-MDP can be represented as (S,A, B,R, p, γ). in this work,
we constrain ν to an ℓp ball: B(s) :={ŝ ∈ S : ∥ŝ− s∥p ≤ ε} with budget ε>0 and p∈{2,∞}.
For distributions P,Q on A, we define the total variation distance as

DTV(P,Q) := sup
E⊆A

|P (E)−Q(E)|.

For each state s ∈ S, we define TVmax(s; θ) := maxŝ∈B(s) DTV(πθ(·|s), πθ(·|ŝ)). Let dπθ
µ be the

discounted visitation distribution from µ, and set

F (θ) := Es∼d
πθ
µ
[TVmax(s; θ)], B(θ) := αF (θ) with α = 2

[
1 + γ

(1−γ)2

]
Rmax,

3
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with |R(s, a, s′)| ≤ Rmax.

Policy classes and constants. We consider (i) Gaussian policies πθ(a|s) = N (µθ(s),Σ) with fixed
Σ ≻ 0, and (ii) categorical policies πθ(·|s) = softmax(zθ(s)), zθ(s) ∈ RK . In subsequent bounds
we use the constant c = (

√
2π λmin(Σ))

−1 for Gaussian policies and c = 1/4 for categorical
softmax policies. We write Ṽ πθ◦ν∗

for the robust value under the optimal adversary. The robustness
gap for a state s ∈ S is V πθ′ (s)− Ṽ πθ′◦ν

∗(πθ′ )(s).

Additional notation. We use ∥x∥p for vector ℓp norms; ∥W∥F (Frobenius), ∥W∥1 =
maxj

∑
i |Wij |, ∥W∥∞ = maxi

∑
j |Wij | for matrices; and ∥J∥op for spectral norm. For neural

policies, gθ(s) denotes logits/means and Jgθ (s) its Jacobian.

3.2 PERFORMANCE–ROBUSTNESS TRADE-OFFS

We show that elementwise pruning of a policy network in stochastic action MDPs cannot worsen
its certified robustness guarantee. This result follows from a surrogate Lipschitz bound, which
decreases under pruning, thereby ensuring monotone improvement in robustness.
Theorem 1 (SA-MDP robustness improves under pruning). Let πθ be either a Gaussian or categor-
ical policy realized by a feedforward network with Lipschitz activations σℓ and weights θ. Define
the surrogate Lipschitz bound

L̃θ :=

(
L−1∏
ℓ=1

Lσℓ

)
L∏

ℓ=1

min
{
∥Wℓ∥F ,

√
∥Wℓ∥1∥Wℓ∥∞

}
.

Let θ′ be obtained from θ by elementwise pruning. Then

max
s
{V πθ (s)− Ṽ πθ◦ν∗(πθ)(s)} ≤ α c L̃θ ε,

and
max

s
{V πθ′ (s)− Ṽ πθ′◦ν

∗(πθ′ )(s)} ≤ α c L̃θ′ ε ≤ α c L̃θ ε,

Thus, under pure elementwise pruning, the certified robustness bound is monotone nonincreasing.

Intuitively, this theorem shows that pruning reduces the network’s sensitivity to perturbations, so the
certified robustness of the policy can only improve as parameters are removed.

Training remark. The monotonicity result (Theorem 1) applies to pruning on a fixed set of weights.
During training, gradient steps may enlarge weight norms and hence L̃θ, so robustness is not globally
monotone. Nevertheless, each pruning step strictly decreases L̃θ relative to the current parameters,
acting as a monotone regularizer counteracting weight growth. This explains why robustness tends
to improve steadily in practice (Sec. 5) when pruning is interleaved with training.

Tightness of the bound. While Theorem 1 provides a provably monotone global robustness bound,
it can be loose in practice. A sharper, distribution–dependent refinement is given in Lemma 1 (Ap-
pendix), which often yields much tighter estimates, though without the same monotonicity guarantee
under pruning.

Theorem 1 guarantees pruning cannot worsen the worst-case robustness gap. However, worst-case
bounds can be overly pessimistic. To obtain guarantees that better capture typical performance, we
next consider expected versions of the robustness gap, aligned with the population-level objective
F (θ). This motivates our second main result, which characterizes robustness through F (θ) and
bounds the expected degradation in value under the optimal adversary.
Theorem 2 (Unified regret under SA attack). Fix a start distribution µ. Write J(π) :=

Es0∼µ[V
π(s0)] and J̃(π) := Es0∼µ[Ṽ

π(s0)]. Let π̄ be any comparator policy (e.g., π∗ maximizing
J or π̃∗ maximizing J̃), and let ν∗ denote the optimal SA adversary for πθ. Define

Regclean(θ; π̄) := J(π̄)− J(πθ), Regatk(θ; π̄) := J(π̄)− J̃(πθ◦ν∗).
Then, it holds

Regatk(θ; π̄)− Regclean(θ; π̄) = J(πθ)− J̃(πθ◦ν∗) ≤ B(θ).

4
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Additionally, if πθ is Gaussian with fixed Σ≻0 or categorical softmax with Lipschitz network, then

Regatk(θ; π̄)− Regclean(θ; π̄) ≤ α c L̃θ ε.

Moreover, if θ′ is obtained by entrywise pruning, then

Regatk(θ
′; π̄)− Regclean(θ

′; π̄) ≤ α c L̃θ′ ε ≤ α c L̃θ ε.

Theorem 2 shows that the extra regret a policy suffers under the optimal state-adversarial attack
(compared to its clean regret) is always bounded by a robustness coefficient B(θ), and in particular
by the Lipschitz surrogate L̃θ for Gaussian or softmax policies. In other words, pruning cannot
increase this attack–clean regret gap and in fact makes the bound tighter.

Pruning sensitivity. For pruned parameters θ′ = θ − ∆θ, define the path–averaged parameter
sensitivity

Lpar(θ, θ
′) :=

∫ 1

0

(
Es∼d

πθ
µ
∥Jϕgϕ(s)∥2op

)1/2
ϕ=θ′+t(θ−θ′)

dt,

with gϕ = µϕ, for Gaussian policies and gϕ = zϕ for categorical. Lemma 3 (Appendix) shows that
both clean and attacked value drops satisfy

J(πθ)− J(πθ′), J̃(πθ◦ν∗)− J̃(πθ′ ◦ν∗) ≤ αcLpar(θ, θ
′) ∥∆θ∥.

This term serves as the performance loss from pruning in Theorem 3, complementing the baseline
regret and robustness gap to yield the full three–term trade-off.

Theorem 3 (Performance–robustness trade-off under pruning). Fix any comparator policy π̄. For
pruned parameters θ′ = θ −∆θ,

Regatk(θ
′; π̄) ≤ Regclean(θ; π̄)︸ ︷︷ ︸

clean regret of unpruned

+ α cLpar(θ, θ
′) ∥∆θ∥︸ ︷︷ ︸

performance loss from pruning

+ α c L̃θ′ ε︸ ︷︷ ︸
robustness gap of pruned

.

Interpretation. The three–term bound exposes a fundamental performance–robustness trade–off.
The first term is the clean regret of the unpruned policy, determined by baseline training quality.
The second term, αcLpar(θ, θ

′)∥∆θ∥, is the performance loss from pruning. Here Lpar is a path–
averaged sensitivity: it measures how strongly the policy’s outputs react to parameter perturbations
along the path from θ to θ′. Low sensitivity implies pruning has little effect, while high sensitivity
makes small weight changes costly. This explains why magnitude pruning is effective: removing
small–magnitude weights keeps ∥∆θ∥ small, reducing the penalty.

The third term, αc L̃θ′ε, is the robustness gap of the pruned policy, controlled by its input Lipschitz
constant. Because pruning reduces L̃θ, this term always improves. Thus pruning simultaneously
hurts via performance loss and helps via robustness, and the optimal sparsity balances these opposing
effects. Pruning therefore acts not just as compression but as a structural intervention trading margin
for robustness.

4 EXPERIMENTS AND RESULTS

We study the performance–robustness trade-off predicted by our SA-MDP theory under structured
network sparsification. Concretely, we couple on-the-fly weight pruning with adversarially robust
policy optimization on continuous-control benchmarks. This section specifies environments, poli-
cies, attacks, pruning strategies, and the full training–evaluation protocol.

4.1 TASKS AND POLICIES

We evaluate on three MuJoCo continuous-control tasks from Gym: Hopper, Walker2d, and
HalfCheetah. Policies are stochastic Gaussian actors πθ(a | s) = N (µθ(s),Σ) with state-
independent diagonal covariance Σ. Value functions use separate MLPs. Unless otherwise noted,
both actor and critic are multilayer perceptrons (MLPs) with Lipschitz activations and standard
initialization (full architecture details are provided in Appendix D).

5
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Table 1: Summary of adversarial attacks used during training and evaluation.

Attack Description

Random Samples ŝ uniformly from the perturbation set B(s).
Value-guided Perturbs states to minimize V π(s) via gradient descent on the critic.
MAD Maximizes DKL(πθ(· |s) ∥πθ(· | ŝ)) with projected gradient steps.
Robust Sarsa (RS) Uses a robust TD update of Qπ to find perturbations ŝ that minimize

Qπ(s, π(ŝ)).

4.2 STATE-ADVERSARIAL TRAINING OBJECTIVE

Our theory (Sec. 3) shows that robustness bounds are governed by divergences between πθ(· | s)
and πθ(· | ŝ) for perturbed states ŝ ∈ B(s). By Pinsker’s inequality, these total variation terms
can be controlled by KL divergences. To operationalize this, we adopt the SA-regularization term
introduced in prior work on robust PPO (Zhang et al. (2020)):

RSA(θ) = Es∼d
πθ
µ

[
max
ŝ∈B(s)

DKL

(
πθ(· | s) ∥πθ(· | ŝ)

)]
,

where DKL is instantiated as KL divergence. While KL does not appear directly in the robustness
bounds, it serves as a theoretically justified surrogate via Pinsker’s inequality, and has been widely
used in the literature on adversarially robust RL.

The actor objective becomes Lπ(θ) = LPPO(θ) + κRSA(θ), where κ≥0 toggles the regulariza-
tion strength. Setting κ=0 disables SA regularization, yielding pruning-only training.

Perturbation sets. For state attacks we use ℓ∞ balls B(s) = {ŝ : ∥ŝ − s∥∞ ≤ ε} in normalized
state space, matching the SA-MDP formulation and robust PPO practice, with environment–specific
budgets ε = 0.075 (hopper), 0.05 (walker2d), 0.15 (ant), and 0.15 (halfcheetah).

4.3 ADVERSARIAL ATTACKS

We evaluate robustness against four standard state-adversarial attacks, summarized in Table 1. Each
attack is applied at every control step during rollouts.

4.4 PRUNING STRATEGIES

We compare five pruning strategies applied to both actor and critic networks: Random (uniform
weight removal under ERK allocation), Magnitude (removing the smallest weights), Magnitude–
STE (magnitude pruning with straight-through estimator updates), Saliency (based on first-order
Taylor scores), and a dense No-Pruning baseline. All pruning methods (except the baseline) follow
a cubic sparsity schedule after a 25% burn-in.

Micro-pruning. We call a schedule that increases sparsity through many small, frequent mask
updates micro-pruning, as opposed to applying a single large pruning step. The global target sparsity
still follows a cubic schedule, but the mask is adjusted incrementally so that the model is pruned in
fine-grained steps rather than all at once.

Why gradual steps help. The three–term bound in Sec. 3 (Theorem 3) shows that pruning intro-
duces a performance loss proportional to Lpar(θ, θ

′) ∥∆θ∥, where Lpar is a path–averaged sensitiv-
ity measuring how much Jacobians vary along the pruning trajectory. Large pruning steps can push
parameters through regions where sensitivities change sharply, making Lpar large. By contrast,
small incremental steps keep consecutive parameters close, so the Jacobian varies smoothly and
the integrand in Lpar stays stable. Thus micro-pruning tends to accumulate performance cost more
gently, while still benefiting from the monotone decrease in the Lipschitz bound L̃θ that controls
robustness.

Sweet-spot definition. To quantify the joint effect of pruning on standard performance and robust-
ness, we define the sweet spot of each method as the pruning level at which the average of nor-
malized clean and normalized robust performance is maximized. This captures the pruning regime

6
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Figure 2: Clean vs. robust frontiers under pruning. (Top) hopper: normalized clean and robust
returns as pruning increases, across strategies. (Bottom) halfcheetah: analogous trends with
higher pruning tolerance. All curves are normalized to the unpruned SA-trained policy; shaded
regions denote ± one standard error across seeds.

where robustness improvements are realized without disproportionate loss in clean-task return, and
is reported consistently across environments and methods.

4.5 EMPIRICAL ANALYSIS

All reported results in this section are normalized against the unpruned SA-trained network, which
serves as our dense baseline and are averaged over 5 seeds. This ensures pruning is always evaluated
relative to the strongest non-sparse policy rather than a weaker vanilla PPO baseline.

Our theory establishes that pruning alone monotonically improves certified robustness (Theorem 1).
During training, however, gradient updates can enlarge weight norms and hence L̃θ, so robust-
ness is not globally monotone (cf. Training Remark, Sec. 3). Nevertheless, each pruning step
strictly decreases L̃θ relative to the current parameters, acting as a monotone regularizer that coun-
teracts the natural growth of weight norms during training. From this perspective, one should not
expect perfectly monotone empirical curves, but rather robustness that tends to increase steadily
with pruning, punctuated by fluctuations from training noise. We now test this prediction across
hopper, halfcheetah, and walker2d, gradually building a picture of how pruning reshapes
the performance–robustness landscape.

Clean vs. robust frontiers. We begin by examining the overall trade-off between clean-task per-
formance and robustness. Figure 2 shows these frontiers for hopper and halfcheetah. In
hopper, robustness climbs until around 40% pruning before clean-task degradation takes over.
halfcheetah is strikingly more tolerant, maintaining clean-task performance up to ∼70% prun-
ing. These patterns reflect the three-term decomposition in Theorem 3: pruning reduces the Lip-
schitz gap term, but excessive sparsity eventually drives large parameter displacements that erode
performance.

By contrast, walker2d is far less forgiving: robustness initially rises but collapses past 50%.
These differences align with environment dynamics: halfcheetah’s smoother transitions allow
redundancy, while walker2d’s instability amplifies sensitivity. Appendix C provides the full set
of curves, confirming the reproducibility of these trends.

The other environments follow the same pattern but with different tolerances. halfcheetah is
strikingly robust, maintaining clean-task performance up to ∼70% pruning, whereas walker2d is
far less forgiving: robustness initially rises but collapses past 50%. These differences align with en-
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Figure 3: hopper under attack. Robustness gains are strongest against MAD and RS adversaries,
consistent with pruning’s global Lipschitz guarantee. Improvements are smaller and less consistent
against targeted Value-guided attacks. Appendix C shows analogous plots for halfcheetah and
walker2d.

Figure 4: Pruning vs. adversarial training (hopper). Pruning yields robustness gains in both
regimes. SA-regularization sometimes provides additional improvements (notably under RS and
Random), but the effect is uneven across attacks.

vironment dynamics: halfcheetah’s smoother transitions allow redundancy, while walker2d’s
instability amplifies sensitivity. Appendix C provides the full set of curves, including seed variabil-
ity, which confirm the reproducibility of these sweet spots.

The pruning method also matters. Magnitude pruning consistently yields the most stable frontiers,
as expected from Theorem 3 since it directly controls ∥∆θ∥. Saliency pruning looks competitive in
hopper but breaks down in more complex environments, where instantaneous gradient saliency is
a poor proxy for long-horizon contributions. Magnitude–STE introduces noise by pruning sensitive
layers too aggressively, and random pruning is unsurprisingly the least reliable: it occasionally
boosts robustness but often destroys clean-task returns.

Attack-specific robustness. To understand robustness more finely, we next examine performance
under different adversaries. Figure 3 shows hopper curves under four state-adversarial attacks
(Random, Value-guided, MAD, RS). Here a clearer picture emerges: pruning offers the strongest
gains against broad-spectrum adversaries (MAD and RS), boosting robust returns by several hundred
reward points in the 40–60% sparsity range. By contrast, targeted Value-guided attacks are less
affected, producing noisier or weaker gains. This contrast reflects the gap between global and local
robustness: pruning reduces the global Lipschitz constant (as guaranteed by Theorem ??), but does
not eliminate vulnerabilities to specific input patterns. In other words, pruning hardens the policy
against generic perturbations, but some adversary-specific weaknesses remain. halfcheetah and
walker2d exhibit the same qualitative trends (Appendix C), though the precise sweet spot again
depends on environment dynamics.

Effect of adversarial training. A natural question is whether pruning simply mimics the effect of
adversarial (SA) training. Figure 4 compares hopper returns with and without SA regularization.
We find that pruning consistently improves robustness in both settings, confirming that it acts as
an independent structural bias. The incremental effect of SA training under pruning is modest and
attack–dependent (e.g., clearer under RS and Random, negligible under Clean and Value). This
suggests that pruning and SA are not interchangeable, but their combination does not always yield
additive gains.

Micropruning ablation. When pruning is interleaved with training, we observe that robustness
gains and clean-task performance often evolve in parallel (Fig. 5) Micro-pruning schedules,
which update the pruning mask in small increments, allow the network to adjust gradually: each
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Figure 5: Micropruning ablation. Updating masks in small, periodic increments (10–20 steps)
leads to smoother curves and more reliable sweet spots than pruning every step.

incremental step reduces the Lipschitz bound controlling robustness, while ongoing weight updates
help offset the associated parameter change. As a result, performance curves remain smoother
and robustness improvements are more stable, with sweet spots emerging at intermediate sparsity
levels. Figure 5 illustrates this effect across pruning intervals. Applying mask updates every 10–20
steps yields the most stable curves, while pruning every single step introduces more variability due
to interaction with gradient noise. The same qualitative pattern holds across environments, with
hopper benefitting most clearly from 20-step pruning, while halfcheetah and walker2d
stabilize at 10–15 steps.

Sweet spot quantification. Finally, Appendix Table 2 quantifies the sweet-spot sparsities
across environments and pruning methods. hopper peaks around 30–50%, halfcheetah
around 50–70%, and walker2d around 30–50%. Notably, magnitude pruning consistently finds
these ranges, while random pruning is far more variable. Across tasks, pruning improves normalized
robust performance by 1.1×–1.6× relative to baseline, showing that the benefits are substantial and
reproducible. Appendix Table 3 further reports per-seed worst-case values, confirming that these
gains are not driven by lucky seeds but persist across training runs.

5 CONCLUSION AND FUTURE WORK

We studied element–wise pruning in reinforcement learning and showed, both theoretically and em-
pirically, that it acts as a monotone regularizer; each pruning step reduces a Lipschitz surrogate of
robustness, while performance loss is captured by a three–term regret bound. Across continuous–
control benchmarks, we consistently observe reproducible “sweet spots” where robustness gains
outweigh clean-task degradation, under both standard and adversarial training. To the best of our
knowledge, this is the first work to certify that pruning in RL can never reduce robustness, posi-
tioning it not only as a compression tool but as a structural intervention shaping the performance–
robustness trade-off. We also acknowledge that large language models (LLMs) were used to assist
with LATEX formatting and grammar checking.

Limitations and Future Work. Our study focuses on continuous–control benchmarks with MLP
policies and element–wise pruning. While this setting offers a clean testbed, it leaves open important
questions regarding generality. Extending the theory and experiments to pixel–based environments
and richer architectures (e.g., CNNs, RNNs, or transformers) is a natural next step. Similarly, in-
vestigating structured pruning methods—such as neuron, channel, or layer pruning—could provide
more practical compression gains and richer robustness–performance trade-offs. Another promis-
ing direction is to integrate pruning more tightly with the training process. For instance, jointly
optimizing pruning with adversarial or robust training may yield complementary benefits, while
data–dependent sensitivity estimates could enable sharper and more adaptive pruning schedules.
Beyond the static adversarial models considered here, it is also important to evaluate pruning under
richer and more realistic threat models, including adaptive, temporally correlated, or non–stationary
attacks. Finally, while we have established pruning as a robustness–preserving intervention, its
broader implications for policy generalization, exploration, and sample efficiency remain underex-
plored. Addressing these questions would help clarify when and how pruning can serve not only as a
compression tool but as a principled means of shaping learning dynamics in reinforcement learning.
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A APPENDIX

A ALGORITHM

Algorithm 1 PPO with Pruning and Optional SA Regularization

Require: Initial policy parameters θ; Pruning masks {Mℓ} for each layer (initialized as all ones,
i.e. no pruning applied); Adversarial budget B(s) (state perturbation set); Regularization weight
κ ≥ 0; Total update horizon T ; Burn-in fraction β ∈ [0, 1]; Choice of pruning rule.

1: Initialize update counter t = 0
2: for each update iteration do
3: Collect trajectories using adversarial states ŝ ∈ B(s)

4: Compute advantages Â and returns R̂
5: for each minibatch B do
6: t← t+ 1
7: Compute PPO loss with SA regularisation L ← LPPO + κRSA(θ;B)
8: Update network parameters with gradient descent
9: if t/T > β (network burn-in) then

10: Update pruning masks {Mℓ} according to chosen rule
11: Apply masks to network parameters ▷ pruning step
12: end if
13: end for
14: end for

B PROOFS

B.1 PROOF OF THEOREM 1

Proof. For any policy π and its optimal adversary ν∗(π) in the state-adversarial MDP (SA-MDP),
it holds from Zhang et al. (2020) that

max
s

{
V π(s)− Ṽ π◦ν∗(π)(s)

}
≤ αmax

s
max
ŝ∈B(s)

DTV

(
π(·|s), π(·|ŝ)

)
, (1)

where B(s) = { ŝ : ∥ŝ − s∥2 ≤ ε } is the ℓ2 perturbation ball, and DTV denotes total variation
distance.

Network Lipschitz bound. Let the policy network be an L-layer feedforward model with param-
eters θ = {W1, . . . ,WL}, biases {bℓ}, and Lσℓ

–Lipschitz activations σℓ. Explicitly, the network
map fθ : S → Rd is the function composition

fθ(s) = WL σL−1

(
WL−1 σL−2

(
· · ·σ1(W1s+ b1) + bL−1

))
+ bL,

where σℓ is applied elementwise. Biases do not affect Lipschitz constants.

The Lipschitz constant of a linear map x 7→Wℓx is its operator (spectral) norm ∥Wℓ∥2, since

∥Wℓx−Wℓy∥2 = ∥Wℓ(x− y)∥2 ≤ ∥Wℓ∥2∥x− y∥2.

Thus the Lipschitz constant of fθ is bounded by

Lip(fθ) ≤

(
L−1∏
ℓ=1

Lσℓ

)
L∏

ℓ=1

∥Wℓ∥2.

Since computing or constraining ∥Wℓ∥2 can be difficult, we introduce monotone surrogates. For
any matrix A,

∥A∥2 ≤ ∥A∥F , ∥A∥2 ≤
√
∥A∥1 ∥A∥∞.
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These upper bounds are monotone in the entries of A, hence suitable for analyzing pruning. There-
fore,

Lip(fθ) ≤

(
L−1∏
ℓ=1

Lσℓ

)
L∏

ℓ=1

min
{
∥Wℓ∥F ,

√
∥Wℓ∥1∥Wℓ∥∞

}
=: L̃θ.

Thus for any s, ŝ ∈ B(s),
∥fθ(ŝ)− fθ(s)∥2 ≤ L̃θ ε.

Gaussian policies. For πθ(a|s) = N (µθ(s),Σ) with fixed Σ ≻ 0, the closed-form total variation
distance between Gaussians with equal covariance gives

DTV

(
πθ(·|s), πθ(·|ŝ)

)
≤ ∥µθ(ŝ)− µθ(s)∥2√

2π λmin(Σ)
≤ 1√

2π λmin(Σ)
L̃θ ε.

Categorical policies. For πθ(·|s) = softmax(zθ(s)), the log-partition function is 1/4-smooth,
which yields the standard bound

DTV(πθ(·|s), πθ(·|ŝ)) ≤ 1
4 ∥zθ(s)− zθ(ŝ)∥2 ≤ 1

4 L̃θ ε.

Effect of pruning. Let θ′ be obtained by elementwise pruning, W ′
ℓ =Mℓ⊙Wℓ with binary masks

Mℓ. Each surrogate norm is monotone under pruning:

∥W ′
ℓ∥F ≤ ∥Wℓ∥F ,

√
∥W ′

ℓ∥1∥W ′
ℓ∥∞ ≤

√
∥Wℓ∥1∥Wℓ∥∞.

Hence L̃θ′ ≤ L̃θ. Activation Lipschitz constants are unchanged, so the same bounds apply with L̃θ′ ,
which is no larger.

Therefore, for Gaussian (c = 1√
2π λmin(Σ)

) and categorical (c = 1
4 ) policies,

max
s
{V πθ′ (s)− Ṽ πθ′◦ν

∗(πθ′ )(s)} ≤ α c L̃θ′ ε ≤ α c L̃θ ε.

Thus pruning cannot worsen the certified robustness bound.

Tightness of the bound. The surrogate Lipschitz bound L̃θ from Theorem 1 is guaranteed to be
monotone under entrywise pruning, but it can be loose compared to the true sensitivity of the policy.
A sharper, distribution–dependent refinement is given in Lemma 1:

TV (πθ(· | s), πθ(· | s+ ϵ)) ≤ c
(
∥Jgθ (s)∥op ϵ+ 1

2β ϵ2
)
,

where β is a curvature constant capturing the local variation of the Jacobian, e.g. an upper bound
on the Lipschitz constant of Jgθ (s). This local bound is (trivially) always no larger than the global
bound (exact for ReLU networks, up to an O(ϵ2) term otherwise), and often much tighter since typi-
cal Jacobians have small operator norm. However, unlike L̃θ, it is not guaranteed to decrease mono-
tonically under pruning. Thus, the global bound provides provable monotone improvement, while
the local refinement better reflects the true robustness landscape but may vary non-monotonically.
Lemma 1 (Local robustness bound). Let πθ be either a Gaussian policy πθ(a | s) = N (µθ(s),Σ)
with fixed Σ ≻ 0, or a categorical policy πθ(· | s) = softmax(zθ(s)). Suppose the network outputs
gθ(s) (mean µθ(s) or logits zθ(s)) are β-smooth, i.e., ∥Jgθ (x) − Jgθ (y)∥op ≤ β∥x − y∥2 for all
x, y. Then for any perturbation ϵ and state s,

TV
(
πθ(· | s), πθ(· | s+ ϵ)

)
≤ c

(
∥Jgθ (s)∥op ∥ϵ∥2 + 1

2 β ∥ϵ∥
2
2

)
,

where Jgθ (s) is the Jacobian of gθ at s (operator norm induced by ℓ2), and c = 1√
2π λmin(Σ)

for

Gaussians and c = 1
4 for categoricals.

Proof. By first-order Taylor’s theorem with integral remainder and the β-smoothness of gθ,

gθ(s+ ϵ) = gθ(s) + Jgθ (s) ϵ+

∫ 1

0

(
Jgθ (s+ tϵ)− Jgθ (s)

)
ϵ dt︸ ︷︷ ︸

r(ϵ)

,
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and hence

∥r(ϵ)∥2 ≤
∫ 1

0

∥Jgθ (s+ tϵ)− Jgθ (s)∥op ∥ϵ∥2 dt ≤
∫ 1

0

β t ∥ϵ∥22 dt = 1
2 β ∥ϵ∥

2
2.

Therefore,
∥gθ(s+ ϵ)− gθ(s)∥2 ≤ ∥Jgθ (s)∥op ∥ϵ∥2 + 1

2 β ∥ϵ∥
2
2.

For Gaussians with identical covariance Σ ≻ 0, the closed-form total variation bound gives
TV
(
πθ(· | s), πθ(· | s + ϵ)

)
≤ ∥µθ(s + ϵ) − µθ(s)∥2/

√
2π λmin(Σ). For categoricals, the soft-

max log-partition is 1/4-smooth, yielding TV
(
πθ(· | s), πθ(· | s + ϵ)

)
≤ 1

4∥ zθ(s + ϵ) − zθ(s)∥2.
Applying these with gθ as the mean or logits respectively establishes the claim.

B.2 LEMMA 2

Lemma 2 (Expected robustness gap). For any start-state distribution µ,

Es0∼µ[Vπθ
(s0)− Ṽπθ◦ν∗(s0)] ≤ αEs∼d

πθ
µ

[
TV (πθ(· | s), πθ(· | ν∗(s)))

]
≤ B(θ).

Proof. The first inequality is obtained from Zhang et al. (2020) by taking the expectation over the
difference in values instead of maxs. The constant α (defined in the main paper) collects the reward
bound and γ.

For the second inequality, note that by definition

TV (πθ(· | s), πθ(· | ν∗(s))) ≤ TVmax(s; θ).

Taking expectations over s ∼ dπθ
µ yields

Es

[
TV (πθ(· | s), πθ(· | ν∗(s)))

]
≤ Es

[
TVmax(s; θ)

]
= F (θ).

Multiplying by α gives the claimed bound B(θ) = αF (θ).

B.3 LEMMA 3

Lemma 3 (Clean/attacked value drop under pruning). Let πθ be Gaussian with fixed covariance
Σ ≻ 0 or categorical softmax with logits zθ(s) from a Lipschitz network. Assume that for each s,
the map ϕ 7→ gϕ(s) is differentiable almost everywhere. For any pruned parameters θ′ = θ −∆θ,
define

L̂par
ϕ :=

(
Es∼d

πθ
µ
∥Jϕgϕ(s)∥2op

)1/2
, Lpar(θ, θ

′) :=

∫ 1

0

L̂par
θ′+t(θ−θ′) dt.

With c = 1√
2π λmin(Σ)

, gϕ = µϕ for Gaussian and c = 1
4 , gϕ = zϕ for categorical, we have

J(πθ)− J(πθ′) ≤ α cLpar(θ, θ
′) ∥∆θ∥, J̃(πθ◦ν∗)− J̃(πθ′ ◦ν∗) ≤ α cLpar(θ, θ

′) ∥∆θ∥.

(Here ∥ · ∥ on parameters is Euclidean, and ∥ · ∥op is the operator norm induced by ℓ2.)

Proof. By the SA–MDP value–difference bound (Theorem ?? in TV form) applied to two policies
at the same state,

J(πθ)− J(πθ′) ≤ αEs∼d
πθ
µ

[
TV
(
πθ(·|s), πθ′(·|s)

)]
.

Gaussian: For Gaussians with identical covariance Σ ≻ 0, the closed-form TV bound is

TV
(
πθ(·|s), πθ′(·|s)

)
≤ ∥µθ(s)− µθ′(s)∥2√

2π λmin(Σ)
.

Categorical: For π = softmax(z), the log-partition is 1/4-smooth, yielding

TV (πθ(·|s), πθ′(·|s)) ≤ 1
4∥zθ(s)− zθ′(s)∥2.
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Thus, in both cases,
TV
(
πθ(·|s), πθ′(·|s)

)
≤ c ∥gθ(s)− gθ′(s)∥2.

Now let ϕ(t) := θ′ + t(θ − θ′), t ∈ [0, 1]. Since gϕ(s) is (a.e.) differentiable in ϕ, the fundamental
theorem of calculus along ϕ(t) gives

gθ(s)− gθ′(s) =

∫ 1

0

Jϕ(t)gϕ(t)(s) (θ − θ′) dt.

Taking norms and using the operator norm,

∥gθ(s)− gθ′(s)∥2 ≤
∫ 1

0

∥Jϕ(t)gϕ(t)(s)∥op dt ∥∆θ∥.

By Tonelli/Fubini to exchange expectation and integral, and Cauchy–Schwarz in s,

Es∥gθ(s)− gθ′(s)∥2 ≤
∫ 1

0

(
Es∥Jϕ(t)gϕ(t)(s)∥2op

)1/2
dt ∥∆θ∥ = Lpar(θ, θ

′) ∥∆θ∥.

Combining with the TV inequality yields the claimed clean-value bound with factor αc. The
attacked-value bound is identical with J̃ , since Theorem ?? holds for robust values with the same
TV control.

B.4 PROOF OF THEOREM 3

Proof. Decompose

Regatk(θ
′; π̄) = J(π̄)− J̃(πθ′◦ν∗) =

[
J(π̄)−J(πθ)

]
+
[
J(πθ)−J(πθ′)

]
+
[
J(πθ′)− J̃(πθ′◦ν∗)

]
.

The first term is Regclean(θ; π̄). The second term is bounded by Lemma 2: J(πθ) − J(πθ′) ≤
αcLpar(θ, θ

′) ∥∆θ∥. For the third term, apply Theorem 1 to πθ′ : J(πθ′) − J̃(πθ′ ◦ν∗) ≤ αc L̃θ′ ε.
Summing the bounds yields the claim.

C ADDITIONAL RESULTS

This appendix provides the full set of figures and tables referenced in the main text.

Figure 6: halfcheetah: Clean vs. Robust frontier. Normalized clean and robust returns as
pruning increases, across pruning strategies.

Figure 7: halfcheetah: Robustness under different adversaries. Pruning vs. robustness
curves across attack types (Clean, MAD, Random, RS, Value).
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Figure 8: hopper: Clean vs. Robust frontier. Normalized clean and robust returns as pruning
increases, across pruning strategies.

Figure 9: hopper: Robustness under different adversaries. Pruning vs. robustness curves across
attack types (Clean, MAD, Random, RS, Value).

Figure 10: walker2d: Clean vs. Robust frontier. Normalized clean and robust returns as pruning
increases, across pruning strategies.

Figure 11: walker2d: Robustness under different adversaries. Pruning vs. robustness curves
across attack types (Clean, MAD, Random, RS, Value).
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Environment Method Sweet-Spot % Clean Robust (Worst) Norm. Robust (Avg)

hopper magnitude 30% 1.00 1.63 1.26
magnitude ste 90% 0.95 1.53 1.22
random 90% 1.00 1.51 1.33
saliency 85% 1.00 1.66 1.28

walker2d magnitude 70% 1.33 1.09 1.24
magnitude ste 70% 0.90 0.81 0.90
random 30% 1.29 1.43 1.37
saliency 30% 1.20 0.94 1.13

halfcheetah magnitude 90% 1.02 1.24 1.23
magnitude ste 50% 1.01 1.47 1.28
random 85% 0.90 1.62 1.35
saliency 85% 0.99 1.37 1.26

Table 2: Sweet-spot pruning levels. Across environments, pruning uncovers reproducible sparsity
ranges (30–70%) where robustness gains dominate without harming clean returns. Returns are nor-
malized to the unpruned policy performance.

Environment Method Pruning % Avg. worst-seed abs Avg. worst-seed norm

halfcheetah magnitude 98% 1871.41 1.00
magnitude ste 30% 1908.56 1.00
random 85% 1844.73 0.91
saliency 80% 2093.46 1.11

hopper magnitude 30% 1348.83 0.92
magnitude ste 90% 1227.63 0.83
random 30% 1528.69 1.06
saliency 85% 1425.76 0.96

walker2d magnitude 30% 1123.91 0.53
magnitude ste 70% 446.48 0.22
random 30% 2259.16 1.11
saliency 30% 1403.68 0.68

Table 3: For each environment and pruning method (SA=on), we summarize robustness by averag-
ing, over the non-clean attacks, the worst-seed mean reward evaluated at the attack-specific sweet
spot, where the sweet spot is defined as the sparsity that maximizes the average reward across seeds
within the method. We report a single representative pruning percentage per method as the mode
of the attack-wise sweet spots (ties favor smaller %). Absolute scores and values normalized to the
no-prune (0.30) baseline for each attack are shown.

D EXPERIMENTAL DETAILS AND CONFIGURATION

Hyperparameters. The hyperparameters for PPO are presented in Tables 4
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Table 4: Key PPO and attack-specific hyperparameters for adversarial training in MuJoCo.

Hyperparameter Value
Total timesteps 50M
Learning rate 3e-4
Batch size (envs × steps) 2048 × 10
Update epochs 4
Minibatches per update 32
γ (discount factor) 0.99
GAE λ 0.95
Clipping ϵ 0.2
Entropy coefficient 0.01
Value function coefficient 0.5
Max gradient norm 1.0
Adversary hidden size 256
Similarity penalty λattack 10
SA Kappa κ Chosen from κ ∈ {0.3, 0.5, 0.7}

Experimental compute resources

All experiments were run as single node jobs across 2 clusters, each comprised of 4 NVIDIA RTX
A6000 GPUs - a total of 8 GPUs, each with 48 GB of VRAM.

Upper bounds for compute time are listed below:

• Training victim policies - 109 GPU hours

• Training adversarial policies - 10 GPU hours

• Evaluating adversarial policies against victims - 72 GPU hours

An upper bound for total compute time is 109 + 10 + 72 = 191 GPU hours, or approximately 8
GPU days.

Policy network architectures. We use a unified actor–critic architecture across all MuJoCo tasks.
The network is implemented in JAX/Flax and consists of two parallel branches for the actor and
critic, sharing the same design principle. Each branch is a two-layer MLP with hidden size 256 and
either tanh or ReLU activations (selectable at runtime). Weights are initialized with orthogonal
initialization (scaled appropriately), and biases are set to zero.

The actor branch outputs the mean of a diagonal Gaussian distribution over the action space, with
fixed covariance σ2I where σ = 0.1. Together, these define a Multivariate Normal policy distribu-
tion. The critic branch outputs a scalar state-value estimate through its own two-layer MLP with the
same hidden size and activation.

This design provides a balanced architecture: compact enough for stable training with pruning, yet
expressive enough to capture the dynamics of continuous-control benchmarks.

E ADVERSARIAL PERTURBATION VISUALISATIONS

This appendix visualizes the benign observations alongside their corresponding adversarial pertur-
bations for three environments: Craftax, HalfCheetah, and Hopper.
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Natural Observation Adversarial Perturbation

Figure 12: Comparison of benign observations and their corresponding adversarial perturbations in
the HalfCheetah environment. The first row is a particularly severe perturbation, the kind our
adversarial framework is disincentivized from producing.

Natural Observation Adversarial Perturbation

Figure 13: Comparison of benign observations and their corresponding adversarial perturbations in
the Hopper environment.
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F CODE AND DATA AVAILABILITY

We include the source code and instructions on how to run our experiments in the supplementary
ZIP archive submitted on OpenReview. If the paper is accepted, we will make the code publicly
available via GitHub to support transparency and reproducibility.

G REPRODUCIBILITY STATEMENT.

We have taken several steps to ensure the reproducibility of our results. Theoretical contributions,
including proofs of all main theorems and supporting lemmas, are provided in Appendix B. Full
algorithmic details, including pseudocode for PPO with pruning and optional SA regularization,
are given in Appendix A. Experimental settings, including hyperparameters, network architectures,
compute resources, and pruning schedules, are described in Appendix F. Additional empirical re-
sults, including robustness–performance trade-offs across environments, per-seed variability, and
micro-pruning ablations, are presented in Appendix C. Visualizations of adversarial perturbations
are included in Appendix E. Finally, we provide the full source code and instructions to reproduce
all experiments in the anonymous supplementary ZIP archive, which will be made publicly available
upon acceptance.
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