
Under review as submission to TMLR

Everybody Prune Now: Structured Pruning of LLMs with
Only Forward Passes

Anonymous authors
Paper under double-blind review

Abstract

Structured pruning is a promising approach to create smaller, faster large language models.
However, existing methods typically rely on computing the gradient via backward passes,
which can inflate memory requirements and compute costs. In this work we introduce Bonsai,
a gradient-free structured pruning method that eliminates the need for backpropagation,
significantly reducing memory requirements and compute costs while achieving state-of-the-
art pruning performance. Bonsai uses forward-pass-only perturbative pruning to enable
efficient compression of large models on a broader range of hardware configurations. Unlike
existing structured pruning approaches, Bonsai not only achieves better compression with
fewer resources, but also produces models that are twice as fast as those generated by
semi-structured pruning. As a concrete demonstration, we use Bonsai to prune 7B and
8B models to 50% sparsity on a single A6000 GPU—a task challenging for backprop-based
methods in memory-constrained settings, as they require 2-3× the memory. Our results
show that removing backprop as a requirement not only enables pruning larger models on
constrained hardware but can also lead to state-of-the-art efficiency and performance.

1 Introduction

20 40 60 80 100 120 140 160
Memory Requirement (GB)

12

14

16

18

20

22

24

W
ik

ite
xt

-2
 P

er
pl

ex
ity

 (
)

RTX 4090
24GB

A6000
48GB

A100
80GB

Memory Wall

LLaMA-2 7B at 50% sparsity
Bonsai
FLAP
Structured Wanda
LoRAPrune
LLM-Pruner

Figure 1: Memory requirements can make pruning
methods inaccessible. Gradient-based structured prun-
ing methods require substantially more memory relative to
forward-pass-only approaches like Bonsai, which can op-
erate in memory-constrained settings (e.g., ≤24GB) while
achieving superior performance among accessible methods.
Results for LLaMA-2 7B at 50% sparsity on Wikitext-2.

The increasing scale of large language models (LLMs)
has amplified the computational and memory re-
quirements for their deployment and adaptation, pre-
senting a significant barrier to widespread adoption.
While structured pruning has emerged as a popu-
lar approach to create smaller, faster models (Wang
et al., 2019; Xia et al., 2022a), many existing methods
rely on backpropagation, which significantly inflates
memory and compute costs: backward passes con-
sume ⪆ 2× (Bridger, 2023) the memory of a forward
pass, with popular stateful optimizers like AdamW
(Loshchilov & Hutter, 2017) requiring ⪆ 3× more
memory. This often makes them impractical for a
wide range of practitioners who operate under re-
source constraints, such as students, researchers, and
small organizations with limited access to enterprise-
grade, multi-GPU systems.

In response to this challenge, we present Bonsai,
a structured pruning approach that operates exclu-
sively with forward passes through the parent model.
By eliminating the need for backward passes for prun-
ing, Bonsai dramatically reduces memory requirements to enable the compression of models on commodity
hardware and in memory-constrained environments—potentially obviating the need for more expensive,
enterprise-grade solutions. Notably, Bonsai maintains lower memory requirements while still outperforming
existing structured and unstructured pruning approaches in terms of compression/accuracy trade-offs (Fig 1).

1

Under review as submission to TMLR

The key challenge in structured pruning is determining which modules (e.g., attention heads, layer dimensions)
are most important for model performance and can be safely removed. Rather than computing gradients
to determine module importance, Bonsai employs an innovative perturbative approach, estimating module
importances by evaluating the performance of sub-models using only inference.

We make this perturbative approach tractable through several key innovations. First, we formulate module
importance estimation as an underdetermined regression problem, allowing us to infer the importance of a
large number of modules by exploring a manageable number of random sub-models. This fundamentally
differs from previous perturbative approaches, which require evaluating approximately as many sub-models
as there are modules (Ancona et al., 2020), making them intractable for LLMs. Second, we use informative
priors derived from existing pruning approaches (Han et al., 2015; Sun et al., 2023; An et al., 2024) to
guide sub-model exploration, yielding better estimates of module relevance with fewer evaluations, instead of
instantiating sub-models by dropping modules with equal likelihood (Kang et al., 2023). Finally, unlike prior
approaches that prune layer-by-layer (Dekhovich et al., 2021; Nova et al., 2023; Sun et al., 2023; Ling et al.,
2024), Bonsai takes a holistic view across the entire model: modules across layers are removed and evaluated
together, with relevance scores computed globally to make pruning decisions that better preserve accuracy
than the sub-optimality of localized methods.

Through extensive experimentation, we demonstrate that Bonsai’s approach is highly efficient and effective.
When compared to other structured pruning methods that also avoid backward passes, including FLAP (An
et al., 2024) and a forward-only structured pruning version of Wanda (Sun et al., 2023), Bonsai consistently
produces models with better perplexity at any given speedup target. Critically, even when compared
to the state-of-the-art gradient-based structured pruning methods like LLM-Pruner and LoRAPrune,
Bonsai produces models that majorly outperform these more memory-intensive approaches, despite using
significantly less memory during pruning. Our results lead us to explore Bonsai’s practical utility by pruning
the 3B Phi-2 (Li et al., 2023) model to a 1.8B model that performs competitively against other sub-2B
parameter models on the Huggingface Open LLM leaderboard.

A key advantage of Bonsai is that it not only reduces memory requirements during pruning but also unlocks
the opportunity for efficient subsequent post-pruning adaptation. As the pruned model is small enough to
fit on the same hardware that was used for inference, practitioners can then perform parameter-efficient
fine-tuning to further recover performance. This capability addresses a fundamental misconception that
gradient-based methods are always superior: in many cases, Bonsai is a prerequisite for reaching a stage
where such fine-tuning is even possible, expanding access to the entire model adaptation pipeline and yielding
superior end performance. Our approach thus provides a tangible solution for practitioners who do not have
access to the high-cost resources typically associated with LLM development.

2 Related Work

We first discuss relevant work in LLM pruning and other complementary compression methods.

2.1 Unstructured Pruning

While structured pruning removes entire components like layers (Xu et al., 2020; Xia et al., 2022b), dimensions
of linear layers (Wang et al., 2019) or attention heads (Michel et al., 2019; Held & Yang, 2022), unstructured
pruning (Han et al., 2015; Frankle & Carbin, 2018; Benbaki et al., 2023; Sun et al., 2023) removes individual
parameters of the model. These approaches achieve memory savings by inducing sparsity in the model weights,
but they generally do not result in tangible model speedups except when specialized hardware is available
(Mishra et al., 2021). Proposed semi-structured sparsity methods (Mishra et al., 2021) such as 2:4 and 4:8
patterns can provide faster inference, but the speedup gains they achieve are far from the idealized 2×.

2.2 Gradient-Based Structured Pruning

Most existing structured pruning techniques for large (over 1B scale) language models rely on gradient
computation to estimate module importance. LLM-Pruner (Ma et al., 2023) uses first-order Taylor expansion
to measure the importance of coupled structures in transformers, followed by LoRA fine-tuning for performance

2

Under review as submission to TMLR

recovery. LoRAPrune (Zhang et al., 2024) reduces memory requirements compared to LLM-Pruner by using
LoRA gradients rather than full model gradients for importance estimation, though it still requires gradient
computation during the pruning process. Sheared LlaMA (Xia et al., 2024) takes a different approach by
learning pruning masks during continued pre-training, integrating structured pruning with the training
process. More recently, SparseLLM (Bai et al., 2024) decomposes the global pruning problem into manageable
subproblems using auxiliary variables, though it maintains reliance on gradient information.

Ultimately, a fundamental limitation of gradient-based approaches is their memory requirements. Computing
gradients for large models during pruning significantly increases memory usage beyond what is needed for
inference alone, making these methods challenging to apply on resource-constrained hardware. In this work
we show that it is possible to remove these additional memory requirements while still achieving comparable
or superior performance to gradient-based pruning methods.

2.3 Memory-Efficient Structured Pruning Approaches

The memory constraints of gradient-based methods have motivated research into gradient-free alternatives,
though such work remains more limited for LLMs. SliceGPT (Ashkboos et al., 2024) utilizes PCA to remove
up to 25% of weight matrices, although it selects embedding reduction directions based on variance, which
may not correlate with actual model utility for downstream tasks. In the same vein, SlimGPT (Ling et al.,
2024) extends the classical Optimal Brain Surgeon (OBS) framework (Hassibi & Stork, 1992) to LLMs to
reduce memory costs; however, the work admits that its layer-wise nature can lead to ‘error accumulation’ and
an inability to use global information when pruning; we find that this makes it substantially less performant
than Bonsai’s global approach.

For smaller language models like BERT, Nova et al. (2023) proposed Kernelized Convex Masking (KCM)
for gradient-free structured pruning. Unfortunately, to prune a fully connected layer with K intermediate
units, KCM requires instantiating a K ×K coefficient matrix for each layer. While this is feasible for BERT
models, a typical LLM (AI, 2023; Touvron et al., 2023) has K ∼ 104 − 105 which would make the size of
each per-layer coefficient matrix comparable to the size of the LLM itself. In computer vision, there exist
several perturbative gradient-free structured pruning techniques (Ancona et al., 2020; Dekhovich et al., 2021).
However, these methods have been exclusively applied to small vision models (e.g., VGG (Simonyan &
Zisserman, 2014) and WideResnet (Zagoruyko & Komodakis, 2016)) and would not scale to LLMs as-is.

Most comparably, FLAP (An et al., 2024) introduces a fluctuation-based metric that operates without
gradients using statistical fluctuations in activations to estimate module importance. We show in Section 4.4
and Appendix E.3 that Bonsai’s flexible framework outperforms FLAP and can in fact incorporate FLAP’s
fluctuation-based importance metric as a special case, being a more general methodology. Finally, Probe
Pruning (Le et al., 2025) introduces a different approach with “online, dynamic, structured pruning" that
operates at inference time via model probing, and LoRAM (Zhang et al., 2025) trains LoRA adapters on
a pruned model and uses recovered low-rank matrices with the original model for inference. Both of these
methods tackle different problems to Bonsai—online pruning/fine-tuning rather than one-time permanent
pruning—but they demonstrate the broader, shared trend toward memory-efficient model adaptation.

2.4 Positioning of Bonsai

Overall, the existing literature shows a clear gap: there is a need for methods that can operate within
memory-constrained environments while achieving competitive structured pruning performance for LLMs.
The highest-performing structured pruning approaches require computational resources that exceed what is
available on single consumer GPUs.

Our approach addresses this gap by formulating structured pruning as an underdetermined regression problem
that can be solved using only forward passes through the model. Key distinctions of our approach include:

• Unlike methods requiring gradient computation or auxiliary mathematical operations like Hessian
storage, Bonsai operates solely through model inference.

• Rather than making layer-wise pruning decisions, our method estimates module importance
globally across the entire model through perturbative evaluation.

3

Under review as submission to TMLR

Table 1: Landscape of resource consumption (memory and compute) of different model compression methods at
training time and the inference time resource consumption of the models they deliver. ✗ represents at least 2×
cost to the practitioner while ✓ → denotes a more efficient option with respect to that resource.

Regime Resource Approaches
Quantization
(Mixed Precision)

Distillation Unstructured
Pruning

Gradient-Based
Structured Pruning

Bonsai (Ours)

Train Memory ✓ ✓ ✓ ✗ ✓
Compute ✓ ✗ ✓ ✓ ✓

Inference Memory ✓ ✓ ✓ ✓ ✓
Compute ✗ ✓ ✗ ✓ ✓

• Our approach requires only the memory needed for inference plus a small overhead for storing
perturbation results, making it accessible on standard hardware.

• The regression-based formulation provides theoretical grounding for estimating module
importance from limited samples, avoiding purely heuristic approaches.

2.5 Additional Methods for LLM Compression

Finally, although we focus on structured pruning in this work, we note that prior research has explored
various other compression schemes such as distillation (Hinton et al., 2015; Gu et al., 2023) and quantization
(Xiao et al., 2023) to create smaller models from larger pre-trained ones. Similar to structured pruning, these
compression methods themselves often impose significant computational burdens. For example, distillation-
based techniques require using LLMs to generate large amounts of teacher data (Jiao et al., 2019; Hsieh et al.,
2023). Although unstructured pruning (Frantar & Alistarh, 2023; Sun et al., 2023) and quantization have
lower training-time resource demands, the models they produce either require specialized hardware to achieve
speedups (Mishra et al., 2021) or may actually slow down inference due to additional computational overhead
(Dettmers et al., 2022). Table 1 summarizes these characteristics across different compression approaches.

Overall, each approach has distinct hardware requirements and performance characteristics that make them
suitable for different deployment scenarios. Our structured pruning approach could potentially be combined
with these techniques; for instance, quantization could be applied post-pruning, and structured pruning could
serve as initialization for distillation approaches. We leave such combinations for future work and focus
specifically on the forward-pass-only structured pruning problem.

3 Methodology
We cover background in LLM pruning (§3.1), and then discuss Bonsai, our structured pruning method
that exclusively performs inference on the parent model to prune. Figure 2 provides an overview of our
approach as detailed in the following subsections: §3.2 describes our perturbative estimation; §3.3 explains
our informative prior-based sampling strategy; and §3.4 discusses our iterative pruning procedure.

3.1 Background on Pruning, Problem Definition and Notation Setup

We assume that we are given an LLM, Mθ, parameterized by θ ∈ RD. Also provided is U , a utility function
that evaluates the model’s performance on a target task. We instantiate U as language modeling perplexity:
Wikitext-2 training for Wikitext-2 experiments and C4 for zero-shot tasks. We are interested in pruning Mθ

to produce a smaller and faster but still performant (with respect to U) model under the constraint that we
only have enough memory to run inference on Mθ. Even though we assume we can run Mθ on available
hardware, pruning can be critical for achieving latency targets, reducing compute burden, or making the
model small enough to adapt to new (out-of-domain) tasks by performing gradient-based fine-tuning.

4

Under review as submission to TMLR

Perturb and Evaluate

......

Original Model
Sample

masks from
prior

Linear Fit on Data

Find module importances

Keep best modules

= Removed Module

Final Model

Figure 2: Bonsai estimates module importance through regression on perturbative evaluations. Rather
than requiring as many sub-models as there are modules (intractable for LLMs), we solve an underdetermined
regression problem: sample n ≪ N sub-models according to informative priors, evaluate each via for forward pass,
then regress to estimate global importance scores β. Black squares indicate removed modules.

Unstructured pruning approaches compress Mθ by removing individual parameters θj from the model. This
results in the updated model consisting of sparsified weight matrices with a smaller memory footprint.
Unfortunately, the updated model may not enjoy inference speedups except when specialized hardware is
available and thus can pose a compute burden during inference Mishra et al. (2021). While semi-structured
variants – those that remove parameters in patterns like 2:4 or 4:8 (Mishra et al., 2021) – achieve some
speedup, these are modest compared to those achieved with structured pruning.

Structured pruning takes a more modular view of the units to be removed from Mθ. Consider that Mθ

is made up of modules m = {mi}i∈[N] each with corresponding parameter counts s = {si}i∈[N] such that∑
i si = D. For a transformer model, m could consist of attention heads, dimensions of fully connected layers,

or even whole layers. For simplicity, we assume that m is made up of non-overlapping modules. Structured
pruning compresses Mθ by finding accurate sub-models defined by subsets of m: provided with m̄ ⊆ m,
we can construct an updated model M|m̄ that is produced by dropping the modules not in m̄ from M.
Thus, given a sparsity target p, structured pruning can be cast as the following combinatorial optimization
problem:

m∗ = argmaxm̄∈Fp
U

(
M|m̄

)
where Fp =

{
m̄ ⊆m

∣∣ (∑
[j:mj∈m̄]

sj

)
≤ (1− p)D

}
(1)

Fp consists of all sub-models that meet the sparsity threshold. Note that, in general, not only does M|m∗

have a smaller memory footprint than M, it is also faster to run inference on it since it has fewer modules.
Many structured pruning methods attempt to solve Equation 1 by gradient-guided optimization (or search)
over the space of sub-models. In this work, we instead explore approaches suitable for memory-constrained
settings, where computing gradients may be expensive or infeasible.

3.2 Estimating module relevance with only forward passes

We specifically aim to develop an approach for pruning that only relies on computing the forward pass over
the model. Thus, we must solve Eq 1 using evaluations of U rather than gradient-based optimization. A
brute-force search over Fp is infeasible, as its size grows combinatorially with the model. For instance, pruning
a single FC sub-layer in an LLM to 50% sparsity requires evaluating ≈

(104

103

)
subsets.

We instead propose a computationally tractable approach where we first perform a small number, n, of
evaluations, where n≪ |Fp|, to gather data for estimating the relevance of each module in M with respect
to the metric U . Upon carrying out this estimation, we can greedily choose the member of Fp that has the
highest total module relevance. Specifically, let us assume that we have estimated β = {βi}i∈[N] to be the
relevance of each of the N modules. We can generate an approximate solution to Equation 1 as:

m∗ ≈mapprox = argmaxm̄∈Fp

∑
j∈m̄

βj (2)

5

Under review as submission to TMLR

Algorithm 1 Bonsai Pruning Method
1: Input:
2: Model [Mθ], sub-models per iteration [niter]
3: Sparsity per iteration [piter], Target sparsity [p]
4: Module list [m]
5:
6: for l = 1 to ⌈ p

piter
⌉ do

7: ρl ← Calculate unstructured pruning metric for all modules in m
8: ρ̄l ← Fix the top (1− 2piter) of ρl to ∞
9: Sample {m̄i}[niter] sub-models according to ρ̄l

10: Run forward pass on each sub-model and compute U . Construct Dl = {m̄i, Ui}[niter]
11: βł ← Regress

(
Dl

)
12: {mpruned} ← sort βł and drop the bottom k modules that make up piter fraction of the model.
13: m← update module list to exclude {mpruned}
14: end for
15: Output: Pruned model M|m

Eq. 2 is easily solved by sorting βjs and greedily selecting top modules until the constraint is met. This may
slightly exceed the sparsity limit, but the overshoot is negligible since si ≪ (1− p)D ∀ i in our settings.

Estimating β: To estimate of the module relevance scores β ∈ RN , we generate and evaluate n≪ |Fp| sub-
models, constructing a dataset D = {m̄k, Uk} k ∈ [n] where Uk = U(M|m̄k

). We then frame the estimation
of β as an under-specified regression problem:

β̂ = argminβ∈RN

1
n

∑
(m̄k,Uk)∈D

(
Uk − βT αm̄k

)2 + γ∥β∥ (3)

where (αm̄k
)i = 1[i ∈ m̄k], is the binary vector that has 0 at indices with modules dropped. Implementing

a sub-model m̄k as a binary mask αmk
is key to practically realizing our approach. We never actually

instantiate sub-models as this would be prohibitively expensive. Instead, we create them virtually by zeroing
out the outputs of the parts to be pruned so they have no effect on the model output.

3.3 Selecting sub-models for evaluation

An important design choice is selecting the n candidate sub-models for evaluation. A naive approach such as
uniform sampling would be suboptimal. Take mi as a module that is critical for good performance under
evaluation with U . Since n < N , it means that some modules may never be "turned on" in the list of n
chosen sub-models. If mi happens to be one of these masked-out modules, the resulting estimate of β̂i = 0
would in turn result in mapprox being a poor estimate for m∗. Thus, a more informed selection is necessary
for accurate and useful β estimates.

Given a module mi, we instead set the likelihood of it being present in any of the n sampled sub-models propor-
tional to a prior ρi which reflects its usefulness. To define ρi, we can turn to metrics from the pruning literature.
Specifically, we set ρi to be a module-level analogue of any of the pruning metrics like Wanda (Sun et al., 2023)
or activation magnitude. For example, in one-hidden-layer network of dimension d, if activation magnitude is
the prior, we compute the activation vector over multiple samples. The probability of retaining the ith column
of W ∈ Rd×d is: ρi ∝ âi = 1

B

∑
b

∣∣σ((
W T [i, :]

)
xb

)∣∣ where σ is the nonlinearity. Sampling sub-models based
on ρ biases selection toward high-performing models. Since ρi can be computed via forward passes through the
unmodified model Mθ, this approach remains memory-efficient. Appendix E details the priors we explored.

To enhance efficiency, we prune only the bottom 2p fraction of modules per layer, ranked by prior ρ, while
keeping the top 1 − 2p fraction fixed.1 This reduces the search space for sub-model evaluation. For the
bottom 2p fraction, whenever we generate a mask αmk

with sparsity p, we also generate its complement αc
mk

,

12p is arbitrary; practitioners can tune it for optimal performance.

6

Under review as submission to TMLR

Table 2: Reported memory consumption of different methods. The minimum amount of memory required to run
a LlaMA-7B model at half precision (FP16) is 14GB. Running a forward pass with batch size of 1 using the default
model sequence length of 4096 uses around 20GB of memory.

Forward Only Gradient-Based
Base Model Bonsai (Min.) Bonsai (Faster) LoRA Prune Compresso LLM-Pruner Sheared LlaMA
LlaMA-2-7B Forward + Bsz=1 (Zhang et al., 2024) (Guo et al., 2023) (Ma et al., 2023) (Xia et al., 2024)

14GB 20GB 48GB 80GB 128GB 160GB 640GB
FP16 only A6000 1×A6000 1×A100 4×V100 2×A100 8×A100

obtained by flipping the values in αmk
(excluding the fixed 1− 2p fraction). Covert & Lee (2020) show that

this technique helps lower variance in regression with binary inputs.

3.4 Iterated Pruning
Previous works on gradient-based pruning (Anwar et al., 2017; Frankle & Carbin, 2018) have shown that
taking an iterated approach to pruning yields improved results over pruning directly to the target sparsity p.
Similarly, we define an updated pruning fraction piter < p and perform iter = ⌈ p

piter
⌉ steps where we explore

niter = ⌈ n
iter⌉ sub-models at a time. At the beginning of each iteration, we re-estimate the priors ρ for the

unpruned modules and use them to select the niter sub-models to evaluate.

We combine the methods from Sections 3.2, 3.3, and 3.4 to develop Bonsai, a gradient-free structural pruning
algorithm (Figure 2). Algorithm 1 provides the full details. A note about Line 5 in our algorithm: depending
on the task, we find that sampling m̄i and its complement m̄c

i helps reduce the variance of our regression
estimate and leads to better results.

4 Experimental Details and Main Results

In this section, we empirically evaluate Bonsai across multiple structured pruning settings. We compare
Bonsai + PPA against both semi-structured pruning (Section 4.1) and gradient-based pruning
(Section 4.2). Next, we demonstrate that Bonsai can yield compact models with strong zero-shot
abilities (Section 4.3). Finally, we compare Bonsai to other forward-pass-only pruning methods
(Section 4.4) to establish competitiveness under memory constraints.

In all Bonsai experiments, we prune (1) self-attention heads and (2) fully connected layer dimensions, focusing
on LLMs around 7B parameters. Since our goal is to aid memory-constrained practitioners, Table 2 compares
memory requirements for pruning LlaMA-2-7B across methods. As can be seen, for models of our size range
of interest, we can run Bonsai on any device with ≈ 20GB of memory if we restrict our batch size to 1.

To reduce variance in score estimates, we average over 32 data points. A practitioner with 20GB of memory
would run 32 forward passes with batch size 1, but this extends experiment runtime. Instead, we use a 48GB
A6000 GPU (although not required by Bonsai), enabling batch sizes of 4–8 for faster experimentation.

Introducing Post-Pruning Adaptation (PPA). A central strength of Bonsai is that, by reducing
models to a size that fits on commodity inference hardware depending on the sparsity level p achieved, it
unlocks the ability to further fine-tune (full fine-tuning or a parameter-efficient fine-tuning method like LoRA
(Hu et al., 2021)) the pruned model on the same hardware. PPA is not required for Bonsai to be effective;
but it shows that Bonsai does more than prune, since it expands access to to the full model adaptation
pipeline in settings where gradient-based pruning is infeasible from the start.

Like many past works (Sanh et al., 2020; Xia et al., 2022b), we can combine pruning with distillation by
incorporating a distillation loss in the training objective during fine-tuning of the pruned model. Let Ltask
be the loss function over the task data and Ldistill be the distillation objective. We optimize the following
post-pruning objective: Lpost−prune = Ltask + λLdistill. Using i to index the task data, we have:
Ldistill =

∑
i DKL

(
logitsi

(
M|mapprox

)
∥ logitsi (M)

)
, where λ is a scalar weighting that can be cross-validated.

Note, distillation can be performed without significant memory overhead by a priori caching the logits from

7

Under review as submission to TMLR

the parent model M instead of hosting the model in memory during fine-tuning. In the subsections below, we
will apply PPA after pruning the parent model if the child model is small enough to allow for this.

4.1 Bonsai is competitive with semi-structured pruning methods

Table 3: Pruning can match highly optimized small,
pretrained models while delivering better speedups.
Bonsai-pruned LLaMA-2 achieves accuracy comparable to
Phi-2 (a carefully engineered 3B model) with superior in-
ference efficiency. Semi-structured pruning loses speedup
benefits due to incompatible sparsity patterns.

Model ∼Size Fine-tune PPL Speedup

LlaMA-2 7B ✗ 5.11 1×

Phi-2 3B ✓ 8.69 1.24×

Wanda 2:4 3B ✗ 10.52 1.14×
+ PPA ✓ 8.34 0.75×

Bonsai 3B ✗ 19.47 1.58×
+ PPA ✓ 8.89 1.58×

We compare Bonsai to the semi-structured variant
of Wanda (Sun et al., 2023). In general, structured
pruning under-perform semi-structured pruning, but
compensate for this in speedup.

Before fine-tuning, the Wanda 2:4 model is more
accurate but slower (1.14× vs 1.58×) than the model
from Bonsai. Since the Bonsai child model is small
enough, we can perform PPA on it, resulting in im-
proved accuracy (8.89ppl) with unchanged speedup.

Fine-tuning the semi-sparse Wanda 2:4 model is un-
fortunately less straightforward. It would require sim-
ilar memory resources to finetune the parent model2;
however, our setting does not have enough memory
for this. We therefore have to use a parameter-
efficient fine-tuning method like LoRA (Hu et al.,
2021) instead. While the performance gap can be
bridged by LoRA fine-tuning (10.52 → 8.34), the
adapted semi-structured model experiences a drastic slowdown (0.75×), since the learned low-rank matrices
cannot be merged with the original sparsified ones without reverting back to dense computation. Thus, LoRA
fine-tuned Wanda 2:4 is twice as slow (∼ 0.48×) than the model from Bonsai and similarly accurate.

In a memory-constrained setting, practitioners could opt for a pre-existing model of the target size instead of
pruning a larger model. We compare the Bonsai-pruned model to Phi-2 (Li et al., 2023), a strong representative
pre-existing model of similar size. As can be seen in Table 3, Bonsai is able to generate a model that
is as accurate (0.2 difference in ppl) yet significantly faster (1.58× vs. 1.24× speedup), thus
making it a competitive option to consider even if a model already exists at the target size.

4.2 Bonsai is competitive with gradient-based structured pruning

Table 4: LlaMA-1 (50% sparsity) after post-pruning adaptation. † are results as reported by Zhang et al. (2024). All
methods use PPA on proxy data (20-50K samples); Bonsai ahieves this with 4-8× less memory during pruning.

Method Wikitext-2 ↓ BoolQ HellaSwag WinoGrande ARC-e ARC-c Average ↑
LlaMA1-7B (Touvron et al., 2023) 5.68 75.05 56.92 69.93 75.34 41.89 63.83

LLM-Pruner† (Ma et al., 2023) 16.41 60.28 47.06 53.43 45.96 29.18 47.18
LoRAPrune† (Zhang et al., 2024) 11.60 61.88 47.86 55.01 45.13 31.62 48.30

Bonsai + PPA 10.92 67.22 43.09 61.64 54.92 26.28 50.63

Next we compare Bonsai to the following gradient-based structured pruning approaches: LLM-Pruner (Ma
et al., 2023) and LoRA-Prune Zhang et al. (2024). We use the reported results from Zhang et al. (2024) since
none of these methods are runnable in our memory-constrained setting (Table 2). We choose to compare to
these over Sheared LlaMA (Xia et al., 2024) since they have much lower memory requirements (Table 2). We
prune the LlaMA-1 7B model (Touvron et al., 2023) to 50% sparsity since these approaches report their results
for the LlaMA-1 model only. We compare these methods on Wikitext-2 and also on six tasks from the Eleuther

2though the child tensors are sparse, the resulting gradients and cached intermediate tensors can be dense and have the same
dimensions as those of the parent model (say M × M). Since Bonsai does structured pruning, the actual tensor sizes are shrunk
(say N × N | N < M) which reduces memory during backward passes.

8

Under review as submission to TMLR

Table 5: Phi-2 pruned to 35% sparsity and fine-tune the pruned model on small amount of the C4. We achieve
strong performance compared to Phi-1.5 (trained from scratch). Since Sheared LlaMA has values absent, its MC
Average would be misleading and we refrain from adding it.

Generation Multiple Choice (MC)
Model Size GSM8k ARC-c Winogrande Hellaswag Truthful-QA MMLU MC Average ↑

(5-shot) (25-shot) (5-shot) (10-shot) (0-shot) (5-shot)
Phi-2 (Li et al., 2023) 2.7B 54.81 61.09 74.35 75.11 44.47 58.11 62.63

Phi-1.5 (Li et al., 2023) 1.5B 12.43 52.9 72.22 63.79 40.89 43.89 54.74
Sheared LlaMA (Xia et al., 2024) 1.3B Not Reported 33.5 57.9 60.7 Not Reported 25.7 *

Bonsai (w PPA) 1.8B 6.37 47.44 68.35 65.09 42.20 40.53 52.72
+ Reasoning Tuning 1.8B 27.67 45.56 68.82 64.51 42.58 40.97 52.49

LLM Evaluation Harness benchmark (Gao et al., 2023). The pruning signal used for the Wikitext-2 task is the
same as the above experiments. For the Eleuther Harness tasks, we use language modeling performance on
the C4 (Raffel et al., 2020) dataset as pruning signal. We also perform parameter-efficient fine-tuning on our
pruned model using 30K 512-length sequences from this corpus. Bonsai and LoRAPrune use similar amounts
of the C4 dataset for Table 4 (30K vs 20K samples, respectively) whilst LLM-Pruner is trained on instruction
tuned data with nearly twice the amount of unique samples (50K). Find more details in Appendix A.3.

As seen in Table 4, Bonsai outperforms gradient-based methods even though it exclusively
uses forward passes in the pruning stage. We attribute the superior performance of Bonsai to the
fact that its pruning decisions are informed by directly exploring the space of sub-models whilst the other
approaches resort to inaccurate proxies of module relevance in order to reduce the memory overhead of a
fully gradient-based optimization approach (though not by enough to be runnable in our setting).

4.3 Bonsai can produce compressed models with strong zero-shot abilities

Considerable amounts of compute and data, beyond what is feasible for many practitioners, are needed to
train LLMs with strong zero-shot capabilities (AI, 2023; Gemini Team et al., 2023). In this section, we
demonstrate that Bonsai can empower everyday practitioners to produce strong and compact models with
competitive zero-shot abilities by simply pruning bigger models on their available hardware.

We use Bonsai to prune a ≈3B Phi-2 model to ≈1.8B (35% sparsity). Bonsai hyper-parameters in this experi-
ment are in Appendix A.4. Since it is small, the 1.8B pruned model can be fully fine-tuned on 1 A6000 GPU over
100k sequences of 2,048 tokens from the C4 dataset. As can be seen from Table 5, our pruned model achieves
strong zero-shot performance on the Hugging Face OpenLLM leaderboard (Gao et al., 2023)
compared to Phi-1.5, a smaller version in the Phi series of models that was trained from scratch.

Interestingly, one exception to the general trend of Bonsai’s strong performance is GSM8K, a mathematical
reasoning dataset that requires generation of long reasoning chains. In our experiments, GSM8K performance
is initially lower, consistent with task-agnostic pruning behavior in prior work (Xia et al., 2024; Reda et al.,
2025); pruning based on language modeling can deprioritize modules needed for specialized reasoning. We
attempt to remedy the drop in reasoning ability by adding 8K GSM8K samples during PPA (resulting in a
total of 108K fine-tuning samples). This boosts our model’s performance on the GSM8K with almost no
degradation of performance on the other tasks.

4.4 Bonsai is competitive with other forward pass-only, structured pruning methods

Table 6: Perplexity at 50% sparsity of LlaMA-{1,2}-7B on Wikitext-2 and C4.

Dataset Method Sparsity LlaMA-1/seqlen=1024 LlaMA-2/seqlen=1024
Wikitext-2 Base Model 0% 5.68 5.11

FLAP 50% 17.27 14.49
Bonsai 50% 15.72 12.38

C4 Base Model 0% 7.34 7.04
FLAP 50% 24.98 24.0
Bonsai 50% 22.31 20.7

We focus our last set of
experiments on comparing
structured pruning methods
that can be run without
gradient-based optimization.
We prune the LlaMA-2 7B
model (Touvron et al., 2023)
to 50% sparsity and evalu-

9

Under review as submission to TMLR

ate on the Wikitext-2 (Merity
et al., 2016) validation dataset. Our module importance signal for pruning, U , is the language modeling
performance on the training set. When measuring speedups, we consider end-to-end latency of running
inference on model.sequence_length chunks of the Wikitext-2 validation set. See Table 10 (Appendix A.2)
for details about the hyper-parameters used for these experiments.

Figure 1 shows that at 50% sparsity, Bonsai achieves the lowest perplexity among methods accessible in
memory-constrained settings (≤ 48GB). Bonsai expectedly outperforms the structured variant of Wanda (Sun
et al., 2023), producing models with much lower perplexity at any fixed desired speedup over the parent model.
A more competitive baseline is FLAP (An et al., 2024), which can be seen as a special case of our more general
framework; here (as shown in Table 6), Bonsai outperforms FLAP while maintaining comparable speedups.

A key advantage of Bonsai is its flexibility—it can incorporate various pruning methods as informative
priors. In practice, we explored three classes of priors: activation magnitude (measuring the average size of
activations per module), Wanda (a weight-activation product metric shown to be effective in unstructured
pruing), and fluctuation-based metrics (as in FLAP, which track statistical variation across activations.
These priors provide a a quick, forward-pass-only signal of which modules are likely to be important, and
Bonsai’s regression step then refines them into more accurate importance estimates. See Appendix E for
full details on how we estimate priors. An important outcome of this is that Bonsai offers practitioners
flexible runtime-quality tradeoffs. While the reported results use a configuration that runs in ≤ 4hours
(which is considerably more than FLAP’s ≈ 1 hour runtime), practitioners can configure Bonsai to produce
structurally pruned models in as little as 15 minutes by reducing the number of perturbations, sample size,
or pruning iterations, potentially at some cost to performance. Conversely, allocating more compute time
generally yields better pruning outcomes. This flexibility allows practitioners to tailor Bonsai to their specific
constraints, unlike methods with fixed computational profiles.

5 Analysis
Here we conduct ablative experiments to understand the impact of the ingredients from Section 3.

Do we need both perturbative and regressive components of Bonsai?

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
Sparsity Level

101

102

W
ik

ite
xt

-2
 P

er
pl

ex
ity

Impact of regression and generating perturbative samples
No Perturbation + No Regression
No Regression
Bonsai [Regression + Perturbation]

Figure 3: LLaMA-2 7B @ 50% sparsity (No PPA). Per-
turbation and regression components are both needed to
make Bonsai effective. Experiment details in Appendix B.

Figure 3 shows that both components are key to
obtaining a good pruned model. Removing the
estimation of module importances via regression
leads to a degradation in performance (61.6 ppl
→ 146.6 ppl). Further degradation (146.6 ppl →
405.7 ppl) is encountered if we do not perform
perturbative evaluations on the parent model but
simply prune according to the prior ρ as computed
from the unperturbed parent model.

What is a reasonable number of perturbative
samples? We investigate the number of pertur-
bative samples required to obtain good regression
estimates of module importance based on Equation 3.
Our results are shown in Table 7. As expected, per-
formance improves as we increase the number of sub-
models explored. We note that the number of sam-
ples being explored, ns, is significantly less than the number of candidate modules at each iteration (N ≈ 70k).
Nevertheless, Bonsai is able to deliver a performant pruned model because of the recipes developed in Section 3.

ns = 50 ns = 200 ns = 1000
PPL (↓) NaN 61.63 22.09

Table 7: Wikitext-2 perplexity of LLaMA-2
7B @ 50% sparsity (No PPA). We vary the
number of perturbative evaluations. Details in
Appendix F.

How much performance is recovered by post-pruning
adaptation? During iterative pruning, Bonsai damages
the parent model by removing modules but does not perform
intermittent retraining to recover lost performance since even
intermediate models may be too large for fine-tuning. Even

10

Under review as submission to TMLR

so, as Table 8 shows, the final model produced by Bonsai has
reasonable performance without fine-tuning. We attribute
this to the redundancy of modules with respect to the target
downstream tasks and Bonsai’s ability to identify good

candidates for pruning. If the pruned model is small enough in size, we may perform post pruning adaptation
to recover more performance, as can be seen from Table 8.
Table 8: Impact of PPA on LLaMA-2 7B @ 50%
sparsity. Details in Appendix D.

Method Wikitext-2 PPL
No Post-Pruning Adaptation 19.47

Post-Pruning Finetuning 10.39
+ Distillation 8.89 2500

2600

2700

2800

2900

3000

3100

Pe
rp

le
xi

ty

Methods for initializing prior - Wikitext-2 Perplexity (Llama-2 7B pruned to 50% sparsity)

Without Adaptation
With Adaptation

Wanda Magnitude Random
0

10

20

30

40

50

Pe
rp

le
xi

ty

1.58x 1.48x
1.68x

Figure 4: LLaMA-2 7B pruned to 50% sparsity. See Ap-
pendix E for experiment details and definitions of Wanda and
Activation Magnitude priors.

What is the impact of the choice of metric
for the prior ρ? We investigate three different
choices of metrics for defining ρ. Figure 4 shows
that using the module-level analogue of Wanda
Sun et al. (2023) yields the best performance,
both before and after post-pruning adaptation.
This indicates that Wanda is a strong signal for
efficiently estimating the importance of model
units.

Memory and Runtime Considerations. Bonsai requires ≈ 20GB memory versus 80-160GB for gradient-
based methods (Table 2). Runtime is ≈ 4 hours for optimal quality or ≈ 15 minutes with reduced perturbations.
Pre-adaptation results appear in Table 6 and 8; note that gradient-based baselines in Table 4 also use
adaptations (Section 4.2).

6 Conclusion, Limitations, and Future Work

In this work, we have presented Bonsai, a gradient-free structured pruning method that enables efficient
compression of LLMs using only forward passes. By eliminating the need for backward passes, Bonsai reduces
memory requirements by over 2×, allowing practitioners to prune and adapt models on hardware configurations
where gradient-based approaches would be infeasible. Through extensive experiments, we have demonstrated
that Bonsai produces models that are small, fast, and accurate—outperforming even most of these gradient-
based methods while using substantially fewer resources.

A primary limitation of Bonsai is its computational runtime. As shown in Section 5, performance improves
with more sub-model exploration, slower pruning rates, and larger data samples, but these improvements
come at the cost of increased runtime. While competitors like FLAP complete pruning in ≈ 1 hour, Bonsai’s
optimal configuration requires ≤ 4 hours. However, Bonsai offers practitioners the flexibility to configure
faster pruning schedules (≈15 minutes) when speed is prioritized over achieving optimal compression quality.
This runtime-quality tradeoff is a design feature that allows adaptation to various computational constraints.
Additionally, since the models produced by Bonsai can guarantee optimal performance and speedups, this
one-time investment becomes worthwhile when amortized over large-scale deployment.

Bonsai presents several promising avenues for future research. First, while our current approach samples sub-
models from an informative prior, the sampling process is not completely adaptive. Bonsai could be further
enhanced by dynamically exploring the space of sub-models based on previous evaluations. Additionally, due
to our focus on forward-pass-only operations, Bonsai does not fine-tune the model during iterative pruning.
Integration with gradient-free approaches like MeZO (Malladi et al., 2023) could allow for continuous updates
during the pruning process, preserving model performance. MoE models also provide an interesting direction:
while they enable sparse activation, all experts must remain in memory. Bonsai could prune individual
experts to reduce memory footprint while preserving conditional computation benefits.

11

Under review as submission to TMLR

Overall, by reducing the memory and computational requirements of structured pruning, Bonsai contributes
to the growing trend of practical, efficiency-focused AI research, aligning with the community-wide push to
make powerful models more accessible. The ability that Bonsai enables to prune and adapt large models on
a wider range of hardware configurations fosters innovation beyond resource-rich institutions to represent a
crucial move toward a more inclusive, sustainable future for the field.

12

Under review as submission to TMLR

References
Open AI. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.

Yongqi An, Xu Zhao, Tao Yu, Ming Tang, and Jinqiao Wang. Fluctuation-based adaptive structured pruning
for large language models. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pp.
10865–10873, 2024.

Marco Ancona, Cengiz Öztireli, and Markus Gross. Shapley value as principled metric for structured network
pruning. arXiv preprint arXiv:2006.01795, 2020.

Sajid Anwar, Kyuyeon Hwang, and Wonyong Sung. Structured pruning of deep convolutional neural networks.
ACM Journal on Emerging Technologies in Computing Systems (JETC), 13(3):1–18, 2017.

Saleh Ashkboos, Maximilian L Croci, Marcelo Gennari do Nascimento, Torsten Hoefler, and James Hensman.
Slicegpt: Compress large language models by deleting rows and columns. In The Twelfth International
Conference on Learning Representations, 2024.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Guangji Bai, Yijiang Li, Chen Ling, Kibaek Kim, and Liang Zhao. Sparsellm: Towards global pruning of
pre-trained language models. Advances in Neural Information Processing Systems, 37:46203–46225, 2024.

Riade Benbaki, Wenyu Chen, Xiang Meng, Hussein Hazimeh, Natalia Ponomareva, Zhe Zhao, and Rahul
Mazumder. Fast as chita: Neural network pruning with combinatorial optimization. arXiv preprint
arXiv:2302.14623, 2023.

Paul Bridger. Pytorch memory tuning, Jul 2023. URL https://paulbridger.com/posts/
pytorch-memory-tuning/.

Ian Covert and Su-In Lee. Improving kernelshap: Practical shapley value estimation via linear regression.
arXiv preprint arXiv:2012.01536, 2020.

Aleksandr Dekhovich, David MJ Tax, Marcel HF Sluiter, and Miguel A Bessa. Neural network relief: a
pruning algorithm based on neural activity. arXiv preprint arXiv:2109.10795, 2021.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Llm. int8 (): 8-bit matrix multiplication
for transformers at scale. arXiv preprint arXiv:2208.07339, 2022.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. arXiv preprint arXiv:1803.03635, 2018.

Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned in one-shot.
In International Conference on Machine Learning, pp. 10323–10337. PMLR, 2023.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster, Laurence
Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muennighoff, Chris Ociepa,
Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang Sutawika, Eric Tang, Anish
Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework for few-shot language model evaluation, 12
2023. URL https://zenodo.org/records/10256836.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut,
Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly capable multimodal
models. arXiv preprint arXiv:2312.11805, 2023.

Yuxian Gu, Li Dong, Furu Wei, and Minlie Huang. Knowledge distillation of large language models. arXiv
preprint arXiv:2306.08543, 2023.

Song Guo, Jiahang Xu, Li Lyna Zhang, and Mao Yang. Compresso: Structured pruning with collaborative
prompting learns compact large language models. arXiv preprint arXiv:2310.05015, 2023.

13

https://paulbridger.com/posts/pytorch-memory-tuning/
https://paulbridger.com/posts/pytorch-memory-tuning/
https://zenodo.org/records/10256836

Under review as submission to TMLR

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks with
pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149, 2015.

Babak Hassibi and David Stork. Second order derivatives for network pruning: Optimal brain surgeon.
Advances in neural information processing systems, 5, 1992.

William Held and Diyi Yang. Shapley head pruning: Identifying and removing interference in multilingual
transformers. arXiv preprint arXiv:2210.05709, 2022.

Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean. Distilling the knowledge in a neural network. ArXiv,
abs/1503.02531, 2015.

Cheng-Yu Hsieh, Chun-Liang Li, Chih-Kuan Yeh, Hootan Nakhost, Yasuhisa Fujii, Alexander Ratner, Ranjay
Krishna, Chen-Yu Lee, and Tomas Pfister. Distilling step-by-step! outperforming larger language models
with less training data and smaller model sizes. arXiv preprint arXiv:2305.02301, 2023.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint arXiv:2106.09685,
2021.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al. Mistral 7b.
arXiv preprint arXiv:2310.06825, 2023.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao Chen, Linlin Li, Fang Wang, and Qun Liu. Tinybert:
Distilling bert for natural language understanding. arXiv preprint arXiv:1909.10351, 2019.

Mintong Kang, Linyi Li, and Bo Li. Fashapley: Fast and approximated shapley based model pruning towards
certifiably robust dnns. In 2023 IEEE Conference on Secure and Trustworthy Machine Learning (SaTML),
pp. 575–592. IEEE, 2023.

Maurice George Kendall. Rank correlation methods. 1948.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Qi Le, Enmao Diao, Ziyan Wang, Xinran Wang, Jie Ding, Li Yang, and Ali Anwar. Probe pruning:
Accelerating llms through dynamic pruning via model-probing. In The Thirteenth International Conference
on Learning Representations, 2025.

Yuanzhi Li, Sébastien Bubeck, Ronen Eldan, Allie Del Giorno, Suriya Gunasekar, and Yin Tat Lee. Textbooks
are all you need ii: phi-1.5 technical report. arXiv preprint arXiv:2309.05463, 2023.

Gui Ling, Ziyang Wang, and Qingwen Liu. Slimgpt: Layer-wise structured pruning for large language models.
Advances in Neural Information Processing Systems, 37:107112–107137, 2024.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101,
2017.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural pruning of large language
models. arXiv preprint arXiv:2305.11627, 2023.

Sadhika Malladi, Tianyu Gao, Eshaan Nichani, Alex Damian, Jason D Lee, Danqi Chen, and Sanjeev Arora.
Fine-tuning language models with just forward passes. Advances in Neural Information Processing Systems,
36:53038–53075, 2023.

Thomas McGrath, Matthew Rahtz, Janos Kramar, Vladimir Mikulik, and Shane Legg. The hydra effect:
Emergent self-repair in language model computations. arXiv preprint arXiv:2307.15771, 2023.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture models.
arXiv preprint arXiv:1609.07843, 2016.

14

Under review as submission to TMLR

Paul Michel, Omer Levy, and Graham Neubig. Are sixteen heads really better than one? Advances in neural
information processing systems, 32, 2019.

Asit Mishra, Jorge Albericio Latorre, Jeff Pool, Darko Stosic, Dusan Stosic, Ganesh Venkatesh, Chong Yu,
and Paulius Micikevicius. Accelerating sparse deep neural networks. arXiv preprint arXiv:2104.08378,
2021.

Azade Nova, Hanjun Dai, and Dale Schuurmans. Gradient-free structured pruning with unlabeled data, 2023.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text transformer.
The Journal of Machine Learning Research, 21(1):5485–5551, 2020.

Waleed Reda, Abhinav Jangda, and Krishna Chintalapudi. Task specific pruning with llm-sieve: How many
parameters does your task really need? arXiv preprint arXiv:2505.18350, 2025.

Victor Sanh, Thomas Wolf, and Alexander Rush. Movement pruning: Adaptive sparsity by fine-tuning.
Advances in Neural Information Processing Systems, 33:20378–20389, 2020.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556, 2014.

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter. A simple and effective pruning approach for large
language models. arXiv preprint arXiv:2306.11695, 2023.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation and
fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Ziheng Wang, Jeremy Wohlwend, and Tao Lei. Structured pruning of large language models. arXiv preprint
arXiv:1910.04732, 2019.

Mengzhou Xia, Zexuan Zhong, and Danqi Chen. Structured pruning learns compact and accurate models.
In Smaranda Muresan, Preslav Nakov, and Aline Villavicencio (eds.), Proceedings of the 60th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1513–1528, Dublin,
Ireland, May 2022a. Association for Computational Linguistics. doi: 10.18653/v1/2022.acl-long.107. URL
https://aclanthology.org/2022.acl-long.107/.

Mengzhou Xia, Zexuan Zhong, and Danqi Chen. Structured pruning learns compact and accurate models.
arXiv preprint arXiv:2204.00408, 2022b.

Mengzhou Xia, Tianyu Gao, Zhiyuan Zeng, and Danqi Chen. Sheared llama: Accelerating language model
pre-training via structured pruning. In The Twelfth International Conference on Learning Representations,
2024.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant: Accurate
and efficient post-training quantization for large language models. In International Conference on Machine
Learning, pp. 38087–38099. PMLR, 2023.

Canwen Xu, Wangchunshu Zhou, Tao Ge, Furu Wei, and Ming Zhou. Bert-of-theseus: Compressing bert by
progressive module replacing. arXiv preprint arXiv:2002.02925, 2020.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. arXiv preprint arXiv:1605.07146, 2016.

Jun Zhang, Jue WANG, Huan Li, Lidan Shou, Ke Chen, Yang You, Guiming Xie, Xuejian Gong, and Kunlong
Zhou. Train small, infer large: Memory-efficient loRA training for large language models. In The Thirteenth
International Conference on Learning Representations, 2025.

Mingyang Zhang, Hao Chen, Chunhua Shen, Zhen Yang, Linlin Ou, Xinyi Yu, and Bohan Zhuang. Loraprune:
Structured pruning meets low-rank parameter-efficient fine-tuning. In Findings of the Association for
Computational Linguistics ACL 2024, pp. 3013–3026, 2024.

15

https://aclanthology.org/2022.acl-long.107/

Under review as submission to TMLR

A Main Experiment Details

A.1 Hyper-parameters for all Bonsai regression during pruning

When using Bonsai, we estimate β from Dl by performing linear regression via gradient descent with Adam
(Kingma & Ba, 2014). We cross-validate over the following set of hyper-parameters. Note that doing this
cross-validation takes much less time than the time needed to construct the dataset Dl. During cross validation,

Table 9: Bonsai hyper-parameters for regression. This applies to all experiments unless otherwise specified

γ(Regression Weight) Learning rate Batch Size Epochs
{100, 0, 1e-4} {100, 10, 1, 0.1} {32, 64, 128} 50

we choose the model whose predictions have the best Kendall rank correlation coefficient (Kendall, 1948)
with the target. We do this because we do not care about matching Uk exactly for each sub-model k; we
rather care that our learned β predicts the correct rankings amoung sub-models, which would denote that β
reasonably models relative module importances.

In general, we use ℓ1-norm regularization on β for all experiments. For the Phi-2 experiment in Section 4.3,
we find that ℓ2-norm works better.

A.2 Forward Pass Only / Semi-structured pruning Experiments

Table 10 shows the Bonsai hyperparameters we used for the experiments in Section 4.1.
Table 10: Bonsai hyper-params for forward only
experiments

piter nssub−models nsdata Metric for ρ

0.05 200 32 (per-iter) Wanda

Table 11: Bonsai fine-tuning HP for pruned LLaMA family
models

LR rank LoRA-α λ (Distill Weight) LoRA Modules
1e-4 128 4×rank 0.01 All Modules

For Wanda(Sun et al., 2023), we use the default hyper-parameters specified by the paper repo here for pruning.
For fine-tuning, we use rank = 64. We apply LoRA to only the q_proj and v_proj matrices in each layer of
the pruned LLaMA model – this is unlike with Bonsai where we fine-tune all modules. We cannot do same
because since the Wanda model just produces sparse matrices, the matrices instantiated during the backward
pass are the same sizes as the sparsified matrices and thus occupy more memory (compared to our approach
that actually makes the matrices smaller in dimension instead of sparsifying). We are also unable to perform
distillation on the Wanda models due to this reason. For fine-tuning the Phi-2 model on Wikitext-2, we use
the same hyper-parameters as Bonsai in Table 11.

A.3 Experiments comparing to Gradient based structured pruning

We compare to LoRA-Prune and LLM-Pruner. We take their performance results directly from the LoRA-
Prune paper. Whilst we use 1 A6000 GPU (48G) for all experiments, LoRA-Prune uses A100 GPU (80G) for
pruning LLaMA-1 7B.

All Bonsai hyper-parameters are the same as Appendix A.2 except for nssub−models which we set to 1000.

A.4 Phi-2 pruning experiment details

For the experiment in Section 4.3, All Bonsai hyper-parameters are the same as Appendix A.2 except for the
following changes:

• nssub−models = 2000

16

https://github.com/locuslab/wanda/tree/main

Under review as submission to TMLR

• piter = 0.35. We thus perform 1-shot pruning directly to the target sparsity of 35%. We find that this
seems to work best for the Phi-2 model. We posit that this might be because the Phi-2 models use
LayerNorm (Ba et al., 2016) whilst the other models we explore, LLaMA and Mistral use RMSNorm.

• Due to its relatively small size, the 1.8B pruned model can be fully fine-tuned on a single A6000
GPU over 100k sequences of length 2,048 tokens from the C4 dataset instead of using LoRA.

B Impact of regression and perturbation ablation details

For the experiment in Appendix I, All Bonsai hyper-parameters are the same as Appendix A.2 except
piter = 0.1 to speed up pruning.

A simple alternative to Bonsai is to leverage the prior ρ, computed from the unperturbed parent model,
and make pruning decisions exclusively according to this. This is the No Perturbation + No Regression
baseline in Figure 3. This approach has quite poor performance. We can further improve this baseline by
adding back perturbative aspect where we prune the parent model according to ρ′ which is computed by
aggregating the ρ metric computed over the perturbed models. Note that we use a Wanda based metric
to define ρ for this experiment. module-level analogues of the unstructured pruning metrics we explore are
defined in Appendix E.

Table 12: Experiment on linear regression to estimate module importances. Wikitext-2 Perplexity. LLaMA-2 7B
pruned to 50% sparsity

Linear Regression Relative Speedup w/o Post-Pruning Adaptation w Post-Pruning Adaptation
No 2.06 146.57 9.68
Yes 1.77 61.63 9.15

C Varying the pruning fraction per-iteration

For the experiment in Appendix I, All Bonsai hyper-parameters are the same as Appendix A.2 except we
vary piter.

Table 13: Varying the fraction pruned at a time. Wikitext-2 Perplexity. LLaMA-2 7B pruned to 50% sparsity

Prune Frac Relative Speedup w/o Post-Pruning Adaptation w Post-Pruning Adaptation
0.05 1.58 19.47 8.89
0.1 1.77 61.63 9.15
0.20 1.67 209.44 9.57

D Varying the number of calibration data points for pruning & PPA

For these two categories of experiments, all Bonsai hyper-parameters are the same as Appendix A.2 except
we vary nsdata and piter = 0.1 to speed up pruning in the former.

E Impact of prior

For this experiment, All Bonsai hyper-parameters are the same as Appendix A.2 except we vary ρ.

17

Under review as submission to TMLR

Table 14: How many data points to consider during forward passes. Wikitext-2 Perplexity. Llama-2 7B pruned to
50% sparsity

nsdata w/o Adapt w Adapt
8 130.04 9.45
32 61.63 9.15

E.1 ρ is Activation Magnitude

MLP / Fully Connected Module: Let d be the intermediate dimension of the MLP to be pruned. Note
that for all transformer models evaluate, the MLP components are 2 layer and thus have a single intermediate
dimension. For any data-sample sequence b, we flatten model activation at this point a ∈ RB×S×d → RBS×d

and then compute the following averaged activation magnitude :(
ρ ∈ Rd

)
∝ â = 1

B

∑
b

Mean
(∣∣ab

∣∣, axis =0
)

(4)

Self-Attention Module: For any data-sample sequence b, the output of the self-attention module before
the final output projection is a ∈ RB×S×dh×h where h is the number of attention heads and dh is the size of
each head’s output. We can flatten a ∈ RB×S×dh×h → RBSdh×h and then use the same formula as Equation
5 above to calculate ρ. (

ρ ∈ Rh
)
∝ â (5)

E.2 ρ is Wanda (Sun et al., 2023)

MLP / Fully Connected Module: Let d be the intermediate dimension of the MLP to be pruned. Let
W ∈ Rd×o be the output projection matrix for the MLP. For any data-sample sequence b, we flatten model
activation before the final output, a ∈ RB×S×d → RBS×d and then compute the following metric which is a
module-level analogue of Wanda:(

ρ ∈ Rd
)
∝ â = 1

o

∑
o

ao

ao =
∣∣∣∣W [:, o]

∣∣∣∣⊙ RootMeanSquare
(

a, axis =0
) (6)

Self-Attention Module: Let W ∈ Rd×o be the output projection matrix for the self-attention module. For
any data-sample sequence b, the output of the self-attention module before the final output projection is
a ∈ RB×S×dh×h where h is the number of attention heads and dh is the size of each head’s output. We can
flatten a ∈ RB×S×dh×h → RBSdh×h and then use the same formula as Equation 5 above to calculate ρ ∈ Rh.

E.3 ρ is Fluctuation-based (FLAP) (An et al., 2024)

MLP / Fully Connected Module: Let d be the intermediate dimension of the MLP to be pruned. Let
W ∈ Rd×o be the output projection matrix for the MLP. For any data-sample sequence b, we compute the
sample variance of each input feature across batches and weight it with the squared norm of the corresponding
column of the weight matrix:

(
ρ ∈ Rd

)
∝ S:,j = 1

N − 1

N∑
n=1

(Xn,j,: − X̄:,j,:)2 · ||W:,j ||22 (7)

where X̄:,j,: represents the average of the j-th channel for all samples, and ||W:,j ||22 denotes the squared norm
of the j-th column of the weight matrix.

Self-Attention Module: We compute the fluctuation at the head level, weighted by the corresponding
weights in the output projection matrix:

18

Under review as submission to TMLR

(
ρ ∈ Rh

)
∝ S:,j = 1

N − 1

N∑
n=1

(Xn,j,: − X̄:,j,:)2 · ||W:,j ||22 (8)

For our improved fluctuation metric (fluct.2.0), we track the mean and second moment separately over
multiple batches, computing variance as:

Var(X) = E[X2]− E[X]2 (9)

This approach provides greater numerical stability when accumulating statistics across multiple forward
passes.

F How many perturbative samples are reasonable?

For this experiment, All Bonsai hyper-parameters are the same as Appendix A.2 except piter = 0.1 to speed
up pruning.

Table 15: Varying the number of sub-models generated. Wikitext-2 Perplexity. LLaMA-2 7B pruned to 50% sparsity

Num Samples w/o Post-Pruning Adaptation w Post-Pruning Adaptation
1000 22.09 9.25
200 61.63 9.15
50 NaN 9.24

Using nssub−models = 50 results in a model with NaN perplexity on the Wikitext validation set. We posit
that this is because of the LLaMA models are in half precision, and removing the wrong modules can result
in activations going outside of the FP16 dynamic range for unique data points. Note that we are able to
recover good performance of the model after fine-tuning though (we do not observe NaNs with the Wikitext-2
training data). This indicates that Bonsai actually recovers good modules even using as few samples as 50
sub-models.

G LlaMA-3-8B Experiments

In our efforts toward generalization, we also validate Bonsai on LLaMA-3-8B and use the same experimental
setup as our LLaMA-2-7B experiments (hyperparameters in Table A.2) and prune to 50% sparsity on
Wikitext-2.

Table 16: LLaMA-3-8B at 50% sparsity on Wikitext-2

Method Wikitext-2 PPL
LLaMA-3-8B (base) 6.14
Bonsai (w/o PPA) 21.36
Bonsai (w/ PPA) 10.37

The results show comparable trends to LLaMA-2-7B in the main text: Bonsai operates within accessible
memory budgets while achieving competitive accuracy after post-pruning adaptation. This confirms that
Bonsai’s approach generalizes across LLaMA model versions.

19

Under review as submission to TMLR

H Mistral-7B Experiment Details

In addition to the primary experiments on the LLaMA and Phi-2 models, supplementary experiments were
performed on the Mistral-7B Jiang et al. (2023) model in comparison with Wanda results on the stated
model. We apply Bonsai with the same hardware and configuration settings as used for the LLaMA and
Phi-2 experiments. We target different pruning fractions (0.05, 0.1, and 0.2) across different numbers of
samples and masks per iteration to evaluate the method’s performance under varying sparsity conditions.

The Mistral-7B model architecture differs from the LLaMA architecture in its use of group query attention
and sliding window attention in lieu of the standard self-attention used in most transformer-based models
like LLaMA Jiang et al. (2023). We factor these differences into consideration in the implementation of
Bonsai for Mistral. For the experiments that produced the results below, all Bonsai hyper-parameters are
the same as Appendix A.2.

Table 17 presents the test perplexity results for Mistral-7B under different pruning methods. Considering
the fully-structured sparsity nature of Bonsai, it achieves a test perplexity of 47.5 without post-pruning
adaptation, with 1.66× inference speedup. After performing post-pruning adaptation on our pruned Mistral-
7B, perplexity dropped drastically to 10.08. Note that the reported results of Wanda-pruned Mistral-7B
are not fine-tuned afterward; if they were, their results would be marginally better than Bonsai’s results.
However, as shown in Table 3, latency speedup would have dropped rapidly, while Bonsai stays the same at
1.66×.

Table 17: Test perplexity of Mistral-7B model on Wikitext-2 across fully-structured Bonsai and semi-structured
Wanda methods.

Sparsity Level Method Test PPL
Original, unpruned Mistral-7B N/A N/A 5.245

Wanda semi-structured 2-4
magnitude 13.81

Wanda 12.38
SparseGPT 10.46

Bonsai (w/o Adaptation) structured 50% magnitude 67.48
Wanda 47.50

Bonsai (w/ Adaptation) structured 50% Wanda 10.08

We further investigate the pruning habits of Bonsai by examining the pruned layers of Mistral, as shown
in Figure 5. We notice a recurring theme: when an attention layer is significantly altered, it leads to
compensation in the next layers within the sequence. This adaptive behavior, termed the "Hydra effect" by
(McGrath et al., 2023), implies that the layers within a language model interact in a way that changes in one
layer prompt adjustments in another. (McGrath et al., 2023) specifically mentioned that when one attention
layer was removed from a language model, the model was still able to self-repair and produce similar outputs;
but it did so by relying more heavily on other layers.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Pruning Percentage Across Mistral's Self-Attention Layers

50

60

70

80

Pr
un

in
g

Pe
rc

en
ta

ge

Figure 5: Mistral’s pruned attention layers. The heavily pruned layers are usually preceded by or sandwiched
between lightly-pruned layers, exhibiting the self-repairing "Hydra effect" McGrath et al. (2023).

20

Under review as submission to TMLR

I Should Bonsai prune iteratively?

Table 18 demonstrates the benefits of using Bonsai in an iterative fashion. Pruning slowly (piter = 0.05)
yields the best results, but this comes at the cost of increasing the total time to prune the model. The
performance gap between values of piter persists even after post-pruning adaptation, indicating that slower
pruning allows for more accurate estimates of module importance.

Table 18: Varying piter. Wikitext-2 perplexity of LLaMA-2 7B pruned to 50% sparsity. See Appendix C for
experiment details.

piter = 0.05 piter = 0.1 piter = 0.2
w/o Adapt 19.47 61.63 209.44

w Adapt 8.89 9.15 9.57

21

	Introduction
	Related Work
	Unstructured Pruning
	Gradient-Based Structured Pruning
	Memory-Efficient Structured Pruning Approaches
	Positioning of Bonsai
	Additional Methods for LLM Compression

	Methodology
	Background on Pruning, Problem Definition and Notation Setup
	Estimating module relevance with only forward passes
	Selecting sub-models for evaluation
	Iterated Pruning

	Experimental Details and Main Results
	Bonsai is competitive with semi-structured pruning methods
	Bonsai is competitive with gradient-based structured pruning
	Bonsai can produce compressed models with strong zero-shot abilities
	Bonsai is competitive with other forward pass-only, structured pruning methods

	Analysis
	Conclusion, Limitations, and Future Work
	Main Experiment Details
	Hyper-parameters for all Bonsai regression during pruning
	Forward Pass Only / Semi-structured pruning Experiments
	Experiments comparing to Gradient based structured pruning
	Phi-2 pruning experiment details

	Impact of regression and perturbation ablation details
	Varying the pruning fraction per-iteration
	Varying the number of calibration data points for pruning & PPA
	Impact of prior
	 is Activation Magnitude
	 is Wanda sun2023wanda
	 is Fluctuation-based (FLAP) an2024fluctuation

	How many perturbative samples are reasonable?
	LlaMA-3-8B Experiments
	Mistral-7B Experiment Details
	Should Bonsai prune iteratively?

