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Abstract

Transformers form the foundation of modern generative AI, yet their key–
value memory lacks inherent spatial priors, constraining their capacity for
spatial reasoning. In contrast, neuroscience points to the hippocampal–
entorhinal system, where the medial entorhinal cortex provides structural
codes and the hippocampus binds them with sensory codes to enable flex-
ible spatial inference. However, existing hippocampus models such as the
Tolman-Eichenbaum Machine (TEM) suffer from inefficiencies due to outer-
product operations or context-length bottlenecks in self-attention, limiting
their scalability and integration into modern deep learning frameworks. To
bridge this gap, we propose mm-TEM, an efficient and scalable structural
spatial memory model that leverages meta-MLP relational memory to im-
prove training efficiency, form grid-like representations, and reveal a novel
link between prediction horizon and grid scales. Extensive evaluation shows
its strong generalization on long sequences, large-scale environments, and
multi-step prediction, with analyses confirming that its advantages stem
from explicit understanding of spatial structures. Building on this, we
introduce Hippoformer, which integrates mm-TEM with Transformer to
combine structural spatial memory with precise working memory and ab-
straction, achieving superior generalization in both 2D and 3D prediction
tasks and highlighting the potential of hippocampal-inspired architectures
for complex domains. Overall, Hippoformer represents a initial step toward
seamlessly embedding structured spatial memory into foundation architec-
tures, offering a potential scalable path to endow deep learning models with
spatial intelligence.

1 Introduction

The Transformer architecture has driven the recent advances in generative AI, with systems
such as ChatGPT as prominent examples. This success has made the search for new archi-
tectural designs a central direction in machine learning. Transformer can be viewed as asso-
ciative memories implemented through key-value caches and self-attention retrieval(Vaswani
et al., 2017). However, they face inherent limitations, most notably cubic computational
cost and redundant memory, which limit their scalability(Zhuang et al., 2023). To address
these issues, many alternatives have been proposed by reconsidering memory design. For in-
stance, Titans leverage fast MLP weights for large-capacity(Behrouz et al., 2024). Although
these approaches improve long-sequence modeling, their memory structures remain largely
flat and lack a critical element: an inherent spatial memory. Such a memory, however,
is vital for organizing the ”what-where” of experiences and for building internal models.
Therefore, developing architectures with structured spatial memory and integrating them
into modern frameworks remains an key open challenge toward efficient spatial reasoning.
Biological brains employ the hippocampal–entorhinal (HC–EC) system to construct struc-
tured spatial memory, supporting both spatial cognition and episodic memory(Buzsáki &
Moser, 2013; Eichenbaum, 2017; Whittington et al., 2022). Inspired by this, many computa-
tional theories have been proposed, including CSCG(George et al., 2021; Raju et al., 2024),
Tolman–Eichenbaum Machine (TEM)(Whittington et al., 2020), and Vector-HaSH(Chandra
et al., 2025). As shown in Fig. 1AB, TEM provides an elegant theory in which the HC–EC
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system forms a factorized memory architecture: the medial entorhinal cortex (MEC) en-
codes structural information through path integration, while the HC fucntions as a relational
memory system to bind these structural codes with sensory codes from the lateral entorhi-
nal cortex (LEC). This design enables generalization to novel environments and diverse task
structures. Yet despite their theoretical appeal, HC–EC models have so far been validated
only in simplified synthetic domains(Whittington et al., 2020; Raju et al., 2024; Zou et al.,
2024; Chandra et al., 2025), and their extension to richer, real-world tasks remains an open
challenge.
For example, the original TEM uses tensor-product Hebbian weights for relational mem-
ory, which is biologically plausible but computationally expensive and capacity-limited.
TEM-t replaces these with key-value memory and self-attention-based retrieval, improving
efficiency but still incurring high computational cost(Whittington et al., 2021). Moreover, it
inherits the constraints of transformer-based architectures, such as limited context windows.
Furthermore, both models demand careful memory management and parameter tuning to
realize novelty-based storage. Together, these limitations hinder the practical integration
of hippocampal-inspired spatial memory into modern deep learning, despite their strong
conceptual motivation.
To address these challenges, we introduce mm-TEM, a scalable and efficient hippocampus-
inspired structural memory, and Hippoformer, a hybrid model that integrates mm-TEM
with transformers. mm-TEM introduces a novel meta-MLP memory system, meta-trained
for associative binding. Building on this, Hippoformer combines this mm-TEM with trans-
former, yielding complementary strengths. Despite their simplicity, both models achieve
strong performance on long-horizon prediction tasks in 2D and 3D environments. Our main
contributions are:

1. mm-TEM: We propose an efficient and scalable TEM variant with a newly de-
signed meta-MLP based relational memory. mm-TEM substantially improves train-
ing efficiency over TEM, generates grid-like patterns through self-supervised learn-
ing, and uncovers a novel link between prediction horizon and grid scales, offering
insights into how different spatial grid scales are formed.

2. Systematic evaluation: mm-TEM is extensively tested on long sequences, large-
scale environments, and multi-step prediction. It generalizes significantly better
than baselines such as transformers and Titans. Ablation studies highlight the
importance of the auxiliary relational loss, and further analyses show that its gen-
eralization stems from explicit understanding of spatial structures and rules, demon-
strating mm-TEM as an effective structural spatial memory system.

3. Hippoformer: We propose Hippoformer, which integrates mm-TEM with a trans-
former to combine the structural spatial memory of mm-TEM with the precise work-
ing memory and abstraction capabilities of Transformer. This synergy enhances
generalization in both 2D and 3D prediction tasks, demonstrating the potential of
hippocampal-inspired architectures in tackling complex domains.

In summary, mm-TEM provides an efficient and scalable structural spatial memory system.
And when combined with Transformer, Hippoformer has an potential to serve as a building
block for enhancing spatial reasoning in deep learning.

2 Method

In this section, we present the mm-TEM and Hippoformer architecture in detail. We use
the 2D grid-world prediction task as an example, where an agent moves with discrete ac-
tions (up, down, left, right)(Whittington et al., 2020). The input sequence is denoted as
a0, s0, a1, s1 . . . , at, st, where st ∈ Rd is the sensory observation at time t and at a one-
hot action. The model is trained to predict the next sensory obsevation st+1 given at+1,
thereby mimicking hippocampal predictive coding during spatial exploration Whittington
et al. (2022). The overall model structure is illustrated in Fig. 1.
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Figure 1: Factorization of structure and content in the hippocampus and model. (A) The
hippocampal–entorhinal system functions as a memory system: MEC encodes structural
information, LEC encodes sensory content, and HPC integrates both via conjunctive coding.
(B) Structural codes in MEC can be reused across environments, enabling compositional
generalization, adapted from Whittington et al. (2020). (C) The model comprises two
components: a path integration network and a relational memory network, implemented
as an meta-MLP memory. (D) The relational memory module is trained to reconstruct
sensory codes from structural codes, structural codes from sensory codes, and both from
joint inputs.

2.1 Model Architecture and Training

Following TEM theory, mm-TEM consists of two key modules: a path integration network
and a relational memory network (Fig. 1C). The path integration network receives action
inputs at and predicts the corresponding structural code gt, while the relational memory
network binds gt with the sensory code xt, extracted from observations st through a feature
encoder. This design enables flexible bidirectional retrieval between structural and sensory
domains.
Path Integration Network. Inspired by grid system in MEC(Moser et al., 2017), the
network enforces basic spatial consistency rules (e.g., North + East + West + South = 0).
Following Gao et al. (2021), we implement it as a two-layer MLP fg with ReLU activations
to map the action at ∈ Rda to a transformation matrix W g

t ∈ Rdg×dg :
W g

t = fg(at). (1)
The structural code is then updated as

g̃t = ReLU(W g
t gt−1), gt = g̃t

∥g̃t∥2
, (2)

where ℓ2-normalization ensures that gt remains a unit vector.
Relational Memory Network. Mimicking hippocampal relational memory, the network
binds structural and sensory codes into a joint representation mt = [gt, xt], enabling bidi-
rectional retrieval between gt and xt. To replace the computationally expensive Hebbian
weights in TEM, we introduce a meta-MLP with hierarchical fast weights Θt, inspired by
Titans, to store relational knowledge. This design enables dynamic memorization, forget-
ting, and querying at test time, alleviating the complex memory management and parameter
tuning required in TEM and TEM-t.
Concretely, the relational network first projects mt into three latent vectors:

kt = Wkmt, vt = Wvmt, qt = Wqmt, (3)
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where kt, vt, qt denote the key, value, and query representations, respectively. Rather than
storing mt directly, the meta-MLP learns to associate key kt to value vt online by minimizing
the reconstruction loss:

L(kt, vt; Θt) =
∥∥fMLP(kt; Θt) − vt

∥∥2
2, (4)

where fMLP(·; Θt) denotes the meta-MLP. The fast weights Θt are updated by incorporating
novelty-driven adaptation and forgetting:

Θt = (1 − αt)Θt−1 + Ht, (5)
Ht = ηtHt−1 − βt∇ΘL(kt, vt; Ht−1). (6)

Here, αt ∈ [0, 1] is a data-dependent gating variable that controls forgetting, paralleling
hippocampal mechanisms that decay less relevant memories to preserve capacity for novel
ones(Benoit & Anderson, 2012; Liu et al., 2016). The gradient ∇ΘL(·) quantifies novelty
or surprisal - the mismatch between predicted and actual values - so that only unexpected
inputs drive updates, akin to how hippocampus detects and prioritizes novel stimuli for
long-term storage(Sinclair et al., 2021; Schomaker & Meeter, 2015). The term ηt acts as a
momentum factor, averaging surprisal over a tunable timescale to stabilize learning(Bittner
et al., 2017), while βt is the learning rate. All parameters are derived from the input
concatenation: αt = σ(Wαmt), ηt = σ(Wηmt), βt = σ(Wβmt), where σ is the sigmoid
function.
The query vector qt retrieves from memory via fMLP(qt; Θt), and the retrieved representation
is decoded by a two-layer MLP fdec(·; Φ) into a joint reconstruction m̂t = [ĝt; x̂t].
To explicitly enforce relational binding, we introduce three auxiliary relational losses
(Fig. 1D):
(1) Structure from content: retrieve ĝt given only xt (mt = [0, xt]), minimized by L1 =
∥ĝt − gt∥2

2.
(2) Structure form structure: retrieve ḡt given mt = [gt, xt], minimized by L2 = ∥ḡt − gt∥2

2.
The total relational loss is

Lrel = L1 + L2. (7)
Note that other relational loss components are absorbed into the total loss, for instance,
loss from structure to content.
Finally, mm-TEM incorporates a feedback loop from relational predictions bac k to the
path integration network, providing error correction during navigation (Fig. 1C; see Ap-
pendix. A.2 for details).
mm-TEM Training. The objective of mm-TEM is to predict the next observation given
past sensory inputs and actions. The model is trained in a self-supervised manner. During
training, in the relational memory network, the projection matrices Wk, Wv, Wq and the
decoder MLP weights Φ are meta-trained in the outer optimization loop, while the con-
nection weights of the meta-MLP are optimized in the inner optimization loop. During
testing, the connection weights of the meta-MLP are updated online using gradient-based
update rules. We introduce a hyperparameter mb to control the memory update frequency
in the relational memory network. Specifically, the connection weights in the meta-MLP
are updated every mb steps. A larger mb results in sparser updates, which improves train-
ing efficiency but requires the model to rely on older information when predicting the next
observation. Before training mm-TEM on downstream tasks, we perform a warm-up phase
by meta-training the relational memory network with randomly generated {gt, st} sampled
from a uniform distribution. This procedure, conducted for 1000 gradient steps, stabilizes
training. All networks are optimized using the Adam optimizer. Additional training details
and the objective loss function are provided in Appendix. A.4.
Hippformer Architecture and Its Training. Building on mm-TEM, we propose Hip-
poformer, which integrates mm-TEM and a one-layer Transformer in parallel to leverage
the complementary strengths of both modules. In Hippoformer, the mm-TEM component
is also warm-started following the same protocol described above. The model is trained
using the Adam optimizer. Additional architectural and training details are provided in
Appendix. A.4.
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3 Results

3.1 Efficient Training and Emerge of Grid-like Representations in mm-TEM
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CB Grid pattern examples (top5)
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mb=8

ImaginationContext

Training convergence

Gradient step
A
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Figure 2: Task schematic and network performance. (A) A 2D Grid prediction task (example
6×6). The network predicts the next observation based on the current action at each
step in sequence. (B) Multi-step test accuracy over gradient steps for mm-TEM vs TEM
(same batch/sequence training length), averaged over 4 seeds. To assess generalization, the
networks predicted till 256 steps from an initial 64-step context, with results averaged over
four trials. More training details and parameters, see Appendix. A.1, A.2 and A.4. (C)
Emerged grid scale varies with hyperparameter mb. Five top-gridness neurons shown per
condition (more examples in Figs. A.4, A.5 and A.6).

We first ask whether mm-TEM can efficiently solve spatial reasoning task and acquire
hippocampal–entorhinal-like representation. To test this, we evaluated the model on 2D
grid prediction tasks (Fig. 2A)(Whittington et al., 2020), where the agent must predict the
next observation based on the current action at each time step within a 256-step sequence.
For each trial, the environment was sized between 9x9 and 11x11 with randomized observa-
tions, requiring the network to infer the underlying spatial structure and rules to generalize
effectively. Because observations at unseen locations within this discrete environment are
unpredictable, both training and evaluation are confined to positions previously encountered
within each sequence.
In terms of spatial reasoning performance, mm-TEM reaches nearly 90% test accuracy
within only 5,000 gradient steps, while TEM converges very slowly, achieving only about
60% accuracy even after 20,000 steps (Fig. 2B), highlighting the superior training efficiency
of mm-TEM.
In terms of internal representations, analysis of the path-integration network of mm-TEM
further reveals periodic grid-like representations (Fig. 2C). Notably, the grid scale is directly
modulated by the update-frequency hyperparameter mb : larger mb yields coarser grids,
whereas smaller mb produces finer scales. Since mb sets the effective prediction horizon,
this suggests a novel mechanism for grid-scale diversity in MEC(Fyhn et al., 2004) as a
naturally consequence of multi-timescale predictions in the brain.
Overall, mm-TEM not only trains efficiently but also reproduces grid-like patterns in the
HC–MEC system, offering new insight into the computational basis of grid-scale diversity.

3.2 Generalization of mm-TEM in 2D grid prediction tasks

Mimicking the HC–EC system, mm-TEM acts as a structured memory that organizes knowl-
edge for generalization. We ask: how well does such a system generalize compared to modern
architectures like Transformers and Titans? To answer this, we systematically evaluate mm-
TEM against these baselines in diverse settings. In the one-step imagination setting, models
explore environments with varying context lengths and predict the next observation. In the
multi-step imagination setting, models receive a fixed 64-step context and predict future
observations conditioned on action sequences of varying lengths. These tasks probe mm-
TEM’s ability to generalize beyond its training horizon. Note that all models are trained
and evaluated under the same task setting for fair comparison.
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Figure 3: The Generalization and Ablation of mm-TEM. We compare mm-TEM with Ti-
tans and Transformer baselines on 2D grid prediction tasks (training length = 128). Titans
uses one MAL layers. Transformer128 and Transformer64 denote 3-layer transformers with
window sizes of 128 and 64 steps, respectively. (A) 1-step prediction accuracy vs context
length. Networks receive an action–observation context sequence and predict the next ob-
servation. (B) Multi-step imagination accuracy vs imagination length. Networks observe
a fixed 64-step context, then generate future observations conditioned on varying action
lengths. (C) Ablation of auxiliary relational loss. “w/o g2g” removes Lg2g, “w/o s2g” re-
moves Ls2g, “w/o rel” removes all auxiliary relational memory losses. (D) Circular-grid test
setup. Networks explore an 11×11 circular environment clockwise for context, then imagine
trajectories in clockwise or counterclockwise directions. (E) Clockwise vs counterclockwise
performance across different architectures. (F) Effect of environment size, ranging from 7×7
to 15×15. All results are averaged over 3 seeds (see Appendix. A.3, A.4 and Fig. A.3 for
more details).

In the one-step prediction task (Fig. 3A), all models perform well within the 128-step training
horizon. However, Transformer and Titans rapidly degrades once the context length extends
beyond this range. In contrast, mm-TEM maintains more robust performance even with
sequences up to 4096 steps, retaining 4̃0% accuracy where baselines collapse, highlighting
its strong long-term generalization ability.
In the multi-step imagination task (Fig. 3B), the Transformer model with a 128-step win-
dow performs almost perfectly within its training range, but quickly drops off outside it,
suggesting reliance on sequence memorization. Titans show similar behavior. In contrast,
mm-TEM maintains strong long-term performance, suggesting that it has grasped the un-
derlying spatial structure for generalization.
To determine the role of auxiliary relational loss (Fig. 3C) on this ability, we conducted
ablations. Removing either Lg2g or Ls2g significantly reduces generalization ability, and
eliminating all relational terms leads to severe performance degradation, confirming their
importance.
Moreover, we further probe generalization under distribution shifts. In the circular-grid
test (Fig. 3DE), mm-TEM achieves over 90% accuracy in the challenging counterclockwise
condition, while Titans and Transformer suffer accuracy drops by up to 30%, underscoring
mm-TEM’s superior spatial reasoning ability. When scaling environment size from 7 × 7
to 15 × 15 (Fig. 3F) without additional training, all models decline, but mm-TEM deteri-
orates much more slowly and consistently outperforms the baselines. These results further
show that mm-TEM generalizes beyond its training horizon, and captures spatial struc-
ture and rules more faithfully than control models, which appear to primarily rely on rote
memorization.
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Figure 4: Long-horizon generalization and grid representations. (A) Multi-step prediction
accuracy (imagination length = 512) positively correlates with grid score in mm-TEM path
integration networks (r = 0.647, p = 0.0002), indicating that stronger grid-like regularity
supports better generalization. (B) Representative models with high–high, low–high, and
low–low grid–accuracy combinations show distinct autocorrelation patterns. For each model,
the three neurons with the highest grid scores (“Top3 neurons”) and other typical neurons
are displayed, highlighting differences in grid-cell regularity across models. More details are
provided in Appendix. A.4, Fig. A.7, A.8 and A.9.

To uncover why mm-TEM exhibits strong generalization in long-horizon inference, we ex-
amine the relationship between a model’s grid score and its multi-step imagination accuracy.
As shown in Fig. 4A, multi-step generalization performance in mm-TEM is closely tied to
the quality of its grid-like representations. Models with higher grid scores in the path in-
tegration network consistently achieve higher prediction accuracy, suggesting that regular
grid patterns facilitate long-horizon generalization.
Interestingly, we also observe cases where models with relatively low grid scores still achieve
high accuracy. Visualization (Fig. 4B) reveals that these models develop alternative—but
still regular—neural representations, in contrast with the unitary, unstructured patterns
found in models with both low grid scores and low accuracy. Taken together, these results
highlight that the presence of strongly grid-like cells is a key driver for generalization.

3.3 Hippoformer benefits from short- and long-term memory integration
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1-step Accuracy Multi-step Accuracy

Figure 5: Hippoformer architecture and generalization in 2D grid prediction. Both Hippo-
former and mm-TEM are trained using mb = 8 and 256-step sequences. (A) Hippoformer
combines a one-layer Transformer and mm-TEM, both receiving action and sensory em-
beddings; their outputs are concatenated and integrated by an MLP. (B) One-step predic-
tion accuracy of Hippoformer and mm-TEM across different context lengths. (C) Multi-
step imagination accuracy across different imagination lengths, comparing Hippoformer and
mm-TEM. Additional tests for effects of the memory update frequency mb are provided in
Appendix. A.5 and Fig. A.2

From a memory perspective, Transformer with limited window size functions as precise
short-term memory through accurate key–value caching, while mm-TEM provides a struc-
tured but less precise long-term memory. To leverage their complementary strengths, we
propose Hippoformer, a unified architecture that combines a one-layer Transformer with
mm-TEM. Both modules process the input embeddings independently, and their outputs
are concatenated and integrated by an MLP (Fig. 5A). We evaluate all models on the 2D
grid prediction task.
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As shown in Fig. 5B, mm-TEM with mb = 8 can be trained efficiently, but its one-step pre-
diction drops at short context lengths due to limited access to recent information, requiring
longer contexts to reach strong performance. When combined with a Transformer, however,
Hippoformer generalizes across both short and long context lengths. In the multi-step imag-
ination task (Fig. 5C), where performance depends primarily on the mm-TEM component,
both models achieve similar accuracy with no significant difference.
Overall, Hippoformer successfully integrates the strengths of both memory systems. The
Transformer provides short-term memory for accurate short-range prediction, while mm-
TEM supports structured long-horizon forecasting. This hybrid design is appealing for
applications, as reducing MLP memory update frequency in mm-TEM greatly improves
training efficiency and minimizes redundant memory storage, though at the cost of short-
term accuracy (see Appendix. A.5 and Fig. A.2). Consequently, Hippoformer achieves both
efficient training and strong generalization across diverse temporal horizons.

3.4 Hippoformer Leverages the Synergy Between Abstraction and
Memorization

Step 21 Step 26 Step 31 Step 36 Step 41 Step 46 Step 51 Step 56

Example observation inputs

Example action inputs

A

B

C
GroundTruth

HippoFormer

Transformer

Titans

Figure 6: Hippoformer generalization in 3D environment prediction tasks. (A) Example
3D environment with randomly sampled layouts and navigation trajectories. (B) Example
trajectory showing sequences of egocentric observations and actions. (C) Visualization of
imagined trajectories from different models, with snapshots shown every 5 steps. More
details see Appendix. A.6 and Fig. A.10 and A.11. Ablation results of the model architecture
are provided in Fig. A.12 and A.13.

The hippocampus supports not only memorization but also abstraction, whereas tradi-
tional TEM and TEM-t models primarily emphasize memory storage and memory-based
inference. Hippoformer bridges this gap by combining a Transformer for abstraction with
mm-TEM for structured memorization, thereby integrating both capacities to enhance gen-
eralization. To evaluate this capacity, we designed a 3D empty environment task (as shown
in Fig. 6AB)(Pasukonis et al., 2022). In this new setting, layout textures and egocentric
trajectories are randomly sampled. Observation features are extracted through an encoder,
concatenated with action inputs, and fed into the models. Each model is trained to predict
the next egocentric frame over 64-step sequences. They are then evaluated on both one-step
and multi-step prediction, in a manner similar to the 2D grid experiments.

Table 1: Performance comparison of different models on prediction error in 3D environments.
The results are shown for both one-step and multi-step conditions, with errors reported in
units of 1e − 3. The results are averaged over 3 seeds.

Models 1-step Prediction Error (1e-3) m-step Imagination Error (1e-3)
Full Visible Not Visible Full Visible Not Visible

Transformer 1.29±0.00 0.67±0.00 2.15±0.00 36.13±5 11.49±3.3 38.07±1.3
Titans 1.32±0.00 0.69±0.00 2.20±0.05 33.42±4.6 10.60±2.4 35.21±13
Ours 1.27±0.00 0.67±0.00 2.09±0.05 9.71±0.04 2.72±0.01 10.27±3.6
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We systematically evaluate Hippoformer using three complementary metrics: accuracy
across the entire sequence (“full”), accuracy on visible frames (“visible”), and accuracy on
non-visible frames. Visible frames probe the model’s ability to exploit structured memory,
whereas non-visible frames require abstraction from historical context. As shown in Tab. 1,
Hippoformer outperforms both transformer and Titans models slightly in one-step predic-
tion but markedly in multi-step imagination. Consistent with these findings, Fig. 5C shows
that Hippoformer maintains coherent predictions over long horizons in multi-step settings,
whereas transformer and Titans models exhibit oscillatory errors around 36–56 steps, ap-
pearing to stack over time. Additional results are provided in Appendix A.6. Overall, these
results demonstrate that Hippoformer effectively leverage abstraction and memorization,
with its two modules cooperating to achieve robust long-term prediction.

4 Discussions

In this work, we introduced mm-TEM and Hippoformer, two hippocampus-inspired mod-
els for prediction and spatial reasoning. mm-TEM trains more efficiently than standard
TEM and spontaneously develops grid-like codes, whose grid scale is modulated by the pre-
diction horizon, offering a new functional perspective on grid diversity. Additionally, we
propose Hippoformer, which integrates Transformers and mm-TEM. A natural division of
labor emerges: Transformers primarily capture short-term dependencies, while mm-TEM
supports long-horizon forecasting through robust grid codes in 2D environments. In 3D
environments, Transformers contribute to abstraction, whereas mm-TEM focuses on mem-
orization. Together, these complementary roles yield both improved training efficiency and
stronger generalization.
Related works. Our work extends the computational theory of the HC-EC system. Ex-
isting models, such as CSCG (George et al., 2021), Vector-HaSh(Chandra et al., 2025),
TEM(Whittington et al., 2021), and TEM-t(Whittington et al., 2021), are conceptually
elegant but face limitations in scaling to modern deep learning architectures. For exam-
ple, TEM relies on computationally expensive tensor-product Hebbian memory; TEM-t is
constrained by transformer window size and requires complex memory updates; and Vector-
HaSh is non-differentiable. These limitations hinder their application to complex tasks. In
contrast, we propose mm-TEM, which employs a hierarchical MLP as a relational memory
system. Augmented with auxiliary relational losses, mm-TEM offers a powerful, flexible
memory mechanism that integrates seamlessly with modern transformers, enabling its use
in more complex environments.
Long-sequence modeling is a central challenge in machine learning. Recent architectures
such as Mamba(Gu & Dao, 2023), Titans(Behrouz et al., 2024), and Gated Delta Net-
works(Yang et al., 2024) represent important advances through structural initialization,
hierarchical MLP memory, and novelty-based Hebbian rules. However, real-world infor-
mation is inherently spatiotemporal, and simply enlarging memory capacity while ignoring
its underlying structure is an inefficient strategy. To address this, we introduce Hippo-
former, a novel hybrid memory system that combines the precise short-term memory of
transformers with the structured long-term memory of mm-TEM. This design enables more
efficient organization of memory sequences, making Hippoformer a promising architecture
for long-sequence modeling.
Limitations and Future work. While mm-TEM provides an efficient structured memory
system, our current Hippoformer design only illustrates a straightforward parallelization of
transformer and mm-TEM. Moreover, the present Hippoformer is limited to a single-layer
design, without leveraging the model and computation scaling that has been shown to be
crucial in large language models(Kaplan et al., 2020).
Future work should investigate more efficient integration schemes and multi-layer scaling,
positioning mm-TEM as a scalable fundamental building block for large systems and spatial
reasoning tasks. More broadly, mm-TEM’s simplicity may enable hierarchical models of the
hippocampus, offering a computational handle on how biological dorsal–ventral representa-
tional gradients give rise to functional specialization(Strange et al., 2014; Maurer & Nadel,
2021).
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This work does not involve sensitive datasets, human subjects, or potentially harmful ap-
plications. Therefore, we have not identified any obvious ethical concerns.

Reproducibility Statement

The paper and appendix provide detailed descriptions of model architectures, hyperparam-
eters, training procedures, data preprocessing steps, and computational resource configu-
rations. We also include ablation studies and additional results to ensure that the main
conclusions are robust.

The Use of Large Language Models (LLMs)

We used large language models (LLMs) for minor text polishing, but not for generating
scientific content, experiments, or analysis. In addition, we employed LLMs to refine visual-
ization code for clarity and readability; these edits did not affect any experimental results.
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A Appendix

A.1 Details of 2D and 3D Prediction Tasks

2D grid prediction task. In the 2D grid environment, the agent can take four discrete
actions (up, left, right, down), which are encoded as one-hot vectors. Observations are sam-
pled from a uniform distribution over 64 sensory objects, and in each trial, the observations
are drawn independently from this set. Since the environment is discrete and sensory ob-
servations are uncorrelated, generalization in this setting primarily depends on structural
memory-based inference rather than feature abstraction. Consequently, predicting observa-
tions at unvisited locations is not meaningful. For all 2D grid prediction tasks, the models
are trained on grid environments of sizes 8 × 8, 9 × 9, 10 × 10 and 11 × 11.
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3D environment prediction task. The 3D environment is built on MemoryMaze3D (Pa-
sukonis et al., 2022), with the layout simplified to an empty 2D plane. Environment textures
are randomly sampled in each trial. Unlike the allocentric observations in the 2D grid en-
vironment, the observations here are egocentric view images, which are inherently more
complex. The action space consists of a discrete set of actions, including moving forward,
turning left, turning right, staying still, and combinations of moving forward with turning.
However, the resulting movements are continuous, subject to noise and acceleration. In
this environment, unvisited observations can be inferred from nearby spatial information,
making feature abstraction a critical factor in the 3D environment prediction tasks.

A.2 Details of mm-TEM Architecture

The mm-TEM architecture primarily consists of a path integration network and a relational
memory network. Unlike the relational memory in TEM and TEM-t, which incorporate
hand-designed relational priors - TEM uses a tensor-product-based Hebbian mechanism,
and TEM-t employs key-value pairs - our relational memory does not rely on any manually
injected priors. Instead, we self-supervise the network with a simple auxiliary relational
loss, allowing the memory system to learn relational structure autonomously. This approach
makes the memory system more flexible and scalable compared to those in TEM and TEM-t.
mm-TEM receives both action vectors and sensory feature vectors as inputs. In the 2D
grid environment, sensory features are extracted using a 2-layer MLP encoder, whereas in
the 3D environment they are extracted using a 4-layer convolutional neural network and
1-layer MLP. The path integration network processes the action sequences and generates
structural codes. Due to noise-driven error accumulation, the path integration network
requires correction signals from sensory observations to recalibrate the structural codes,
analogous to the HC–EC system in biological brain. Further error correction details are
provided below.
Error correction in the path integration system. In the HC–EC system, visual
sensory cues provide feedback from the HC to correct path integration errors in the MEC. To
emulate this mechanism, we introduce a feedback loop from the relational memory network.
Specifically, given an action at, the path integration network generates a structural code
ggen,t. Together with the sensory code xt, a memory query mt = [ggen,t; xt] is formed and
sent to the relational memory network, which retrieves a structural code ĝgen,t and a content
code x̂t. The retrieved code is then fed back into the path integration network and combined
with ggen,t as follows:

ginf,t = ggen,t + α(ĝgen,t − ggen,t) · fdelta(ggen,t, ĝgen,t, ||xt − x̂t||2)

where fdelta(·) is two-layer MLP that predict the variance of the integrated structural code,
respectively. The scalar α controls the integration ratio. The updated structural code, ginf,t,
then becomes the new state of the path integration network and is stored in the relational
memory alongside the sensory code, xt.
Objective Functions and Training. The overall prediction and update process in mm-
TEM is summarized as follows:

1. Given the action at, the path integration network computes the structural code
ggen,t.

2. With the input mt = [ggen,t; 0], the relational memory network retrieves the sensory
code, which is further decoded into the observation ŝgen,t. This yields the generative
prediction loss:

Lgen = ∥ŝgen,t − st∥2
2.

3. Using the joint structural–sensory code mt = [ggen,t; xt], the relational memory
network predicts the corrected structural code ĝgen,t. Combining the generative
and feedback-retrieved structural codes (ggen,t, ĝgen,t), mm-TEM produces the cor-
rected structural code ginf,t using the above error correction process. This gives
the consistency loss:

Lcon = ∥ggen,t − ginf,t∥2
2.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

4. The corrected structural code ginf,t is then passed again to the relational memory
network with mt = [ginf,t; 0]. The network predicts the sensory code x̂inf,t, which
is decoded into the observation ŝinf,t. This defines the inference prediction loss:

Linf = ∥ŝinf,t − st∥2
2.

5. Finally, the integrated structural code ĝinf,t and the sensory code xt are stored in
the relational memory network using the online gradient-based update rule.

The main objective of mm-TEM is to predict the next observation given past sensory inputs
and actions. It is trained via self-supervised manner. The total loss combines the predictive
loss, consistency loss and auxiliary loss:

L = γrelLrel + γgenLgen + γconLcon + γinf Linf. (8)
where γrel, γgen, γcon and γinf are scale factor of different losses. We train the entire mm-
TEM end-to-end on the prediction task by minimizing L. Optimization uses the Adam
optimizer with a learning rate of 0.001, training is run for up to 20,000 steps.
When combined with Transformer, the model architecture of Hippoformer is shown in a
more detaied version of Fig. 2A in Fig. A.1.

MEC

Transformer mm-TEM

Visual
Encoder

Visual
Decoder

Figure A.1: Model architecture of Hippoformer, which integrates mm-TEM with a Trans-
former in parallel. Related to Fig. 2A

A.3 Control model architecture

We compare mm-TEM and Hippoformer with two control architectures: Transformers and
Titans. The model configurations are summarized as follows.
For the Transformer baseline, we employ a three-layer Transformer with two different tem-
poral windows: 64 steps and 128 steps. The number of attention heads is set to NT

head = 8
and the hidden dimension to NT

dim = 64. Although the Transformer with a 64-step window
has limited temporal context, its hierarchical three-layer structure still allows it to capture
dependencies across the entire sequence.
For Titans, we adopt the MAC architecture, which incorporates an external memory com-
ponent as contextual information. The meta-MLP is parameterized by the number of lay-
ers (Dmem = 2), the number of attention heads (Nm

head = 2), and the hidden dimension
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(Nm
dim = 64). Its Transformer component uses the same parameterization as the standard

64 windows Transformer. Both the Transformer and Titans share the same input layer,
which embeds actions and sensory inputs into Nact = 192, Nsense = 192 in 2D environ-
ments, and Nact = 128, Nsense = 4096 in 3D environments.
For our models (mm-TEM and Hippoformer), we use 64 grid cells for 2D environments
and 128 grid cells for 3D environments. The meta-MLP parameters are identical to those
used in Titans. The short-term memory module is implemented as a one-layer Transformer
with a window size of 32. The input layer embeds grid representations into Ngrid = 64,
Nsense = 64 in 2D environments, and Ngrid = 128, Nsense = 4096 in 3D environments.

A.4 Training and Parameter Details

All models are implemented in PyTorch and trained on NVIDIA A100 GPUs. The training
and parameter configurations corresponding to each figure are summarized below.
For the results in Fig. 2, we report the sequence length, learning rate, batch size, memory
update frequency (mb), and testing environment size. Detailed settings are provided in
Table A.1.

Table A.1: Training and parameter details for different experimental results.
Figure Sequence Length Learning Rate Batch Size mb Env. Size
Fig. 2 256 1e-3 16 8 8-11
Fig. 3 128 1e-3 16 1 8-11
Fig. 4 256 1e-3 16 1/4/8 8-11
Fig. 5 256 1e-3 16 8 8-11
Fig. 6 64 5e-4 16 8 9
Fig. A.3 128 1e-3 16 1 8-11
Fig. A.2 128 1e-3 16 1/4/8 8-11

A.5 Effects of hyperparameter mb on mm-TEM

In mm-TEM, the meta-MLP memory is updated every mb steps; thus, the hyperparame-
ter mb controls the memory update frequency. With a larger mb, the network must rely
on information from mb steps ago to predict the next observation, effectively increasing
the prediction horizon. Therefore, mb also balance short- and long-range predcitions. As
shown in Fig. ??AB, under one-step prediction, smaller mb values emphasize short-range
predictions but perform worse in multi-step prediction.
Ideally, models should perform well in both short- and long-range prediction and gener-
alization. This is where Hippoformer demonstrates its advantage: by combining short-
term memory from the Transformer with a limited window size and structured long-term
memory from mm-TEM, Hippoformer achieves strong performance across both short- and
long-range predictions, as shown in Fig. 5 in the main text. Furthermore, larger mb also im-
proves training efficiency for mm-TEM. Taken together, this simple combination leverages
the complementary strengths of both modules while also achieving high efficiency.

A.6 Other supplementary results

Other supplementary results corresponding to the Results in the main text are shown as
follows.
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Figure A.2: Effects of Memory Update Frequency (mb) on Generalization Capacity of mm-
TEM. We investigate how the memory update frequency parameter (mb) affects the gener-
alization capacity of mm-TEM. All models are trained with a sequence length of 128. The
generalization performance is evaluated under both one-step prediction (A) and multi-step
prediction settings (B).

Prediction #N round
1 2 3

A
cc

ur
ac

y

Figure A.3: Generalization Capacity of mm-TEM in Long-Context Conditions. we evaluates
the generalization capacity of mm-TEM on the n-round imagination task in a circular grid
environment, the same as that in Fig. 3D. As the agent explores the environment in a clock-
wise manner and accumulates more rounds of sensory experience, mm-TEM achieves robust
performance, maintaining around 90% accuracy in multi-step imagination. In contrast,
both Transformers and Titans exhibit a sharp performance drop as the context input length
increases, highlighting the superior generalization ability of mm-TEM under long-context
conditions.
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Figure A.4: Grid patterns from mm-TEM with parameter mb=1. Related to Fig. 2C.
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Figure A.5: Grid patterns from mm-TEM with parameter mb=4. Related to Fig. 2C.
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Figure A.6: Grid patterns from mm-TEM with parameter mb=8. Related to Fig. 2C.
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Figure A.7: Grid patterns in representative mm-TEM model whose gridness and accuracy
are high. Related to Fig. 4B.
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Figure A.8: Grid patterns in representative mm-TEM model whose gridness is low and
accuracy is high. Related to Fig. 4B.
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Figure A.9: Grid patterns in representative mm-TEM model whose gridness and accuracy
are low. Related to Fig. 4B.
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Figure A.10: Visualization of example trajectories of one-step prediction in two 3D environ-
ments from different models, with snapshots shown every 5 steps. Related to Fig. 6C.
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Figure A.11: Visualization of example trajectories of multi-step prediction in two 3D envi-
ronments from different models, with snapshots shown every 5 steps. Related to Fig. 6C.
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Figure A.12: Visualization of example trajectories of one-step prediction in two 3D envi-
ronments from Hippoformer with ablation, with snapshots shown every 5 steps. Related to
Fig. 6.
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Figure A.13: Visualization of example trajectories of one-step prediction in two 3D envi-
ronments from Hippoformer with ablation, with snapshots shown every 5 steps. Related to
Fig. 6.
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