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Abstract

Transformers form the foundation of modern generative AI, yet their key–
value memory lacks inherent spatial priors, constraining their capacity for
spatial reasoning. In contrast, neuroscience points to the hippocampal–
entorhinal system, where the medial entorhinal cortex provides structural
codes and the hippocampus binds them with sensory codes to enable flex-
ible spatial inference. However, existing hippocampus models such as the
Tolman-Eichenbaum Machine (TEM) suffer from inefficiencies due to outer-
product operations or context-length bottlenecks in self-attention, limiting
their scalability and integration into modern deep learning frameworks.
To bridge this gap, we propose mm-TEM, an efficient and scalable struc-
tural spatial memory model that leverages meta-MLP relational memory
to improve training efficiency, form grid-like representations, and reveal
an intriguing link between prediction horizon and grid scales. Extensive
evaluation shows its good generalization on long sequences, large-scale en-
vironments, and multi-step prediction, with analyses confirming that its
advantages stem from explicit understanding of spatial structures. Build-
ing on this, we introduce Hippoformer, which integrates mm-TEM with
Transformer to combine structural spatial memory with precise working
memory, achieving superior generalization in both 2D and 3D prediction
tasks and highlighting the potential of hippocampal-inspired architectures
for complex domains. Overall, Hippoformer represents a initial step toward
seamlessly embedding structured spatial memory into foundation architec-
tures, offering a potential scalable path to endow deep learning models with
spatial intelligence.

1 Introduction

The Transformer architecture has driven the recent advances in generative AI, with systems
such as ChatGPT as prominent examples. This success has made the search for new archi-
tectural designs a central direction in machine learning. Transformer can be viewed as asso-
ciative memories implemented through key-value caches and self-attention retrieval(Vaswani
et al., 2017; Geva et al., 2021; Ramsauer et al., 2020). However, they face inherent lim-
itations, most notably quadratic computational cost and redundant memory, which limit
their scalability(Zhuang et al., 2023). To address these issues, many alternatives have been
proposed by reconsidering memory design. For instance, Titans leverage fast MLP weights
for large-capacity(Behrouz et al., 2024). Although these approaches improve long-sequence
modeling, their memory structures remain largely flat and lack a critical element: an in-
herent spatial memory. Such a memory, however, is vital for organizing the ”what-where”
of experiences and for building internal models Yang et al. (2025). Therefore, developing
architectures with structured spatial memory and integrating them into modern frameworks
remains an key open challenge toward efficient spatial reasoning.
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The hippocampal-entorhinal (HC–EC) system is central to spatial and episodic mem-
ory(Buzsáki & Moser, 2013; Eichenbaum et al., 2007; Eichenbaum, 2017; Whittington et al.,
2022). Experiments highlight two key computational principles: the functional dissociation
between MEC and LEC pathways(Hargreaves et al., 2005; Knierim et al., 2014), and the
hippocampus’s role in binding structural and sensory information(Eichenbaum et al., 2007).
These insights have motivated rich computational models with factorized structural and
sensory representations(Hasselmo et al., 2002; Franzius et al., 2007; Bush et al., 2015),
where MEC provides path-integration–based structural codes and the hippocampus binds
them with LEC-derived sensory inputs. Building on this foundation, several learnable HC-
EC–inspired models have been proposed, including CSCG(George et al., 2021; Raju et al.,
2024), the Tolman–Eichenbaum Machine (TEM)(Whittington et al., 2020), and Vector-
HaSH(Chandra et al., 2025). As shown in Fig. 1AB, TEM offers a unified computational
framework that learns abstract structure in an unsupervised manner and generalizes this
structure to novel environments, making it a promising basis for hippocampus-like mem-
ory models. However, existing HC–EC models focus mainly on simplified synthetic set-
tings(Whittington et al., 2020; Raju et al., 2024; Zou et al., 2024; Chandra et al., 2025).
How to integrate these properties with modern deep learning architectures and scale them
to richer, real-world tasks remains an open challenge.
For example, the original TEM uses tensor-product Hebbian weights for relational mem-
ory, which is biologically plausible but capacity-limited. TEM-t replaces these with key-
value memory and self-attention-based retrieval, improving efficiency but still incurring
high computational cost(Whittington et al., 2021). Moreover, it inherits the constraints
of transformer-based architectures, such as limited context windows. Furthermore, both
models demand careful memory management and parameter tuning to realize novelty-
based storage and retrieval. Together, these limitations hinder the practical integration
of hippocampal-inspired spatial memory into modern deep learning, despite their intriguing
conceptual motivation.
To address these challenges, we introduce mm-TEM, a more scalable and efficient
hippocampus-inspired structural memory, and Hippoformer, a hybrid model that integrates
mm-TEM with transformers. mm-TEM introduces a meta-MLP memory system, meta-
trained for associative binding. Building on this, Hippoformer combines this mm-TEM
with transformer, yielding complementary strengths. Despite their simplicity, both models
achieve good performance on long-horizon prediction tasks in 2D and 3D environments. Our
main contributions are:

1. mm-TEM: We propose an efficient and scalable TEM variant with a newly de-
signed meta-MLP based relational memory. mm-TEM substantially improves train-
ing efficiency over TEM, generates grid-like patterns through self-supervised learn-
ing, and uncovers an intriguing link between prediction horizon and grid scales,
offering new insights into how different spatial grid scales are formed at the imple-
mentation level.

2. Systematic evaluation: mm-TEM is extensively tested on long sequences, large-
scale environments, and multi-step prediction. It generalizes significantly better
than baselines such as transformers and Titans. Ablation studies illustrate the
importance of the auxiliary relational loss, and further analyses show that its gen-
eralization stems from explicit understanding of spatial structures and rules, demon-
strating mm-TEM as an effective structural spatial memory system.

3. Hippoformer: We propose Hippoformer, which integrates mm-TEM with a trans-
former to combine the structural spatial memory of mm-TEM with the precise
working memory capability of Transformer. This synergy enhances generalization
in both 2D and 3D prediction tasks, demonstrating the potential of hippocampal-
inspired architectures in tackling complex domains.

In summary, mm-TEM provides an efficient and scalable structural spatial memory system.
And when combined with Transformer, Hippoformer has an potential to serve as a building
block for enhancing spatial reasoning in deep learning.
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2 Method

In this section, we present the mm-TEM and Hippoformer architecture in detail. We use
the 2D grid-world prediction task as an example, where an agent moves with discrete ac-
tions (up, down, left, right)(Whittington et al., 2020). The input sequence is denoted as
a0, s0, a1, s1 . . . , at, st, where st ∈ Rd is the sensory observation at time t and at a one-
hot action. The model is trained to predict the next sensory obsevation st+1 given at+1,
thereby mimicking hippocampal predictive coding during spatial exploration Whittington
et al. (2022). The overall model structure is illustrated in Fig. 1.
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Figure 1: Factorization of structure and content in the hippocampus and model. (A) The
hippocampal–entorhinal system functions as a memory system: MEC encodes structural
information, LEC encodes sensory content, and HPC integrates both via conjunctive coding.
(B) Structural codes in MEC can be reused across environments, enabling compositional
generalization, adapted from Whittington et al. (2020). (C) The model comprises two
components: a path integration network and a relational memory network, implemented
as an meta-MLP memory. (D) The relational memory module is trained to reconstruct
sensory codes from structural codes, structural codes from sensory codes, and both from
joint inputs.

2.1 Model Architecture and Training

Following previous modeling studies (Hasselmo et al., 2002; Franzius et al., 2007; Bush et al.,
2015; Stachenfeld et al., 2017; Waniek, 2019; Rajan et al., 2016) and TEM computational
framework (Whittington et al., 2020), mm-TEM consists of two key modules: a path inte-
gration network and a relational memory network (Fig. 1C). The path integration network
receives action inputs at and predicts the corresponding structural code gt, while the re-
lational memory network binds gt with the sensory code xt, extracted from observations
st through a feature encoder. This design enables flexible bidirectional retrieval between
structural and sensory domains.
Path Integration Network. Inspired by grid system in MEC(Moser et al., 2017), the
network enforces basic spatial consistency rules (e.g., North + East + West + South = 0).
Following Gao et al. (2021), we implement it as a two-layer MLP fg with ReLU activations
to map the action at ∈ Rda to a transformation matrix W g

t ∈ Rdg×dg :
W g

t = fg(at). (1)
The structural code is then updated as

g̃t = ReLU(W g
t gt−1), gt = g̃t

∥g̃t∥2
, (2)
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where ℓ2-normalization ensures that gt remains a unit vector.
Relational Memory Network. Mimicking hippocampal relational memory (Eichenbaum
et al., 2007), the network binds structural and sensory codes into a joint representation
mt = [gt, xt], enabling bidirectional retrieval between gt and xt. To replace the computa-
tionally expensive Hebbian weights in TEM, we introduce a meta-MLP with hierarchical
fast weights Θt, inspired by Titans, to store relational knowledge. This design enables dy-
namic memorization, forgetting, and querying at test time, alleviating the complex memory
management and parameter tuning required in TEM and TEM-t.
Concretely, the relational network first projects mt into three latent vectors:

kt = Wkmt, vt = Wvmt, qt = Wqmt, (3)
where kt, vt, qt denote the key, value, and query representations, respectively. Rather than
storing mt directly, the meta-MLP learns to associate key kt to value vt online by minimizing
the reconstruction loss:

L(kt, vt; Θt) =
∥∥fMLP(kt; Θt) − vt

∥∥2
2, (4)

where fMLP(·; Θt) denotes the meta-MLP. The fast weights Θt are updated by incorporating
prediction-error-driven adaptation and forgetting:

Θt = (1 − αt)Θt−1 + Ht, (5)
Ht = ηtHt−1 − βt∇ΘL(kt, vt; Ht−1). (6)

Here, αt ∈ [0, 1] is a data-dependent gating variable that controls forgetting, paralleling
hippocampal mechanisms that decay less relevant memories to preserve capacity for novel
ones(Benoit & Anderson, 2012; Liu et al., 2016). ∇ΘL(·) quantifies the gradient of prediction
error - the degree of mismatch between the model’s predictions and the input data - so that
only unexpected inputs drive updates, akin to how hippocampus detects and prioritizes
novel stimuli for long-term storage(Sinclair et al., 2021; Schomaker & Meeter, 2015). The
term ηt acts as a momentum factor, averaging prediction error over a tunable timescale to
stabilize learning(Bittner et al., 2017), while βt is the learning rate. All parameters are
derived from the input concatenation: αt = σ(Wαmt), ηt = σ(Wηmt), βt = σ(Wβmt),
where σ is the sigmoid function.
The query vector qt retrieves from memory via fMLP(qt; Θt), and the retrieved representation
is explained as a joint reconstruction m̂t = [ĝt; x̂t].
To explicitly enforce relational binding, we introduce three auxiliary relational losses
(Fig. 1D):
(1) Structure from content: retrieve ĝt given only xt (mt = [0, xt]), minimized by Lx2g =
∥ĝt − gt∥2

2.
(2) Structure from structure : retrieve ḡt given only gt (mt = [gt, 0]), minimized by Lg2g =
∥ḡt − gt∥2

2.
(3) Content from the structure: retrieve x̂t given only gt (mt = [gt, 0]), minimized by
Lg2x = ∥x̂t − xt∥2

2.
The total relational loss is Lrel = Lx2g +Lg2g +Lg2x. Since Lg2x will be accounted for in the
main predictive-learning objective, it can be absorbed into that term. Thus, the relational
loss can be simplified to Lrel = Lx2g + Lg2g.
Finally, mm-TEM incorporates a feedback loop from relational predictions to the path inte-
gration network, providing error correction during navigation (Fig. 1C; see Appendix. A.2
for details).
mm-TEM Training. The objective of mm-TEM is to predict the next observation given
past sensory inputs and actions. The model is trained in a self-supervised manner. During
training, in the relational memory network, the projection matrices Wk, Wv, Wq are meta-
trained in the outer optimization loop, while the connection weights of the meta-MLP are
optimized in the inner optimization loop. During testing, the connection weights of the meta-
MLP are updated online using gradient-based update rules. We introduce a hyperparameter
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mb to control the memory update frequency in the relational memory network. Specifically,
the connection weights in the meta-MLP are updated every mb steps. A larger mb results
in sparser updates, which improves training efficiency but requires the model to rely on
older information when predicting the next observation. Before downstream task training,
we warm up the relational memory network through meta-training with random {at, st}
samples, utilizing only the relational loss. This procedure helps stabilize training. All
networks are optimized using the Adam optimizer. Additional training details and the
objective loss function are provided in Appendix. A.5. For all primary results, models are
trained on sequence lengths of 128 or 256 using full backpropagation through time (BPTT)
without truncation(See Fig. A.5 for ablation).
Hippformer Architecture and Its Training. Building on mm-TEM, we propose Hip-
poformer, which integrates mm-TEM and a one-layer Transformer in parallel to leverage
the complementary strengths of both modules. In Hippoformer, the mm-TEM component
is also warm-started following the same protocol described above. Rather than receiving
the path integration network’s output gt, the Transformer architecture here takes an ac-
tion embedding generated by a single-layer MLP (Kitaev et al., 2020). This embedding is
concatenated with at and st to form the final input. The model is trained using the Adam
optimizer. Additional architectural and training details are provided in Appendix. A.5.
Control Models. We used Transformer and Titans as control models. They receive
identical input tokens to those used by the the transformer module in Hippoformer. Unless
otherwise stated, all models are trained and evaluated under the same task setting for fair
comparison.

3 Results

3.1 Efficient Training and Emerge of Grid-like Representations in mm-TEM
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Figure 2: Task schematic and network performance. (A) A 2D Grid prediction task (example
6×6). The network predicts the next observation based on the current action at each
step in sequence. (B) Multi-step test accuracy over gradient steps for mm-TEM vs TEM
(same batch/sequence training length), averaged over 4 seeds. To assess generalization, the
networks predict till 256 steps from an initial 64-step context, with results averaged over
four trials. More training details and parameters, see Appendix. A.1, A.2 and A.5. (C)
In the path integration network, emerged grid scale varies with hyperparameter mb. Five
top-gridness neurons shown per condition (more examples in Figs. A.12, A.13 and A.14).

We first ask whether mm-TEM can efficiently solve spatial reasoning task and acquire
MEC-like representation. To test this, we evaluate the model on 2D grid prediction tasks
(Fig. 2A)(Whittington et al., 2020), where the agent must predict the next observation
based on the current action at each time step within a 256-step sequence. For each trial,
the environment is sized between 9x9 and 11x11 with randomized observations, requiring
the network to infer the underlying spatial structure and rules to generalize effectively.
Since observations at unseen locations within this discrete environment are unpredictable,
both training and evaluation are confined to positions previously encountered within each
sequence. More evaluation details, see Appendix. A.4.
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In terms of spatial reasoning performance, mm-TEM reaches nearly 90% test accuracy
within only 5,000 gradient steps, while TEM converges very slowly, achieving only about
60% accuracy even after 20,000 steps (Fig. 2B), highlighting the superior training efficiency
of mm-TEM.
In terms of internal representations, analysis of the path-integration network of mm-TEM
further reveals periodic grid-like representations (Fig. 2C). Notably, the grid scale is directly
modulated by the update-frequency hyperparameter mb: larger mb yields coarser grids,
whereas smaller mb produces finer scales. Since mb sets the effective prediction horizon,
This suggests a novel mechanism for grid-scale diversity in MEC (Fyhn et al., 2004) at
the implementation level, and further demonstrates that diverse grid scales can naturally
arise from multi-timescale predictions in the brain Waniek (2019); Stachenfeld et al. (2017);
Dordek et al. (2016). Overall, mm-TEM not only trains efficiently but also reproduces grid-
like patterns in the HC–MEC system, offering new insights into the computational basis of
grid-scale diversity.

3.2 Generalization of mm-TEM in 2D grid prediction tasks
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Figure 3: The Generalization and Ablation of mm-TEM. We compare mm-TEM with Titans
and Transformer baselines on 2D grid prediction tasks (training length = 128). Titans uses a
3-layer MAC architecture. Transformer128 and Transformer64 denote 3-layer transformers
with window sizes of 128 and 64 steps, respectively. (A) 1-step prediction accuracy vs
context length. Networks receive an action–observation context sequence and predict the
next observation. (B) Multi-step imagination accuracy vs imagination length. Networks
observe a fixed 64-step context, then generate future observations conditioned on varying
action lengths. (C) Ablation of auxiliary relational loss. “w/o g2g” removes Lg2g, “w/o
s2g” removes Ls2g, “w/o rel” removes all auxiliary relational memory losses. (D) Circular-
grid test setup. Networks explore an 11×11 circular environment clockwise for context,
then imagine trajectories in clockwise or counterclockwise directions. (E) Clockwise vs
counterclockwise performance across different architectures. (F) Effect of environment size,
ranging from 7×7 to 15×15. All results are averaged over 3 seeds (see Appendix. A.3, A.5,
Fig. A.3, Fig. A.4 and Fig. A.11 for more details).

Mimicking the HC–EC system, mm-TEM acts as a structured memory that organizes knowl-
edge for generalization. We ask: how well does such a system generalize compared to mod-
ern architectures like Transformers and Titans? To answer this, we systematically evaluate
mm-TEM against these baselines in diverse settings. In the one-step imagination setting,
models explore environments with varying context lengths and predict the next observation.
In the multi-step imagination setting, models receive a fixed 64-step context and predict fu-
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ture observations conditioned on action sequences of varying lengths. These tasks probe
mm-TEM’s ability to generalize beyond its training horizon.
In the one-step prediction task (Fig. 3A), all models perform well within the 128-step training
horizon. However, Transformer and Titans rapidly degrades once the context length extends
beyond this range. In contrast, mm-TEM maintains more robust performance even with
sequences up to 4096 steps, retaining 4̃0% accuracy where baselines collapse, highlighting
its long-term generalization ability.
In the multi-step imagination task (Fig. 3B), the Transformer model with a 128-step win-
dow performs almost perfectly within its training range, but quickly drops off outside it,
suggesting reliance on sequence memorization. Titans show similar behavior. In contrast,
mm-TEM maintains relatively robust long-term performance, suggesting that it has grasped
the underlying spatial structure for generalization.
To determine the role of auxiliary relational loss (Fig. 3C) on this ability, we conduct
ablations. Removing either Lg2g or Ls2g significantly reduces generalization ability, and
eliminating all relational terms leads to severe performance degradation, confirming their
importance.
Moreover, we further probe generalization under distribution shifts. In the circular-grid
test (Fig. 3DE), mm-TEM achieves over 90% accuracy in the challenging counterclockwise
condition, while Titans and Transformer suffer accuracy drops by up to 30%, underscoring
mm-TEM’s superior spatial reasoning ability. When scaling environment size from 7 × 7
to 15 × 15 (Fig. 3F) without additional training, all models decline, but mm-TEM deteri-
orates much more slowly and consistently outperforms the baselines. These results further
show that mm-TEM generalizes beyond its training horizon, and captures spatial struc-
ture and rules more faithfully than control models, which appear to primarily rely on rote
memorization.
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Figure 4: Long-horizon generalization and grid representations. (A) Multi-step prediction
accuracy (imagination length = 512) positively correlates with grid score in mm-TEM path
integration networks (r = 0.647, p = 0.0002), indicating that stronger grid-like regularity
supports better generalization. (B) Representative models with high–high, low–high, and
low–low grid–accuracy combinations show distinct autocorrelation patterns. For each model,
the three neurons with the highest grid scores (“Top3 neurons”) and other typical neurons
are displayed, highlighting differences in grid-cell regularity across models. More details are
provided in Appendix. A.5, Fig. A.8, Fig. A.15, A.16 and A.17.

To uncover why mm-TEM exhibits good generalization in long-horizon inference, we exam-
ine the relationship between a model’s grid score and its multi-step imagination accuracy.
As shown in Fig. 4A, multi-step generalization performance in mm-TEM is closely tied to the
quality of its grid-like representations.Models with higher grid scores in the path-integration
network consistently achieve higher prediction accuracy (further analysis provided in Ap-
pendix. A.8), indicating a positive correlation between grid score and prediction accuracy.
Interestingly, we also observe cases where models with relatively low grid scores still achieve
relatively high accuracy. Visualization (Fig. 4B) reveals that these models develop alterna-
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tive - but still regular - neural representations, in contrast with the unitary, unstructured
patterns found in models with both low grid scores and low accuracy.
Taken together, these results suggest that the presence of strongly grid-like cells may reflect
effective structure learning, thereby facilitating long-horizon generalization.

3.3 Hippoformer benefits from short- and long-term memory integration

From a memory perspective, Transformer with limited window size functions as precise
short-term memory through accurate key–value caching, while mm-TEM provides a struc-
tured but less precise long-term memory. To leverage their complementary strengths, we
propose Hippoformer, a unified architecture that combines a one-layer Transformer with
mm-TEM. Both modules process the input embeddings independently, and their outputs
are concatenated and integrated by an MLP (Fig. 5A). We evaluate all models on the 2D
grid prediction task.
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Figure 5: Hippoformer architecture and generalization in 2D grid prediction. Both Hippo-
former and mm-TEM are trained using mb = 8 and 256-step sequences. (A) Hippoformer
combines a one-layer Transformer and mm-TEM, both receiving action and sensory em-
beddings; their outputs are concatenated and integrated by an MLP. (B) One-step predic-
tion accuracy of Hippoformer and mm-TEM across different context lengths. (C) Multi-
step imagination accuracy across different imagination lengths, comparing Hippoformer and
mm-TEM. Additional tests for effects of the memory update frequency mb are provided in
Appendix. A.6 and Fig. A.2

As shown in Fig. 5B, mm-TEM with mb = 8 can be trained efficiently, but its one-step pre-
diction drops at short context lengths due to limited access to recent information, requiring
longer contexts to reach good performance. When combined with a Transformer, however,
Hippoformer generalizes across both short and long context lengths. In the multi-step imag-
ination task (Fig. 5C), where performance depends primarily on the mm-TEM component,
both models achieve similar accuracy with no significant difference.
Overall, Hippoformer successfully integrates the strengths of both memory systems. The
Transformer provides short-term memory for accurate short-range prediction, while mm-
TEM supports structured long-horizon forecasting. This hybrid design is appealing for
applications, as reducing MLP memory update frequency in mm-TEM greatly improves
training efficiency and minimizes redundant memory storage, though at the cost of short-
term accuracy (see Appendix. A.6 and Fig. A.2). Consequently, Hippoformer achieves both
efficient training and good generalization across diverse temporal horizons.

3.4 Hippoformer Leverages the Synergy Between Abstraction and
Memorization

The hippocampus supports not only memorization but also abstraction, whereas traditional
TEM and TEM-t models primarily emphasize memory storage and memory-based infer-
ence. In contrast, mm-TEM moves beyond structured memorization by enabling abstrac-
tion through parametric relational memory. Hippoformer merges Transformers’ short-term
memory with mm-TEM’s long-horizon abstraction to boost generalization. To evaluate
this capacity, we design a 3D empty environment task (as shown in Fig. 6AB) (Pasukonis
et al., 2022). In this new setting, layout textures and egocentric trajectories are randomly
sampled. Observation features are extracted through an encoder, concatenated with action
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Figure 6: Hippoformer generalization in 3D environment prediction tasks. (A) Example
3D environment with randomly sampled layouts and navigation trajectories. (B) Example
trajectory showing sequences of egocentric observations and actions. (C) Visualization of
imagined trajectories from different models, with snapshots shown every 5 steps. More
details see Appendix. A.9 and Fig. A.18 and A.19.

inputs, and fed into the models. Each model is trained to predict the next egocentric frame
over 64-step sequences. They are then evaluated on both one-step and multi-step predic-
tion, in a manner similar to the 2D grid experiments. Performance is measured using the
reconstruction error of predictions in pixel space (see Appendix. A.4 for details).

Table 1: Performance comparison of different models on prediction error in 3D environments.
The results are shown for both one-step and multi-step conditions, with errors reported in
units of 1e−3. The results are averaged over 3 seeds.

Models 1-step Prediction Error (1e-3) m-step Imagination Error (1e-3)
Full Visible Not Visible Full Visible Not Visible

Transformer 1.29±0.00 0.67±0.00 2.15±0.00 36.13±5.0 11.49±3.3 38.07±13
Titans 1.32±0.00 0.69±0.00 2.20±0.05 33.42±4.6 10.60±2.4 35.21±13
mm-TEM 5.10±0.05 4.23±0.05 6.53±0.05 14.30±0.36 13.23±3.05 14.40±0.16
Hippoformer 1.27±0.00 0.67±0.00 2.09±0.05 9.71±0.04 2.72±0.01 10.27±3.6

We systematically evaluate Hippoformer using three complementary metrics: error across
the entire sequence (“full”), error on visible frames (“visible”), and error on non-visible
frames (see Appendix. A.4 for details). Visible frames probe the model’s ability to exploit
structured memory, whereas non-visible frames require abstraction from historical context.
As shown in Tab. 1, Hippoformer outperforms both transformer and Titans models slightly
in one-step prediction but markedly in multi-step imagination. Consistent with these find-
ings, Fig. 5C shows that Hippoformer maintains coherent predictions over long horizons
in multi-step settings, whereas transformer and Titans models exhibit oscillatory errors
around 36–56 steps, appearing to stack over time. Notably, for consistency with the Hippo-
former, the standalone mm-TEM is also trained with mb = 8 on the 3D task. A large mb
inherently biases mm-TEM toward long-horizon prediction—enhancing multi-step imagina-
tion but reducing single-step accuracy (Tab. 1), a limitation that is compensated by the
Transformer component in Hippoformer. Additional results are provided in Appendix A.9.
Overall, these results demonstrate that Hippoformer effectively leverage abstraction and
memorization, with its two modules cooperating to achieve robust long-term prediction.

4 Discussions

In this work, we introduce mm-TEM and Hippoformer, two hippocampus-inspired models
for prediction and spatial reasoning. mm-TEM trains more efficiently than standard TEM
and spontaneously develops grid-like codes, whose grid scale is modulated by the prediction
horizon, offering a new perspective on grid diversity at the implementation level. Addi-
tionally, we propose Hippoformer, which integrates Transformers and mm-TEM. A natural
division of labor emerges: Transformers primarily capture short-term dependencies, while
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mm-TEM supports long-horizon forecasting through robust grid codes in 2D environments.
In 3D environments, Transformers contribute to short-term memorization, whereas mm-
TEM focuses on long-term abstraction. Together, these complementary roles yield both
improved training efficiency and better generalization.
Related works. Our work extends the computational framework of the HC-EC system.
Existing models, such as CSCG (George et al., 2021), Vector-HaSh(Chandra et al., 2025),
TEM(Whittington et al., 2021), and TEM-t(Whittington et al., 2021), are conceptually
elegant but face limitations in scaling to modern deep learning architectures. For exam-
ple, TEM relies on computationally expensive tensor-product Hebbian memory; TEM-t is
constrained by transformer window size and requires complex memory updates; and Vector-
HaSh is non-differentiable. These limitations hinder their application to complex tasks. In
contrast, we propose mm-TEM, which employs a hierarchical MLP as a relational memory
system. Augmented with auxiliary relational losses, mm-TEM offers a powerful, flexible
memory mechanism that integrates seamlessly with modern transformers, enabling its use
in more complex environments.
Long-sequence modeling is a central challenge in machine learning. Recent architectures
such as Mamba(Gu & Dao, 2023), Titans(Behrouz et al., 2024), and Gated Delta Net-
works(Yang et al., 2024) represent important advances through structural initialization,
hierarchical MLP memory, and novelty-based Hebbian rules. However, real-world infor-
mation is inherently spatiotemporal, and simply enlarging memory capacity while ignoring
its underlying structure is an inefficient strategy. To address this, we introduce Hippo-
former, a novel hybrid memory system that combines the precise short-term memory of
transformers with the structured long-term memory of mm-TEM. This design enables more
efficient organization of memory sequences, making Hippoformer a promising architecture
for long-sequence modeling.
It has long been proposed that diverse grid scales may be a natural consequence of multi-
timescale predictions in the brain. For example, Waniek analytically derived diverse grid
scales from multi-scale predictions (Waniek, 2019). Similarly, Stachenfeld et al. and Dordek
et al. both proposed that diverse grid scales can arise as basis functions of multiscale place
codes (Stachenfeld et al., 2017; Dordek et al., 2016). In contrast to these works, mm-
TEM produces different grid scales emergently through self-supervised learning, achieved
simply by adjusting the memory-update frequency, without imposing any prior multiscale
place structure. This end-to-end emergence is important because it allows prior theoretical
ideas about multiscale grid representations to be tested and extended in more complex and
realistic task settings.
Additionally, mm-TEM offers a new perspective on the biophysical mechanisms underlying
diverse grid scales in the brain. Unlike prior approaches that learn to reconstruct predefined
multiscale place representations (Stachenfeld et al., 2017; Dordek et al., 2016), mm-TEM
suggests that memory-update frequency itself may play a critical role by implicitly imple-
menting a multiscale prediction horizon. Biologically, variation in memory-update frequency
may be able to related to known gradients along the ventral–dorsal hippocampal axis, such as
oscillation-frequency gradients (Goyal et al., 2020) or receptor-expression gradients (Strange
et al., 2014).
Limitations and Future work. While mm-TEM provides an efficient structured memory
system, our current Hippoformer design only illustrates a straightforward parallelization of
transformer and mm-TEM. Moreover, the present Hippoformer is limited to a single-layer
design, without leveraging the model and computation scaling that has been shown to be
crucial in large language models(Kaplan et al., 2020).
Future work should investigate more efficient integration schemes and multi-layer scaling,
positioning mm-TEM as a scalable fundamental building block for large systems and spatial
reasoning tasks. More broadly, mm-TEM’s simplicity may enable hierarchical models of the
hippocampus, offering a computational handle on how biological dorsal–ventral representa-
tional gradients give rise to functional specialization(Strange et al., 2014; Maurer & Nadel,
2021).
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scientific content, experiments, or analysis. In addition, we employed LLMs to refine visual-
ization code for clarity and readability; these edits did not affect any experimental results.

References
Ali Behrouz, Peilin Zhong, and Vahab Mirrokni. Titans: Learning to memorize at test time.

arXiv preprint arXiv:2501.00663, 2024.

Roland G Benoit and Michael C Anderson. Opposing mechanisms support the voluntary
forgetting of unwanted memories. Neuron, 76(2):450–460, 2012.

Katie C Bittner, Aaron D Milstein, Christine Grienberger, Sandro Romani, and Jeffrey C
Magee. Behavioral time scale synaptic plasticity underlies ca1 place fields. Science, 357
(6355):1033–1036, 2017.

Daniel Bush, Caswell Barry, Daniel Manson, and Neil Burgess. Using grid cells for naviga-
tion. Neuron, 87:507 – 520, 2015. URL https://api.semanticscholar.org/CorpusID:
7275119.

György Buzsáki and Edvard I Moser. Memory, navigation and theta rhythm in the
hippocampal-entorhinal system. Nature neuroscience, 16(2):130–138, 2013.

Sarthak Chandra, Sugandha Sharma, Rishidev Chaudhuri, and Ila Fiete. Episodic and
associative memory from spatial scaffolds in the hippocampus. Nature, 638(8051):739–
751, 2025.

Geoffrey W Diehl, Olivia J. Hon, Stefan Leutgeb, and Jill K. Leutgeb. Stability of medial
entorhinal cortex representations over time. Hippocampus, 29:284 – 302, 2018. URL
https://api.semanticscholar.org/CorpusID:52144815.

Yedidyah Dordek, Daniel Soudry, Ron Meir, and Dori Derdikman. Extracting grid cell
characteristics from place cell inputs using non-negative principal component analysis.
Elife, 5:e10094, 2016.

Howard Eichenbaum. Prefrontal–hippocampal interactions in episodic memory. Nature
Reviews Neuroscience, 18(9):547–558, 2017.

Howard Eichenbaum, Andrew P. Yonelinas, and Charan Ranganath. The medial temporal
lobe and recognition memory. Annual review of neuroscience, 30:123–52, 2007. URL
https://api.semanticscholar.org/CorpusID:17722631.

11

https://api.semanticscholar.org/CorpusID:7275119
https://api.semanticscholar.org/CorpusID:7275119
https://api.semanticscholar.org/CorpusID:52144815
https://api.semanticscholar.org/CorpusID:17722631


Published as a conference paper at ICLR 2026

Mathias Franzius, Henning Sprekeler, and Laurenz Wiskott. Slowness and sparseness lead
to place, head-direction, and spatial-view cells. PLoS Computational Biology, 3, 2007.
URL https://api.semanticscholar.org/CorpusID:52828455.

Marianne Fyhn, Sturla Molden, Menno P Witter, Edvard I Moser, and May-Britt Moser.
Spatial representation in the entorhinal cortex. Science, 305(5688):1258–1264, 2004.

Ruiqi Gao, Jianwen Xie, Xue-Xin Wei, Song-Chun Zhu, and Ying Nian Wu. On path
integration of grid cells: group representation and isotropic scaling. Advances in Neural
Information Processing Systems, 34:28623–28635, 2021.

Dileep George, Rajeev V Rikhye, Nishad Gothoskar, J Swaroop Guntupalli, Antoine Dedieu,
and Miguel Lázaro-Gredilla. Clone-structured graph representations enable flexible learn-
ing and vicarious evaluation of cognitive maps. Nature communications, 12(1):2392, 2021.

Mor Geva, Roei Schuster, Jonathan Berant, and Omer Levy. Transformer feed-forward layers
are key-value memories. In Proceedings of the 2021 Conference on Empirical Methods in
Natural Language Processing, pp. 5484–5495, 2021.

Abhinav Goyal, Jonathan Miller, Salman E Qasim, Andrew J Watrous, Honghui Zhang,
Joel M Stein, Cory S Inman, Robert E Gross, Jon T Willie, Bradley Lega, et al. Func-
tionally distinct high and low theta oscillations in the human hippocampus. Nature
communications, 11(1):2469, 2020.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces.
arXiv preprint arXiv:2312.00752, 2023.

Eric L. Hargreaves, Geeta Rao, Inah Lee, and James J. Knierim. Major dissociation between
medial and lateral entorhinal input to dorsal hippocampus. Science, 308:1792 – 1794, 2005.
URL https://api.semanticscholar.org/CorpusID:24399770.

Michael E. Hasselmo, Clara Bodelón, and B. Wyble. A proposed function for hippocampal
theta rhythm: Separate phases of encoding and retrieval enhance reversal of prior learn-
ing. Neural Computation, 14:793–817, 2002. URL https://api.semanticscholar.org/
CorpusID:9128504.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon
Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural
language models. arXiv preprint arXiv:2001.08361, 2020.

Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer.
arXiv preprint arXiv:2001.04451, 2020.

James J. Knierim, Joshua P. Neunuebel, and Sachin S. Deshmukh. Functional correlates
of the lateral and medial entorhinal cortex: objects, path integration and local–global
reference frames. Philosophical Transactions of the Royal Society B: Biological Sciences,
369, 2014. URL https://api.semanticscholar.org/CorpusID:1031828.

Yunlong Liu, Shuwen Du, Li Lv, Bo Lei, Wei Shi, Yikai Tang, Lianzhang Wang, and
Yi Zhong. Hippocampal activation of rac1 regulates the forgetting of object recognition
memory. Current Biology, 26(17):2351–2357, 2016.

Andrew P Maurer and Lynn Nadel. The continuity of context: a role for the hippocampus.
Trends in cognitive sciences, 25(3):187–199, 2021.

Edvard I Moser, May-Britt Moser, and Bruce L McNaughton. Spatial representation in the
hippocampal formation: a history. Nature neuroscience, 20(11):1448–1464, 2017.

Marcello Mulas, Nicolai Waniek, and Jörg Conradt. Hebbian plasticity realigns grid cell
activity with external sensory cues in continuous attractor models. Frontiers in Compu-
tational Neuroscience, 10, 2016. URL https://api.semanticscholar.org/CorpusID:
15499125.

12

https://api.semanticscholar.org/CorpusID:52828455
https://api.semanticscholar.org/CorpusID:24399770
https://api.semanticscholar.org/CorpusID:9128504
https://api.semanticscholar.org/CorpusID:9128504
https://api.semanticscholar.org/CorpusID:1031828
https://api.semanticscholar.org/CorpusID:15499125
https://api.semanticscholar.org/CorpusID:15499125


Published as a conference paper at ICLR 2026

Jurgis Pasukonis, Timothy Lillicrap, and Danijar Hafner. Evaluating long-term memory in
3d mazes. arXiv preprint arXiv:2210.13383, 2022.

Kanaka Rajan, Christopher D. Harvey, and David W. Tank. Recurrent network models
of sequence generation and memory. Neuron, 90:128–142, 2016. URL https://api.
semanticscholar.org/CorpusID:13781578.

Rajkumar Vasudeva Raju, J Swaroop Guntupalli, Guangyao Zhou, Carter Wendelken,
Miguel Lázaro-Gredilla, and Dileep George. Space is a latent sequence: A theory of
the hippocampus. Science Advances, 10(31):eadm8470, 2024.

Hubert Ramsauer, Bernhard Schäfl, Johannes Lehner, Philipp Seidl, Michael Widrich,
Thomas Adler, Lukas Gruber, Markus Holzleitner, Milena Pavlović, Geir Kjetil Sandve,
et al. Hopfield networks is all you need. arXiv preprint arXiv:2008.02217, 2020.

Judith Schomaker and Martijn Meeter. Short-and long-lasting consequences of novelty,
deviance and surprise on brain and cognition. Neuroscience & Biobehavioral Reviews, 55:
268–279, 2015.

Alyssa H Sinclair, Grace M Manalili, Iva K Brunec, R Alison Adcock, and Morgan D
Barense. Prediction errors disrupt hippocampal representations and update episodic mem-
ories. Proceedings of the National Academy of Sciences, 118(51):e2117625118, 2021.

Kimberly L. Stachenfeld, Matthew M. Botvinick, and Samuel J. Gershman. The hip-
pocampus as a predictive map. Nature Neuroscience, 20:1643–1653, 2017. URL https:
//api.semanticscholar.org/CorpusID:197685967.

Bryan A Strange, Menno P Witter, Ed S Lein, and Edvard I Moser. Functional organization
of the hippocampal longitudinal axis. Nature reviews neuroscience, 15(10):655–669, 2014.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural
information processing systems, 30, 2017.

Nicolai Waniek. Transition scale-spaces: A computational theory for the discretized en-
torhinal cortex. bioRxiv, 2019. URL https://api.semanticscholar.org/CorpusID:
92223488.

James CR Whittington, Timothy H Muller, Shirley Mark, Guifen Chen, Caswell Barry, Neil
Burgess, and Timothy EJ Behrens. The tolman-eichenbaum machine: unifying space and
relational memory through generalization in the hippocampal formation. Cell, 183(5):
1249–1263, 2020.

James CR Whittington, Joseph Warren, and Timothy EJ Behrens. Relating transform-
ers to models and neural representations of the hippocampal formation. arXiv preprint
arXiv:2112.04035, 2021.

James CR Whittington, David McCaffary, Jacob JW Bakermans, and Timothy EJ Behrens.
How to build a cognitive map. Nature neuroscience, 25(10):1257–1272, 2022.

Jihan Yang, Shusheng Yang, Anjali W Gupta, Rilyn Han, Li Fei-Fei, and Saining Xie.
Thinking in space: How multimodal large language models see, remember, and recall
spaces. In Proceedings of the Computer Vision and Pattern Recognition Conference, pp.
10632–10643, 2025.

Songlin Yang, Jan Kautz, and Ali Hatamizadeh. Gated delta networks: Improving mamba2
with delta rule. arXiv preprint arXiv:2412.06464, 2024.

Bohan Zhuang, Jing Liu, Zizheng Pan, Haoyu He, Yuetian Weng, and Chunhua Shen. A
survey on efficient training of transformers. arXiv preprint arXiv:2302.01107, 2023.

Xiaolong Zou, Xingxing Cao, Xiaojiao Yang, and Bo Hong. Leveraging attractor dynamics
in spatial navigation for better language parsing. In Forty-first International Conference
on Machine Learning, 2024.

13

https://api.semanticscholar.org/CorpusID:13781578
https://api.semanticscholar.org/CorpusID:13781578
https://api.semanticscholar.org/CorpusID:197685967
https://api.semanticscholar.org/CorpusID:197685967
https://api.semanticscholar.org/CorpusID:92223488
https://api.semanticscholar.org/CorpusID:92223488


Published as a conference paper at ICLR 2026

A Appendix

A.1 Details of 2D and 3D Prediction Tasks

2D grid prediction task. In the 2D grid environment, the agent can take four discrete
actions (up, left, right, down), which are encoded as one-hot vectors. Observations are sam-
pled from a uniform distribution over 64 sensory objects, and in each trial, the observations
are drawn independently from this set. Since the environment is discrete and sensory ob-
servations are uncorrelated, generalization in this setting primarily depends on structural
memory-based inference rather than feature abstraction. Consequently, predicting observa-
tions at unvisited locations is not meaningful. For all 2D grid prediction tasks, the models
are trained on grid environments of sizes 11 × 11.
3D environment prediction task. The 3D environment is built on MemoryMaze3D (Pa-
sukonis et al., 2022), with the layout simplified to an empty 2D plane. Environment textures
are randomly sampled in each trial. Unlike the allocentric observations in the 2D grid en-
vironment, the observations here are egocentric view images, which are inherently more
complex. The action space consists of a discrete set of actions, including moving forward,
turning left, turning right, staying still, and combinations of moving forward with turning.
However, the resulting movements are continuous, subject to noise and acceleration. In
this environment, unvisited observations can be inferred from nearby spatial information,
making feature abstraction a critical factor in the 3D environment prediction tasks.

A.2 Details of mm-TEM Architecture

The mm-TEM architecture primarily consists of a path integration network and a relational
memory network. Unlike the relational memory in TEM and TEM-t, which incorporate
hand-designed relational priors - TEM uses a tensor-product-based Hebbian mechanism,
and TEM-t employs key-value pairs - our relational memory does not rely on any manually
injected priors. Instead, we self-supervise the network with a simple auxiliary relational
loss, allowing the memory system to learn relational structure autonomously. This approach
makes the memory system more flexible and scalable compared to those in TEM and TEM-t.
mm-TEM receives both action vectors and sensory feature vectors as inputs. In the 2D grid
environment, sensory features are extracted using a 2-layer MLP encoder, whereas in the
3D environment they are extracted using a 4-layer convolutional neural network and 1-layer
MLP.
For the relational memory network, we follow the standard configuration used in Titans
memory. Specifically, we employ a 3-layer MLP as the core of the meta-MLP network.
The relational memory module processes the input using two attention heads, each with 64
dimensions. The meta-memory weights are updated using a 2-order momentum rule. These
settings are kept identical across both 2D and 3D environments, and are also matched to
the Titans baseline for fair comparison.
The path integration network processes the action sequences and generates structural codes.
we use 64 grid cells for 2D environments and 128 grid cells for 3D environments. Due to
noise-driven error accumulation, the path integration network requires correction signals
from sensory observations to recalibrate the structural codes, analogous to the HC–EC
system in biological brain. Further error correction details are provided below.
Error correction in the path integration system. In the HC–EC system, the HC pro-
vides relational or spatial feedback - likely in the form of conjunctive codes that bind spatial
and sensory information - which can help recalibrate MEC structural representations (Diehl
et al., 2018; Mulas et al., 2016). To emulate this mechanism, we introduce a feedback loop
from the relational memory network. Specifically, given an action at, the path integration
network generates a structural code ggen,t. Together with the sensory code xt, a memory
query mt = [ggen,t; xt] is formed and sent to the relational memory network, which retrieves
a structural code ĝgen,t and a content code x̂t. The retrieved code is then fed back into the
path integration network and combined with ggen,t as follows:

ginf,t = ggen,t + α(ĝgen,t − ggen,t) · fdelta(ggen,t, ĝgen,t, sg(||xt − x̂t||2))
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where fdelta(·) is two-layer MLP that predict the variance of the integrated structural code,
respectively. sg(.) means stop gradients. The scalar α controls the integration ratio, which
slowly increases in the first 2000 gradient steps. The updated structural code, ginf,t, then
becomes the new state of the path integration network and is stored in the relational memory
alongside the sensory code, xt.
In mm-TEM, the meta-MLP memory is updated once every mb time steps. At each time t,
the model aggregates the recent pairs (ggen,t, st) collected since the last update. Given an
input sequence [. . . , (ggen,t, st), (ggen,t+1, st+1), . . . , (ggen,t+mb, st+mb), . . . ], if the previous
memory update occurs at time t, the next one occurs at t + mb.
At time t + mb, the path integration network is first corrected using (ggen,t+mb, st+mb).
This pair is sent to the relational memory (mm-MLP), which retrieves a struc-
tural code ĝgen,t+mb. The retrieved code is then combined with the previous struc-
tural estimate ggen,t to produce an updated, corrected structural code ginf,t+mb. Af-
ter this correction step, the mm-MLP memory is then updated, using the batch
[(ggen,t, st), . . . , (ggen,t+mb−1, st+mb−1), (ginf,t+mb, st+mb)].
Importantly, throughout the interval t → t+mb, the network has no access to these ”future”
(g, s) pairs. All predictions must rely solely on information available at and before time t.
Consequently, the model must implicitly predict 1 to mb steps ahead, and a larger mb
increases the effective prediction horizon.
Objective Functions and Training. The overall prediction and update process in mm-
TEM is summarized as follows:

1. Given the action at, the path integration network computes the structural code
ggen,t.

2. With the input mt = [ggen,t; 0], the relational memory network retrieves the sensory
code, which is further decoded into the observation ŝgen,t. This yields the generative
prediction loss:

Lgen = ∥ŝgen,t − st∥2
2.

3. Using the joint structural–sensory code mt = [ggen,t; xt], the relational memory
network predicts the corrected structural code ĝgen,t. Combining the generative
and feedback-retrieved structural codes (ggen,t, ĝgen,t), mm-TEM produces the cor-
rected structural code ginf,t using the above error correction process. This gives
the consistency loss:

Lcon = ∥ggen,t − ginf,t∥2
2.

4. The corrected structural code ginf,t is then passed again to the relational memory
network with mt = [ginf,t; 0]. The network predicts the sensory code x̂inf,t, which
is decoded into the observation ŝinf,t. This defines the inference prediction loss:

Linf = ∥ŝinf,t − st∥2
2.

5. Then, the integrated structural code ĝinf,t and the sensory code xt are stored in
the relational memory network using the online gradient-based update rule.

The main objective of mm-TEM is to predict the next observation given past sensory inputs
and actions. It is trained via self-supervised manner. The total loss combines the predictive
loss, consistency loss and relational loss:

L = γrelLrel + γgenLgen + γconLcon + γinf Linf, (7)
where γrel, γgen, γcon and γinf are scale factors of different losses. We train the entire mm-
TEM end-to-end on the prediction task by minimizing L. Optimization uses the Adam
optimizer with a learning rate of 0.001. We apply a StepLR schedule with step size 500 and
decay factor γ = 0.9. The warm-up phase lasts for 5,000 steps, and training runs for up to
20,000 steps.
When combined with Transformer, the model architecture of Hippoformer is shown in a
more detaied version of Fig. 2A in Fig. A.1.
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Figure A.1: Model architecture of Hippoformer, which integrates mm-TEM with a Trans-
former in parallel. Related to Fig. 2A

A.3 Control model architecture

We compare mm-TEM and Hippoformer with two control architectures: Transformers and
Titans. The model configurations are summarized as follows.
For the Transformer baseline, we employ a three-layer Transformer with two different tem-
poral windows: 64 steps and 128 steps. The number of attention heads is set to NT

head = 8
and the hidden dimension to NT

dim = 128. Although the Transformer with a 64-step window
has limited temporal context, its hierarchical three-layer structure still allows it to capture
dependencies across the entire sequence.
For Titans, we adopt the MAC architecture, which incorporates an external memory com-
ponent as contextual information. The meta-MLP parameters keep identical with our re-
lational memory modules. Its Transformer component uses the same parameterization as
the standard 64 windows Transformer. Both the Transformer and Titans share the same
input layer, which embeds actions and sensory inputs into Nact = 192, Nsense = 192 in 2D
environments, and Nact = 128, Nsense = 4096 in 3D environments.
In Hippoformer, the short-term memory module is implemented as a one-layer Transformer
with a window size of 32. In both model(mm-TEM and Hippoformer), the input layer
embeds grid representations into Ngrid = 64, Nsense = 64 in 2D environments, and Ngrid =
128, Nsense = 4096 in 3D environments.

A.4 Model Evaluation

In 2D environments, we use one-step prediction accuracy and multi-step imagination accu-
racy for evaluation, following TEM and TEM-t.
For one-step prediction, given a context sequence of length T1 with state-action in-
puts [(s1, a1), (s2, a2), . . . , (sT1 , aT1)], the model generates next-state predictions Ŝ =
[ŝ2, ŝ3, . . . , ŝT1 ]. A predicted state is counted as valid only when its corresponding ground-
truth was visited before t.
For multi-step imagination, after receiving a context of length T1, the network performs
T2-step imagination. During imagination, an action sequence [aT1 , . . . , aT1+T2 ] is provided,
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and the network produces predicted states Ŝ = [ŝT1+1, ŝT1+2, . . . , ŝT1+T2 ]. A predicted state
is counted as valid only when its corresponding ground-truth was visited during the context
period. For both one-step and multi-step, all accuracies are computed as the fraction of
correct predictions among these valid predictions. Since unvisited states are inherently un-
predictable in the 2D disctrete grid state setting, ”generalization” is over unseen transitions
(edges) rather than unseen states.
In 3D environments, the error metric is defined as the pixel-wise mean squared error normal-
ized over all pixels. The definitions of “one-step” and “multi-step” imagination are similar
to those in 2D. Our 3D environment has a size of 9×9. For evaluation, we roughly discretize
the environment into a 9 × 9 spatial grid. Since the network receives egocentric observa-
tions, we further discretize the orientation into 12 bins, resulting in 9×9×12 = 972 distinct
states. If an observation falls into a spatial grid and orientation bin that has been encoun-
tered previously, we classify it as visible; otherwise, it is classified as non-visible. Note that
this discretization is used only during evaluation.

A.5 Training and Parameter Details

All models are implemented in PyTorch and trained on NVIDIA A100 GPUs. The training
and parameter configurations corresponding to each figure are summarized below.
For the results in Fig. 2, we report the sequence length, learning rate, batch size, memory
update frequency (mb), and testing environment size. Detailed settings are provided in
Table A.1.

Table A.1: Training and parameter details for different experimental results.
Figure Sequence Length Learning Rate Batch Size mb Env. Size
Fig. 2 256 1e-3 16 8 8-11
Fig. 3 128 1e-3 16 1 8-11
Fig. 4 256 1e-3 16 1/4/8 8-11
Fig. 5 256 1e-3 16 8 8-11
Fig. 6 64 5e-4 16 8 9
Fig. A.11 128 1e-3 16 1 8-11
Fig. A.2 128 1e-3 16 1/4/8 8-11

A.6 Effects of hyperparameter mb on mm-TEM

Context Length (log scale)

1-step Accuracy

A
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ur
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y

Imagination Length (log scale)

A
cc

ur
ac

y

Multi-step AccuracyA B

mb=1
mb=4
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Figure A.2: Effects of Memory Update Frequency (mb) on Generalization Capacity of mm-
TEM. We investigate how the memory update frequency parameter (mb) affects the gener-
alization capacity of mm-TEM. All models are trained with a sequence length of 128. The
generalization performance is evaluated under both one-step prediction (A) and multi-step
prediction settings (B).
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In mm-TEM, the meta-MLP memory is updated every mb steps; thus, the hyperparameter
mb controls the memory update frequency. With a larger mb, the network must rely on
information from mb steps ago to predict the next observation, effectively increasing the
prediction horizon. Therefore, mb also balance short- and long-range predcitions. As shown
in Fig. A.2, under one-step prediction, smaller mb values emphasize short-range predictions
but perform worse in multi-step prediction.
Ideally, models should perform well in both short- and long-range prediction and general-
ization. This is where Hippoformer demonstrates its advantage: by combining short-term
memory from the Transformer with a limited window size and structured long-term memory
from mm-TEM, Hippoformer achieves good performance across both short- and long-range
predictions, as shown in Fig. 5 in the main text. Furthermore, larger mb also improves
training efficiency for mm-TEM. Taken together, this simple combination leverages the
complementary strengths of both modules while also achieving high efficiency.

A.7 Effects of different position encoding methods on the model capacity.

To determine whether mm-TEM and Hippoformer’s advantage stems from hippocampus-
like computational mechanism, we performed additional experiments and trained Trans-
former/Titan baselines with three PE variants: (1) Sinusoidal PE, which is static and abso-
lute; (2) Rotary PE, which is a relative position embedding; (3) Dynamic PE, implemented
by a path integation network identical to mm-TEM’s PI module, serving as a powerful
recurrent positional embedding. We evaluated both one-step and multi-step prediction and
also tested transfer in the circular-grid environment (same as Fig. 3).

A B Multi-step Accuracy

Context Length (log scale) Imagination Length (log scale)

1-step Accuracy

Figure A.3: Comparison of Model Generalization Using Diverse Positional Encodings. Ti-
tans and Transformers are evaluated with diverse PEs, including: absolute sinusoidal (e.g.,
Transformer_sin), rotary (e.g., Transformer_rot), Dynamic PE (e.g., Transformer_dyn),
and the learned axial baseline PE used in the main text (e.g., Transformer_learn). All
models are trained in 2D grid prediction tasks (training length = 128) as that in Fig. 3.(A)
1-step prediction accuracy vs context length. (B) Multi-step imagination accuracy vs imag-
ination length. All results are averaged over 3 seeds.

Table A.2: Model Parameter Comparison for 2D Grid Tasks.
Model Parameters (M)
Titans 30.62
Trans 29.63
mm-TEM 9.11
Hippoformer 10.06

As shown in Fig. A.3 and Fig. A.4, our key findings are as follows. (1) Rotary PE and
dynamic PE substantially improve one-step prediction, in some cases reaching performance
comparable to mm-TEM with mb = 1. (2) However, none of these PE variants allow Trans-
formers or Titans to approach mm-TEM’s performance on multi-step prediction or circular-
grid transfer, both of which require robust long-range relational inference. (3) Hippoformer
(Transformer + mm-TEM with mb = 8) consistently outperforms all PE baselines by a

18



Published as a conference paper at ICLR 2026

BA mm-TEM

Figure A.4: Comparison of Model Generalization in Circular-grid Environments. All model
architectures and task settings are the same as that in Fig. 3 and Fig. A.3.(A) Clockwise vs
counterclockwise performance across different architectures. (B) Effect of environment size,
ranging from 7×7 to 15×15. All results are averaged over 3 seeds.

wide margin, demonstrating the complementary strengths of short-range memory (Trans-
former) and long-range, structure-aware memory (mm-TEM). (4) Importantly, mm-TEM
and Hippoformer achieve these results with fewer parameters than the Transformer and
Titan baselines (see Tab. A.2), indicating that the gains are not due to model size, but
architecture.
why PE alone cannot explain the gains. Strong positional encodings (rotary or dynamic
PI-based) improve short-range prediction, but they do not endow baseline Transformers
and Titans with hippocampus-like computational mechanisms, such as feedback-based error
correction or relational memory. Simply inserting a recurrent path integration module
as a positional embedding does not yield hippocampus-like abstract structure learning or
spatial rule inference, which are essential for multi-step relational reasoning and long-range
prediction.

A.8 Additional ablation and control studies

A B

Context Length (log scale) Imagination Length (log scale)

Multi-step Accuracy1-step Accuracy

Figure A.5: Hippoformer using Truncated-BPTT vs Transformer using Full-BPTT. Hippo-
former has the same architecture as that in Fig. 5. Transfomer uses the same architecture
as that in Fig. 3. All models are trained in 2D grid prediction tasks (training length = 512).
BPTT in Hippoformer is truncated at 256 steps, and Full BPTT is adopted in Transformer.
(A) 1-step prediction accuracy vs context length. (B) Multi-step imagination accuracy vs
imagination length. All results are averaged over 3 seeds.

As shown in Fig. A.5, to examine whether full BPTT is necessary, we conducted a new
experiment with 512-length sequences. In the task, Hippoformer uses BPTT truncated at
256 steps. Transformer uses full BPTT over all 512 steps. Despite the truncated training,
Hippoformer still outperforms the Transformer, demonstrating that full BPTT is not re-

19



Published as a conference paper at ICLR 2026

quired for Hippoformer to capture long-range dependencies. In fact, long-range dependency
does not rely solely on long unrolled recurrence. It also relies on the architectural prior to
learn abstract structural codes.

Training Convergence (m-step acc) Training Convergence (m-step acc) Training Convergence (1-step acc)A B C

Figure A.6: Training Efficiency and Multi-step Prediction Performance of mm-TEM ver-
sus TEM-t Baselines. Task settings and evaluations are the same as that in Fig. 2. (A)
Multi-step prediction accuracy during training (as a function of gradient steps). mm-TEM
converges substantially faster and achieves markedly higher accuracy than both TEM and
TEM-t. (B) Multi-step prediction accuracy plotted against wall-clock training time, showing
mm-TEM’s superior time-efficiency. (C) Both TEM and TEM-t achieve high one-step ahead
prediction accuracy during training. One-step prediction was evaluated using a context se-
quence length of 128, consistent with the original TEM and TEM-t studies (Whittington
et al., 2021; 2020). Notably, TEM-t converges faster than TEM. All results are averaged
over 3 seeds.

Top3 neurons Other typical neurons

A B
control 1
control 2

mb=1

mm-TEM grid score distributioon

control 1

control 2

mb=1

Figure A.7: Ablations Separating Training-time vs. Test-time Effects of (mb). All mm-
TEM models are trained with mb = 1. In Control 1, the model is tested with mb = 8
for both sensory error correction and mm-MLP memory updates. In Control 2, the model
is tested with mb = 8 only for mm-MLP memory updates, while sensory error correction
remains at mb = 1. (A) Histogram of grid-cell gridness scores. (B) Autocorrelation maps
of grid representations under the different conditions.

According to the above detail feedback mechanism, increasing mb reduces both the frequency
of memory updates and the frequency of error-correction feedback. To disentangle these two
factors, we performed the following control studies: (1) in Control 1, mm-TEM is trained
with mb = 1, but tested with mb = 8 for both error correction and mm-MLP memory
updates; (2) in Control 2, mm-TEM is trained with mb = 1, but tested with mb = 8 for
mm-MLP memory updates while keeping error correction at mb = 1. In both cases, grid
scale remains identical to the mb = 1 model, as illustrated in Fig. A.7. This outcome is
expected. In mm-TEM, the grid scales are determined solely by how the path-integration
network maps actions into grid representations and by the specific grid–sensory pairings
stored in relational memory. The value of mb does not influence either the mapping of
path-integration network or the specific grid–sensory pairings, and therefore does not alter
the resulting grid scales.
Spearman correlation between grid score and model accuracy is shown in . Note the non-
linear correlation significance is more significant than linear.
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ρ=0.7833
p=1e-6

A B

95% CI
High grid-High acc
Low gird-High acc
Low grid-Low acc

Figure A.8: Spearman correlation between grid score and model accuracy.(A) In the rank
space, multi-step prediction accuracy (imagination length = 512) positively correlates with
grid score in mm-TEM path integration networks (r = 0.7833, p = 1e-6), indicating that
stronger grid-like regularity supports better generalization. Related to Fig. 4A. (B) The
residuals.

A B
with

Context Length (log scale) Imagination Length (log scale)

Multi-step Accuracy1-step Accuracy

Figure A.9: Control Study On the Auxiliary Relational Loss Lx2x. ”With x2x” denotes
the variant that adds Lx2x to the auxiliary relational loss Lrel in mm-TEM, whereas “mm-
TEM” refers to the original model using Lrel without Lx2x. (A) and (B) report 1-step
and multi-step prediction accuracy, respectively, following the same training and evaluation
settings as Fig. 3.

A.9 Other supplementary results

Other supplementary results corresponding to the Results in the main text are shown as
follows.
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Imagination Length (log scale)

Multi-step Accuracy

w/o correction
mm-TEM

Figure A.10: Both mm-TEM variants - with and without error correction - are trained on
sequences of length 256, with mb = 8. The models are evaluated using multi-step prediction,
and all reported results are averaged over three random seeds.

Prediction #N round
1 2 3

A
cc

ur
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Figure A.11: Generalization Capacity of mm-TEM in Long-Context Conditions. we evalu-
ates the generalization capacity of mm-TEM on the n-round imagination task in a circular
grid environment, the same as that in Fig. 3D. As the agent explores the environment in a
clockwise manner and accumulates more rounds of sensory experience, mm-TEM achieves
robust performance, maintaining around 90% accuracy in multi-step imagination. In con-
trast, both Transformers and Titans exhibit a sharp performance drop as the context input
length increases, highlighting the superior generalization ability of mm-TEM under long-
context conditions.
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Figure A.12: Grid patterns from mm-TEM with parameter mb=1. The upper 4 rows show
the ratemaps for each neuron, arranged by grid scores. The lower 4 rows show the auto
correlation of ratemaps. Related to Fig. 2C.
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Figure A.13: Grid patterns from mm-TEM with parameter mb=4. Related to Fig. 2C.
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Figure A.14: Grid patterns from mm-TEM with parameter mb=8. Related to Fig. 2C.
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Figure A.15: Grid patterns in representative mm-TEM model whose gridness and accuracy
are high. Related to Fig. 4B.
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Figure A.16: Grid patterns in representative mm-TEM model whose gridness is low and
accuracy is high. Related to Fig. 4B.
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Figure A.17: Grid patterns in representative mm-TEM model whose gridness and accuracy
are low. Related to Fig. 4B.
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Figure A.18: Visualization of example trajectories of one-step prediction in two 3D environ-
ments from different models, with snapshots shown every 5 steps. Related to Fig. 6C.
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Figure A.19: Visualization of example trajectories of multi-step prediction in two 3D envi-
ronments from different models, with snapshots shown every 5 steps. Related to Fig. 6C.
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