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ABSTRACT

Cellular interactions form the fundamental/core circuits that drive development,
physiology, and disease within tissues. Advances in spatial genomics (SG) and
artificial intelligence (AI) offer unprecedented opportunities to computationally
analyze and predict the behavior of cell intricate networks, and to identify interac-
tions that drive disease states. However, challenges arise in both methodology and
scalability: (i) how to computationally characterize complicated cellular interac-
tions of multi-scale nature, where chemical genes/circuits in individual cells pro-
cess information and drive interactions among large numbers of diverse cell types,
and (ii) how to scale up the pipeline to accommodate the increasing volumes of
SG data that map transcriptome-scale gene expression and spatial proximity across
millions of cells. In this paper, we introduce the Cellular Interaction Founda-
tion Model (CIFM), an AI foundation model functioning to analyze and simulate
cellular interactions within living tissues. In the CIFM pipeline, we explicitly cap-
ture and embed interactions of cells within microenvironments by leveraging the
powerful and scalable geometric graph neural network model, and optimize the
characterization of cellular interactions with a novel self-supervised learning ob-
jective – we train it to infer gene expressions of cells based upon their surrounding
microenvironments. As a result, we construct CIFM with 100 million parameters
by consuming SG data of 23 million cells. Our benchmarking experiments show
CIFM effectively infers gene expressions conditional on the microenvironmental
contexts: we achieve a high correlation and a low mismatch error, with 71.4%
of cells being annotated as the similar cell type based on their predicted and ac-
tual expressions on Visium-HD. We demonstrate the downstream utility of CIFM
by: (i) applying CIFM to embed tumor samples to capture cellular interactions
within tumor microenvironments (ROC-AUC score of 0.862 on classifying sample
conditions via linear probing on embeddings), and identifying shared signatures
across samples; and (ii) using CIFM to simulate changes in microenvironmental
composition in response to T cell infiltration, which highlights how CIFM can be
leveraged to model cellular responses to tissue perturbations – an essential step
toward constructing “AI virtual tissues”. Our model is open source and publicly
accessible at https://huggingface.co/ynyou/CIFM.

1 INTRODUCTION

The cell is the fundamental unit of life, and the cellular communication/interaction establishes the
cell-level circuits of living functions – it is indisputably critical for all diseases, from cancer (Armin-
gol et al., 2021) and autoimmune diseases (Noack & Miossec, 2021) to aging (Sun et al., 2024) and
normal physiology (Sies et al., 2022). The scaling of spatial genomics (SG) data (Eng et al., 2019)
and advancements in artificial intelligence (AI) techniques (Bunne et al., 2024) offer unprecedented
opportunities to construct computational models to characterize cellular interactions, while current
developments do not fully unleash the potential of AI and big SG data: (i) the ineffectiveness of the
simplistic model architecture at modeling intricate cellular interaction circuits (e.g. naı̈ve averag-
ing via convolution to represent interactions (Hu et al., 2021)) which are of multi-scale nature and
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Figure 1: Overview of the CIFM pipeline. (A) SG data with around 23 million cells of four platforms are
curated from the 10x Genomics database. (B) A CME is featurized as a geometric graph with node features of
gene expressions and cell locations, and edge features of spatial proximity. (C) CIFM is trained to reconstruct
the gene expressions of masked cells based on their microenvironmental contexts. (D) The utility of CIFM is
demonstrated in the examples of microenvirionment analysis and perturbation response simulation.

inherent complexity: in the real-world systems, each cell acts as a node that processes information
and changes state, interacting with other nodes through chemical communication, leading to intri-
cate cell interaction networks, where cellular nodes communicate to compute, process information,
make decisions, and execute state transitions; and (ii) the challenge in scaling up to accommodate
the increasing volumes of SG data that map transcriptome-scale gene expression and spatial prox-
imity across millions of cells, spanning large sections of tissue, organ systems, and disease states
(Wang et al., 2025b). We defer the discussion of more related works to Appdx. A.

In this paper, we aim to build a larger-scale model capable of characterizing cellular interactions to
consume massive SG data from varied platforms/sources, in order to function to not only analyze
but more importantly, computationally simulate these interactions – an initiative toward constructing
“AI virtual tissues”. To this end, we leverage the advanced AI model of geometric graph neural
networks (GeoGNNs) (Satorras et al., 2021; Joshi et al., 2023) – the powerful and scalable model
able to explicitly capture and embed interactions within cellular microenvironments (CMEs) via
geometric message passing. To optimize the characterization of cell interactions, we develop and
implement a novel self-supervised learning pipeline to train GeoGNNs on the vast SG data – around
100 SG samples with 23 million cells and 32 thousand measured genes of four platforms of Visium
and Xenium. We refer our model as the cellular interaction foundation model (CIFM).
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Our self-supervised learning pipeline is designed in a masking-reconstruction manner on the SG
data of geometric structures. Intuitively, our model is optimized to reconstruct the masked gene
expressions of cells based on their microenvironmental contexts. Such a self-supervised learning
task is highly intriguing in living systems for the reasons: (i) it requires the model to capture the
important cellular interactions within CMEs to deliver the best inference for masked cells, and (ii)
the task itself holds significant value in computational simulations of the systems in numerous appli-
cations, for instance, it can simulate or “hallucinate” cell state variations in response to tissue-level
perturbations in their CMEs.

We benchmark CIFM and demonstrate that it effectively infers CME context-dependent gene ex-
pressions, achieving high correlations and low mismatch errors across varied samples, platforms,
and scenarios, including in-sample, cross-sample, and even cross-platform evaluation (e.g., training
on Visium and zero-shot evaluation on Xenium). For instance, in the Visium-HD dataset, 71.4%
of cells are annotated with the top-5 cell typing profile containing shared cell types based on their
predicted and actual expressions. Furthermore, we illustrate the downstream utility of CIFM with
two examples. In the first scenario, we use CIFM embeddings to analyze the CME configurations
of different samples. The embeddings well-capture distinguished cellular interactions in healthy
and tumor samples, achieving an ROC-AUC score of 0.862 when classifying sample conditions via
linear probing. Furthermore, we find that CMEs with highly similar CIFM embeddings – indica-
tive of shared microenvironmental features across tumor samples – are consistently enriched with
plasma cells. This suggests that microenvironments with immune responses containing plasma cells
commonly appear in different tumor types, orchestrating cell-cell communication in tumor-immune
microenvironments. In the second scenario, we apply CIFM to autoregressively infer CME changes
during immune cell infiltration. After the virtual injection of T cells into the breast tumor sample, we
observe a notable decrease in the population of luminal epithelial cells – a cell type highly associated
with breast tumors – indicating the potential elimination of tumor cells.

2 CIFM IS TRAINED TO RECONSTRUCT THE GENE EXPRESSIONS OF MASKED
CELLS BASED ON THEIR MICROENVIRONMENTAL CONTEXTS

The CIFM workflow consists of three parts: (i) geometric graph featurization of CMEs (Fig. 1B),
(ii) masking and encoding/embedding of geometric graphs (Fig. 1C Top), and (iii) padding and
decoding/reconstruction of geometric graph features (Fig. 1C Bot). In the foremost step (i), we
featurize CMEs in order to feed them into neural networks (Fig. 1B, Appdx. B.1). Considering the
ith CME (out of K, i.e. i ∈ {1, ...,K}) containing Ni cells with Mi measured genes, the featurized
geometric graph is denoted as:

Featurization: Gi =
{ Genes︷︸︸︷

Xi ,

Locations︷︸︸︷
Ci ,

Connectivity︷ ︸︸ ︷
A(Ci)

}
, i ∈ {1, ...,K}, (1)

where Xi ∈ RNi×Mi

≥0 is the node feature matrix of gene expressions, Ci ∈ RNi×2 is the coordinate
matrix, and A(Ci) ∈ {0, 1}Ni×Ni is the adjacency matrix constructed based on the spatial prox-
imity of the coordinates. To collect adequate CMEs for model training, we curate data from the
10x Genomics database (Rao et al., 2020; Janesick et al., 2023) (Fig. 1A, Appdx. B.1), a publicly
available and extensive resource of spatial genomics data from four different platforms (Visium-
Spatial/HD, Xenium-V1/Prime), containing approximately 100 slides of healthy/tumor samples of
varied organs, with around 23 million cells and 32 thousand measured genes.

With the featurized geometric graphs, we train CIFM in a self-supervised manner via masking-
reconstruction. In the step (ii), we randomly and uniformly remove nodes within the geometric
graph and then use a GeoGNN encoder fenc;θ(·) to embed the remaining structure into the latent
space (Fig. 1C Top, Appdx. B.2). In the step (iii), we pad the removed nodes with the learnable
padding embeddings e, return them to the geometric graph at their original locations, and then use a
GeoGNN decoder fdec;ϕ(·) to reconstruct their masked gene expressions (Fig. 1C Bot, Appdx. B.2).
We optimize the GeoGNN encoder/decoder by minimizing the mismatch between the masked and
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reconstructed gene expressions, formulated as:

Masking: Xunm,i ⊕(2) Cunm,i =

Remove Nodes︷ ︸︸ ︷
Rmv(Xi,Ci, Ii), Zenc,i =

Embed Remaining Structure︷ ︸︸ ︷
fenc;θ

(
Xunm,i,Cunm,i,A(Cunm,i)

)
;

(2)

Reconstruction: Zpad,i = Pad(Zenc,i, e, Ii)︸ ︷︷ ︸
Pad Masked Nodes

, Xdec,i = fdec;θ

(
Zpad,i,Ci,A(Ci)

)
︸ ︷︷ ︸

Reconstruct Masked Features

; (3)

Optimization: min
θ,ϕ,e

1

K

K∑
i=1

Loss
(

Xi[Ii]︸ ︷︷ ︸
Masked Node Features

,Xdec,i[Ii]
)
, (4)

where umn is short for unmasked, ⊕(2) is the concatenation alone the 2nd dimension (feature di-
mension), Rmv(·),Pad(·) are the removal and padding functions on geometric graphs, respectively,
Ii is the set of masking indices of the ith CME, X[I] denotes matrix indexing, and Loss(·) is the loss
function. We illustrate the utility of CIFM through two examples, and its capabilities extend beyond
then. In the first scenario, we use the embeddings of CIFM to analyze the CME configurations of
tumor samples (Fig. 1D Top). In the second scenario, we apply CIFM to autoregressively infer
changes in the cell states of CMEs after virtually injecting immune cells (Fig. 1D Bot).

3 CIFM EFFECTIVELY INFERS CONTEXT-DEPENDENT GENE EXPRESSIONS
ACROSS VARIED SPATIAL GENOMICS SAMPLES AND PLATFORMS

We assess CIFM by evaluating its precision in inferring the gene expressions of cells, based on the
context of their neighboring cells. For benchmarking, we split each slide of SG samples into training,
validation, and test regions for model training, hyperparameter tuning, and evaluation, respectively
(Fig. 2A). We refer the evaluation with the regional split as in-sample evaluation. We also evaluate
using the sample split beyond the regional split, where samples are randomly held out for evaluation
(Appdx. C), referred as cross-sample evaluation. We compared CIFM against baselines that include
random expressions following parameterized uniform and Bernoulli distributions (with parameters
learned from the data), as well as a naiv̈e neighborhood average approach that computes the mean
expressions of the neighboring cells.

We first evaluate CIFM on the Visium-HD dataset (Fig. 2B, Appdx. C). The evaluation is performed
using metrics of correlation and mismatch error: correlation assesses whether the model ranks gene
expression correctly, while mismatch error measures how accurately it infers the actual values of
gene expression. In addition to metrics of correlation and mismatch error, we utilize the neural-
network based cell typing tool scTab (Fischer et al., 2024) and SCimilarity (Heimberg et al., 2024)
to determine whether reconstructed gene expression is mapped to the same cell type as mapped with
the masked gene expression, a measure we term cell typing accuracy. This metric evaluates whether
CIFM infers expressions of the most important genes that is critical in determining cell types. We
observe that CIFM consistently achieves the best performance across 10 slides in all three metrics.
We obtain similar observation when evaluating on their 1,000 most differentially expressed genes
per sample (Appdx. C). Since the cell typing accuracy may be affected by the precision of the
cell typing tool itself, we relax the stringency of the cell typing evaluation by considering whether
the predicted top-k cell types overlap between predictions based on masked and reconstructed gene
expressions (Fig. 2D, Appdx. C). We observe CIFM is able to achieve around 71.4% of SCimilarity
accuracy on average when k = 10 (across a total of around 200 cell type labels).

We next assess the transferability of CIFM by evaluating it on the Xenium-V1 and Xenium-Prime
datasets while training on Visium-HD (Fig. 2E), referred as cross-platform evaluation. In spite
of the substantial technical differences between Visium (sequencing-based) and Xenium (imaging-
based), CIFM demonstrates effective gene expression inference. In the Xenium-Prime samples,
it consistently achieves the highest correlations and lowest mismatch errors, and outperforms in
cell typing accuracy for 6 out of 8 slides, and the performance advantage further enhanced after
finetuning. However, it underperforms in the Xenium-V1 samples (Appdx. C), possibly due to the
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Figure 2: Benchmarking of the CIFM performance. (A) Dataset split for in-sample evaluation, cross-sample
evaluation and cross-platform evaluation. (B) In-sample evaluation on the Visium-HD dataset. (C) Cross-
platform & cross-sample evaluation on the Xenium-Prime dataset. (D) Evaluation on top-k cell typing accuracy
of CIFM on the Visium-HD dataset.

huge discrepancies in the gene measurement scale: around 17K genes on average in Visium-HD,
300 genes in Xenium-V1, and 5K genes in Xenium-Prime (Fig. 1A). This can be remedied with
further finetuning: we further finetune CIFM on Xenium-V1, which results in the best correlation
across all 38 slides (Appdx. C).
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Figure 3: CME embedding with CIFM. (A) Lower-dimensional visualization of CIFM embeddings of mi-
croenvironments and cells on Visium-HD, Xenium-V1, and Xenium-Prime datasets. (B) Linear probing on
CIFM embeddings to classify tumor vs non-tumor samples, and scTab annotated cell types. (C) The fraction
(%) of the 100 nearest neighbors queried with CIFM microenvironmental embeddings across different samples.
The value is averaged across all CME embeddings of the entire sample. ∗ denotes a value greater than 0.1. (D)
The (clustered) KNN profile for each CME in the breast tumor sample without averaging, spatial distribution
of each CME cluster, and the cell type composition of each cluster. The colorbar is shared with panel (C).
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4 CIFM IS ABLE TO EMBED CMES AND CHARACTERIZE
MICROENVIRONMENTAL PATTERNS ACROSS TUMOR SAMPLES

Since the encoding process of CIFM functions to map the information of CME contexts into latent
embeddings, we ask the question that how are the CMEs of different samples distributed within
such latent space? We visualize the CME embeddings of Visium and Xenium from CIFM in a
lower-dimensional UMAP space (Fig. 3A). The microenvironment embeddings are directly acquired
from the GeoGNN encoder, and the cell embeddings are acquired by removing all the edges before
fed into the encoder, so that they contain no neighborhood information. We observe that in the
geometries of these two embedding landscapes are very different – there existing high heterogeneity
across tumor samples indicating the sample-specific heterogeneity within CMEs; while there also
existing interesting clusters of closely located points indicating shared CMEs across samples.

To quantify how well the microenvironment-level embeddings of CIFM capture tumor conditions,
compared between microenvironment and cell embeddings, we perform linear probing to classify
tumor and non-tumor samples, and also scTab annotated cell types (Fig. 3B). Specifically, we train
a linear classifier on Visium-HD embeddings and test it on Xenium-Prime sample embeddings on
the specific tasks. We observe that microenvironment embeddings surpass in distinguishing tu-
mor conditions and cell embeddings in cell types. Furthermore, even this simple linear model on
microenvironment embeddings achieves decent classification performance in distinguishing tumor
from non-tumor samples (ROC-AUC score of 0.862) evaluated on cross-platform data.

To quantify the similarity of CME profiles across samples, we performed a KNN analysis on the
CME embeddings, where we ask the question that within the k nearest neighbors of each CME
embedding, what fraction of these neighbors comes from different samples? As a result, each cell is
assigned a KNN fraction vector, where the vector’s length equals the number of samples, its values
range from 0 to 100, and its entries sum to 100. We average all the KNN fraction vectors and
visualize the sample-level profile (Fig. 3C). Notably, the diagonal blocks capture the shared CMEs
within the same tumor types across different samples, and more interestingly the off-diagonal entries
capture shared CMEs across different tumor types.

Building upon the above observation, we further investigate a more specific question that what is
the cell type composition of these shared CMEs across tumor samples? To answer this question, we
retrieve the CME-level KNN profiles (without averaging on samples) and perform clustering (Fig.
3D Left), and then we annotate the cell type composition within each cluster using scTab (Fischer
et al., 2024) (Fig. 3D Right). When we cluster the KNN profile of CMEs from a breast tumor
sample, we observe that while a large proportion of the CMEs are unique to this particular sample
(in gray), there exist a set of CMEs that are appear to be shared across other tumor samples (shown
in other colors), e.g. colorectal cancer samples. Furthermore, these shared CMEs across tumor
samples are enriched with plasma cells, with their spatial visualization provided (Fig. 3D Mid).

5 CIFM IS ABLE TO SIMULATE CME CHANGES IN RESPONSE TO
MICROENVIRONMENTAL PERTURBATIONS AUTOREGRESSIVELY

Since the decoding process of CIFM maps CME latent embeddings to the potential gene expression
profiles associated with CMEs, we ask the question whether we can simulate the evolution of CMEs
by iteratively updating their cells? We initialize this process by first virtually injecting cells of
interest into CMEs as microenvironmental perturbations, and collect the model outputs that represent
the simulated cellular responses to these perturbations. We inject a fixed number of T cells at random
locations as perturbations. We visualize the simulation on a breast tumor sample (Fig. 4A). It is
important to note that this simulation pipeline is highly general and not limited to specific samples
or perturbations. We observe a increase in various types of immune cells across the three examples,
such as memory B cells. By summarizing changes in cell type composition across a large number
CMEs, we observe a notable decrease in the population of luminal epithelial cells – a cell type highly
associated with breast tumors – indicating the potential elimination of tumor cells (Fig. 4B). We also
observe other variations (both increases and decreases) in the populations of endothelial, neuron and
fibroblast cells. We further visualize the cell type transition matrix in Fig. 4C.
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Figure 4: CME response simulation to perturbation with CIFM. (A) Three examples (rows) of the perturbation
response simulation in the breast tumor sample. column 1: querying CMEs from samples; column 2: virtually
injecting T cells at random locations within CMEs; column 3: masking and predicting gene expressions autore-
gressively for all cells in the CMEs. (B) Summary of the cell state change in simulation in cell type frequency
variation. (C) Summary of the cell state change in simulation in cell type transition.
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6 DISCUSSION

With the emerging interest in demystifying cellular interactions related to various phenotypes, rang-
ing from aging to cancer, there is a growing demand for computational models designed for this
purpose. Advances in artificial intelligence (AI), a powerful data-driven approach, alongside the
increasing quality and quantity of single-cell genomic (SG) data, present an exciting opportunity to
develop such models. We develop CIFM here to fully unleash the potential of both modeling and
data. Our large-scale model captures interactions across cells and is trained on massive SG datasets.
The training process is carefully designed and novel, leveraging cellular interactions to infer missing
gene expressions – a feature that enables in silico simulation of living systems. We believe CIFM
represents an important step toward constructing the ultimate biological digital twin, or what could
be termed “AI virtual tissue” in the future.
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APPENDIX

A RELATED WORKS

Spatial genomics. Spatial genomics is a rapidly evolving biotechnology that bridges the gap be-
tween molecular profiling and spatial context, enabling the study of gene expression within the
native tissue architecture. Unlike traditional transcriptomic techniques that analyze dissociated cells
and lose spatial information, spatial genomics preserves the spatial relationships between cells, of-
fering unprecedented insights into cellular function, tissue organization, and microenvironmental
interactions. Recent technological advances have significantly enhanced our ability to generate mul-
tiplexed tissue imaging data that captures cellular neighborhoods within intact tissues. A wide range
of platforms, including sequencing-based methods (e.g., Visium (Rao et al., 2020), Stereo-seq (Chen
et al., 2022)) and imaging-based approaches (e.g., Xenium, seqFISH (Eng et al., 2019), MERFISH
(Zhang et al., 2021)), now allow for the simultaneous measurement of thousands of genes with high
spatial precision. Moreover, the rapid development of new platforms and methods continues to in-
crease the diversity and complexity of spatial genomics data, enabling deeper insights into different
biological conditions.

AI virtual tissue. AI-powered virtual tissue models, a brand-new concept, represent an exciting
intersection of artificial intelligence and biological research, enabling the analysis of tissue structure
and function with unprecedented precision (Bunne et al., 2024). These models leverage advanced
machine learning algorithms to analyze tissue-level data such as spatial genomics, transcriptomics,
proteomics, and imaging. Compared to recent concurrent works with a similar perspective (Wenck-
stern et al., 2025; Noetik, 2024; Wang et al., 2025a) that are based on transformer architectures,
our CIFM demonstrates superior scalability due to the unique advantages of geometric graph neural
networks.

Geometric graph neural networks. Geometric graph neural networks (GeoGNNs) are an exten-
sion of traditional graph neural networks (GNNs) (Kipf & Welling, 2016; Veličković et al., 2017),
designed to process data that resides on geometric structures like manifolds, point clouds, or other
spatially embedded graphs, enabling superior performance in various domains such as computa-
tional biology, physics simulations, robotics, and computer vision (Duval et al., 2023; Satorras et al.,
2021). Compared to GNNs, GeoGNNs have the advantage of better expressiveness. They leverage
the geometric and topological properties of data (Joshi et al., 2023). Compared to transformers
(Vaswani, 2017; Devlin, 2018), GeoGNNs are more scalable, as they employ local message passing
rather than global (fully connected) mechanisms.

(Geometric) graph self-supervised learning. Self-supervised learning on graphs is shown to learn
more generalizable, transferable and robust graph representations, through exploiting vast unlabelled
data (Xie et al., 2022; Liu et al., 2022). The main advantage of self-supervised learning is that it
does not require any human annotation which is usually resource-intensive in biology, enabling
the utilization of rich data resources to their fullest potential (You et al., 2020a;b). Recent efforts
have also extended this technique to geometric graphs, demonstrating its effectiveness in various
applications, such as molecular representation learning (Liu et al., 2021; Stärk et al., 2022).

B EXTENDED METHODOLOGICAL DETAILS

B.1 SPATIAL GENOMICS DATA PREPROCESSING AND GEOMETRIC GRAPH FEATURIZATION

We download the raw count SG data of Visium and Xenium from 10x Genomics (https:
//www.10xgenomics.com/datasets), using filters “Visium Spatial” and “Xenium In Situ”
under Platform, and “Human” under Species. We read the raw counts with coordinates measured
in micrometers, and their metadata into the AnnData format (Wolf et al., 2018). We remove mi-
tochondrial genes, void cells (those without detected gene expression), and retain only cells anno-
tated as “in tissue” based on their histological images, and then normalize gene counts and conduct
log1p-transformation. For Visium-HD data, we select a bin size of 8×8µm as recommended. We
eventually obtain 100 slides, with 23,139,655 cells and 32,986 measured genes (Fig. 5A).

For benchmarking our approach, we split each slide into training, validation, and test regions by
segmenting it. We define the segmentation rule as follows: using a slide-specific threshold along
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Figure 5: Dataset statistics. (A) Number of cells and measured genes per sample in the Visium and Xenium
datasets. (B) Number of cells in the training, validation and test in the regional split.

the x- and y-axes as xthres, ythres, we allocate a cell with coordinates (x, y) to the training data if
x ≤ xthres; to the validation data if x > xthres and y ≥ ythres; and to the test data if x > xthres and
y < ythres. This unbiased split allows us to preserve the CMEs of each cell as much as possible.
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We compute the thresholds as follows: given the minimum and maximum coordinates of each slide
along the x- and y-axes as xmin, xmax, ymin, ymax, we calculate xthres = xmin + (xmax − xmin) × 0.6,
and ythres = ymin + (ymax − ymin) × 0.5. The number of cells in training, validation, and testing
regions follows an approximate 3:1:1 ratio in each slide (Fig. 5B).

With the above preprocessing, we obtain multiple slides of SG data containing information about the
expressions and locations of cells. For the ith slide containing Ni cells and Mi measured genes, we
featurize it into a geometric graph Gi = {Xi,Ci,Ai(Ci)}: Xi ∈ RNi×Mi

≥0 , the node feature matrix,
is derived from gene expressions; Ci ∈ RNi×2, the geometric feature matrix, is derived from spatial
locations; and Ai(Ci) ∈ {0, 1}Ni×Mi , the adjacency matrix, is constructed from Ci to capture
spatial proximity information. We build a radius graph for the adjacency matrix that given the radius
threshold rthres, the adjacency matrix is computed as: Ai(Ci)[j, k] =

{
1, if ∥Ci[j]−Ci[k]∥≤rthres

0, otherwise , with
the radius threshold rthres set to 20µm for Visium-HD, Xenium-V1 and Xenium-Prime and 150µm
for Visium-Spatial of spot resolution.

B.2 GEOMETRIC GRAPH NEURAL NETWORK ENCODER AND DECODER

GeoGNNs are capable of processing geometric data while respecting their inherent symmetry of
permutation and spatial transformations (Satorras et al., 2021; Joshi et al., 2023), which is important
for cellular systems as biological functions remain unaffected by permutations in cell features or by
global transformations (of rotation and translation) in location. Specifically, a GeoGNN f(·) takes a
geometric graph as input and outputs a (D+2)-dimensional invariant and equivariant embedding for
each node (cell) as Zinv⊕(2)Zeqv = f(X,C,A(C)), where ⊕(2) is the concatenation alone the 2nd
dimension (feature dimension), Zinv ∈ RN×D is the invariant embedding matrix, and Zeqv ∈ RN×2

the equivariant embedding matrix. It respects the symmetry via strictly satisfying:

Permutation Symmetry: P (Zinv ⊕(2) Zeqv) = f
(
PX,PC,PA(C)P⊤

)
, ∀P ∈ Sn; (5)

Transformation Symmetry: Zinv ⊕(2) (ZeqvR+ t) = f
(
X,CR+ t,A(CR+ t)

)
, ∀(R, t) ∈ SE(2),

(6)

where Sn is the group of permutation of n elements, and SE(2) is the Special Euclidean group in
2D.

We leverage the E(n) equivariant graph neural network (EGNN) (Satorras et al., 2021) as the base
GeoGNN encoder and decoder architecture for its effectiveness and efficiency. Considering the
input and output of the lth EGNN layer (out of L, l ∈ {1, ..., L}) is denoted as Z

(l)
inv ⊕(2) Z

(l)
eqv =

f (l)(Z
(l−1)
inv ,Z

(l−1)
eqv ,A(C)) where Z

(0)
inv = X,Z

(0)
eqv = C,Zinv = Z

(L)
inv ,Zeqv = Z

(L)
eqv , the layer-

wise message passing of the ith node is formulated as:

Message: Msg
(l)
i,j = MLP1

(
Z

(l−1)
inv [i]⊕(2) Z

(l−1)
inv [j]⊕(2)

∥∥∥Z(l−1)
eqv [i]−Z(l−1)

eqv [j]
∥∥∥); (7)

EqvEmb: Z(l)
eqv[i] = Z(l−1)

eqv [i] +
1

Sum(A(C)[i])

∑
j∈{1,...,N},
A(C)[i,j]=1

(Z(l−1)
eqv [i]−Z(l−1)

eqv [j])×MLP2(Msg
(l)
i,j);

(8)

InvEmb: Z
(l)
inv [i] = MLP3

( 1

Sum(A(C)[i])

∑
j∈{1,...,N},
A(C)[i,j]=1

Msg
(l)
i,j

)
, (9)

where MLP(·) denotes the multilayer perceptron, Sum(·) represents the summation function, and
the computation can be parallelized across all nodes simultaneously. We rely on the final invariant
representation Zinv for encoder embeddings and decoder reconstructions, so the final layer I/O is
formulated as Z(L)

inv = f (L)(Z
(L−1)
inv ,Z

(L−1)
eqv ,A(C)).

One issue with the current GeoGNN architectures is the presence of void node biases, where the
addition of dummy void nodes unnecessarily affects the representations of real nodes. In cellular
systems, the addition of non-realistic void cells (e.g. without any gene being expressed) introduces
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bias into GeoGNN models, affecting cell representation in arbitrary directions. Specifically, we aim
to further enforce the GeoGNN model to respect the void symmetry by strictly satisfying:

Void Symmetry: Zinv ⊕(2) Zeqv = f
(
X ⊕(1) X̃,C ⊕(1) C̃,A(C ⊕(1) C̃)

)
[: N ], (10)

where X̃ ∈ RÑ×M represents the problem-specific void node features, Ñ is the number of void
nodes, and C̃ ∈ RÑ×2 denotes the arbitrary locations of the void nodes. We focus on eliminating
the bias for void cells, specifically when X̃ = 0. We achieve this by proposing a modified void-
invariant architecture based upon EGNNs (Eqs. equation 7 - equation 9), with message-passing
formulated as:

Intensity: Int
(l)
i,j = BFMLP1(Z

(l−1)
inv [i]⊤Z

(l−1)
inv [j]); (11)

Message: Msg
(l)
i,j = BFMLP2

(
(Z

(l−1)
inv [i]⊕(2) Z

(l−1)
inv [j]⊕(2)

∥∥∥Z(l−1)
eqv [i]−Z(l−1)

eqv [j]
∥∥∥)× Int

(l)
i,j

)
;

(12)

EqvEmb: Z(l)
eqv[i] = Z(l−1)

eqv [i] +
∑

j∈{1,...,N},
A(C)[i,j]=1

(Z(l−1)
eqv [i]−Z(l−1)

eqv [j])× BFMLP3(Msg
(l)
i,j); (13)

InvEmb: Z
(l)
inv [i] = BFMLP4(

∑
j∈{1,...,N},
A(C)[i,j]=1

Msg
(l)
i,j), (14)

where BFMLP(·) denotes the bias-free multilayer perceptron containing no bias weights.

The key components introduced to guarantee void symmetry (Eq. equation 10) are as follows: 1)
the introduction of the intensity term (Eq. equation 11) ensuring that the zero intensity if either
the ith or jth node is void, thereby nullifying the void message; 2) the employment of bias-free
multilayer perceptron to preserve the void message; 3) the utilization of sum pooling (rather than
mean pooling) to eliminate the population bias in representation resulting from void nodes. More
importantly, the void-invariant architecture allows the computation of derivatives at void features,
i.e. ∂(Zinv⊕(2)Zeqv)

∂X̃ |∂X̃=0
exists, which is highly valuable for numerous downstream applications

requiring gradient information (e.g. counterfactual search (Wang et al., 2025b)).

B.3 GEOMETRIC SELF-SUPERVISED LEARNING

We train the GeoGNN in a self-supervised manner through a masking-reconstruction approach. In
the encoding stage, we remove 5% of the nodes for masking. Specifically, given an input geometric
graph G = {X,C,A(C)}, and denoting the masked and unmasked indices as I and Ī, respectively,
the masking process is performed by removing the nodes as Xunm ⊕(2) Cunm = Rmv(X,C, I)
where Xunm = X [̄I],Cunm = C [̄I]. A GeoGNN encoder fenc;θ(·) parametrized with θ is then
applied to embed the geometric graph as Zenc = fenc;θ(Xunm,Cunm,A(Cunm)). In the decoding
stage, we pad the masked node in the latent space with a learnable padding embedding e ∈ RD.
Specifically, the padding process is performed as Zpad = Pad(Zenc, e, I) where Zpad[i] = e,∀i ∈ I.
A GeoGNN decoder fdec;ϕ(·) parametrized with ϕ is then applied to reconstruct the masked node
features as Xdec = fdec;ϕ(Zpad,C,A(C)).

We optimize the model by minimizing the discrepancy between the masked and reconstructed gene
expressions. We optimize on a balanced MSE loss on all the K samples with the optimization
formulated as:

min
θ,ϕ,e

1

K

K∑
i=1

( 1

2
∑

j∈{1,...,N},
k∈{1,...,D},
Xi[j,k]>0

1

∑
j∈{1,...,N},
k∈{1,...,D},
Xi[j,k]>0

(Xi[j, k]−Xdec,i[j, k])
2+

1

2
∑

j∈{1,...,N},
k∈{1,...,D},
Xi[j,k]=0

1

∑
j∈{1,...,N},
k∈{1,...,D},
Xi[j,k]=0

(Xi[j, k]−Xdec,i[j, k])
2
)
,

(15)
where the subscript represents the sample index.

C EXTENDED RESULTS
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Figure 6: The full benchmarking evaluation results. (A) Evaluation on Visium-HD. (B) Evaluation on Xenium-
Prime. (C) Evaluation of the 1,000 most differentially expressed genes in Visium-HD and Xenium-Prime. (D)
Evaluation on Xenium-V1. (E) Evaluation on Visium-Spatial.
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