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Abstract

We introduce a hierarchical probabilistic approach to go
from a 2D image to multiview 3D: a diffusion “prior” mod-
els the unseen 3D geometry, which then conditions a diffu-
sion “decoder” to generate novel views of the subject. We
use a pointmap-based geometric representation in a multi-
view image format to coordinate the generation of multiple
target views simultaneously. We facilitate correspondence
between views by assuming fixed target camera poses rel-
ative to the source camera, and constructing a predictable
distribution of geometric features per target. Our modular,
geometry-driven approach to novel-view synthesis (called
“unPIC”) beats SoTA baselines such as CAT3D and One-
2-3-45 on held-out objects from ObjaverseXL, as well as
real-world objects ranging from Google Scanned Objects,
Amazon Berkeley Objects, to the Digital Twin Catalog.

1. Introduction

“One does not simply reason about shapes at the level
of pixels.”

— Anon

Recovering 3D geometry from a single image is a hard,
underspecified problem [9]. SoTA methods for novel view
synthesis (NVS) find it liberating to be geometry-free: they
use a given image to predict novel views of the subject di-
rectly, before reconstructing any 3D [8, 23, 26]. Methods
that attempt, on the other hand, to produce and use a geo-
metric explanation (i.e., a geometric prior) are often bot-
tlenecked by per-scene optimization [31, 42]. Else they
lack the ability to imagine multiple plausible 3D scenarios
[13, 48]. They may in fact rely on class labels and semantic
cues [24, 48], or on known correspondences between rep-
resentations and views [13], thus reducing their generaliz-
ability. One might be tempted to conclude that geometric
priors distract from and impede the progress of data-driven
image-to-image NVS. We show this need not be the case.

We introduce a modular framework to facilitate

geometry-based NVS. The generation task is decomposed
into two: first use a given image to predict multiview fea-
tures, then use the multiview features (and original input) to
generate the corresponding target images. Our approach is
analogous to the unCLIP approach behind DALL-E 2 [33]
for text-to-2D synthesis: they first map CLIP text embed-
dings to image embeddings using a probabilistic prior, then
decode the image embeddings to pixels. Since 2D to 3D
from a single image is also a one-to-many mapping, mod-
eling it as the composition of two probabilistic maps can
improve the range and accuracy of the realized outputs. In-
spired by unCLIP, our hierarchical approach is called “un-
PIC” (undo-a-picture with Probabilistic Inverse Cameras).

To specify the target shape of an object before filling
in appearance-level details, we use a pointmap-based in-
termediate representation. We adapt the idea of a Normal-
ized Object Coordinate Space (NOCS [39]), a function that
maps every point on an object’s surface to a unique RGB
color based on its spatial coordinates. When rendered as
images (aka pointmaps), NOCS establishes point-to-point
correspondence across viewpoints (Fig. 1). It is naturally
suited to help coordinate the generation of consistent mul-
tiview target images. We introduce a version of NOCS that
exploits an available degree of freedom—the orientation of
the color space—to make the pointmaps more predictable
for the prior module. Our version (called “CROCS”) allows
the prior to make camera-pose-invariant predictions.

Ultimately, our goal is to produce realistic and diverse
shape and appearance completions from a single 2D im-
age. To motivate our design, we present the follow-
ing experiments: we first show that a diffusion decoder
achieves better NVS when equipped with ground-truth
NOCS pointmaps. Next, we train a diffusion prior to pre-
dict multiview pointmaps from a given source image. Our
camera-relative version of NOCS significantly improves the
diffusion prior’s performance, achieving a 4x boost in tar-
get shape predictability. Finally, we stack the separately
trained prior and decoder for hierarchical NVS from a sin-
gle image. We beat the SoTA baselines CAT3D, One-2-3-
45, and OpenLRM on appearance and shape reconstruction,
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Figure 1. Top: A hierarchical approach to NVS. A prior models multi-view features from a single image. These are jointly decoded to
the target novel-view images. Our choice of intermediate features establishes point-to-point correspondence across views. Bottom: More
examples from the prior and decoder. Our model exhibits transferrable shape understanding having never seen a real-world pixel.

demonstrating our method’s superior shape understanding
and the viability of geometry-based multiview modeling.

2. Related Work

Novel view synthesis: Optimization-based NVS methods
(such as Neural Radiance Fields [25] or Gaussian Splatting
[20]) fit a geometric representation to a specific scene. Such
methods need several consistent input images to be able to
interpolate between camera poses. When only one image
is available, we need a learned prior to predict what an ob-
ject/scene looks like from alternative views. One line of
work builds on spatially arranged implicit representations
such as convolutional feature grids in pixelNeRF [48] or
attention-based triplane tokens in LRM [13] to enable feed-
forward inference. These original methods are determin-
istic, thus suffering from averaged/blurry reconstructions,
and inconsistent outputs from different views of the same

object. Probabilistic extensions such as DMV3D [47] help
instantiate multiple versions of an object from a single im-
age. In a similar vein, methods such as DreamFusion [31],
Score Jacobian Chaining [40], Zero-1-to-3 [24], and Ze-
roNVS [35] use diffusion-based priors to iterate between
novel view synthesis and 3D reconstruction. Such meth-
ods tend to be slow due to scene-specific optimization (typ-
ically NeRF- or SDF-based). They also suffer from issues
due to bootstrapping from pretrained text-to-image models.
More recently, it has become common to generate multi-
ple novel views before reconstructing 3D. EscherNet [21],
ReconFusion [44], and CAT3D [8] all take this geometry-
free approach. And while diffusion-based approaches like
SODA’s latent bottleneck [16] and 3DiM’s stochastic condi-
tioning [43] help reduce inconsistencies in generating novel
views, there are no guarantees they are consistent with a
feasible object.
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Geometry-conditioned generative models: ControlNet
[50] popularized the use of geometric hints to condition and
guide a diffusion model. Other applications of geometry
conditioning include motion brush animation [28] and pose-
conditioned multi-object generation [17, 45]. This approach
is especially tempting as diffusion models can be trained
with conditioning dropout to enable classifier-free guidance
[11], i.e., model a conditional and unconditional distribu-
tion simultaneously. At inference time, the model can cope
with not having any geometric information, and still sample
from the unconditional or source image-conditioned distri-
bution. Few prior works (with the prominent exception of
Motion-I2V [37]) have explored sampling geometric fea-
tures using a diffusion prior, and feeding them to a decoder
in place of true or provided features. We show this is not
only possible, but desirable: it ensures the geometric condi-
tioning is realistic for the given example, potentially diverse
(e.g., supports sampling of multiple different 3D shapes),
and obtainable without human effort.

Pointmaps: Point-based representations are ubiquitous in
3D modeling. For instance, point-set registration (deter-
mining the correspondence between two point clouds) is a
classic task in 3D scanning. Recently, DUSt3R [41] intro-
duced a novel approach to 3D reconstruction, integrating
pairs of images based on a regression of pointmaps with-
out using any camera information. DUSt3R and our work
share two similarities: 1) DUSt3R estimates pointmaps for
two images at once. Likewise we model 8 pointmaps si-
multaneously to synchronize between them. 2) To handle
scale ambiguity, DUSt3R normalizes pointmaps using their
norm. This is similar to the scale normalization performed
by NOCS. Two key differences between DUSt3R and our
work are as follows: a) We use a diffusion-based probabilis-
tic model to handle the underconstrained nature of our prob-
lem. b) In DUSt3R, pointmaps are initially expressed in
pairwise reference frames. These need to be aligned glob-
ally via optimization. In contrast, we express all pointmaps
in a shared reference frame (i.e., CROCS color cube) from
the outset. We go one step further—we set the orientation
of the color cube based on the camera pose of the source im-
age in each example. This makes the coloring predictable
from different viewpoints, and learnable across examples.

Diffusion-based geometric priors: Pretrained diffusion
models been shown to yield latents useful for various vi-
sion tasks including depth estimation and semantic corre-
spondence [7]. They have also been successfully trained
to output dense annotations such as depth and surface nor-
mals [10]. All this portends well for our attempt to predict
pointmaps annotating the source and target images. In fact,
one recent work (SpaRP [46]) did use a diffusion model to
predict NOCS. But they only predict NOCS for a sparse set

of input images to infer their correspondence (rather than
use it to model unseen geometry at novel views).

3. Method
3.1. A Probabilistic Multiview Framework

unPIC is a hierarchical diffusion model that converts a 2D
image into multiview 3D. Given a single view of an object
or scene, unPIC comprises (1) a diffusion prior that infers
representations of the subject’s multiview geometry or ap-
pearance. This inference step combines the task of anno-
tating the source image and predicting representations for
novel views as well. (2) A diffusion decoder that transforms
all predicted annotations into corresponding novel views of
the subject. We make the modeling task easier by assuming
the desired views are regularly spaced and the camera tra-
jectory is closed; hence the prior can be seen as predicting
a representation loop.

Annotating the source image alone may be a determinis-
tic step (e.g., if using features from a deterministic encoder-
decoder system). In contrast, predicting novel-view features
is inherently non-deterministic, due to the partial informa-
tion observed in a single image (see Fig. 2). There may
be several valid loops that go through the same point that
describes the source image. Hence, a probabilistic prior is
essential, as opposed to the bulk of prior work [13, 18, 48].

... Observed view(s)x
Target views

.
.

x
.

x
x

..

Figure 2. Schrödinger’s cup: two sets of valid novel views, fol-
lowing different trajectories in representation space. To model
diverse trajectories without losing view consistency, we use the
following ingredients: (a) equidistant target-camera poses on a cir-
cular trajectory, (b) intermediate representations with cyclic struc-
ture (CROCS), and (c) an architectural inductive bias, namely,
convolutions on a grid of images tiled in circular order.

Depending on the choice of representation, the target
annotations may vary haphazardly or not vary at all (e.g.,
global semantic features such as the class) as a function of
the camera pose. A suitable representation can ensure the
loops are well structured and predictable. This increases the
benefit of modeling multiple views simultaneously (see our
empirical results in Tab. 2), and is perhaps key to encourag-
ing view consistency.

3



As for the decoder module—which takes intermediate
representations and maps them to images—that could be
either (a) deterministic or stochastic; (b) separately con-
ditioned on single views or jointly on multiviews. Our
choice of representation (CROCS) captures the geometry
but leaves the texture of the subject entirely unknown.
Hence we use a probabilistic model again.

3.2. Deterministic Target-Camera Poses

Our target camera poses are defined relative to the source
camera pose. We predict novel views at K fixed camera
poses for a given image. These correspond to rotations
θtargetk = 2π(k − 1)/K of the object about its vertical
axis, which remains aligned with the vertical axis of the
world. More generally, one can also vary the camera eleva-
tion angle ϕk (as in [46]), but we do not unless mentioned
otherwise. Including the source camera pose as one of the
targets, θtarget1 = 0, helps anchor the model’s predictions
of novel views. The advantage of defining target poses rel-
ative to the source camera is that our model is pose-free
thereafter: by assuming regularly-spaced camera poses, we
can avoid providing them to our model in an explicit form.

Note that using deterministic camera poses does not
equate to a fixed multi-camera rig (as in [1]). Rather, we
allow the source camera to vary freely (on hemispheres of
arbitrary size) around the object. Given a source camera, the
target cameras are at the same height as the source, the same
distance to the object, but at deterministic rotations around
the object’s vertical axis, and oriented to face the object.

3.3. Camera-Relative (Normalized-) Object Coor-
dinates

We predict the geometry of an object before decoding its
multiview appearance. To do so, we rely on NOCS, a scale-
free representation of geometry. The object/scene is first
uniformly scaled to fit a 3D unit cube, so all spatial coordi-
nates lie in [0, 1]. These can therefore be interpreted as RGB
colors and rendered as images, which maps neatly onto our
multiview framework. While one NOCS image serves as
a dense image annotation, a set of NOCS images forms a
point cloud.

NOCS on its own does not provide a predictable coloring
of the object’s surface—any rotation of the RGB color space
would still produce a valid coloring of a fixed object. We
introduce a version of NOCS that is canonicalized to paint
an object relative to the source camera pose (see Fig. 3). To
track the source camera through a yaw rotation of θ about
the vertical axis, we apply an SO2 rotation to the Red and
Green channels—which span the NOCS ground plane—of
all pointmaps for the given object. Note that this destroys
any pose relations across objects (our training data does not,
for instance, paint all cups’ handles with a consistent color).

We address two geometric subtleties in working with

Figure 3. Camera-Relative Object Coordinate Spaces. We
show two data-points (Left and Right columns) obtained from one
object. Top-left: The wireframe shows the RGB reference cube
used to paint the object surface. The large camera denotes the
source view, whereas the smaller cameras denote (3 of 7) novel
views. Top-right: Say all camera locations are rotated by θ = 120
degrees around the vertical axis (the object stays fixed). Then we
also rotate the color reference cube by the same degree. This en-
sures each camera faces the same side of the cube that it was facing
prior to the cameras’ rotation. Bottom: Target CROCS images in
clockwise order corresponding to the cameras above. In a given
data-point, any part of the object is consistently colored across tar-
get images. Across data-points, although a given part of the object
may change colors, its color is predictable based on its location(s)
in the target image(s). Each target view has a consistent color bias
that is learnable across examples.

CROCS in Appendix B—the first one is about renormal-
izing pointmaps after a change of reference frame to ensure
they are still bounded in [0, 1]. The second one explains our
choice not to canonicalize CROCS colors with respect to
varying camera elevations ϕ.

Our CROCS representation diverges from the typical
NOCS formulation [22, 39] a second way: when dealing
with a multi-object scene, we treat it as a single object. This
is better suited for our task, as we care less about capturing
the pose of individual objects, but more about the spatial
arrangement and relative position of different objects.

3.4. Dataset

We train on a combination of object and scene assets from
Objaverse [3] and the alignment finetuning subset of Obja-
verseXL [4] . We holdout 50k randomly sampled objects
from ObjaverseXL for evaluation. For each asset, we pre-
render images from a dense grid of camera poses (at various
θ, ϕ, and r; see Sec. 3.2). We also pre-render one NOCS
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pointmap per image using a fixed NOCS RGB reference
frame. At training time, we adapt the pre-rendered NOCS
pointmaps to CROCS on demand based on which camera is
chosen as the source, using rotations of the RGB space as
mentioned in Sec. 3.3.

When rendering images, we add an elevated point light
behind the camera. We ensure it stays fixed relative to the
camera, rather than fixed in the scene. This ensures the
model can treat each image the same in terms of lighting,
and cannot use lighting cues. (Note: a small number of as-
sets have preexisting lights. We do not remove these.).

3.5. Diffusion Model

We use a standard pixel-based Diffusion Denoising setup
[12]. The prior and decoder models use an identical archi-
tecture, broadly following the UNet from [8]. We train the
two models independently to maximize the geometric diver-
sity of the prior—else it would be forced to output the most
optimal representations for the decoder’s loss (e.g., hacks
to copy bits of texture from the source image). Moreover,
we train the models from scratch, without relying on pre-
trained weights, to avoid ambiguity about where the models
gain their representational and reconstruction abilities.

To denoise K = 8 multiview images simultaneously, we
find that tiling them to form a superimage works best. We
tile clockwise along 4 columns and 2 row (see Fig 3) —
this ensures that adjacent tiles always correspond to adja-
cent camera poses in 3D. The source image is also provided
to the model as a superimage, but with 7 of 8 tiles remaining
empty. For K = 4, the superimage grid size is 2x2.

We run initial experiments (Secs 4.1 and 4.2) at base im-
age size 64x64, predicting either 1, 4, or 8 targets. We use a
standard cosine diffusion schedule [27] to train these mod-
els. Our final model works on 256x256 base images, pre-
dicting 8 targets at a superimage resolution of 1024x512.
To scale to this size, we use the interpolated, logSNR-offset
schedule from Eq. 6 of [14], which is necessary for diffu-
sion to overcome the correlations at this resolution.

We train both models with a conditioning dropout proba-
bility of 0.05. This opens the possibility of using classifier-
free guidance (CFG). We show the effect of different CFG
weights in the Appendix. For all other evaluations in the
paper, we use a fixed CFG value of 2.0. The prior model is
normally conditioned on the timestep and the source image.
We apply CFG to the source image. The decoder model is
additionally conditioned on the prior’s output CROCS. We
only apply CFG to the source image, as the decoder tracks
CROCS pointmaps closely even without CFG.

4. Experiments
4.1. Diffusion Decoder

To motivate geometric representations and the use of
CROCS specifically, we run an experiment to decode a sin-
gle novel view of an object at a fixed rotation (θ = 90 de-
grees). We train diffusion models that take a source image
and an annotation of the target image to predict the target
view. The annotations range from geometric (like depth
maps and CROCS), image-space (alpha masks), through
feature maps (from DINOv2 [29] and CLIP [32]). All an-
notations are treated as images—they are upscaled (if re-
quired) and concatenated to the input latent before it is fed
to the UNet for denoising. We run these experiments at
64x64 image size to allow multiple seeds.

We find in Tab. 1 that geometric annotations consistently
outperform other choices. Given a source image, there is
more ambiguity about the target shape than its texture or
appearance, explaining the empirical results. We further see
one of the benefits of CROCS over NOCS: its consistently
colored maps make it a more useful condition than arbitrary
colored ones. CROCS’s full superiority is revealed when
we try to estimate both CROCS and NOCS in Sec 4.2.

Multiple targets. To examine the benefit of geometric
features for multiview prediction, we run experiments with
and without ground-truth annotations while predicting 4 or
8 target views. The target superimage grids’ dimensions are
128x128 and 256x128, respectively. We carefully control
the diffusion architecture, applying attention at two down-
sampled resolutions in each case (at heights 16 and 8).

In Tab. 2, we echo the findings in [21] that predicting
more views simultaneously (e.g., K = 4) improves met-
rics rather than predicting just one. But in the case where
only the unannotated source image is available, the effect
tapers off and reverses from K = 4 to K = 8 views. On
the other hand, we see a 5x improvement in the MSE by
conditioning on multiview CROCS pointmaps, and we see
increasing benefits up to K = 8. This is remarkable espe-
cially because the set of self-attention tokens doubles with
the number of views, potentially making it harder to model
long-range spatial relationships (and perhaps leading to the
drop we see in the unconditional case). These results help
establish the advantage of (ground-truth) CROCS annota-
tions in coordinating multiview synthesis.

4.2. Diffusion Prior

Having used ground-truth representations in Sec. 4.1, we
now move to the question of estimating multiview geomet-
ric representations from a single source image. We train a
diffusion prior to predict pointmaps at 8 target views. We
compare two choices of representations for how predictable
they are from arbitrary source views: (a) NOCS images in
a static reference frame, and (b) CROCS, where we change
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Table 1. Single-target diffusion decoder experiments. We pre-
dict a fixed 90-degree object rotation from a given source image,
with the help of a ground-truth annotation of the target image. We
report the pixel-space Mean Square Error on random source views
across 10k heldout objects. Stds. are across 3 training runs.

Annotation Type MSE (1e-3)
Source image only 19.042 ± 0.722
+ CLIP ViT L/16 (24, 24, 1024) 6.059 ± 0.448
+ DINOv2 B/14 (16, 16, 768) 5.734 ± 0.815
+ Alpha mask 8.169 ± 0.392
+ Depth map (from NOCS) 5.580 ± 0.849
+ NOCS 5.318 ± 0.070
+ CROCS 4.914 ± 0.224

Table 2. Multiple-target diffusion decoder experiments using
ground-truth annotations. We report the pixel MSE (1e-3) on K−
1 novel views as in Table 1. Stds. are across 5 training runs.

Annotation Type K=4 views K=8 views
Source image only 4.739 ± 0.215 5.817 ± 0.230
+ CROCS (K views) 1.065 ± 0.064 1.039 ± 1.331

Table 3. Diffusion prior experiments. We predict pointmaps at 4
and 8 target views, and report the pointmap MSE (1e-3).

Annotation Type K=4 views K=8 views
NOCS 11.94 15.82

CROCS 1.21 3.92

the reference frame based on the source camera.
We find a 4x increase in predictability from using

CROCS (see Tab. 3). Without CROCS, choosing a ran-
dom source camera leaves the colors of the target images
unpredictable because we do not condition the model on
any camera extrinsics. With CROCS, each target pose has a
biased distribution of colors, consistent across objects. This
makes the geometric feature space unambiguous, and each
representation loop more predictable, in turn freeing up the
model’s probabilistic capacity for the ambiguous task of
predicting unseen object/scene geometry.

4.3. Comparison with Other Methods

We now turn to our primary goal of improving novel view
synthesis, especially shape prediction, relative to SoTA
baselines. We compare against the following methods:
• OpenLRM (288x288): a geometry-aware but determin-

istic method based on the original LRM [13]. It uses a
Transformer to convert DINO features into implicit tri-
plane representations of 3D shape. The triplane tokens are
spatially indexed/queried to parameterize a NeRF model
of the scene, mitigating view consistency issues and al-
lowing image-generation at arbitrary camera poses.

• One-2-3-45 (256x256): a SoTA version of Zero-1-to-3

Table 4. Comparisons with baselines on 4 datasets.

PSNR ↑ IoU ↑ FID ↓ LPIPS ↓
ObjXL

unPIC (ours) 23.86 0.79 109.77 0.48
CAT3D 22.10 0.63 84.49 0.23
OpenLRM 13.86 0.62 103.20 0.23
One-2-3-45 12.42 0.58 67.89 0.25

GSO
unPIC (ours) 23.93 0.89 105.98 0.48
CAT3D 23.50 0.68 77.67 0.23
OpenLRM 13.82 0.67 101.44 0.25
One-2-3-45 13.16 0.65 57.08 0.25

ABO
unPIC (ours) 26.05 0.87 83.63 0.44
CAT3D 22.02 0.64 70.20 0.26
OpenLRM 11.62 0.59 114.64 0.29
One-2-3-45 11.41 0.61 47.81 0.27

DTC
unPIC (ours) 26.26 0.91 123.94 0.44
CAT3D 23.11 0.74 68.49 0.20
OpenLRM 14.34 0.71 88.12 0.22
One-2-3-45 14.30 0.74 48.54 0.20

[24], available as open-source. Its diffusion-based im-
age prior takes camera rotation and translation (R and
T) parameters to transform a given image. Each novel
view is sampled individually, leaving the outputs prone
to multiview inconsistencies. We focus on evaluating the
geometry-free stage, feeding R and T parameters to match
our target poses (4 of which are identical), but using the
model’s own estimation of the camera height.

• CAT3D (512x512): a SoTA-quality, geometry-free dif-
fusion model trained using masked modeling of views
on diverse datasets. While the original model is closed
source, we received a Colab and checkpoint from the au-
thors. The model uses a coarse view-sampling strategy to
generate 7 anchor views (given 1 source image). Subse-
quently, it conditions on the anchor views to generate a
finer set of views using the same model. We focus on the
coarse stage for our evaluation.
Compared to our approach, these methods all have the

advantage of starting from a pretrained model (e.g., Zero-1-
to-3 starts from Stable Diffusion, CAT3D starts from a pre-
trained Latent Diffusion Model [34], and OpenLRM boot-
straps from DINO). Some of them are further trained on real
scenes (e.g., MVImgNet [49]) in addition to digital assets.
However, in this work, we choose to demonstrate how far
we can get with synthetic data alone. We find that identi-
fying test datasets for the baselines was also a challenge –
all available datasets tend to be used for training purposes.
Though we held out Google Scanned Objects (GSO [6]) and
Amazon Berkeley Object (ABO [2]) for our model, some
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(a) Ground truth (b) unPIC via CROCS (Ours) (c) One-2-3-45 (XL) (d) CAT3D

Figure 4. Qualitative comparison. One-2-3-45 produces multiview inconsistencies. CAT3D can squash the shapes in unseen views.

of the baselines seem likely to have been trained on them.
One-2-3-45 was certainly trained on ObjaverseXL (we use
the standard Zero123-XL checkpoint). Due it its recency,
the Digital Twin Catalog (DTC [30]) is one candidate that
may have not been seen by any of the models.

We run all models, including ours, on A100 GPUs, and
downsize all images to 256x256 for comparison. We focus
on evaluating (a) reconstruction and (b) perceptual quality.
When computing metrics, we sample a random target from
the set of 7 novel views for each example. This ensures the
computed statistics are independent (particularly because
the FID relies on second-order statistics). We do not repeat
any object (as in training) with an alternative source view.

Results. Tab. 4 shows that unPIC beats all baselines on
PSNR, and outperforms them substantially on the shape-
focused IoU metric. We examine this advantage qualita-
tively in Fig. 5. Although all methods tend to produce plau-
sible looking images, the generated poses and shapes can be

completely arbitrary. Being trained on Objaverse and Obja-
verseXL alone, unPIC still manages to achieve reasonable
perceptual metrics (FID and LPIPS) compared to the base-
lines, which all rely on pre-trained weights/features.

We find a common failure mode that affects shape and
pose prediction for CAT3D and OpenLRM: despite keep-
ing a constant camera height while generating surround-
ing views, OpenLRM appears to level and raise the camera
(w.r.t. the ground plane) as it moves around the object (see
Fig. 2 in the LRM paper [13]). The issue appears consis-
tently in OpenLRM outputs, and intermittently in CAT3D’s
as well. It may stem from how the training data was gener-
ated for those models, e.g., if they oriented the object ran-
domly before capturing images. This is especially undesir-
able for assets placed on a planar surface, as the surface ap-
pears to tilt while the camera orbits the object. In our case,
we avoid this issue by ensuring the object’s vertical axis is
always aligned with the world’s.

7



Such camera-control failures are perhaps compounded in
OpenLRM and CAT3D due to a failure to estimate the cam-
era height correctly, an issue that One-2-3-45 and unPIC
handle robustly. Since CROCS does not adjust for the cam-
era height, it leads to distinct color modes when objects are
observed, for instance, from side views or top-down views.
This forces unPIC’s prior to estimate the camera height in
order to predict the right color mode.

5. Discussion

We focus on generating novel views that span an azimuthal
rotation of an object. These sparse views can serve as “an-
chors” for downstream generation of further views from a
denser range of camera poses, an arbitrary target pose, or
an explicit 3D reconstruction. Our pipeline can thus precede
and support a large number of existing methods/models. We
aimed to ensure multiview consistency among our outputs
to ensure downstream reconstruction tasks are well-posed.

There are several advantages to our hierarchical ap-
proach: (a) it allows maximizing the size of the prior and
decoder models, as they can be trained separately; (b) we

Figure 5. While all models produce plausible images, their shapes
and poses can be off. We compare masks with the ground-truth.

Figure 6. Diversity of unPIC outputs at a particular novel view
(90-degree rotation) from an ambiguous image (top-left). We
show the first samples without cherry-picking.

can visualize and interpret the intermediate features—for
instance, visualizing CROCS would reveal whether 3D re-
construction errors arise due to geometry or texturing; (c)
it prevents a collapse of output diversity in the prior—this
would be likelier if the modules were cotrained, as the prior
would be spurred to output only the optimal intermediate
representation for the final RGB loss; (d) in the multiview
case, unPIC allows expressing relationships between views
at a higher level of abstraction than pixels.

Our pointmap-based representation is both capable of
coordinating multiview synthesis, but also inherently pre-
dictable by construction. By training a prior to predict
CROCS annotations from a given image, we can achieve
diverse and valid instantiations of 3D shapes (see Fig 6 for
an example). More broadly, modeling geometric features
as opposed to conditioning on them directly in generative
models eases the problem of controllability when the de-
sired controls are tedious to express.

Limitations & Future work. A salient shortcoming is
that we do not model scene backgrounds. This may be fea-
sible using CROCS for room-like scenes where the back-
ground geometry is uniform, and can be scaled to a unit
cube. We are currently also limited to training on images of
3D assets rendered at controllable poses, rather than in-the-
wild images. This could be eased by using pretrained 3D
models (e.g., NeRFs) of real scenes to render images and
depth maps, which then could be used to estimate CROCS.

A straightforward extension of our study would be to al-
low multiple random source views rather than one. One of
them could be designated the primary view. The remaining
“reference” views could optionally be annotated with cam-
era poses to avoid correspondence ambiguity.

The unPIC framework is not limited to one prior, e.g.,
it could be fruitful to predict multiview texture features to
condition the decoder. Or it may also be possible to enhance
multi-object handling by breaking CROCS into two compo-
nents: a scene-level pointmap like ours (that colors objects
based on their positions in the scene), and a pointmap that
colors objects individually, independent of their position.

Conclusion. We introduced the unPIC framework for
multiview synthesis from a single image via multiview fea-
tures. One choice of intermediate features, based on NOCS,
encodes scale-free geometry and point-to-point correspon-
dence across views. We showed it is an effective choice over
several geometric and non-geometric alternatives. We intro-
duced a version of NOCS called CROCS that is predictable
irrespective of the camera pose of the source image.

Our two-tier system helps address the under-
specification of image-to-3D tasks by allowing probabilistic
outputs at each level. At the same time, we encourage
multiview consistency within each sample using cyclic
inductive biases. Our geometry-based, hierarchical ap-
proach outperforms three SoTA baselines on reconstruction
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metrics, especially in terms of shape and pose accuracy.
It learns shape priors that generalize well beyond the
digital assets it was trained on, paving the way for more
geometry-driven novel view synthesis.
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Probabilistic Inverse Cameras: Image to 3D via Multiview Geometry

Supplementary Material

A. Layout

The appendix is organized as follows: we describe CROCS
in detail in Appendix B, discussing in particular the geomet-
rical properties which led to our algorithmic choices. We
then present additional qualitative comparisons and quan-
titative analyses in Appendix C. In particular, we assess
multiview consistency across all models in Appendix C.2;
we break down unPIC’s hierarchical error in Appendix C.3;
and we ablate the effect of classifier-free guidance in Ap-
pendix C.4. Finally, we describe all training and evaluation
details for unPIC in Appendix D.

B. Geometric Subtleties

B.1. CROCS Rescaling

Recall that we pre-render multiview NOCS images using a
fixed reference frame. This reference frame can be labeled
using the source-view camera position (θ, ϕ, r) = (0, 0, 1)
that captures the object in its default creator-intended pose
at a default camera distance. At training time, we would
like to set the source camera to arbitrary locations to ensure
a rich training distribution. To change the reference frame
from θ = 0 to a new source-camera location θ′ (we will treat
the other parameters in Appendix B.2), we simply rotate the
ground-plane axes of all pre-rendered NOCS maps using
the SO2 rotation matrix [[cos θ′,− sin θ′], [sin θ′, cos θ′]].
The ground-plane axes are the Red and Green channels of
the NOCS maps in our case.

Our on-the-fly NOCS-to-CROCS canonicalization
comes with a challenge, arising from the fact that the object
was scaled to fit the NOCS cube at θ = 0. When we rotate
the RGB reference cube to follow the primary camera to θ′,
then the object may no longer be bounded by the rotated
cube. See Fig. 7 where we visualize this issue for a fixed
object scaled to fit the reference cube at θ = 0.

In the upper row of Fig. 7a, we get some CROCS val-
ues outside the range [0, 1], because the object exceeds the
boundaries of the [0, 1]2 CROCS reference square. Some
values of θ′ such as 45, 135, 215, and 305 degrees are af-
fected the most, because they lead to the greatest object
overhang. This is not ideal—the scale of CROCS values
which the model needs to predict depends on the reference
frame. Since the reference frame (i.e., source camera po-
sition) is not actually supplied to the model, the model can
only learn to predict the variable scale by overfitting. We
aim to avoid any dependence on the reference frame. To this
end, we introduce a CROCS rescaling operation to elimi-
nate the dependence (Fig. 7a, lower row).

Taking a concrete example, Fig. 7b shows a cube-like
object from different angles, along with the pre-rendered
NOCS images (second row), and canonicalized CROCS
maps without and with rescaling (third and fourth rows).
Here are two observations from this figure: 1) The front-
facing edge of the cube, visible at θ′ = 45 as yellow in the
second row, disappears in the third row because the CROCS
values exceed the [0, 1] range (and the color map is defined
on the same range). If we rescale the values in the third row,
we see the edge reappears in the fourth row. 2) The maxi-
mum overhang (in the third row) occurs at θ′ = 45, where
the range of observed y values expands to [−0.2, 1.2]. The
length of this expanded interval is nearly

√
2 ≈ 1.41, which

can also be deduced geometrically—it equals the length of
the diagonal of the fixed square in Fig. 7a.

Geometrically, we expect no object overhang at all if a
given object is bounded by a sphere of diameter 1 (a tighter
bound than the unit cube). We believe a lot of objects fall
in this category. For this reason, our model does reasonably
well even if we train it to predict CROCS without rescal-
ing. But we observed a noticeable gain in the prior’s per-
formance on CROCS with rescaling. The latter setting re-
moves the reference-frame-dependent scale that the model
needs to predict in some cases (objects like a cube).

Note that for a given object, the rescaling needs to be per-
formed across all multiview pointmaps (K=8 target views in
our case) simultaneously, since any given view only shows
a particular facet of the object. (A single pointmap may en-
tirely miss the variation along its depth component.) Our
rescaling is reminiscent of the pairwise pointmap renormal-
ization performed by DUSt3R (see Eq. 3 in [41]). All the
results in this work use CROCS with rescaling.

B.2. No Canonicalization for Camera Elevation or
Distance

In Appendix B.1 we discussed how to canonicalize NOCS
when switching the source camera from θ to θ′. Here, we
discuss the remaining camera extrinsic parameters. Since
all cameras are oriented to face the center of the object, we
do not need to consider their rotations. In fact, we do not
need to canonicalize for changes in the camera distance r.
It only serves as a zoom parameter to augment the training
data.

The only remaining parameter is the elevation angle ϕ,
which determines the source-camera height. Recall that the
target cameras are also placed at the same camera height. In
fact, ϕ determines the difficulty of the multiview prediction
problem. For instance, at ϕ = 90 (a straight-down view of
the object), the source and target camera locations converge
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rescaling

Source 
camera

(a) The general case (simplified to 2D). Top row: An object that fits the NOCS reference square exactly at θ = 0 is no longer bounded by the CROCS
reference square at θ′ ∈ {15, 30, 45}. Due to object overhang, some CROCS values lie outside [0, 1]. The extent of the overhang depends on θ′. Bottom
row: We rescale CROCS based on the observed range of multiview values for any θ′. This ensures the object is once again bounded tightly by [0, 1]2.

(b) A concrete example in 3D. We show the minimum and maximum NOCS/CROCS values observed above each pointmap image. At θ′ = 45, we
see that the front-facing edge of the cube appears squashed without rescaling, because its X and Y values lie outside the range [0, 1].

Figure 7. CROCS rescaling. We examine the effect of rotating the RGB reference cube used to paint the object’s surface, following the
source camera as it moves around a fixed object. θ (the azimuthal angle) denotes the default camera position, while θ′ denotes a new
position. We consider the largest possible objects—a square in 2D or cube in 3D.
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Figure 8. CROCS when varying the camera elevation angle ϕ. As in Fig. 3, the large camera denotes the source view; the smaller
cameras denote 3 of 7 novel views. The white arrow denotes the normal direction w.r.t. the camera plane (drawn as a white circle connecting
the cameras). The colored arrow denotes the normal of the CROCS color cube. Left: at the default angle ϕ = 0, each camera is pointed at
a particular face of the RGB color cube, and has a consistent color distribution across examples. Middle: when the source camera is raised
to ϕ′, we could hypothetically rotate the color cube by the same degree to ensure the source camera still points at the same face of the cube.
The issue is—tilting the color cube toward the source camera tilts it away from the opposite camera, and also rotates the colors seen by the
remaining target cameras (by ϕ′ and −ϕ′ in their respective image planes). The color shifts experienced by the four cameras are clearly
inconsistent. Right: If we choose not to tilt the cube through ϕ′, all cameras undergo a small and consistent shift in the distribution of
colors toward the up-axis color (blue). If the model can infer ϕ′, it can also predict the shift. We follow the Right approach.

to the same point—the apex of the hemisphere. In this case,
the prediction task is reduced to rotating the object in the
image plane.

Say we raise/lower the source camera from ϕ to ϕ′

(Fig. 8). This would reveal more/less of the object’s up-
per/lower surface, and hence more/less of the NOCS color
representing the up-axis (Blue in our case). We could po-
tentially correct for this by tilting the reference cube so the
source camera is pointed at the same cube face as before
at ϕ. This would help maintain the same color bias for
the source camera. However, the target cameras would no
longer point at the same cube faces respectively—rather,
their distribution of colors would shift (toward the up-
axis/away from it in the case of the opposite target cam-
era) or rotate (in the image plane for other target cameras).
Consequently, the distribution shifts in the CROCS colors
would be inconsistent across target cameras.

Based on this geometrical observation, we choose not to
canonicalize for changes in the camera elevation ϕ′. This
has the effect of leaving it to the model to infer the camera
elevation from the source image (implicitly in contrast to
One-2-3-45 [23]). It differs from our treatment of θ′, which
leaves the model oblivious to the azimuthal rotation of the
cameras.

Our decision not to canonicalize for ϕ is forced by the
design choice of our target camera poses, which follow the
camera height of the source camera. An alternative choice
would be to tilt the camera plane and the CROCS cube to-
gether, leaving the cameras at different heights in Fig. 8-
Middle1. Our choice of target poses is based on how hu-

1This alternative is equivalent to using a stationary multiview camera
rig, but orienting the object randomly before taking pictures, as in CAT3D

mans perceive and reason about objects. We tend to see
side or top-down views of level objects. On mental rotation
tasks (e.g., when asked what an object looks like from “be-
hind”), we tend to imagine a rotation of the object either in
the image plane, or in depth about the world’s vertical axis
[36, 38]. We find it harder to imagine a potentially bottom-
facing view. In addition to aligning with human perception,
modeling object rotations at typical views/poses (e.g., top-
down or side angles) could also be more useful for down-
stream applications.

C. Additional Results

C.1. Comparisons

We present further qualitative results comparing unPIC with
CAT3D and One-2-3-45 in Figs. 9 to 12.

Besides its multiview inconsistency, One-2-3-45 also has
the flaw that it rescales any given object to a canonical size
in the image plane. This is visible from the model’s source-
pose output (top-left cell in each 2x4 output grid); it is re-
sized compared to the source-pose outputs of other meth-
ods. Our approach can cope with arbitrarily sized objects
in images despite the fact that it relies on a scale-free 3D
shape representation (CROCS).

Note that both CAT3D and our method predict gray val-
ues at background pixels. But unPIC produces RGBA out-
puts rather than RGB—the alpha mask hides the gray back-
ground pixels after compositing. While we do compute
masks using posthoc background removal for CAT3D, we

[8], likely LRM [13], and datasets like YCB [1]. Changing the object’s
orientation decouples the object’s up-axis from the world’s up-axis. It can
leave the object in unnatural, physically unstable poses.
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(a) Ground truth (b) unPIC via CROCS (Ours) (c) One-2-3-45 (XL) (d) CAT3D

Figure 9. Additional qualitative comparison on Objaverse-XL holdouts.

only use these masks to compute the IoU metric. The re-
maining methods (One-2-3-45 and OpenLRM) output RGB
images with white background pixels. We present untam-
pered results for all methods in Figs. 9 to 12.

C.2. Multiview Consistency

Qualitatively, we have seen that models like One-2-3-45 and
CAT3D can be inconsistent (in terms of appearance as well

as 3D geometry) in the images the generate for a given ob-
ject. The issue is partly due to their lack of geometrical
priors, and potentially exacerbated in One-2-3-45 by single-
view synthesis. To assess multiview consistency systemati-
cally, we introduce the following metric: we compute CLIP
embeddings (using the open-source ViT L/14 336px model)
for all K generated images in a given example, then com-
pute the mean of the (K x K) pairwise distance matrix of
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(a) Ground truth (b) unPIC via CROCS (Ours) (c) One-2-3-45 (XL) (d) CAT3D

Figure 10. Additional qualitative comparison on Objaverse-XL holdouts.

the CLIP embeddings. This metric avoids any comparison
with ground-truth images, and merely probes the internal
consistency of a set of images. We use the same model out-
puts that we evaluated in Sec 4.3.

We also report the metric for ground-truth images to val-
idate that the metric is sensible. The ground-truth numbers
are not lower bounds, because a model could optimize mul-
tiview consistency by generating the same image K times.

Rather, the ground-truth numbers help validate that the met-
ric is reasonable—it could hypothetically penalize models
with better 3D geometry for producing less 2D-consistent
views. But we see in Tab. 5 that the metric is indeed rea-
sonable, with the ground-truth images generally producing
the best score. We also find that unPIC outperforms all
other methods consistently, including the geometry-driven
OpenLRM.
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(a) Ground truth (b) unPIC via CROCS (Ours) (c) One-2-3-45 (XL) (d) CAT3D

Figure 11. Additional qualitative comparison on Objaverse-XL holdouts.

C.3. Decomposing unPIC’s hierarchical error

In Sec 4.3 we reported metrics from the full hierarchical
setup, i.e., on the final output of the prior and decoder
stacked together. Since we train the prior and decoder mod-
ules separately, we can further analyze the following com-
ponents of the total error:

1. The error of the prior alone. This describes the geomet-

rical inaccuracy (when the intermediate representation is
CROCS) in predicting the 3D shape and pose of a given
object.

2. The error of the decoder when it is fed ground-truth
CROCS rather than the output of the prior. This de-
scribes the difficulty of rendering the object (e.g., pre-
dicting the object’s texture) at novel views when extrap-
olating from a single source image.
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(a) Ground truth (b) unPIC via CROCS (Ours) (c) One-2-3-45 (XL) (d) CAT3D

Figure 12. Additional qualitative comparison on Objaverse-XL holdouts.

We report these components along with total hierarchi-
cal error in Tab. 6. We find that the prior’s error (col-
umn 1) is nearly twice that of the oracle decoder (column
2). This highlights the importance of getting the geom-
etry correct. Improving the geometrical prior would help
reduce the total error (column 3) more than improving the
final rendering (i.e., the decoder module). With geometry
predictions as good as the ground-truth CROCS, our full

multiview-synthesis error could be 4-5x lower (depending
on the dataset).

C.4. Effect of Classifier-Free Guidance

We run a hyperparameter sweep on the weight of the
classifier-free guidance applied to the prior or decoder at
sampling time. A weight greater than 1.0 has the effect of
pushing the sampler in the conditional direction over the un-
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Table 5. Assessing multiview consistency using pairwise CLIP distances (↓). For each method, we take all K = 8 generated views per
example, embed them using CLIP, and compute their mean pairwise distance. We also report the same metric for the ground-truth images
on each dataset. All numbers are 1e-4.

CAT3D One-2-3-45 OpenLRM unPIC via CROCS (ours) GT images
ObjXL 2.44 2.55 2.38 2.16 2.10
GSO 3.08 2.74 2.93 2.63 2.61
ABO 2.37 2.22 2.55 1.74 1.77
DTC 2.70 1.98 2.40 1.81 1.49

Table 6. A breakdown of unPIC’s hierarchical error (256x256).
We report Mean Square Errors (1e-3) for the prior module, the de-
coder module when using ground-truth CROCS, and the full error
running stacked inference. The MSE is calculated on all 7 novel
views.

Image
→ CROCS

GT CROCS
→ Pixels

Image
→ CROCS
→ Pixels

ObjXL 4.58 2.84 10.52
ABO 3.46 1.65 7.60
GSO 2.69 3.09 7.63

Table 7. The effect of classifier-free guidance while sampling
from the prior and decoder modules (on ObjXL holdouts). We
apply the CFG weights only on the source image in both modules
respectively.

Prior
CFG

Decoder
CFG PSNR ↑ IoU ↑ FID ↓ LPIPS ↓

1.0 1.0 23.891 0.770 110.497 0.490
1.0 2.0 23.891 0.770 110.470 0.490
1.0 4.0 23.891 0.770 110.470 0.490
1.0 8.0 23.891 0.770 110.497 0.490
2.0 1.0 24.027 0.789 104.920 0.480
2.0 2.0 24.027 0.789 104.895 0.480
2.0 4.0 24.027 0.789 104.897 0.480
2.0 8.0 24.027 0.789 104.895 0.480
4.0 1.0 23.401 0.783 104.583 0.482
4.0 2.0 23.401 0.783 104.541 0.482
4.0 4.0 23.403 0.783 104.539 0.482
4.0 8.0 23.406 0.783 104.605 0.482
8.0 1.0 22.175 0.769 111.273 0.496
8.0 2.0 22.179 0.769 110.948 0.496
8.0 4.0 22.175 0.769 111.273 0.496
8.0 8.0 22.179 0.769 110.913 0.496

conditional direction. Based on the empirical performance
of the CFG weights in Tab. 7, we use fixed weights of 2.0
for our remaining experiments and samples.

D. More Training and Evaluation Details
Dataset. We use the following sets of assets from Obja-
verse: 1) the LVIS subset expanded to 83k examples from
the same categories. We use object type labels predicted
with high confidence from [19] to expand the LVIS sub-
set. 2) The KIUI subset 2 comprising 101k additional as-
sets. 3) From the Objaverse-XL alignment subset [4], we
used a combination of GLB, OBJ, and FBX assets after fil-
tering out certain (a) terrains and HDRI environment maps,
(b) layouts and rooms, and (c) textureless FBX assets that
rendered as pink. In total, we used 620k assets (Objaverse
and Objaverse-XL) for training. In addition, we held out
50k assets randomly sampled from Objaverse-XL after the
filtering step.

To render NOCS images, we adapted a script from
BlenderProc3 [5] which creates a special NOCS material for
the surface of a given object. We also use their Blender set-
tings (the CYCLES engine with 1 diffuse bounce, 0 glossy
bounces, and 0 ambient occlusion bounces) for rendering
NOCS. We export them in the EXR format to ensure linear-
light values, preserving the continuity of NOCS values on
the object’s surface.

Model. We assume an RGB source image, but predict
RGBA CROCS and RGBA output images. The architecture
for the prior and decoder has just under 150M parameters.
It takes about 6 minutes to run the prior and decoder each
for 2000 denoising steps, with classifier-free guidance, on
an A100. As efficiency wasn’t a core goal for this work,
we expect more efficient sampling strategies and better ar-
chitectures could certainly help reduce the runtime. We use
an exponential moving average of the model parameters for
evaluation, although this is not essential.

2https://github.com/ashawkey/objaverse filter
3https://github.com/DLR-RM/BlenderProc/
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