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Abstract

Data-driven synthesis planning is a crucial step in the discovery of novel materi-
als with desirable properties. Zeolites are crystalline nanoporous materials with
applications in catalysis, adsorption, and ion exchange. The synthesis of zeolitic
materials remains a significant challenge due to its high-dimensional synthesis
space and intricate structure-synthesis relationships. Considering the one-to-many
relationship between structure and synthesis, we propose a generative modeling ap-
proach using a chemically-guided diffusion model for materials synthesis planning.
Given a target zeolite structure and organic structure-directing agent (OSDA) as
inputs, the diffusion model generates probable synthesis routes and achieves state-
of-the-art performance compared to regression and deep generative models. The
model learns chemically meaningful relationships, generating realistic synthesis
routes that closely follow the distribution of literature-reported synthesis routes.
As such, this approach could enable the discovery of zeolitic materials beyond
domain-specific heuristics and trial-and-error experimentation.

1 Introduction

With materials informatics being largely focused on material property prediction, the synthesis of
materials remains a bottleneck with computational approaches for guiding the synthesis process
being less explored [1]. Accurate synthesis prediction is crucial for realizing materials in the lab,
but materials synthesis is often complex and difficult to model computationally. Conventional ML
approaches for modeling synthesis primarily rely on regression-based methods [2, 3], which attempt
to deterministically map structure to synthesis conditions. Although useful, these methods often
fall short due to their inability to capture the one-to-many nature of structure-synthesis relationships
[2, 4]. Generative models have shown promise in modeling one-to-many relationships in materials
science, such as property-composition (composition generation) [5] and property-structure (crystal
structure generation) [6], but their application to synthesis has yet to be explored.

In this work, we propose a generative approach for materials synthesis prediction and contrast it with
regression-based approaches. We present empirical evidence (in the case of zeolitic materials) that
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Figure 1: A diffusion approach for materials synthesis planning. (a) Materials, such as zeolites,
have one-to-many structure-synthesis relationships i.e. a structure can be realized at a range of
synthesis conditions (e.g., precursor ratios, reaction temperatures), which is known as the synthesis
window. (b) Given a desired zeolite material structure, the generative model generates a distribution
of synthesis routes, capturing the one-to-many structure-synthesis relationship. First, two separate
encoders encode the zeolite material and organic structure-directing agent (OSDA) before their
latent representations are fused via a fusion encoder. Second, the joint representation serves as
chemical guidance for the diffusion model, which samples from noise via reverse diffusion (green
arrow) to generate probable synthesis routes (ternary phase diagram) that matches the distribution of
ground-truth synthesis routes reported in literature.

generative approaches outperform regression-based approaches, and propose that this is largely due
to the one-to-many nature of structure-synthesis relationships. Our main contributions are:

1. We analyze why generative approaches are better suited for materials synthesis tasks com-
pared to regression.

2. We demonstrate the first-known application of a chemically-guided denoising diffusion
model for materials synthesis prediction, which exhibits state-of-the-art performance com-
pared to other deep generative and regression-based approaches.

2 Methods

2.1 Zeolite and OSDA featurization

Zeolite We adopt two different approaches of encoding the zeolite structure: 1) Invariant features i.e.
their structural properties (e.g., ring sizes, largest included sphere) are retrieved from the International
Zeolite Association (IZA) database [7]. These serve as inputs into a MLP encoder. 2) Equivariant
graph neural network (EGNN) [8] that encodes the zeolite as a graph (see Section A.3). OSDA Pose
optimizations are performed at constant volume [9] using molecular mechanics GULPy (General
Utility Lattice Program) package [10] with the MMFF94 force field [11]. Each OSDA is featurized
using its physicochemical descriptors (e.g., molecular volume and 2D shape descriptors) of the
organic molecule [12, 13]. The OSDA features are defined in Table 2. The zeolite embedding
is concatenated with OSDA embedding and further encoded using the fusion encoder before the
joint embedding guides the reverse diffusion process to generate synthesis routes (Fig. 1b). Model
performance across denoising diffusion trajectory can be found in Fig. 8.

2.2 Denoising diffusion probabilistic models

Denoising diffusion probabilistic models (DDPMs) [14] are generative models that utilize a diffusion
process to generate data by reversing a forward process that incrementally adds noise to the data. The
forward process is defined by a Markov chain that gradually corrupts data x0 into a noisy sample xt

via addition of Gaussian noise: q (xt | xt−1) = N
(
xt;

√
1− βtxt−1, βtI

)
with βt representing the

variance at timestep t. The generative process (green arrow in Fig. 1b) learns to reverse this corruption
step by step, sampling from a distribution pθ (xt−1 | xt) parameterized by a neural network. In this
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work, we use a U-Net [15]. This reverse process can also be represented as a Gaussian distribution
pθ (xt−1 | xt) = N (xt−1;µθ (xt, t) ,Σθ (xt, t)). Here, we learn a score function

sθ (xt, t) = ∇xt
log pθ (xt−1 | xt) = − 1

Σθ (xt, t)
(xt − µθ (xt, t)) (1)

where µθ and Σθ are the mean and variance of the score model sθ, respectively.

2.3 Chemically-guided diffusion model

In standard guided diffusion models, a classifier is used to guide the generation process by adjusting
the score to steer the model towards specific target classes. In contrast, classifier-free guidance
[16] eliminates the need for a separate classifier by conditioning the diffusion model directly on the
desired attributes. During training, the score function s̃θ is trained both with and without conditioning
information. Sampling is then performed using the following linear combination of the conditional
(concatenation with c) and unconditional (concatenation with null token ∅) score estimates:

s̃θ (xt, t, c) = (1 + w)sθ (xt, t, c)− wsθ (xt, t,∅) (2)

where c refers to the chemical guidance from zeolite and OSDA embeddings shown in Fig. 1b, while
w is the strength of the chemical guidance. For implementation details, refer to Section A.3.

3 Experimental setup

3.1 Dataset and task

We use the ZeoSyn dataset [17], a large zeolite synthesis dataset comprising 23,961 synthesis routes,
233 zeolite topologies and 921 organic structure-directing agents (OSDAs). For more details on
dataset, refer to Section A.1. Given a target zeolite material xzeolite and an OSDA xOSDA, the task is to
predict an ensemble of synthesis routes consisting of gel compositions {ygel} (e.g. Si/Al) and reaction
conditions {ycond} (e.g. crystallization temperature). We refer to these as synthesis parameters. See
Table 1 for a complete list of synthesis parameters, and Fig. 5 for an example on reaction conditions.

3.2 Metrics

For each test zeolite-OSDA system, we sample 1000 synthesis routes using the model and compute
the following metrics with reference to unseen synthesis routes reported in literature. Wasserstein
distance measures the distance between two probability distributions by finding the minimum cost
to move probability mass from one distribution to another [18]. Coverage Inspired by Xu [6], we
use two coverage metrics, COV-R (recall) and COV-P (precision), to measure the similarity between
sets of generated and literature-reported synthesis for each zeolite-OSDA system. Intuitively, COV-R
measures the fraction of literature synthesis routes being correctly predicted, and COV-P measures
the fraction of generated synthesis routes being probable. COV-F1 is computed as the harmonic mean
of COV-R and COV-P. Refer to Section A.2 for a detailed justification of the metrics.

3.3 Baselines

Random A random dummy baseline corresponds to picking a random point in synthesis space.
AMD Schwalbe-Koda et al. proposed a deterministic regression-based approach using average
minimum distance (AMD) for zeolite structural featurization for synthesis prediction task [19]. BNN
Bayesian neural networks [20] extend standard neural networks by incorporating Bayesian inference
by treating network weights as probability distributions, enabling a distribution of outputs. We
implement a classical generative approach, Gaussian mixture model (GMM) [21], which models
data probabilistically as a sum of Gaussians (each with its mean and covariance). We also implement
standard deep generative baselines: Conditional variational autoencoder (VAE) [2, 4], generative
adversarial network (GAN) [22] and normalizing flow (NF). For NF, we use the real-valued non-
volume preserving (RealNVP) transformations [23].
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Figure 2: Diffusion model achieves state-of-the-art performance in materials synthesis prediction.
(a) Wassterstein distance (lower is better) between generated and literature synthesis routes (b) COV-
F1 (higher is better, ranging from 0 to 1) of individual synthesis parameters (c) Mean absolute error
between the means of distribution of generated and literature synthesis parameters (d) Distribution
of predicted synthesis parameter across various different modeling approaches. AMD (purple) is
regression-based (outputs deterministic, single-point prediction), while GAN (light blue) suffers from
mode collapse. NF and VAE output distributions that do not match the ground-truth. In contrast,
diffusion model (red) is able to accurately capture the literature distribution (grey) of the synthesis
parameter (one-to-many structure-synthesis relationship).

4 Results and Discussion

4.1 Generative approaches better model structure-synthesis relationships

Wasserstein distance We compare the performance of different generative approaches of predicting
zeolite synthesis route by computing the mean Wasserstein distance (lower is better) between
generated routes and those reported in the literature of unseen zeolite-OSDA systems (Fig. 2a).
Classical generative approaches like GMM (purple) do not perform much better than a random
baseline (grey). Probabilistic regression-based approaches like BNN (black) perform better than
GMM. However, deep generative models such as GAN, NF, VAE and diffusion outperform the
classical approaches, with the diffusion model (red) significantly outperforming the next best baseline
(VAE) by over 25%.

Coverage The optimal generative modeling approach should ideally maximize both COV-P and
COV-R simultaneously, hence we consider their harmonic mean (COV-F1) as the metric (see detailed
explanation in Section A.2). Fig. 2b shows the COV-F1 of 12 zeolite synthesis parameters (e.g.
Si/Al). Overall, the models perform better on synthesis parameters related to heteroatoms (Si/Al,
Al/P, Si/Ge, Si/B), cations (Na+/T, K+/T) and anions (F−/T, OH−/T). They struggle in terms of
synthesis conditions such as crystallization temperature and time. The latter is especially evident for
regression-based AMD (blue, see right half of the plot). GAN (light blue) follows the same trend as
AMD. Two key observations are as follows: 1) Deep generative approaches (diffusion, VAE and NF)
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outperform regression-based (AMD, BNN) approaches. This is due to generative models being better
at recalling the unseen literature distribution (Fig. 3 right). 2) The diffusion model outperforms other
deep generative baselines. This is because diffusion is able to generate higher quality/more probable
synthesis routes as seen in its high precision (Fig. 3 left). This result is further supported by diffusion
achieving the lowest MAE for 10/12 synthesis parameters as shown in Fig. 2c.

Rationalizing failure modes We uncover why generative models are better suited for materials
synthesis modeling. For a given target material, there often exists a range of possible synthesis
parameters (e.g. reaction temperature) at which a material can be synthesized. This means that the
same zeolite material can synthetically realized at a joint distribution of synthesis parameters. This
renders structure-synthesis relationship one-to-many instead of one-to-one. We refer to this as the
synthesis window, which can be visualized using the kinetic phase diagram shown Fig. 1b. For
the sake of simplicity, we consider a synthesis parameter by visualizing the ground-truth literature
(grey) crystallization time in Fig. 2d, which exists as a distribution. Regression-based AMD
(purple) is deterministic, and hence outputs a point prediction (weighted average of the distribution).
Unfortunately, generative models like GAN (light blue) also outputs a point prediction due to its
propensity to suffer from mode collapse [24]. While models such as NF (orange) and VAE (green)
address the mode collapse issue, they fail to accurately capture the ground-truth literature distribution
(grey). In contrast, the diffusion model (red) is able to accurately capture the ground-truth distribution.
This is further corroborated by Fig. 4, which shows the generated synthesis parameters following
closely those reported in literature for all synthesis parameters. Moreover, the model can generalize
to unseen zeolite-OSDA systems (Fig. 5) and captures phase boundaries between competing phases
(Fig. 6). Therefore, this rationalizes why generative approaches are better suited for modeling
structure-synthesis relationships for materials.

4.2 Model captures chemically meaningful relationships

For the chemical guidance described in Fig. 1b, the zeolite and OSDA encoders both learn smooth
and continuous latent spaces with respect to properties of zeolites and OSDA, respectively (Fig. 9
and 10). Given that the diffusion model learns the joint distribution of synthesis parameters, we
inspect two synthesis parameters (crystallization temperature and time) in Fig. 11 for two unseen
zeolite-OSDA systems. An inverse relationship is observed between generated temperatures and
times. This observation aligns well with the Arrhenius equation k = Ae

−Ea
RT , where rate constant

(related to crystallization time) is inversely related to temperature. In addition, the model captures
domain-specific heuristics (Fig. 12) and thermodynamics of zeolite formation (Fig. 13), a strong
testament to the model successfully learning structure-synthesis relationships.

5 Broader Impact

The ability to propose probable and diverse synthesis pathways in a computationally efficient manner
is a crucial step toward bridging computational materials design (what to synthesize) and synthesis
planning (how to synthesize) in order for AI-guided materials design and automated synthesis to
realistically make a tangible impact on tackling pressing modern-day challenges.
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A Appendix

A.1 ZeoSyn dataset and preprocessing

The ZeoSyn dataset [17] contains comprehensive synthesis information on zeolites including gel
composition, reaction conditions (crystallization time/temperature), precursors, and OSDAs. The
dataset also includes the resulting zeolite structures formed (or lack thereof e.g., dense/amorphous
phases) for each synthesis route. The dataset consists of 23,961 synthesis routes from 3,096 journal
articles spanning the years 1966–2021. It contains data on 921 unique OSDA molecules, 233 zeolite
structures, and 1,022 unique materials. The gel compositions are a combination of 51 different gel
components including Si, Al, P, Na+, K+, OH−, F−, Ge, Ti, B, Ga, V, OSDA, H2O, and additional
solvents. In the context of zeolite synthesis, the OSDA refers to an organic molecule that act as a
’template’ that guides the arrangement of inorganic building blocks (e.g. Si, Al) to form the zeolite
material.

For data splits, a 80/20 train/test split via zeolite-OSDA systems. This is to prevent data leakage
across systems and ensure the model generalizes to unseen chemical systems. This results in 1856
and 464 systems in the training and test sets, respectively. Furthermore, the training set is further
partitioned via a 87.5/12.5 train/validation random split for hyperparameter tuning. Given most
synthesis parameters do not follow the Gaussian distribution (see blue distributions in Fig. 4), we
perform quantile transformation using sklearn.preprocessing.QuantileTransformer to map
the raw synthesis parameters to a uniform distribution.

A.2 Coverage metric

We define 2 metrics to compare two distributions of synthesis parameters: Synthesis routes generated
by a model {Sk}k∈[1...K] and synthesis routes reported in literature {Sl}l∈[1...L]. This method is
inspired by [6].

For each synthesis parameter, we calculate the Euclidean distance between generated and literature
synthesis parameter, which we call Dsyn(Sk,Sl). Following the well-known classification metrics of
precision and recall, we define the coverage metrics as:

COV-R (Recall) =
1

L

∣∣∣{l ∈ [1..L] : ∃k ∈ [1..K], Dsyn(Sk,Sl) < δsyn}
∣∣∣ (3)

COV-P (Precision) =
1

K

∣∣∣{k ∈ [1..K] : ∃l ∈ [1..L], Dsyn(Sl,Sk) < δsyn}
∣∣∣ (4)

where COV is Coverage. The recall metrics measure how many ground synthesis routes are correctly
recalled by the generated synthesis routes, while the precision metrics measure how many generated
synthesis routes are probable (close to literature-reported routes). The threshold δsyn is defined by a
domain expert in zeolite synthesis in Table 1. Finally, the overall metric is COV-F1, which is defined
as the harmonic mean of COV-R and COV-P i.e. COV-F1 = 2

1
COV-R +

1
COV-P

, which ranges from 0 − 1

(higher is better). An ideal generative model for materials synthesis planning should maximize its
quality of generated synthesis routes (high precision) while maximizing their diversity (high recall).
As such, COV-F1 is used as the metric to evaluate the models.

A.3 Model implementation

Diffusion model training and sampling We train a conditional DDPM with U-Net [15] as the score
function, with an input dimension of 12, followed by subsequent layers dimensions multipliers of
128, 64 and 32 for downsampling and the opposite for upsampling. The score function is trained
with T = 1000, with a puncond = 0.1 for classifer-free guidance with exponential moving average
(β = 0.99), batch size of 32 at a constant learning rate of 4× 10−4 for 1M epochs. For sampling,
w = 1.0 was found to be optimal (see Fig. 7).

Equivariant graph encoder We implement an equivariant graph neural network (EGNN) using
the e3nn package (similar to [27]) to encode the structure of the zeolite as a graph. Here, we use
a single layer EGNN with lmax = 2, nneighbors = 10 and nnodes = 140. In this case, we assume a
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COV-P COV-R

Figure 3: COV-P (precision) and COV-R (recall) for all models. COV-F1 is the mean of COV-P
and COV-R. Notice that high COV-F1 for generative models such as diffusion and VAE (vs. AMD)
largely driven by higher COV-R, while high COV-F1 for diffusion (vs. other generative models)
largely driven by higher COV-P.

Figure 4: Model accurately captures unseen synthesis routes reported in literature. Note synthe-
sis parameters are aggregated across all unseen zeolite-OSDA systems. The generated distribution
(orange) follows closely the true distribution (blue). However, generated distribution tends to be more
multi-modal and ’spiky’ (e.g. Si/Al, crystallization temperature).

pure-silica zeolite structure obtained from the IZA database [7], and initialize node embeddings as
one-hot according to the element identity (Si or O).

8



AEL

Figure 5: Diffusion-generated {ygen
cond} vs. ground-truth {ytrue

cond} reaction conditions for an unseen
zeolite-OSDA system (AEL zeolite with dipropylamine OSDA). Here, the reaction conditions are
crystallization temperature and time. The generated reaction conditions (red) accurately captures the
distribution of literature-reported conditions. However, a minority (see 2 points at bottom right) are
not captured by the diffusion model. This two points are outliers (very low crystallization temperature
and very long crystallization time).

FAU

LTA

FAU

LTA

Figure 6: Diffusion-generated gel compositions captures boundaries between competing phases.
Circles refer to literature-reported OSDA-free syntheses of two competing phases, FAU and LTA.
Heatmaps show the generated distribution of OSDA-free synthesis recipes, where blue and orange
heatmaps refer to FAU and LTA phases respectively. We observe that the model accurately captures
the phase boundary (green shaded region) between FAU and LTA.
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Figure 7: Influence of DDPM hyperparameters on model performance in terms of puncond and
conditional generation scale w.
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Forward diffusion (data to noise)

Reverse diffusion (noise to data)

Noise Synthesis
routes

Figure 8: Model performance across denoising diffusion trajectory measured by Wasserstein
distance (↓), precision (↑) and recall (↑). At inference, reverse diffusion (green arrow) maps noise (at
t = T ) to probable synthesis routes (at t = 0), leading to a monotonic improvement in Wasserstein
distance (between generated and ground truth distributions) and precision. In contrast, recall remains
relatively constant across the trajectory. This shows that, in reverse time, the diffusion model is able
to generate higher quality synthesis recipes while maintaining their diversity, hence capturing the
one-to-many structure-synthesis relationship for zeolite materials.
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Table 1: Expert-defined thresholds δsyn. Values are based on practical utility in zeolite synthesis.
Note T =

∑
i ni where ni is the amount of the ith heteroatom (e.g., Si, Al, Ge, B) present in

synthesis.

Synthesis
parameter

δsyn (unitless unless
otherwise specified)

Si/Al 1.5

Al/P 0.05

Si/Ge 0.05

Si/B 0.05

Na+/T 0.05

K+/T 0.05

OH−/T 0.05

F−/T 0.05

H2O/T 5

SDA/T 0.05

Crystallization
temperature

5 ◦C

Crystallization
time

12 h

Figure 9: Learned zeolite representations are chemically meaningful. Latent space is smooth and
continuous with respect to zeolite physical properties (e.g., accessible surface area).
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Figure 10: Learned OSDA representations are chemically meaningful. Latent space is smooth
and continuous with respect to OSDA physical properties (e.g., volume).

Figure 11: Model captures physical relationships between synthesis parameters. In the above 2
examples, generated crystallization temperatures and times follow an inverse relationship, which is
aligns with the Arrhenius equation k = Ae

−Ea
RT , where rate constant k (determines crystallization

time) is inversely related to synthesis temperature. A, Ea, R and T refer to the pre-exponential factor,
activation energy, gas constant and temperature, respectively.
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Figure 12: Model captures domain-specific heuristics. A positive correlation (Spearman’s rank
coefficient: 0.673) exists between median diffusion-generated H2O/T and framework density (FDSi)
of zeolite structure for fluoride-mediated synthesis of high silica (Si/Al > 30) aluminosilicates. This
agrees with Villaescusa’s rule [25], which states that denser phases (higher FDSi) are favored at the
less concentrated conditions (higher H2O/T), showing that the model has learned domain-specific
rules in zeolite synthesis.
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Si

 (T
/1

00
0 
Å3

)

Figure 13: Model predictions follow thermodynamics of zeolite formation. A positive correlation
(Spearman’s rank coefficient: 0.931) exists between median diffusion-generated crystallization
temperature and framework density (FDSi) of zeolite structure for large-pore aluminosilicates. This
can be seen in an rightward shift in distribution of generated temperatures as FDSi increases. This
agrees with the thermodynamic argument that higher crystallization temperatures enable the synthesis
to overcome the energy activation barrier to form more stable structures with higher framework
density [26, 17]. Furthermore, this observation aligns with Ostwald’s rule of stages, where the zeolite
passes through metastable states before reaching the most thermodynamically favorable framework.
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Table 2: Physicochemical descriptors of OSDAs. (Source: [17]).

OSDA descriptor Description

Asphericity An anisometry descriptor for the deviation from the spherical
shape

Axis 1 Two-dimensional (2D) shape descriptors of molecule calcu-
lated by projecting the atomic coordinates into a 2D space
based on a principal component analysis (PCA) of the posi-
tions. The range of the distribution of points in each principal
component is reported as the axis of the conformer. Axis 1 is
reported as the larger axis, whereas Axis 2 is the smaller axis

Axis 2 See above

Charge Formal charge of molecule

SASA Solvent-accessible surface area (SASA) is the surface area
of a molecule that is accessible to a solvent

Molecular weight Molecular mass of molecule

NPR 1 Normalized principal moments ratio ( I1I3 ) where I is principal
moment of inertia

NPR 2 Normalized principal moments ratio ( I2I3 ) where I is principal
moment of inertia

Rotatable bonds Number of rotatable bonds in the molecule. A measure of
molecular flexibility.

PMI 1 Principal moments of inertia (PMI) are physical quantities
related to the rotational dynamics of a molecule

I =

A∑
i=1

mi · r2i (5)

where A is the number of atoms, and mi is the atomic mass
and ri is the perpendicular distance from the chosen axis of
the ith atom of the molecule

PMI 2 See above

PMI 3 See above

Sphericity Sphericity index of molecule. A measure of how closely the
shape of an object resembles that of a perfect sphere

Volume Molecular volume calculated by using a grid-encoding of the
molecular shape using a grid spacing of 0.2 Å and 2.0 Å of
margin for the boxes
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