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ABSTRACT

The binding problem in artificial neural networks is actively explored with the
goal of achieving human-level recognition skills through the comprehension of
the world in terms of symbol-like entities. Especially in the field of computer
vision, object-centric learning (OCL) is extensively researched to better understand
complex scenes by acquiring object representations or slots. While recent studies
in OCL have made strides with complex images or videos, the interpretability
and interactivity over object representation remain largely uncharted, still holding
promise in the field of OCL. In this paper, we introduce a novel method, Slot
Attention with Image Augmentation (SlotAug), to explore the possibility of learning
interpretable controllability over slots in a self-supervised manner by utilizing
an image augmentation strategy. We also devise the concept of sustainability in
controllable slots by introducing iterative and reversible controls over slots with two
proposed submethods: Auxiliary Identity Manipulation and Slot Consistency Loss.
Extensive empirical studies and theoretical validation confirm the effectiveness of
our approach, offering a novel capability for interpretable and sustainable control
of object representations. Code will be available upon acceptance.

1 INTRODUCTION

Compositional comprehension of visual scenes (Marr, 2010; Tenenbaum et al., 2011; Johnson et al.,
2017; Fischler & Elschlager, 1973), essential for various computer vision tasks such as localization
(Cho et al., 2015) and reasoning (Mao et al., 2019), requires human-like understanding of complex
world (Treisman, 1996; Spelke & Kinzler, 2007; Lake et al., 2017). In response to this, object-centric
learning (OCL) has emerged as an active research area (Locatello et al., 2020; Kipf et al., 2021; Greff
et al., 2016). OCL aims to enable a model to decompose an image into its components in terms of an
object, and to acquire object representations or slots, without relying on human-annotated labels.

In pursuit of a deeper understanding of images, interpretable and controllable object representation has
been studied (Greff et al., 2019; Burgess et al., 2019; Singh et al., 2023). Nevertheless, the previous
approaches face limitations in achieving interpretable controllability as they require additional
processes to figure out how to interact with slots, such as exploring a connection between specific
values in slots and object properties by a manual exhaustive search, and training a feature selector with
ground-truth object properties (Fig. 1(a)). This issue arises due to a training-inference discrepancy,
wherein interactions with slots are only considered during the inference stage. This discrepancy
problem brings ambiguity in how to interact with object representations, hindering interpretable
controllability. Furthermore, learning interpretable controllability is followed by another challenge:
object representation should be intact even after multiple manipulations by humans. In this context,
we devise the concept of sustainability pertaining to the ability to preserve the nature of slots, allowing
for iterative manipulations; we refer to Fig. 4 and 5 for establishing the earlier motivation.

In this work, we advance the field of OCL with respect to the interpretability of object representation.
To achieve interpretable controllability, we propose a method that enables the manipulation of object
representation through semantically interpretable instructions in a self-supervised manner. We address
the training-inference discrepancy problem by incorporating image augmentation into our training
pipeline (Fig. 1(c)). By involving the slot manipulation in the training, we can resolve the discrepancy
problem and streamline the way to interact with slots in the inference stage (Fig. 1(b) and (d)).
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Figure 1: Overview of our method compared to the previous methods. (a) Previous methods
require an additional process to manipulate slots such as feature selection during inference. (b) Our
model, however, has the shared process of manipulating slots between the training and inference
stages. (c) To ensure homogeneity between the training and inference stages, we incorporate scenarios
involving image manipulation into the training phase. This includes the application of simple image
augmentation techniques such as scaling, translating, and color shifting. (d) Upon completion of the
training, our model achieves interpretable controllability, enabling users to manipulate individual
objects according to their intentions.

Second, to attain sustainability in object representation, we introduce Auxiliary Identity Manipulation
(AIM) and Slot Consistency Loss (SCLoss). AIM is a methodology designed to facilitate the
learning of the concept of multi-round manipulation. AIM is implemented by incorporating an
auxiliary manipulation process into the intermediate stage of slot manipulation, where the auxiliary
manipulation introduces no semantic changes to object properties such as zero-pixel translations.
This simple auxiliary process can expose our model to multi-round manipulation: we can make
two-round manipulations with one instruction from the augmentation and the other from the auxiliary
manipulation. Additionally, SCLoss allows our model to learn the concept of reversible manipulation,
such as the relationship between moving an object 1 pixel to the right and moving it 1 pixel to the left.
After being trained with SCLoss, our model produces consistent and reusable representations that
can undergo multiple modifications and enhance their usability. With AIM and SCLoss, our model
achieves sustainability in object representation.

Extensive experiments are shown to demonstrate the interpretable and sustainable controllability
of our model. To assess interpretability, we conduct object manipulation experiments where slots
are guided by semantically interpretable instructions. In evaluating sustainability, we introduce
novel experiments, including the durability test. Our evaluation encompasses not only pixel space
assessments such as image editing via object manipulation, but also slot space analyses such as
property prediction, to provide a comprehensive examination of our approach.

The main contributions of the paper can be summarized as follows: (i) Towards interpretable
controllability in object-centric learning, we incorporate image augmentation into the training process
to explore the possibility of interpretable controllability over object representation. (ii) We introduce
a novel concept of sustainability in object representation, strengthening the interaction between
neural networks and humans, which is an important aspect of interpretable controllability. (iii) Two
novel methods are introduced to ensure sustainability in object representation: Auxiliary Identity
Manipulation and Slot Consistency Loss. (iv) We extensively validate the effectiveness of our method
through empirical studies including novel experiments and analyses on pixel and slot space.
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Figure 2: Architecture of our model. From a given image imgref , we first generate an augmented
image imgaug (leftmost part of the figure), and the corresponding instruction instsref2aug and its
inverse instsaug2ref . Our model produces slots from imgref and decodes the slots to reconstruct the
original image (reconref ). The slots are also manipulated with SLOTMANIPULATION module which
takes instsref2aug as the other input. We incorporate Auxiliary Identity Manipulation (AIM) into
this manipulation process. The details are provided in the right part of the figure. The manipulated
slots are then simultaneously 1) decoded into a reconstruction of the augmented image reconaug,
and 2) re-manipulated by SLOTMANIPULATION with instsaug2ref . Our total loss consists of the
reconstruction losses of reference and augmented images, and the slot-level cycle consistency.

2 METHODS

2.1 PRELIMINARY: SLOT ATTENTION

Slot Attention (SA) (Locatello et al., 2020) introduces the concept of slots, a set of K vectors of
dimension Dslot, that serves as the object representation. The slots are initialized by a Gaussian
distribution with learnable mean µ and sigma σ, and are updated over T iterations by the slot
attention module. The final slots are then decoded to reconstruct the target image. To provide a
comprehensive understanding of our method, we describe the mechanism of spatial binding (Greff
et al., 2020; Treisman, 1996; Buehner & Humphreys, 2010) by Slot Attention in Alg. A, referred to
as SPATIALBINDING, in the Appendix due to the space limitation. Each updated slot is then decoded
individually into an RGBA image using a spatial broadcast decoder (Watters et al., 2019) which
is shared across slots. The decoded images are blended into a single image using alpha masks to
reconstruct the input image. The training objective is the mean squared error (MSE) between the
original input image and the reconstructed image, following a self-supervised learning approach.

2.2 SELF-SUPERVISED LEARNING FOR INTERPRETABLE CONTROLLABILITY

Data augmentation. We introduce a simple data augmentation scheme that, for a given input image
or a reference image imgref ∈ RH×W×3, generates an augmented image imgaug ∈ RH×W×3 and
the transformation instructions between them, instsref2aug and instsaug2ref ∈ RK×L, where L
indicates the total number of values to represent the object properties. imgaug is produced by a
random translation, scaling, or color shifting on imgref . To transform imgref into imgaug, we
employ a set of instructions known as instsref2aug . These instructions comprise a list of values that
dictate the augmentation process, including translation values, a scaling factor, and color shift values
in the HSL color space. We also have the inverse instructions, instsaug2ref , which allow us to revert
imgaug back to imgref . Details for the data augmentation are described in the Appendix.

Training. We propose a novel training process that leverages image augmentation (Fig. 2). Our
training scheme enables learning interpretable controllability which allows us to interact with the
model via semantically interpretable instructions. Our training process involves data augmentation,
spatial binding, slot manipulation, and image reconstruction via slot decoding. For a given input image,
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Algorithm 1 Our slot manipulation algorithm in pseudo code. The algorithm takes slots and
insts as input, where insts contains the information for modifications. J represents the number
of object properties, while Pj,f and Pj,l indicate the first and last indices of the j-th object property
values. The PropertyEncoder outputs a vector of the same dimension as slots, K ×Dslots.

1: function SLOTMANIPULATION(slots ∈ RK×Dslots , insts ∈ RK×L)
2: for j = 0 . . . J do
3: instj = insts[:,Pj,f : Pj,l]
4: inst_vecj = PropertyEncoderj(LayerNorm(instj))
5: slots = slots+ inst_vecj

6: end for
7: slots = slots+ MLP(LayerNorm(slots))
8: return slots
9: end function

we initially perform data augmentation to yield imgref , imgaug, instsref2aug, and instsaug2ref .
Then, the model performs SPATIALBINDING on imgref to produce slotsref .

Thereafter, the model conducts SLOTMANIPULATION (Alg. 1) to modify slotsref based on
instsref2aug . In the SLOTMANIPULATION, we utilize a newly introduced component called Proper-
tyEncoder, which is 3-layer multi-layer perceptrons (MLPs). This PropertyEncoder is responsible for
generating vector representations, inst_vec, which capture the essence of transformation instruc-
tions. Each PropertyEncoderj generates an inst_vecj that encodes the values of instsref2aug for
the j-th property. These vectors are then added to slotsref to reflect the effect of instsref2aug . This
addition is followed by a residual connection, along with layer normalization and another MLP to
generate slotsref2aug .

Lastly, slotsref2aug is decoded by the decoder to create the reconaug , the reconstruction image for
the imgaug. The MSE between imgaug and reconaug serves as a training loss, Laug. To ensure
stable training, we also adopt an additional loss, Lref, the MSE between the imgref and reconref ,
the reconstructed reference image decoded from slotsref . Accordingly, our training loss for image
reconstruction is defined as Lrecon = Lref + Laug.

Inference. To perform object manipulation, we provide the model with the position of the target
object, along with the instruction to be carried out. When given the position of the target object, we
use the Hungarian algorithm (Kuhn, 1955) to find the slot for the object closest to the given position.
To predict the position of an object encoded in a slot, we compute the center of mass acquired from
the alpha mask by the decoder or from the attention map between the visual encodings and the slot.
After figuring out the desired slot, we perform slot manipulation with the given instructions.

2.3 SUSTAINABILITY IN OBJECT REPRESENTATION

In this work, we introduce sustainability which stands for the concept that object representations
should sustain their integrity even after undergoing iterative manipulations. Therefore, sustainability
is a key feature that contributes to the reliable and reusable object representation.

Auxiliary Identity Manipulation (AIM) serves as the identity operation for slot manipulation,
indicating no changes in object properties. By manipulating slots with instructions that include zero
values for translation, one for scaling, and so on, AIM is supposed to make each slot preserve the
original identity of the object. We incorporate AIM into the training process to make the model
recognize and maintain the intrinsic characteristics of objects during iterative manipulations. AIM is
applied to the slot manipulation process as follows:

slots′ref2aug = f(f(slotsref , instsref2aug), instsidentity)

= f(slotsref2aug, instsidentity),
(1)

where f represents the SLOTMANIPULATION function, and instsidentity is the instruction that
contains the identity elements for manipulating object properties. In the followings, slots′ref2aug is
notated as slotsref2aug for simplicity if not mentioned.
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Slot Consistency Loss (SCLoss) addresses the issue of a slot diverging significantly from its original
state after iterative manipulations, even when a user intends to restore the corresponding object to
its original state. To implement SCLoss, we introduce slotsrevisited, which is derived by executing
a series of SLOTMANIPULATION operations on slotsref using instsref2aug and instsaug2ref .
Supposed that our goal is to ensure slotsref and slotsrevisited have the same representation, we
set the MSE between them as SCLoss. As a result, the model learns to keep the two distinct
slots representing the same object as close as possible and to be robust against multiple rounds of
manipulation. The equation of SCLoss, Lcycle, and the total training loss, Ltotal, are as follows:

Lcycle =
1

K
∥f(f(slotsref , instsref2aug), instsaug2ref )− slotsref∥22, (2)

Ltotal = wreconLrecon + wcycleLcycle, (3)
where K is the number of slots, f is the SLOTMANIPULATION function, and wrecon and wcycle are
the weights for the corresponding loss.

3 RELATED WORKS

The binding problem in artificial neural networks (Greff et al., 2020), inspired by cognitive science
(Treisman, 1996; Feldman, 2013), is a subject of active exploration, aiming to attain human-like
recognition abilities by understanding the world in terms of symbol-like entities (like objects).
In computer vision, object-centric learning (OCL) focuses on comprehending visual scenes by
considering objects and their relationships without labeled data (Xie et al., 2022; Engelcke et al.,
2021; Wu et al., 2022). MONet (Burgess et al., 2019), IODINE (Greff et al., 2019), and GENESIS
(Engelcke et al., 2019) have adopted autoencoding architectures (Baldi, 2012; Kingma & Welling,
2013; Makhzani et al., 2015) to accomplish self-supervised OCL, and Slot Attention (Locatello
et al., 2020) introduced the concept of slot competition, which enables parallel updates of slots with
a single visual encoding and decoding stage. Recent studies have leveraged large-scale models to
learn object representations in complex images (Singh et al., 2021; Seitzer et al., 2022), multi-view
images (Sajjadi et al., 2022a), and videos (Kipf et al., 2021; Singh et al., 2022). Other recent works
have utilized object-related inductive biases to improve the OCL models. SLASH (Kim et al., 2023)
addressed the instability in background separation using a learnable low-pass filter to solidify the
object patterns in the attention maps. SysBinder (Singh et al., 2023) introduced a factor-level slot,
called block, to disentangle object properties and enhance the interpretability in OCL.

Several studies have shown the possibility of interacting with object representation to manipulate the
objects. VAE-based models such as IODINE (Greff et al., 2019) and Slot-VAE (Wang et al., 2023)
showed that adjusting the values of slots can change object properties. SysBinder (Singh et al., 2023)
demonstrated that replacing factor-level slot, called block, between slots exchanges the corresponding
properties. However, these works have difficulties in determining ways to interact with slots as they
require manual efforts to identify the features associated with specific properties. ISA (Biza et al.,
2023) incorporates spatial symmetries of objects using slot-centric reference frames into the spatial
binding process, enhancing interactivity of object representation for spatial properties such as position
and scale. Meanwhile, our method itself has no constraint on the types of the target property, showing
its expandability toward extrinsic properties such as the shape and material of objects if there exist
proper image augmentation skills or labeled data. In another direction, MulMon (Li et al., 2020) and
COLF (Smith et al., 2022) showed the manipulation of extrinsic object properties, such as position
and z-axis rotation, by utilizing a novel view synthesis with a multi-view dataset. In contrast, our
work accomplishes direct and interpretable controllability over object representation in single-view
images without requiring multi-view datasets.

4 EXPERIMENTS

Datasets. We evaluate models on four multi-object datasets: Tetrominoes (Rishabh et al., 2019),
CLEVR6 (Johnson et al., 2017), CLEVRTEX6 (Karazija et al., 2021) and PTR (Hong et al., 2021).
For Tetrominoes, we use 60K and 15K samples as a train and a test set, respectively. CLEVR6 is a
subset of CLEVR dataset, where 6 stands for the maximum number of objects in a scene. We use 35K
samples for training and 7.5K samples for testing. CLEVRTEX6 is a subset of CLEVRTEX which
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Figure 3: (a) Object manipulation with human-interpretable instruction. The first and second
columns are the ground-truth and reconstruction images, respectively. The following columns are
the results of the controls along the instructions. Here, instructions are described with the text for
easy understanding. The actual instantiation of the instructions can be found in the Appendix. From
the first row onwards, the results are for Tetrominoes, CLEVR, CLEVR, and PTR, respectively. (b)
Conditional image composition. From given source images, we can collect specific objects, which
are indicated by white numbers, and manipulate them to generate a novel image.

is a complex variant of CLEVR, having complicated shapes, textures, materials, and backgrounds.
CLEVRTEX6 contains 20K and 5K samples for training and testing. PTR is a dataset consisting of
52K training and 9K test samples, containing complex objects with part-whole hierarchies.

Training. Unless stated otherwise, the training setup follows the methodology in Slot Attention
(Locatello et al., 2020). The number of epochs is 1000 with 20 warm-ups and 200 decaying epochs.
We adopt AdamW (Loshchilov & Hutter, 2019) as the optimizer. The number of slots (K) is set
to 7 and the input image size (H ×W ) is set to 128 × 128, except for Tetrominoes where K = 7
and H = W = 64. The weights for the training loss are set as wrecon = 1.0 and wcycle = 0.1. The
details of the training process including the data augmentation setting are stated in the Appendix.

Models. We employ the same model architecture as Slot Attention. However, for CLEVRTEX6
and PTR, which are more complex datasets, we replace the encoder with ViT (Dosovitskiy et al.,
2020) pretrained by MAE (He et al., 2022) and the decoder with that of SRT (Sajjadi et al., 2022b)
while using an increased size of the slot attention module. The additional details for adopting large
models are described in the Appendix. To clarify the methods used in ablative studies, we categorize
our model into three versions: v1, which is exclusively trained with image augmentation; v2, which
improves upon v1 with AIM; v3, which extends v1 with both AIM and SCLoss. For qualitative
studies, we use the v3 model.

4.1 HUMAN-INTERPRETABLE CONTROL OVER OBJECT REPRESENTATION

4.1.1 IMAGE EDITING BY OBJECT MANIPULATION

As shown in Fig. 3(a), our model can manipulate individual objects. We can control not only
multiple objects in a scene but also multiple properties of an object with the specific intent of users
through the instructions. In the second row of the figure, we observe that our model can restore the
cropped part of the object (the pink one) when we pull the object inward after changing the color
of the object. Based on this observation, we can ascertain that our object representations retain the
intrinsic properties of objects seamlessly even after manipulation. Furthermore, the interpretable
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Table 1: Results on object discovery. Two metrics, mean In-
tersection over Union (mIoU) and Adjusted Rand Index (ARI)
are reported in % (mean ± std for 3 trials) on CLEVR6.

mIoU (↑) ARI (↑)
Previous methods

SA (Locatello et al., 2020) 47.3 ± 23.2 63.1 ± 54.5
+ARK (Kim et al., 2023) 68.8 ± 0.4 95.4 ± 0.5

Ours (SlotAug)
Base model (v1) 68.9 ± 0.1 95.7 ± 0.2
+ AIM (v2) 68.5 ± 0.1 95.3 ± 0.1
+ AIM + SCLoss (v3) 68.5 ± 0.1 95.2 ± 0.7

Table 2: Results on durability
test with MSE on CLEVR6.

Slot (↓) Obj. Pos. (↓)
Single step (x8)

v1 50.8 0.14
v2 39.7 0.15
v3 0.25 0.01

Multiple steps (x4)
v1 54.0 0.16
v2 41.4 0.11
v3 0.31 0.02

controllability is accomplished with a neglectable compromise of the performance on both the object
discovery and image reconstruction tasks, as demonstrated in Tab. 1.

One may wonder how our model can excel in controlling individual slots while being trained
solely on image-level manipulation without any explicit object-level supervision. We attribute this
successful transition from image augmentation to object manipulation to the slots’ ability to focus
their attention effectively on each distinct object. This capability is achieved by the following key
factors. Firstly, using slot-wise decoder (Locatello et al., 2020) enables independent decoding for
each slot, eliminating dependencies on other slots. Secondly, using Attention Refining Kernel (ARK)
(Kim et al., 2023) allows our model to efficiently discover individual objects without any concerns
of attention leakage. These factors collectively ensure that the slots remain directed toward their
corresponding objects, thereby facilitating precise object-level manipulations. We claim that these
factors enable our model to seamlessly extend the knowledge learned from image-level augmentation
to object-level manipulation. More discussions including theoretical proof and empirical results are
provided in the Appendix to substantiate our claim.

4.1.2 CONDITIONAL IMAGE COMPOSITION

We introduce conditional image composition, an advanced version of a downstream task called
compositional generation (Singh et al., 2021). From compositional generation, or image composition,
we can evaluate the reusability and robustness of slots obtained from different images. As shown in
Fig. 3(b), our task aims to generate novel images by not only combining but also manipulating slots
collected from various images.

Owing to the direct controllability, our model is capable of rendering objects along with human
intention by modifying the objects in accordance with instructions that contain values for the desired
change. As shown in the row of Fig. 3(b), the number of slots for image composition (9 objects) can
be expanded beyond the quantity for which the model was originally trained (up to 6 objects). We
attribute this to the characteristics of slots in Slot Attention. Moreover, our model also can resolve the
conflicts among multiple images regarding the relative position (or depth) of the objects as illustrated
in the object 3, 5 and 8 in the third row in Fig. 3(b). From these observations, we claim that the
proposed method can effectively manipulate and combine slots without sacrificing the original nature
and robustness.

4.2 SUSTAINABILITY IN OBJECT REPRESENTATION

4.2.1 ITERATIVE MANIPULATION

Fig. 4 shows the results of iterative manipulation applied to a specific object along with a series of
instructions including "Stay" referring to instsidentity. We can observe that all our models succeed
in manipulating the target object, demonstrating that our proposed training scheme works properly.
Nevertheless, it is also clear that models v1 and v2 fail to follow the instructions along the consecutive
manipulations. In the case of v1, object appearances deteriorate with the emergence of abnormal
artifacts from the third round. Whereas, in v2, although the collapsing issue is mitigated, an out-
of-interest property, color, changes despite no instruction for such modification. These unexpected
results are also triggered by the "Stay" instruction, which is intended to maintain the current state
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Figure 4: Iterative slot manipulation. The leftmost image is the initial image from which the
iterative manipulation begins. The text on each column states the instruction used for manipulation.
Each row shows the results of the manipulation by v1, v2, and v3 models, respectively. Center areas
are cropped for better visibility.

1. Down 2. Up 3. Down 4. Up

v2

v1

v3
Initial image

5. Down 6. Up 7. Down 8. Up

Target 
object

Figure 5: Durability test. The leftmost image is the initial image from which the test begins. The
top three rows show the results of the single-step tests where each model is instructed to alternately
move the target object up and down four times each. In the multi-step test, as shown in the last row,
the model performs two round-trip manipulations, each involving moving the target object down,
changing its color, reverting the color, and returning the object to its original position.

of the object. However, in the case of v3, we finally achieve optimal results that adhere to the
instructions, including "Stay". Based on these observations, we argue that both AIM and SCLoss
significantly contribute to sustainable controllability.

4.2.2 DURABILTIY TEST

In the durability test, we evaluate how many manipulations a model can endure while preserving
object representation intact. Our durability test consists of two types: single- and multi-step tests. In
the single-step test, we repeatedly manipulate slots with two instructions: one to modify a specific
object property and another to revert the object to its initial state. The multi-step test involves a series
of instructions to modify an object and another series to restore it to its initial state.

As depicted in Fig. 5, our findings align with the previous experiment (Sec. 4.2.1). While v1 fails
to keep the color after the second round and the color gradually deviates as the rounds progress,
v2 relatively preserves the color well for the fourth round. Nevertheless, from the fifth round, the
texture progressively diverges from its original. Different from the v1 and v2, v3 demonstrates strong
durability despite a greater number of manipulations.

We also perform quantitative evaluations on 100 randomly selected samples in CLEVR6 to measure
the intrinsic deformity of slots (Tab. 2). We conduct 8 single-step and 4 multi-step round trip
manipulations, both resulting in a total of 16 manipulations. We assess the durability test results by
measuring the difference, using L2 distance, between the original state and the manipulated state for
two aspects: the slot vector and object position vector. Both qualitative and quantitative results lead
us to that our model can achieve better sustainability as the model evolves from v1 to v2 and v3.
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Figure 6: t-SNE of slots on property prediction for color. The upper row is the results for the
baseline model, SA + ARK, and the lower row is the results for our method, SlotAug. The first
column is the result of the original slots obtained from the spatial binding process. The second and
third columns are the results of the intermediate outputs from the first and second MLP layers of the
property predictor, respectively. The results of t-SNE for other properties are shown in the Appendix.

Table 3: Results of property prediction. Each column reports the F1 score (%) for predicting size,
color, material, shape, and position, respectively. The numbers inside the parenthesis indicate the
number of classes. For the position, we set two distance thresholds indicated as ‘pos@threshold’.

size (2) color (8) material (2) shape (3) pos@0.15 pos@0.05
SA + ARK 69.7 63.5 70.4 59.1 71.1 51.8
SlotAug 82.2 78.2 82.6 73.0 84.2 77.2

4.3 SLOT SPACE ANALYSIS: PROPERTY PREDICTION

In addition to the pixel space analysis in the previous sections, we also perform slot space analysis to
comprehensively assess the effectiveness of our method. We conduct property prediction to evaluate
the quality of slots concerning human-interpretable object properties such as size, color, material,
shape, and position. Through the property prediction, we can examine how well slots are distributed
in the slot space along the properties of corresponding objects.

A property predictor, consisting of 3-layer MLPs, takes slots as input and predicts a property of
objects. Each property predictor is trained by supervised learning using the ground truths. To
investigate the effectiveness of object representations learned through the proposed method, the
OCL models to produce slots are frozen during property prediction. As shown in Tab. 3, our model
outperforms the baseline method (Kim et al., 2023) across all properties including those, like material
and shape, that are not addressed during training. Moreover, in Fig. 6, qualitative results using t-SNE
(Van der Maaten & Hinton, 2008) show that while the original slots themselves do not appear to be
well-clustered, slots obtained by SlotAug exhibit better adaptability to the downstream task compared
to those from the baseline model, reinforcing the quantitative findings. Based on these results, we
assert that our method enhances interpretability not only in the pixel space but also in the slot space.

5 CONCLUSION

We presented an OCL framework, SlotAug, for exploring the potential of interpretable controllability
in slots. To resolve the lack of labeled data, we employed image augmentation for self-supervised
learning of our model. Moreover, we introduced a concept of sustainability in slots, achieved by the
proposed method AIM and SCLoss. We substantiated the effectiveness of our methods by providing
extensive empirical studies and theoretical evidence in the Appendix. These empirical studies include
pixel- and slot-space analyses on tasks such as the durability test and property prediction. Though
our work remains several questions detailed in the Appendix and represents just one step on a long
journey of OCL, we firmly believe that our work is a foundational piece in the field of interpretable
OCL and propel the ongoing effort to equip machines with human-like comprehension abilities.
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