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Abstract—When solving an optimization problem over
the set of graph Laplacian matrices, one must deal with a
large number of constraints as well as the large objective
variable size. In this paper we explore first-order methods
for optimization over graph Laplacian matrices. These
methods include two popular methods for constrained
optimization: the mirror descent algorithm and the Frank-
Wolfe (conditional gradient) algorithm. We derive effi-
ciently implementable formulations of these algorithms
over graph Laplacians, and use existing theory to show
their iteration complexity in various regimes. Experiments
demonstrate the efficiency of these methods over alterna-
tives like interior point methods.

I. INTRODUCTION

Working with graphs forms an increasingly impor-
tant part of the toolkit for practitioners in data science
and machine learning. The past few years have seen
many new techniques for working with and processing
graphs, from graph neural networks [Wu et al., 2020] to
computational methods that explore the geometry and
metric structure of the space of graphs [Gao et al.,
2010, Chowdhury and Mémoli, 2019]. Study of graph
properties is by no means new in data science, though,
as it is fundamental in places like manifold learning
and diffusion maps [Coifman et al., 2005, Coifman
and Lafon, 2006] and Laplacian eigenmaps [Belkin and
Niyogi, 2001].

The fundamental object of our study is the graph
Laplacian matrix. We assume an undirected weighted
graph G(V,E,W ), where V = [n] is the set of nodes,
E ⊂ {ij : i ∈ [n], j ∈ [n]} is the set of edges, and W =
{wij ∈ R++ : ij ∈ E} are the associated edge weights.
The weighted adjacency matrix stores these weights in
an n× n matrix

Aij =


wij , ij ∈ E

0, ij ∕∈ E.
(I.1)

The degree of a node is defined as the sum of the edge
weights emanating from that node. Thus, for node i, the
degree is given by

di =


j:ij∈E

wij . (I.2)

One can compute the vector of degrees as A1 = d
and the degree matrix as D = diag(d). Putting these
together, we finally arrive at the graph Laplacian, which
is defined by the difference of these matrices,

L = D −A. (I.3)

The Laplacian is a fundamental object in graph theory.
It’s spectrum contains information about the connectivity
of the graph [Belkin and Niyogi, 2001]. Furthermore,
it can be used to define diffusion processes on graphs
[Coifman and Lafon, 2006].

The goal of this paper is to explore optimization
over the space of graphs from the perspective of convex
optimization over graph Laplacians. While the idea of
convex optimization over Laplacians is not new [Boyd,
2006, Dong et al., 2016, Mateos et al., 2019] and
the algorithms we use are classical [Frank and Wolfe,
1956, Nemirovskij and Yudin, 1983], we offer a new
perspective on the problem of optimization over graph
Laplacians. In particular, we give the first principled
study of first order methods for this problem. Our con-
tributions are the following:

1) We derive Frank-Wolfe (FW) and Mirror Descent
(MD) algorithms for optimization over fixed trace
and fixed degree Laplacians. These algorithms also
have simple updates.

2) We demonstrate how one can use results from the
literature on convex optimization to give iteration
complexity guarantees.
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3) We run numerical experiments on a few examples
to demonstrate the efficacy of these methods over
existing methods.

We now outline the structure of our paper. In Section
II we review related work. Then, in Section III, we derive
our optimization algorithms and discuss their associated
theoretical results. Finally, in Section IV, we run some
experiments demonstrating the efficacy of our methods.

A. Notation

Let Hn denote the set of n × n real Hermetian
matrices. We let Sd

+ be the set of positive semidefinite
(PSD) matrices. The Frobenius norm of a matrix is
written as  · F , and the matrix 1-norm is written as
A1 =


ij |aij |.

II. REVIEW OF RELATED WORK

A series of recent works has focused on learning
graph Laplacian matrices in a variety of practical settings
[Xie et al., 2011, Dong et al., 2016, Kalofolias, 2016,
Thanou et al., 2017, Egilmez et al., 2017, Pasdeloup
et al., 2017, Segarra et al., 2017, Vlaski et al., 2018,
Egilmez et al., 2018, Mateos et al., 2019, Kumar et al.,
2019, Le Bars et al., 2019, Dong et al., 2019, Maretic and
Frossard, 2020, Dong et al., 2020, Sahbi, 2021, Tugnait,
2021]. Most methods have focused on the development
of energies that yield expressive Laplacian matrices from
graph signals. For example, the Laplacian can be used to
measure the smoothness of a graph signal. Dong et al.
[2016] exploit this to recover network structures that
are smooth in relation to observed signals. Other work
has explored optimization of spectral quantities over
Laplacian matrices [Boyd et al., 2004a, Boyd, 2006].

III. FIRST-ORDER OPTIMIZATION OVER GRAPH
LAPLACIANS

In this section we derive the main algorithms in this
work. We begin in Section III-A with a discussion of the
set of graph Laplacian matrices. We then discuss general
convex programs in section III-B and derive the FW and
MD algorithms for optimization over this set.

A. The Set of Graph Laplacian Matrices

As was mentioned, graphs can be encoded in matrix
form by considering the weighted adjacency matrix or the
graph Laplacian. Since we assume that the weights are
symmetric and the graph is undirected, both A and L are
symmetric. The graph Laplacian is so named because it
acts as the analog of a second order differential operator

on the underlying graph. For geometric graphs, where
the weights are determined according to the Euclidean
distance between points, the Laplacian converges to the
Laplacian operator ∇2 [Hein et al., 2007]. The Laplacian
matrix also allows one to define a notion of smoothness
on a graph. For a vector x = (x1, . . . , xn), which can
be thought of as scalar measurements at each node, the
product Lx takes the form (Lx)i =


j∈Ei

wij(xi −
xj), which is a local average difference. Furthermore, the
quadratic form xTLx measures the Dirichlet energy, or
smoothness of the signal x. It is not hard to show from
this that L must be positive semidefinite.

We can define the set of n × n weighted graph
Laplacian matrices Ln by

Ln = {L ∈ Hn : Lij ≥ 0 for i = j, (III.1)
Lij ≤ 0 for i ∕= j, L1 = 0}

We can parametrize Laplacians in terms of their weighted
adjacency matrix alone as L = diag(A1) − A, a fact
which we will use later in our optimization algorithms.
Finally, we define the set of fixed-trace graph Laplacians
Ln(T ) = {L ∈ Ln : Tr(L) = T} and the set of
Laplacians with fixed degree as Ln(d) = {L ∈ Ln :
diag(L) = d}.

B. Convex Optimization over Laplacians

We consider first-order methods to optimize over
Laplacians. We consider general functions F : Ln → R.
Suppose that we have a Euclidean convex function
F : Rn×n → R (which is convex over Ln since Ln

is a Euclidean convex set). Denote the map π by

π(A) = diag(A1)−A. (III.2)

We have the following lemma, which states that this
function must also be convex over the weighted adja-
cency matrix.

Lemma 1. If F is convex over Ln, then F ◦π is convex
over the set of weighted adjacency matrices.

We now outline our two methods to solve convex
optimization problems over Ln: the FW and MD algo-
rithms.

1) Frank-Wolfe: The FW method maintains feasibil-
ity of the iterates by using the iteration

Lk+1 = (1− ηk)Lk + ηkGk, (III.3)

Gk = arg min
S∈Ln(·)

Tr(∇F (Lk)S). (III.4)
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Here Gk is called a conditional gradient, which is given
by the solution to a certain linear program, and ηk ∈
(0, 1) is the step size. Due to the issues discussed in the
appendix, the FW linear program is well-posed when
the optimization considered is over fixed trace or fixed
degree Laplacian matrices, which is why we write the
optimization problem in (III.4) over Ln(·).

Theorem 2. Let L∗ be a minimizer of a convex F with β-
Lipschitz gradient. If we use the FW iteration to optimize
it over Ln(·), then

F (Lk)− F (L∗) ≤
4βD2

k + ξ
, (III.5)

Furthermore, if F is strongly convex and L∗ does not
lie on the boundary of Ln(·) and line search is used to
select the step size ηk, then

F (Lk)− F (L∗) ≤ exp


−k

α

βD


(F (L0)− F (L∗)),

(III.6)
here 2 is the distance from L∗ to the boundary of Ln(·)
and D is the diameter of Ln(·).

More general linear convergence results can be
proved when L∗ lies on the boundary using other variants
of FW – see the variants discussed in Lacoste-Julien and
Jaggi [2015], which can all be adapted to the Laplacian
case as well. We illustrate this in the following.

At each iteration, one also computes an away step
using the solution to the linear program

max
S∈S

Tr(∇F (Lk)S), (III.7)

where S ⊂ V (Ln(·)) is a subset of the vertices of Ln.
2) Mirror Descent: In the previous section, due

to the ill-posedness of the linear program for general
Laplacians, we had to restrict the FW method to operate
on fixed-trace or fixed-degree problems. However, it may
be the case that one does not know the degree or trace
of the desired Laplacian. To offer an alternative that
can handle variable trace and also achieves different
theoretical guarantees, we consider MD.

We consider mirror descent on the adjacency matrix
through the composition F (L) = F (π(A)). The mirror
map we use is then the off diagonal entropy Φ(A) =
Hod(A). With this choice of mirror map, the MD update
is then defined by

Ak+1 = exp (log(Ak)− η∇F (Ak)) (III.8)
= Ak exp (−η∇F (π(Ak))) .

where it is assumed that the exp and log are applied
elementwise (i.e., they are not the matrix exponential
and logarithm). If MD is applied in the fixed trace case,
the update is given by

Ak+1 = T
Ak ⊙ exp (−η∇F (Ak))

Ak ⊙ exp (−η∇F (Ak)) 1
, (III.9)

where it is assumed that the diagonal remains fixed as 0
throughout the iteration. Similarly, the fixed degree case
can be solved via a Sinkhorn style projection after each
iteration. We note that these iterations are essentially the
extension of exponential weights to the case of weighted
graph adjacency matrices.

We have the following convergence theorem for mir-
ror descent from Bubeck et al. [2015], Radhakrishnan
et al. [2020].

Theorem 3. Let L∗ be the minimizer of a function F
that is convex and has β-Lipschitz gradient with respect
to  · , and let Φ be a mirror map ρ-strongly convex
with respect to  · , for some norm  · . Then,

F (L̄)− F (L∗) ≤
R2β

ρt
. (III.10)

Finally, if F is α-strongly convex and ∇F is β-Lipschitz
with respect to ·, then mirror descent achieves a linear
rate

F (Lk)− F (L∗) ≤ exp


−k

αρ

βL


(F (L0)− F (L∗)).

(III.11)

We remark that this also has an extension to convex
Lipschitz without the assumption of Lipschitz gradient.

We give a summary the proposed methods below.
In the implementation of the Frank-Wolfe algorithm for
the fixed degree case, we note that one must solve an
optimal-transport like linear program at each iteration.
This can either be solved with a standard LP solver,
or approximately solved by Sinkhorn’s algorithm Cu-
turi [2013]. On the other hand, for mirror descent, the
fixed degree case can be explicitly written as a certain
Sinkhorn method applied to the updated adjacency matrix
to reweight the rows and columns to have the correct
degree. This is stated formally in the following lemma.

3) A Comment on Projected Gradient Descent:
Projected gradient descent is a potential method to op-
timize over graph Laplacians as well, and this can be
seen in past works such as Boyd et al. [2004b], Dong
and Sawin [2020]. However, projection onto the set of

3



Set Update Direction
Ln Undefined

Ln(T )
I = argmaxij Cii +Cjj −Cij −Cji

Aij = aij , ij ∈ I, aij ≥ 0
ij Aij = T

Ln(d) argmin A∈Hn
A≥0, diag(A)=0

A1=d

〈A,−C〉

TABLE I
FRANK-WOLFE ALGORITHMS.

Set Update
Ln Ak+1 = Ak ⊙ exp (−η∇F (Ak))

Ln(T ) Ak+1 = T
Ak⊙exp(−η∇F (Ak))

Ak⊙exp(−η∇F (Ak))1
Ln(d) Sinkhorn((Ak ⊙ exp (−η∇F (Ak))),d)

TABLE II
MIRROR DESCENT ALGORITHMS.

Laplacians for general norms does not have a closed form
solution. In fact, only projection with respect to the 1-
norm has a closed form [Sato, 2019]. To project with
respect to the Frobenius norm, one must either result to
solving a complicated quadratic program or use other
approximations.

IV. APPLICATIONS AND EXPERIMENTS

We now consider applications of our developed al-
gorithms. In Section IV-A, we consider solving the
Euclidean projection onto the set of Laplacian matrices
using FW and MD. Then, in Section IV-B, we consider
recovery of a Laplacian matrix from reduced measure-
ments, which arises in the context of compressed sensing.
All experiments are run on a 2020 Macbook Pro with a
2 GHz Quad-Core Intel Core i5 CPU and 16 GB RAM.

A. Laplacian Projection

Suppose that we have a matrix S ∈ Rn×n that we
wish to project to the space of graph Laplacians. The
following convex program can be solved for this task:

min
L∈Ln

S −L, (IV.1)

where  ·  is some choice of norm. Having such a
projection is essential for the implementation of projected
gradient methods such as those in Boyd et al. [2004b],
Dong and Sawin [2020]. We could in theory use out of
the box convex solvers for this problem. For example,
if the norm chosen is the Frobenius norm, then (IV.1)
a quadratic program, but these are expensive to solve
in general. On the other hand, first order methods like

FW take O(n2) per iteration, and they converge linearly
in certain cases, and so to achieve error  they take
O(n2 log(1/) complexity in this best case.

We show an example in Figure 6 where we use the
MD and FW algorithms to solve a Laplacian projection
problem with respect to the Frobenius norm. A Laplacian
drawn from the stocastic block model is perturbed by
small Gaussian noise, and we then try to project it back
to the set of Laplacians. We see that MD converges
extremely quickly to the projected matrix.

B. Synthetic Experiments: Laplacian Recovery

We now discuss the recovery of an underlying graph
Laplacian matrix L from quadratic observations. Solving
the structured matrix recovery problem has been present
in many past works. We consider observations (ai, yi),
where

A(L)i = yi = aT
i Lai, i = 1, . . . , n. (IV.2)

Two natural questions arise based on this sensing model:
how many measurements are needed to specify L with
high probability? What efficient optimization methods
exist to recover L? In this paper we focus on the latter
question.

We consider two convex optimization programs for
recovering L. The first functional is standard least
squares following Chen et al. [2015], Cai and Zhang
[2015]

min
M∈Ln

1

m

n

i=1

(yi − aT
i Mai)

2 =: FLS(M). (IV.3)

The second is the functional inspired by the Bures-
Wasserstein metric [Maunu et al., 2023],

min
M∈Ln

n

i=1

(
√
yi −


aT
i Mai)

2 =: FBW (M). (IV.4)

Under certain conditions, we expect these functions to be
strongly convex [Chen et al., 2015, Maunu et al., 2023].
Furthermore, if the underlying matrix does not lie on the
boundary of Ln(·), we expect linear convergence. We
observe this to be the case in Figures 1 and 2.

C. Real Data Experiments

Here we test out our algorithm on real data. We con-
sider a similar experiment to that in Dong et al. [2016],
where we take daily temperature at various locations on
the east coast for the years of 2006-2020 [NCEI, 2020].
At the twenty cities, we observe an average temperature
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Fig. 1. Convergence on recovery problem in sublinear and linear
convergence settings with least squares cost (IV.3) (depending on if
the optimal point lies on the boundary). Here, the graph size 10, 20,
30, 40, 50. The darker shade corresponds to a larger graph.

Fig. 2. Convergence on a recovery problem in sublinear and linear
convergence setting (depending on it the optimal point lies on the
boundary) with the Bures-Wasserstein cost (IV.4). Here, the graph size
10, 20, 30, 40, 50. The darker shade corresponds to a larger graph.

each day. We denote the vector of temperatures on the
tth day as xt, for t = 1, . . . , 365. In Figure 3 we display
the temperatures by day.

Fig. 3. Caption

In the first experiment, we seek to learn a graph such
that the signals xt are smooth. This is accomplished with
an energy

min
M∈Ln(20)

T

t=1

(x⊤
t Mxt − 0.05)2 (IV.5)

In the second experiment, we incorporate a temporal
aspect. One can write a graph notion of diffusion with

Fig. 4. Recovery with the smoothness energy (IV.5).

Fig. 5. Recovery with the diffusion energy (IV.8). Points are embedded
with a two-dimensional Laplacian eigenmap.

the differential equation [Thanou et al., 2017]

dx

dt
= −cLx, (IV.6)

where L is a graph Laplacian and x is the time depen-
dent graph signal. In our dataset, we observe discrete
derivatives

dx

dt


t=s

≈ xs+1 − xs, (IV.7)

and we try to solve the optimization problem

min
A∈Ln(20)

T−1

t=1

xt+1 − xt +Axt2 (IV.8)

The results of these two energies are displayed in Figures
4 and 5.

V. CONCLUSIONS

In this paper, we have presented some new algorithms
for solving optimization problems over the set of graph
Laplacian matrices. In particular, we have derived Frank-
Wolfe and mirror descent algorithms for general costs.
These algorithms are easily implementable, and we note
that to our knowledge these are the first implementations
of them on graph Laplacians. Our simulations verify our
theory and point to settings where the methods converge
both linearly and sublinearly.
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APPENDIX

A. Supplementary Proofs

1) Refresher on Euclidean Optimization: Suppose
that we wish to solve

min
x∈C

f(x), (A.1)

where C is a subset of Rd. Two popular methods to solve
this problem in practice are the Frank-Wolfe method and
the mirror descent method. In both cases, one relies on
an efficiently implementable update.

2) Frank-Wolfe Method: The Frank-Wolfe, or condi-
tional gradient descent method, over a Euclidean space,
maintains feasibility by solving a linear program at each
iteration. In particular, Frank-Wolfe iterates by solving

xk+1 = (1− ηk)xk + ηkgk, (A.2)
gk = argmin

g∈C

〈g,∇f(xk)〉. (A.3)

Here, if gk = ∇f(xk). then we refer to the method as
the Frank-Wolfe (FW) algorithm. On the other hand, if
one uses a stochastic approximation to the gradient for
gk, as is common in modern optimization, we refer to the
method as the Stochastic Frank-Wolfe (SFW) algorithm.

We have the following standard rate of convergence.
For a proof, see Guélat and Marcotte [1986].

Theorem 4. Suppose that f is convex and has β-
Lipschitz gradient and ηk = 2

2+k . Then,

f(xk)− f(x∗) ≤
L

k + ξ
, (A.4)

for some constant ξ. If it is further assumed that f is
α-strongly convex and x∗ is the in the relative interior
of C, then xk converges linearly to x∗.

Notice that even in the strongly convex case, if the
optimal point lies on the boundary, then convergence is
slow. To address this, Wolfe [1970] introduced the away
step variant of Frank-Wolfe, which uses an active set
of vertices to help the method move in directions that
are less parallel to the boundary (i.e., it deals with the
zig-zagging phenomenon). In Lacoste-Julien and Jaggi
[2015], the authors study this and some other variants
of Franke-Wolfe and prove linear convergence in the
strongly convex setting.

In the stochastic setting, one must use other strategies
to ensure convergence. Another popular idea involves

average the gradient at each iteration before solving the
linear program Zhang et al. [2020]:

gt = (1− ηt)(gt−1 + ∆̃t) + ηt∇f̃(xt), (A.5)

where ∇f̃(xt) is the stochastic approximation to the
gradient of f and ∆̃t is an unbiased estimator of
∇f(xt)−∇f(xt−1). These methods typically converge
at a 1/

√
t sublinear rate in the convex setting and a 1/t

sublinear rate in the strongly convex setting.
3) Mirror Descent: Over Euclidean space, given a

strictly convex function Φ, the Bregman divergence is
given by

DΦ(x, y) = Φ(x)− Φ(y)− 〈∇Φ(y), x− y〉. (A.6)

By convexity, DΦ ≥ 0.
The mirror descent (MD) iteration [Beck and

Teboulle, 2003] for a function f is

xk+1 = argmin
x∈C

〈η∇f(xk), x−xk〉+DΦ(x, xk). (A.7)

Solving the minimization yields the other familiar MD
iteration

∇Φ(xk+1) = ∇Φ(xk)− η∇f(xk). (A.8)

One popular choice of mirror map is the entropy Φ(x) =
i xi log xi. In this case, the optimization algorithm

over the simplex is the exponential weights algorithm
[Cesa-Bianchi and Lugosi, 2006]. Indeed, it is not hard
to see that

∇Φ(x) = (log xi+1)ni=1, ∇Φ∗(y) = (eyi−1)ni=1 (A.9)

yields the update

xk+1 = exp(log xk − η∇f(xk)) = xk exp(−η∇f(xk))
(A.10)

If the optimization is constrained over the simplex, where
the elements of xk must sum to one, an additional
normalization is considered as xk+1 = xk+1/xk+11.

B. Laplacian Linear Programs

We begin by consider linear programs over graph
Laplacians. This is used as a subroutine in the Frank-
Wolfe algorithm. In its most general form, a linear
program over graph Laplacians would take the form

min
L∈Ln

〈L,C〉. (A.11)

Notice that this can be written as a linear program in the
variable A by

min
diag(A1)−A∈Ln

〈diag(A1)−A,C〉 (A.12)
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≡ min
A∈Hn

A≥0, diag(A)=0

〈diag(A1)−A,C〉

However, this problem may be ill-posed in general
without additional constraints. Therefore, we consider
optimization over fixed trace and fixed degree Laplacian
matrices

min
L∈Ln(T )

〈L,C〉 ≡ min
A∈Hn

A≥0, diag(A)=0
ij Aij=T

〈diag(A1)−A,C〉.

(A.13)
min

L∈Ln(d)
〈L,C〉 ≡ min

A∈Hn

A≥0, diag(A)=0
A1=d

〈diag(A1)−A,C〉.

(A.14)
We also define some regularized surrogate convex pro-
grams using an entropic regularizer. The use of an
entropic regularizer has become popular in linear pro-
gramming to find solutions to problems such as optimal
transport Cuturi [2013]. We define the off-diagonal en-
tropy as

Hod(P ) =


i ∕=j

P ij(logP ij − 1). (A.15)

and consider the surrogate convex programs which add
−λH to the objectives (A.13) and (A.14).

min
A∈Hn

A≥0, diag(A)=0
ij Aij=T

〈diag(A1)−A,C〉 − λHod(A),

(A.16)
min

A∈Hn

A≥0, diag(A)=0
A1=d

〈diag(A1)−A,C〉 − λHod(A).

(A.17)

We collect all of the solutions for the Laplacian
linear programs in Table III. We see that the fixed trace
linear programs have closed form solutions while the
fixed degree linear programs must be solved using other
algorithms. These solutions are derived in the appendix.

1) Results in Table III: We first discuss solutions to
(A.13) and its regularized variant.

Lemma 5. The entropically regularized variant of
(A.13) has solution TA/A1, where

Aij =


ij

exp
 1

2
(Cii +Cjj −Cij)


(A.18)

Furthermore, define the set

I = argmax
ij

Cii +Cjj −Cij −Cji. (A.19)

Formulation Solution

Fixed Trace
Ent. Reg.

Aij =


ij exp


1
2

(Cii +Cjj −Cij)



ij Aij = T

Fixed Trace
I = argmaxij Cii +Cjj −Cij −Cji

Aij = aij , ij ∈ I, aij ≥ 0
ij Aij = T

Fixed Degree
Ent. Reg Sinkhorn [Cuturi, 2013]

Fixed Degree Interior Point Method
No Constraints Ill-posed

TABLE III
SOLUTIONS TO REGULARIZED AND UNREGULARIZED LAPLACIAN

LINEAR PROGRAMS.

The solution to the linear program (A.11) is any matrix
B = TA/A1, where

Aij =


aij , ij ∈ I

0, else.
(A.20)

where aij ≥ 0, with at least one ij ∈ I such that aij > 0.

For the degree constrained case as well as its entrop-
ically regularized variants, we can follow the literature
on optimal transport and derive a Sinkhorn style algo-
rithm to solve an entropically regularized version of this
problem.

In other words, we instead propose to solve the
surrogate problem

min
A1=d
A=AT

〈A,−C〉− Hod(A)+ (diag(A) = 0). (A.21)

Examining the KKT conditions are

Aij = exp


1


(Cij) + f i + gj


, i ∕= j, (A.22)

A1 = d.

which is what one would get if one considered an
entropic regularization of the second version of the linear
program. In any case, we can solve the entropically reg-
ularized Laplacian linear program with fixed degree by
appealing to the Sinkhorn algorithm [Cuturi, 2013]. We
refer to the resulting method as Fixed Degree Laplacian
Sinkhorn.

2) Connection Between Laplacian Linear Programs
and Optimal Transport: In this case, the linear program
is equivalent to

min
A∈Hn

A≥0, diag(A)=0
A1=d

〈diag(A1)−A,C〉
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= 〈diag(d),C〉+ min
A∈Hn

A≥0, diag(A)=0
A1=d

〈A,−C〉. (A.23)

While we could employ various linear programming
techniques to solve this problem.

min
A∈Hn

A≥0, diag(A)=0
A1=d

〈A,−C〉. (A.24)

We recognize this as an optimal transportation problem
with cost matrix −C, symmetric marginals d, with the
additional constraint that the diagonal of the coupling
must be zero.

3) Proof of Lemmas 5:

Proof. The constrained convex optimization program
(A.16) is equivalent to

min
diag(A)=0

1TA1=T
A=AT

〈diag(A1),C〉+〈A,−C〉−Ho(A). (A.25)

To find the solution subject to the trace T constraint, we
will find the KKT conditions. The Lagrangian is

L(A,λ) =〈diag(A1),C〉+ 〈A,−C〉 − Ho(A)

(A.26)

+ λ(


ij

Aij − 1).

Using the symmetry of A, the first-order KKT condition
is

∂

∂Aij
L(A) = Cii +Cjj −Cij −Cji (A.27)

+  log(Aij) +  log(Aji)− 2λ

= 0.

The KKT conditions are therefore

Aij = exp

− 1

2
(Cii +Cjj − 2Cij) + λ


, (A.28)



ij

Aij = T. (A.29)

Therefore, λ is the unique real number number such that
ij Aij = T , or


ij

exp

− 1

2
(Cii +Cjj − 2Cij) + λ


= T. (A.30)

Equivalently, the solution is TA/A1.

We now proceed with the solution to the linear
program (A.13). Examining the linear program, we see
that we can rewrite the problem as

min
i ∕=j Aij=T

Aij≥0



ij

Aij(Cii +Cjj − 2Cij). (A.31)

This linear program has a well-known solution (see, for
example, Exercise 4.8 in Boyd et al. [2004a]).

We note that taking  → 0 in the solution to the
entropically regularized LP, we see that A becomes a
matrix supported on the entries ij ∈ I, where I is defined
by (A.19) and all of the aij are equal.

4) Proof of Lemma 1: Therefore, the path between
these parametrizations is really just the Euclidean path
in Sn

+. In particular, this means that if F is convex as a
function of L, F is convex as a function of diag(A1)−
A, or F ◦ π is convex. Indeed, letting L(t) = (1 −
t)L+ tL′ be a path over Laplacians, we see that L(t) =
π(A(t)), where A(t) = (1− t)A+ tA′. The derivatives
also match

∂tF (L(t)) = 〈∇F (L(t)),L′(t)〉 (A.32)
= 〈∇F (π(A(t))),L′ −L〉
= 〈∇F (π(A(t))), diag((A′ −A)1)− (A′ −A)〉
= 〈∇F (π(A(t))), ∂tπ(A(t))〉
= ∂tF (π(A(t))).

C. Other Properties of Graph Laplacians

In practice, nodes with large degree may have undue
influence on the spectral properties of the graph Lapla-
cian. Therefore, it is useful to also consider normalized
versions of the graph Laplacian. In particular, the sym-
metric normalized graph Laplacian is given by

L = D−1/2(D −A)D−1/2 = I −D−1/2AD−1/2.
(A.33)

Alternative normalizations include the left and right nor-
malized graph Laplacians, which are D−1L and LD−1,
respectively.

D. Less Constraints: Variable Trace Linear Programs

In this section, we discuss in more detail what hap-
pens to linear programs when we do not constrain the
trace or the degree. Suppose we now want to solve the
generalization of (A.11) where the trace T is not fixed.
In this case, the linear program becomes

min
diag(A)=0, Aij≥0

〈diag(A1),C〉+ 〈A,−C〉. (A.34)
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In general, this problem is not well posed. Indeed, writing
this linear program in the equivalent form

min
Aij≥0, i ∕=j



ij

Aij(Cii +Cjj − 2Cij), (A.35)

the solution is either 0 or −∞ depending on the signs of
the adjoint operator A(C). Furthermore, the entropically
regularized program becomes

min
diag(A)=0

〈diag(A1),C〉+ 〈A,−C〉− Ho(A) (A.36)

Notice that this is now an unconstrained minimization
problem. The solution is given by

Aij = exp

− 1

2
(Gii +Gjj − 2Gij)


, (A.37)

Again taking  → 0, we see that all elements ij such
that Gii+Gjj − 2Gij < 0 blow up, and so the solution
to the original LP is again 0 or −∞. We note that the
original LP is equivalent to

min
T,L∈Ln(T )

〈L,C〉. (A.38)

We could consider adding a Laplacian trace regular-
ization term, which would yield the augmented linear
program

min
diag(A)=0, Aij≥0

〈diag(A1),C〉+〈A,−C〉−λ


ij

Aij .

(A.39)
and the entropically regularized program

min
diag(A)=0

〈diag(A1),C〉+〈A,−C〉−Ho(A)−λ


ij

Aij .

(A.40)
The entropically regularized program has solution

Aij = exp

− 1

2
(Cii +Cjj − 2Cij) + λ


, (A.41)

E. Fixed Degree and Sinkhorn

As we mention previously, suppose that we fix the
degree of the nodes in the vector d. In this case, we
must solve the linear program

min
A∈Hn

A≥0, diag(A)=0
A1=d

〈A,−C〉. (A.42)

To enforce diag(A) = 0, we can set the diagonal of C
to be −∞. Furthermore, if we know the sparsity pattern
of A, then we can set the corresponding entries of C to
be −∞ as well.

Let us consider the most constrained case then of
fixed degree d and fixed sparsity pattern given by an
edge set E.

min
A∈Hn
A≥0,
A1=d

〈A,C ′〉. (A.43)

where

C ′
ij =


∞, i = j or ij ∕∈ E,

−Cij , else.
(A.44)

We could try to approximately solve this using
Sinkhorn’s algorithm.

Alternatively, in the fixed degree case, it is straight-
forward to show that the entropic mirror descent updates
take the form of an exponential reweighting step followed
by a Sinkhorn projection.

F. Extra Figures

Fig. 6. Convergence for projection of a noisy 1000×1000 Laplacian.
The convex solver in CVXPY failed to converge on a personal machine.
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