
VAST: Value Function Factorization with
Variable Agent Sub-Teams

Thomy Phan1 Fabian Ritz1 Lenz Belzner2

Philipp Altmann1 Thomas Gabor1 Claudia Linnhoff-Popien1

1LMU Munich
2Technische Hochschule Ingolstadt

thomy.phan@ifi.lmu.de

Abstract

Value function factorization (VFF) is a popular approach to cooperative multi-
agent reinforcement learning in order to learn local value functions from global
rewards. However, state-of-the-art VFF is limited to a handful of agents in most
domains. We hypothesize that this is due to the flat factorization scheme, where
the VFF operator becomes a performance bottleneck with an increasing number of
agents. Therefore, we propose VFF with variable agent sub-teams (VAST). VAST
approximates a factorization for sub-teams which can be defined in an arbitrary
way and vary over time, e.g., to adapt to different situations. The sub-team values
are then linearly decomposed for all sub-team members. Thus, VAST can learn on
a more focused and compact input representation of the original VFF operator. We
evaluate VAST in three multi-agent domains and show that VAST can significantly
outperform state-of-the-art VFF, when the number of agents is sufficiently large.

1 Introduction

Many real-world problems can be defined as cooperative multi-agent system (MAS), where multiple
autonomous agents collaborate to achieve a common goal like fleet management [20, 21], industry
4.0 [9, 29, 43], or communication networks [26, 51]. Multi-agent reinforcement learning (MARL)
seems promising to realize such cooperative MAS by learning local policies for each autonomous
agent [3, 27, 37, 40]. Multi-agent credit assignment is an important challenge, where all agents only
observe a single global reward, which makes the deduction of individual agent contributions difficult,
especially in large MAS with many agents. This can lead to poor policies, since it is unclear which
agent policy needs to adapt to what extent in order to improve global MAS behavior [6, 10, 39].

Value function factorization (VFF) via end-to-end deep learning is a popular approach to MARL in
order to address the credit assignment problem [31, 32, 36, 39, 44]. A centralized value function is
learned from global rewards and factorized into local value functions, which can be used to realize
coordinated local policies via multi-armed bandits [32, 40] or local actor-critic learning [30, 38, 45].

Despite the popularity of VFF, most approaches have been only evaluated in domains with a handful
of agents. We hypothesize that this is due to the flat factorization scheme of current VFF approaches
(Fig. 1a). With an increasing number of agents, the centralized VFF operator becomes a performance
bottleneck, where it gets difficult to provide sufficiently informative training signal for each agent.

To alleviate this performance bottleneck problem, we propose VFF with variable agent sub-teams
(VAST). Instead of directly factorizing a centralized value function for each agent, VAST approximates

35th Conference on Neural Information Processing Systems (NeurIPS 2021).



Agent 1 Agent 2 Agent 3 Agent 4 Agent 5

(a) Flat value function factorization for N = 5 agents

Agent 1 Agent 2 Agent 3 Agent 4 Agent 5

(b) Factorization for K = 2 agent sub-teams

Figure 1: Illustration of different value function factorization schemes using a factorization operator
Ψ. (a) Flat factorization directly based on local values Qi per agent i ∈ D. (b) Proposed factorization
based on K ≤ N = |D| sub-team values QGt,k, which are linearly decomposed into local values Qj
per sub-team member j ∈ Gt,k ⊆ D. Each agent sub-team Gt,k is defined by an assignment strategy
as explained in Section 4.

a factorization for agent sub-teams which can be defined in an arbitrary way and vary over time, e.g.,
to adapt to different situations. The sub-team values are then linearly decomposed for all sub-team
members as illustrated in Fig. 1b. Therefore, VAST can learn on a more focused and compact input
representation of the original VFF operator. Our contributions are as follows:

• We formulate VAST and show that VAST maintains decentralizability like state-of-the-art
VFF given any sub-team assignment and depending on the sub-team based VFF operator.
• We propose a meta-gradient approach to optimize sub-team assignments in order to adapt

and improve VAST. We also briefly discuss alternative sub-team assignment strategies.
• We empirically evaluate different variants of VAST in three multi-agent domains and show

that VAST can significantly outperform flat state-of-the-art VFF approaches by alleviating
the performance bottleneck problem, when the number of agents is sufficiently large.

2 Background

We model cooperative MAS as partially observable Markov game M = 〈D,S,A,P,R,Z,Ω〉,
where D = {1, ..., N} is a set of agents i, S is a set of states st at time step t, A = 〈Ai〉i∈D is
the set of joint actions at = 〈at,i〉i∈D = 〈at,1, ..., at,N 〉, P(st+1|st, at) is the transition probability,
rt = R(st, at) ∈ R is the global reward, Z is a set of local observations zt,i for each agent i, and
Ω(st, at) = zt+1 = 〈zt+1,i〉i∈D ∈ ZN is the subsequent joint observation. Each agent i maintains a
local history τt,i ∈ (Z×Ai)t and τt = 〈τt,i〉i∈D is the joint history. π(at|τt) =

∏
i∈D πi(at,i|τt,i) is

the (joint) action probability of joint policy π, where πi is the local policy of agent i. π can be evaluated
with a value function Qπ(st, at) = Eπ[Rt|st, at],∀st ∈ S,∀at ∈ A, where Rt =

∑∞
c=0 γ

crt+c
is the return with γ ∈ [0, 1). The goal is to find an optimal joint policy π∗ = 〈π∗i 〉i∈D with
Qπ
∗

= Q∗ = maxπQ
π . If Q∗ is known, then π∗ can be obtained by greedily maximizing Q∗.

Note: Expressions of the form 〈ei〉i∈I denote unordered sets, where ei is mapped to exactly one
identifier (e.g., an agent) i ∈ I. Thus, we implicitly assume the order of agents to be irrelevant.

2.1 Independent Learning of Value Functions

Q∗ can be approximated independently by each agent i ∈ D using naive decentralized MARL on at,i
and τt,i [10, 18, 40]. These local approximations Qi ∼ Q∗ can be used to realize local polices πi
for each agent i by using, e.g., multi-armed bandits on Qi [32, 40] or actor-critic learning with Qi
as critic [10]. Independent Learning (IL) offers optimal scalability w.r.t. N but violates the Markov
assumption due to non-stationarity caused by simultaneously learning agents [17, 36].

2



2.2 Value Function Factorization

For many problems, training usually takes place in a laboratory or in a simulated environment, where
global information is available. State-of-the-art MARL exploits this fact to approximate a centralized
value function Qtot ∼ Q∗, which conditions on joint histories τt and joint actions at (and optionally
on global states st). However, Qtot is only required during training in order to realize local policies
πi, which can be used in a decentralized way because they only condition on the local history τt,i.
This paradigm is known as centralized training and decentralized execution (CTDE) [10, 32, 36].

Qtot can be factorized into local value functions 〈Qi〉i∈D via a VFF operator Ψ as shown in Fig. 1a:

Qtot(τt, at) = Ψ(Q1(τt,1, at,1), ..., QN (τt,N , at,N )) (1)

In practice, Ψ is realized with deep neural networks, such that 〈Qi〉i∈D can be learned end-to-end via
backpropagation by minimizing the mean squared TD(λ) (temporal difference) error [32, 36, 39]. A
VFF operator Ψ is decentralizable when satisfying the IGM (Individual-Global-Max) such that [36]:

argmaxat∈AQtot(τt, at) = 〈argmaxat,i∈AiQi(τt,i, at,i)〉i∈D (2)

VDN (Value Decomposition Networks) [39] formulates ΨVDN as linear sum such that
Qtot(τt, at) = ΨVDN(·) =

∑
i∈D Qi(τt,i, at,i), which satisfies the IGM for Qtot and 〈Qi〉i∈D [36].

QMIX [32] formulates ΨQMIX as a nonlinear monotonic combination of 〈Qi〉i∈D with a mixing
network. The mixing network is generated by hypernetworks [12] and has nonnegative weights
to satisfy the monotonicity condition δQtot

δQi
≥ 0,∀i ∈ D to maintain consistency w.r.t. the IGM

[32, 36]. Weighted QMIX further improves QMIX by weighting the transition losses w.r.t. over- and
underestimation of Qtot [31]

QTRAN [36] avoids the additivity and monotonicity constraints of VDN and QMIX respectively
by formulating the more general ΨQTRAN, which aims to satisfy∑

i∈D
Qi(τt,i, at,i)−Qtot(τt,at) + Vtot(τt) =

{
= 0,at = at
≥ 0,at 6= at

(3)

where at = 〈at,i〉i∈D = 〈at,1, ..., at,N 〉 with at,i = argmaxat,i∈AiQi(τt,i, at,i) and Vtot(τt) =

maxat∈AQtot(τt, at)−
∑
i∈D Qi(τt,i, at,i), in order to be consistent w.r.t. the IGM.

3 Related Work

MARL is a long-standing research area with rapid progress towards complex domains [3, 11, 40, 42].
Most state-of-the-art approaches are based on CTDE to learn Qtot for actor-critic learning [10, 22] or
VFF [31, 32, 36, 39, 44]. VFF approaches like VDN, QMIX, and QTRAN use a flat factorization
scheme, where Qtot is directly factorized into 〈Qi〉i∈D as illustrated in Fig. 1a. We introduce a
hierarchical VFF approach based on agent sub-teams which can vary over time, e.g., to adapt to
different situations. With that, we can improve performance in large MAS, where flat VFF approaches
could fail due to Ψ becoming a performance bottleneck.

Prior work on hierarchical MARL has mainly focused on temporal abstraction, where the MAS
attempts to solve tasks based on temporal subgoals or roles [24, 49]. We focus on VFF applied to
agent sub-teams, which can be regarded as an abstraction of agents. These abstractions or sub-teams
can vary over time, depending on the sub-team assignment strategy which may be chosen arbitrarily.

Approaches based on coordination graphs enrich VFF with agent relationship information and focus
on pairwise interactions of agents to learn local value functions [1, 19]. The maximization of Qtot
scales at least quadratically w.r.t. N based on the graph structure. Our approach simplifies VFF via
agent abstraction and maximizes Qtot with linear complexity. The abstraction is based on variable
agent sub-teams, which are not restricted to pairwise interactions.

There is some prior work on sub-team assignments and agent-based hierarchization in MAS: The rela-
tionship between coordination, complexity, and performance depending on predefined organizational
MAS structures was studied in [4, 8, 15, 34, 35]. [20] proposed a contextual MARL framework for

3



fleet management, where the spatial environment is partitioned into fixed cells with locally assigned
rewards and the number of agents per cell can vary over time. [16] proposed an attention-based
mechanism for self-interested MAS to focus on different contextual information per agent in order to
approximate Qi. Mean field MARL was introduced in [50], where Qi is learned based on the mean
field approximation of the joint action of all neighbor agents, where the definition of "neighborhood"
is domain dependent. Different clustering approaches for agents, communication messages, etc.
w.r.t. some similarity criteria have been proposed in [5, 25, 46]. Our approach addresses the per-
formance bottleneck problem of flat VFF approaches. It can be used with any sub-team assignment
strategy like random assignments, clustering, or meta-learning to structure the MAS dynamically
while satisfying the IGM for Qtot and 〈Qi〉i∈D like flat state-of-the-art VFF approaches [32, 36, 39].
Unlike [16, 20, 50], our approach does not depend on predefined local rewards per agent or region but
automatically approximates local value functions Qi from global rewards via sub-team based VFF.

4 Value Function Factorization with Variable Agent Sub-Teams (VAST)

4.1 Variable Agent Sub-Teams

We now introduce VFF with variable agent sub-teams (VAST). Given a sub-team ratio η ∈ [ 1
N ; 1],

VAST divides the set of agents D into K = dηNe ≤ N agent sub-teams Gt,k ∈ Gt of division
Gt = 〈Gt,1, ..., Gt,K〉 at every time step t. Each agent i ∈ D is assigned to exactly one sub-team
Gt,k by a sub-team assignment strategy X with distribution X (k|i, τt,i, st), k ∈ {1, ...,K} such that

Gt,k ⊆ D, Gt,k ∩ Gt,k′ = ∅ if k 6= k′, and D =
K⋃
k=1

Gt,k. Each sub-team Gt,k can be regarded

as temporary agent abstraction which selects sub-team actions aGt,k = 〈at,j〉j∈Gt,k based on all
sub-team members j ∈ Gt,k. The value function QGt,k of Gt,k is computed via ΨVDN on 〈Qj〉j∈Gt,k :

QGt,k(τGt,k, a
G
t,k) = ΨVDN(·) =

∑
j∈Gt,k

Qj(τt,j , at,j) (4)

Algorithm 1 Variable Agent Sub-Teams

1: procedure VAST(M,Ψ,X , η)
2: Initialize parameters of Ψ, X , 〈Qi〉i∈D
3: K ← dηNe
4: for episode x← 1, T do
5: Sample s1, observe z1

6: for time step t do
7: at ∼ π(at|τt)
8: rt, zt+1 ← R(st, at),Ω(st, at)
9: st+1 ∼ P(st+1|st, at)

10: for sub-team k ← 1,K do
11: Gt,k ← {}
12: for agent i ∈ D do
13: k ∼ X (k|i, τt,i, st)
14: Gt,k ← Gt,k ∪ {i}
15: Gt ← 〈Gt,1, ..., Gt,K〉
16: QGt,k(τGt,k, a

G
t,k)← Eq.4,∀Gt,k

17: Update Ψ, 〈Qi〉i∈D with TD(λ)

18: Update X (e.g., Eq. 6) . optional

Despite the simplified approximation ofQGt,k in Eq.
4, ΨVDN has two important advantages over nonlin-
ear variants like ΨQMIX and ΨQTRAN, which would
also satisfy the IGM for QGt,k and 〈Qj〉j∈Gt,k :
First, the sum of ΨVDN has no fixed input dimen-
sion, thus sub-team sizes may vary over time, e.g.,
to adapt to different situations. Second, ΨVDN does
not introduce new tunable hyperparameters, thus
being more efficient to use. Therefore, we defer
nonlinear approximations of QGt,k to future work.

Qtot is approximated from 〈QGt,k〉Gt,k∈Gt using a
VFF operator Ψ according to Eq. 1:

Qtot(τt, at) =

Ψ(QGt,1(τGt,1, a
G
t,1), ..., QGt,K(τGt,K , a

G
t,K)) (5)

where K = dηNe specifies the input dimension
of Ψ. The computation hierarchy of Qtot based on
VAST according to Eq. 4 and 5 is depicted in Fig.
1b. With that hierarchy, 〈Qi〉i∈D can be learned
end-to-end, e.g., via backpropagation by updating
Ψ w.r.t. the mean squared TD(λ) error.

VAST is formulated in Algorithm 1, where M is
the MAS, Ψ is an IGM preserving VFF operator
like ΨVDN, ΨQMIX, or ΨQTRAN as listed in Section
2.2 to approximate Qtot from 〈QGt,k〉Gt,k∈Gt , X is

a sub-team assignment strategy, and η ∈ [ 1
N ; 1] is the sub-team ratio.

4



Table 1: Characteristics of different sub-team assignment strategies X . The worst case complexity
indicates the computational overhead per time step t and agent i, when invoking X (line 13 in
Algorithm 1) or updating X (line 18 in Algorithm 1) if all other parameters (e.g., η) are constant.

Approach Description Worst case
complexity

Domain
knowledge

XRandom Random assignment with X (k|i, τt,i, st) = 1
K

O(1) None
XFixed Fixed assignment with deterministic X O(1) Agent IDs

XSpatial Spatial clustering of agents to specify X O(NC), C > 1
Spatial
information

XMetaGrad Meta-gradient learning of X (k|i, τt,i, st) (Eq. 6) O(N) Optional

η specifies the degree of input space compression of Ψ. The smaller η, the more compact the
input representation of Ψ. In the extreme case of η = 1

N ⇒ K = 1, the factorization reduces to
Qtot(τt, at) = Ψ(ΨVDN(·)) = Ψ(

∑
i∈D Qi(τt,i, at,i)). Larger values of η enable more exploration of

the input space of Ψ but at the cost of more compute, which increases linearly w.r.t. η. Furthermore,
we suggest 1

N < η � 1 for large N to alleviate the original performance bottleneck problem of Ψ.

To show that VAST maintains decentralizability by satisfying the IGM for Qtot and 〈Qi〉i∈D for an
arbitrary sub-team assignment strategy X , we formulate and prove Theorem 1:

Theorem 1. Given a MAS M = 〈D,S,A,P,R,Z,Ω〉 at time step t, where each agent i ∈ D with
local value function Qi is assigned to exactly one sub-team Gt,k ∈ Gt for sub-team based VFF
according to Eq. 4: If the IGM is satisfied for a factorization of the centralized value function Qtot
into sub-team value functions 〈QGt,k〉Gt,k∈Gt via a VFF operator Ψ according to Eq. 5, then the IGM
is also satisfied for Qtot and 〈Qi〉i∈D for each agent i ∈ D = Gt,1 ∪ ... ∪Gt,K .

Proof. The factorization of Qtot into 〈QGt,k〉Gt,k∈Gt via Ψ satisfies the IGM. Thus, the maximization
of all QGt,k maximizes Qtot such that at = 〈aGt,k〉Gt,k∈Gt , where at = argmaxat∈AQtot(τt, at) and
aGt,k = argmaxaGt,k∈〈Ai〉i∈Gt,kQ

G
t,k(τGt,k, a

G
t,k). The factorization of QGt,k into 〈Qi〉i∈Gt,k via ΨVDN

(Eq. 4) also satisfies the IGM such that aGt,k = 〈at,i〉i∈Gt,k , where at,i = argmaxat,i∈AiQi(τt,i, at,i):

at
Ψ
= 〈aGt,k〉Gt,k∈Gt

ΨVDN,Eq.4
= 〈〈at,i〉i∈Gt,k〉Gt,k∈Gt

D=Gt,1∪...∪Gt,K
= 〈at,i〉i∈D

Therefore, the set of greedy local actions of all agents 〈at,i〉i∈D = 〈at,1, ..., at,N 〉 = at maximizes
Qtot for any sub-team assignment according to the IGM in Eq. 2 which is ensured by the whole
hierarchy of VAST as illustrated in Fig. 1b.

4.2 Sub-Team Assignment Strategies

According to Theorem 1, VAST ensures IGM consistency w.r.t. arbitrary sub-team assignments. To
enable adaptation to different situations, the assignment of sub-teams per time step can be regarded
as a decision making problem by using a meta-policy X to select sub-team assignments conditioned
on states and agent information. X can be optimized w.r.t. some meta-objective J to further improve
performance of VAST. J represents a high-level objective like the return Rt as defined in Section 2
or some domain specific goal which can be evaluated in an outer loop, e.g., line 18 in Algorithm 1.

We propose the meta-gradient based assignment strategy or meta-policy XMetaGrad inspired by [48].
XMetaGrad is approximated with parameter vector θ, which is automatically optimized via gradient
ascent on the meta-objective J(θ) w.r.t. to the following estimated gradient:

g = Â(k, i, τt,i, st)∇θlogXMetaGrad(k|i, τt,i, st) (6)

where Â(k, i, τt,i, st) = Q̂(k, i, τt,i, st)− V̂ (i, τt,i, st) is the advantage of k for sub-team Gt,k ∈ Gt
given i, τt,i, and st. Q̂ estimates the (expected) performance when selecting k given i, τt,i, and st.
V̂ represents a baseline function, which can depend on i, τt,i, and st, for variance reduction. The
concrete definitions of Q̂ and V̂ are based on J(θ), which should correlate with the original target of
Qtot and can optionally integrate domain knowledge. In this paper, we estimate Â(k, i, τt,i, st) by

5



1

1

1

1

1

1

3 3

33

3 3
2

2 2

24

4 4

4 4

4

(a) Warehouse[N=16] (layout) (b) Warehouse[N=16] (agents) (c) Battle[N=80]

Figure 2: Illustration of the Warehouse[N] and the Battle[N] domain. (a) Work stations (orange cells)
and drop off locations (cyan cells) in Warehouse[16]. (b) All agents (red circles) need to pick up
orders of 5 items bw ∈ {1, 2, 3, 4} at the work stations and deliver them to the corresponding drop
off locations according to (a) while avoiding stalling and collisions with other agents. (c) An army of
learning agents (cyan circles) has to fight another army of opponent agents (gray triangles).

setting Q̂(k, i, τt,i, st) = Rt to the return and V̂ (i, τt,i, st) =
∑
at,i∈Ai πi(at,i|τt,i)Qi(τt,i, at,i) to

the expected local value of agent i with value function Qi and local policy πi to avoid any additional
domain dependencies. For simplicity, we propose on-policy training of XMetaGrad. Further extensions
to, e.g., off-policy training or enhanced exploration are left for future work.

Table 1 lists some alternative sub-team assignment strategies for comparison: XRandom assigns each
agent to a random sub-team at every time step, while XFixed permanently assigns each agent to a
particular sub-team based on its ID. XSpatial uses spatial information like coordinates to cluster agents
in order to form sub-teams. XMetaGrad optimizes sub-team assignments w.r.t. some meta-objective to
adapt to different situations and to further improve VAST. XSpatial and XMetaGrad introduce additional
computational overhead per time step and agent depending on N .

5 Experimental Setup

5.1 Evaluation Domains

To assess the scalability of VAST in comparison with flat VFF approaches, we focus on domains
that can be easily scaled up to large numbers of agents N . Since common benchmarks like StarCraft
are currently limited to N < 30 agents [33], we defer an evaluation on these benchmarks to future
versions which support significantly more agents.

Warehouse[N] is a grid-world environment inspired by [8, 9, 43] and illustrated in Fig. 2a-b, where
N agents or robots have to pick up randomly generated orders of 5 items bw ∈ {1, 2, 3, 4}, w ∈
{1, ..., 5} at work stations and deliver each item bw to its corresponding drop off location, where the
drop off number according to Fig. 2a matches bw. All agents start at random work stations. After
delivering all items of an order, the agent can return to any work station for a new order. All agents
have a 5× 5 field of view and are able to pick up and drop off their items if possible, move north,
south, west, east, or do nothing. Agents cannot share positions or occupy obstacle cells. Delivered
items and completed orders are rewarded with +1. Collisions with other agents are penalized with
-0.5. At every time step, there is a time penalty of -0.01. An episode ends after 50 time steps.

Battle[N] is a grid-world environment inspired by [52] and illustrated in Fig. 2c, where an army of
N learning agents has to fight another army of N opponent agents, which randomly move towards
and attack all learning agents in sight. Each agent i initially has 3 health points (HPi), which are
recovered by 0.01 at each time step when 0 < HPi < 3. An agent i is dead or killed when HPi = 0.
All agents have a 7 × 7 field of view and are able to move north, south, west, east, do nothing, or
attack one opponent if occupying the same cell, resulting in the attacked opponent’s loss of one health
point. Successful attacks and kills are rewarded with +1. Attacking a cell without any opponent is
penalized with -0.1 and being hit or killed by the opponent is penalized with -0.5. An episode ends
after 100 time steps or when all agents of an army have been killed.

6



(a) Warehouse[4] (b) Battle[20] (c) GaussianSqueeze[200]

Figure 3: Average training progress of VAST with Ψ ∈ {ΨIL,ΨVDN,ΨQMIX,ΨQTRAN}, XMetaGrad, and
η = 1

2 . Shaded areas show the 95% confidence interval. Legend in (a) applies to all plots.

GaussianSqueeze[N] is a single-step multi-agent resource allocation problem introduced in [14],
where N agents have to coordinate their actions at,i ∈ Ai = {0, ..., 9} to find the most efficient

allocation ζ =
∑N
i=1 at,i. The system performance is defined by GS(ζ) = ζe

−(ζ−µ)2

σ2 and µ and σ
are domain dependent parameters, which we set to µ = 400 and σ = 200.

5.2 Learning Algorithms and Training

We implemented IL, QMIX, and QTRAN as baselines. For VAST, we use the notation VAST(Ψ,X , η)
with VFF operator Ψ ∈ {ΨIL,ΨVDN,ΨQMIX,ΨQTRAN} (ΨIL approximatesQGt,k = Qtot independently),
sub-team assignment strategy X ∈ {XRandom,XFixed,XSpatial,XMetaGrad}, and sub-team ratio η ∈
{ 1

4 ,
1
2} (Algorithm 1). We chose 1

4 as minimum value for η because it is the smallest possible value for
Warehouse[4]. Since value-based algorithms are highly sensitive w.r.t. the exploration decay schedule,
we use Qi as critic for local actor-critic learning to realize πi in order to evaluate all approaches on a
common basis [30, 38, 45]. XFixed assigns each agent i to sub-team Gt,k with k = i (mod K) + 1.
XSpatial uses k-means clustering on the agents’ (x, y)-positions in Warehouse[N] and Battle[N] with
K
2 centroids. If not stated otherwise, we assume the following defaults: Ψ = ΨQTRAN, X = XMetaGrad.

We performed 30 training runs for each MARL algorithm and report the domain-specific performance,
i.e., the number of completed orders in Warehouse[N], the kill count in Battle[N] (kills by opponent
agents are counted negatively), and the system performance in GaussianSqueeze[N] respectively.

Further details on the training setup and the experiments are specified in Appendix A.1 and A.2.

6 Results

6.1 Comparison of Value Function Factorization Operators for VAST

We ran VAST with different VFF operators Ψ ∈ {ΨIL,ΨVDN,ΨQMIX,ΨQTRAN}, X = XMetaGrad, and
η = 1

2 in Warehouse[4], Battle[20], and GaussianSqueeze[200]. The results are shown in Fig. 3. All
variants show steady learning progress in all domains. VAST(ΨQTRAN) performs best in Warehouse[4]
and Battle[20]. In GaussianSqueeze[200], all variants perform equally well.

6.2 State-of-the-Art Comparison

We ran VAST with different sub-team ratios η ∈ { 1
4 ,

1
2}, Ψ = ΨQTRAN, and X = XMetaGrad in Ware-

house[4], Battle[20], and GaussianSqueeze[200] as well as in larger instances, i.e., Warehouse[16],
Battle[80], and GaussianSqueeze[800] (medium instances are shown in Appendix A.3.1) to compare
the performance with QMIX, QTRAN, and IL as shown in Fig. 4. In Warehouse[4], QTRAN makes
slightly faster progress than VAST(η = 1

2 ). However in Warehouse[16], both VAST variants out-
perform all baselines, which perform poorly. In Battle[20], both VAST variants slightly outperform
QMIX and QTRAN, but they perform significantly better in Battle[80]. In GaussianSqueeze[200], all
CTDE approaches perform equally well, but both VAST variants clearly outperform all baselines in
GaussianSqueeze[800]. VAST(η = 1

2 ) initially improves faster than VAST(η = 1
4 ) in most domains

but in Warehouse[16] and GaussianSqueeze[800], VAST(η = 1
4 ) surpasses VAST(η = 1

2 ) over time.

7



(a) Warehouse[4] (b) Battle[20] (c) GaussianSqueeze[200]

(d) Warehouse[16] (e) Battle[80] (f) GaussianSqueeze[800]

Figure 4: Average training progress of VAST with η ∈ { 1
4 ,

1
2}, ΨQTRAN, and XMetaGrad as well as

QMIX, QTRAN, and IL. Shaded areas show the 95% confidence interval. Legend in (a) applies to all
plots. The full results of the state-of-the-art comparison are shown in Fig. 8 in Appendix A.3.1.

6.3 Comparison of Sub-Team Assignment Strategies for VAST

We ran VAST with different X ∈ {XRandom,XFixed,XSpatial,XMetaGrad}, Ψ = ΨQTRAN, and η = 1
4

in Warehouse[16], Battle[80], and GaussianSqueeze[800] to compare the performance with the
respective best baselines from Fig. 4 in Section 6.2. XSpatial was not tested in GaussianSqueeze[800],
due to the lack of spatial information. The results are shown in Fig. 5. VAST(XMetaGrad) performs best
in all domains. In Battle[80], VAST(XFixed) is competitive to VAST(XMetaGrad) while VAST(XRandom)
and VAST(XSpatial) are competitive to the best baseline. In Warehouse[16] and GaussianSqueeze[800],
all VAST variants clearly outperform the respective best baselines.

We further examined the generated sub-teams of XMetaGrad and XSpatial at different stages in Battle[80]
by visualizing all agents of the same sub-team with the same color in Fig. 6. In the early stage (Fig.
6a), XMetaGrad generates a cyan sub-team for agents that are rather far away from the opponent army
and a red sub-team which is rather close to it (with some prediction noise). In the middle stage (Fig.
6b), a yellow sub-team emerges, when both armies clash, which disappears later (Fig 6c), when
the opponent army is significantly decimated, thus reverting back to the cyan and red sub-teams
depending on the agent positions. XSpatial simply groups agents according to their spatial distances to
each other with no obvious relation to the danger of the current situation as shown in Fig. 6d-f.

Since the opponent army follows an offensive strategy, most learned policies adopted a defensive
strategy, where all agents group and defend themselves together like in Fig. 6. However, in some
cases, VAST learned a "splitting" strategy, where the army splits into a fleeing part to reduce overall
deaths and an offensive part that clashes with the opponent army to increase the kill count as shown
in Fig. 2c. The generated sub-teams of the splitting strategy are shown in Fig. 10 in Appendix A.3.3.

Although η = 1
4 would theoretically enable XMetaGrad to assign agents to K = 20 different sub-teams,

only a few sub-teams are actually active or non-empty as indicated in Fig. 6a-c and Fig. 10a-c in
Appendix A.3.3. XMetaGrad learns to focus on particular sub-teams in specific situations, thus only
activates certain sub-teams to adapt on demand, e.g., as indicated by the yellow sub-team in Fig. 6b.

7 Discussion

We proposed VAST to approximate value function factorizations for agent sub-teams which can be
defined in an arbitrary way and vary over time, e.g., to adapt to different situations. The sub-team
values are then linearly decomposed for all sub-team members. VAST learns on a more focused

8



(a) Warehouse[16] (b) Battle[80] (c) GaussianSqueeze[800]

Figure 5: Average training progress of VAST with X ∈ {XRandom,XFixed,XSpatial,XMetaGrad}, ΨQTRAN,
and η = 1

4 as well as the respective best baselines from Fig. 4 in Section 6.2. Shaded areas show the
95% confidence interval. Legend in (a) applies to all plots.

and compact input representation of the original VFF operator, thus being able to better address the
multi-agent credit assignment problem in larger MAS than flat state-of-the-art VFF approaches.

Our experiments show that VAST is able to learn with different VFF operators Ψ to improve
performance in domains, where flat VFF approaches could fail to learn meaningful factorizations.
This is clearly shown for QTRAN and VAST(ΨQTRAN) in the large MAS instances Warehouse[16],
Battle[80], and GaussianSqueeze[800] in Fig. 4d-f, where VAST(ΨQTRAN) significantly outperforms
QTRAN. The poor scalability of QTRAN confirms the findings of previous works [23, 31, 44] and
shows that VAST is an effective approach to significantly improve scalability. The difference between
IL and VAST(ΨIL) can already be seen in the small MAS instances Warehouse[4], Battle[20] and
GaussianSqueeze[200], where IL lacks stability in Fig. 4a-c, while VAST(ΨIL) improves steadily in
these domains as shown in Fig. 3a-c. VAST can significantly outperform flat state-of-the-art VFF
approaches like QMIX and QTRAN by alleviating the performance bottleneck problem, when the
number of agents is sufficiently large as shown in Fig. 4d-f and Fig. 5.

VAST achieves competitive or superior performance with arbitrary sub-team assignment strategies
X as shown in Fig. 5, which is supported by Theorem 1. XMetaGrad is an adaptive approach,
which optimizes sub-team assignments to further improve VAST. In Battle[80], XMetaGrad is able to
meaningfully structure the MAS according to different situations, which might be more beneficial
for VAST than just relying on simple domain dependent features like agent IDs [2, 10] or spatial
positions [20, 50] as shown in Fig. 6 and 10 in Appendix A.3.3. However, XMetaGrad introduces
additional computational overhead, which scales linearly per agent w.r.t. N as stated in Table 1.
Furthermore, the learning quality strongly depends on the meta-objective definition of XMetaGrad [48].

In Fig. 4d and Fig. 4f, VAST(η = 1
2 ) itself suffers from the performance bottleneck (but to a much

lesser extent than flat VFF), where VAST(η = 1
4 ) improves more stably and surpasses VAST(η = 1

2 )
over time. However, VAST(η = 1

2 ) is superior in Battle[80] and performs better in the early training
stages in Warehouse[16]. In Fig. 9 in Appendix A.3.2, this is indicated by more exploration through
a higher sub-team division diversity. Due to the potential performance bottleneck of Ψ and the
computational scaling w.r.t. η, we recommend VAST for large MAS with 1

N < η � 1 for high
efficiency and performance. A self-tuning mechanism for η would be interesting for future work.

The linear approximation of sub-team values ensures flexibility w.r.t. sub-teams and makes additional
hierarchization of sub-teams obsolete, due to the associative property of additions (e.g., (a+ b) + (c+
d) = a+b+c+d). However, this might be too restrictive for some domains. Using nonlinear variants
like recurrent neural networks [7, 13] or transformers [28, 41] could further improve flexibility and
performance but requires more compute and yields higher complexity due to more hyperparameters.
Thus, we defer an investigation on more flexible VAST schemes to future work.

8 Potential Negative Societal Impacts

The goal of our work is to realize autonomous systems to solve complex tasks at large scale in a
distributed way as motivated in Section 1. To focus completely on the potential effects of our work,
we refer to [47] for a general overview regarding societal implications of deep reinforcement learning.

9



(a) early, XMetaGrad (b) middle, XMetaGrad (c) late, XMetaGrad

(d) early, XSpatial (e) middle, XSpatial (f) late, XSpatial

Figure 6: Visualizations of the generated sub-teams of XMetaGrad with η = 1
4 and XSpatial with k-means

clustering using 10 centroids at different stages (early, middle, late) in Battle[80] after training. All
learning agents (round circles) of the same sub-team have the same color.

VAST is a CTDE approach with a centralized training regime to realize decentralized policies. These
policies have a common objective which might include bias of a central authority and can cause
harm to opposing parties, e.g., via discrimination or misleading information. Since we assume VAST
to be trained in a laboratory or in a simulation, the trained system might exhibit unsafe behavior
when being deployed into the real world due to poor generalization, e.g., by causing traffic accidents.
Depending on the choice of Ψ, X , and η, some computational overhead is added to the original VFF
approach, which can be significant when scaling up. The generated sub-teams can potentially be used
to evaluate and categorize living beings w.r.t. some assignment strategy X and objective as shown in
Fig. 6 and 10 in Appendix A.3.3, which could lead to misuse or discrimination of particular groups.

As experimentally shown in the Battle[N] domain, VAST can be misused for real combat, e.g., in
autonomous weapon systems to realize coordinated and distributed strategies as demonstrated in
Fig. 6 and 10 in Appendix A.3.3. MAS trained with VAST can be assumed to be resilient w.r.t.
single agent failures (e.g., agent deaths in Battle[N]), which can make human intervention (e.g.,
shutting down the MAS by disabling single agents) difficult. Behavioral changes of single agents
due to updates, failures, or malicious attacks could lead to unexpected emergent effects like adaptive
sub-team reorganizations, which can cause, e.g., traffic jams, outages of critical infrastructure, or
directly harm to others, depending on the quality of the learned policies and the common objective.

Acknowledgments and Funding Disclosure

We thank the members of the Mobile and Distributed Systems Group at LMU Munich. This project
has received funding from the Bavarian Ministry of Economic Affairs, Regional Development, and
Energy under the project "Innovationszentrum Mobiles Internet".

10



References
[1] Wendelin Boehmer, Vitaly Kurin, and Shimon Whiteson. Deep Coordination Graphs. In

Hal Daumé III and Aarti Singh, editors, Proceedings of the 37th International Conference on
Machine Learning, volume 119 of Proceedings of Machine Learning Research, pages 980–991.
PMLR, 13–18 Jul 2020.

[2] Craig Boutilier. Planning, Learning and Coordination in Multiagent Decision Processes. In
Proceedings of the 6th conference on Theoretical aspects of rationality and knowledge, pages
195–210. Morgan Kaufmann Publishers Inc., 1996.

[3] Lucian Buşoniu, Robert Babuška, and Bart De Schutter. Multi-Agent Reinforcement Learning:
An Overview. In Innovations in Multi-Agent Systems and Applications-1, pages 183–221.
Springer, 2010.

[4] Kathleen M Carley and Les Gasser. Computational Organization Theory. Multiagent Systems:
A Modern Approach to Distributed Artificial Intelligence, pages 299–330, 1999.

[5] Santhana Chaimontree, Katie Atkinson, and Frans Coenen. A Framework for Multi-Agent
Based Clustering. Autonomous Agents and Multi-Agent Systems, 25(3):425–446, 2012.

[6] Yu-han Chang, Tracey Ho, and Leslie Kaelbling. All Learning is Local: Multi-Agent Learning
in Global Reward Games. Advances in Neural Information Processing Systems, 16:807–814,
2003.

[7] Kyunghyun Cho, Bart van Merriënboer, Dzmitry Bahdanau, and Yoshua Bengio. On the
Properties of Neural Machine Translation: Encoder-Decoder Approaches. In Proceedings of
SSST-8, Eighth Workshop on Syntax, Semantics and Structure in Statistical Translation, pages
103–111, 2014.

[8] Jen Jen Chung, Damjan Miklić, Lorenzo Sabattini, Kagan Tumer, and Roland Siegwart. The
Impact of Agent Definitions and Interactions on Multiagent Learning for Coordination. In
Proceedings of the 18th International Conference on Autonomous Agents and Multiagent
Systems, AAMAS ’19, page 1752–1760, Richland, SC, 2019. International Foundation for
Autonomous Agents and Multiagent Systems.

[9] Daniel Claes, Frans Oliehoek, Hendrik Baier, and Karl Tuyls. Decentralised Online Planning for
Multi-Robot Warehouse Commissioning. In Proceedings of the 16th Conference on Autonomous
Agents and Multiagent Systems, AAMAS ’17, page 492–500, Richland, SC, 2017. International
Foundation for Autonomous Agents and Multiagent Systems.

[10] Jakob Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and Shimon Whiteson.
Counterfactual Multi-Agent Policy Gradients. Proceedings of the AAAI Conference on Artificial
Intelligence, 32(1), Apr. 2018.

[11] Jayesh K Gupta, Maxim Egorov, and Mykel Kochenderfer. Cooperative Multi-Agent Control
using Deep Reinforcement Learning. In Autonomous Agents and Multiagent Systems, pages
66–83. Springer, 2017.

[12] David Ha, Andrew Dai, and Quoc V Le. Hypernetworks. In International Conference on
Learning Representations, 2017.

[13] Sepp Hochreiter and Jürgen Schmidhuber. Long Short-Term Memory. Neural Computation,
9(8):1735–1780, 1997.

[14] Chris HolmesParker, M Taylor, Yusen Zhan, and Kagan Tumer. Exploiting Structure and
Agent-Centric Rewards to Promote Coordination in Large Multiagent Systems. In Adaptive and
Learning Agents Workshop, 2014.

[15] Bryan Horling and Victor Lesser. A Survey of Multi-Agent Organizational Paradigms. The
Knowledge Engineering Review, 19(4):281–316, 2004.

11



[16] Shariq Iqbal and Fei Sha. Actor-Attention-Critic for Multi-Agent Reinforcement Learning. In
Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the 36th International
Conference on Machine Learning, volume 97 of Proceedings of Machine Learning Research,
pages 2961–2970, Long Beach, California, USA, 09–15 Jun 2019. PMLR.

[17] Guillaume J Laurent, Laëtitia Matignon, Le Fort-Piat, et al. The World of Independent Learners
is not Markovian. International Journal of Knowledge-based and Intelligent Engineering
Systems, 15(1):55–64, 2011.

[18] Joel Z Leibo, Vinicius Zambaldi, Marc Lanctot, Janusz Marecki, and Thore Graepel. Multi-
Agent Reinforcement Learning in Sequential Social Dilemmas. In Proceedings of the 16th
Conference on Autonomous Agents and Multiagent Systems, AAMAS ’17, page 464–473,
Richland, SC, 2017. International Foundation for Autonomous Agents and Multiagent Systems.

[19] Sheng Li, Jayesh K Gupta, Peter Morales, Ross Allen, and Mykel J Kochenderfer. Deep Implicit
Coordination Graphs for Multi-Agent Reinforcement Learning. In Proceedings of the 20th
International Conference on Autonomous Agents and Multiagent Systems, AAMAS ’21, page
764–772, Richland, SC, 2021. International Foundation for Autonomous Agents and Multiagent
Systems.

[20] Kaixiang Lin, Renyu Zhao, Zhe Xu, and Jiayu Zhou. Efficient Large-Scale Fleet Management
via Multi-Agent Deep Reinforcement Learning. In Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, KDD ’18, page 1774–1783,
New York, NY, USA, 2018. Association for Computing Machinery.

[21] Jiajing Ling, Tarun Gupta, and Akshat Kumar. Reinforcement Learning for Zone Based
Multiagent Pathfinding under Uncertainty. Proceedings of the International Conference on
Automated Planning and Scheduling, 30(1):551–559, Jun. 2020.

[22] Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, Pieter Abbeel, and Igor Mordatch. Multi-Agent
Actor-Critic for Mixed Cooperative-Competitive Environments. In I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural
Information Processing Systems, volume 30. Curran Associates, Inc., 2017.

[23] Anuj Mahajan, Tabish Rashid, Mikayel Samvelyan, and Shimon Whiteson. MAVEN: Multi-
Agent Variational Exploration. In Advances in Neural Information Processing Systems, vol-
ume 32. Curran Associates, Inc., 2019.

[24] Rajbala Makar, Sridhar Mahadevan, and Mohammad Ghavamzadeh. Hierarchical Multi-Agent
Reinforcement Learning. In Proceedings of the Fifth International Conference on Autonomous
Agents, AGENTS ’01, page 246–253, New York, NY, USA, 2001. Association for Computing
Machinery.

[25] Elth Ogston, Benno Overeinder, Maarten Van Steen, and Frances Brazier. A Method for Decen-
tralized Clustering in Large Multi-Agent Systems. In Proceedings of the Second International
Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS ’03, page 789–796,
New York, NY, USA, 2003. Association for Computing Machinery.

[26] Frans A Oliehoek and Christopher Amato. A Concise Introduction to Decentralized POMDPs,
volume 1. Springer, 2016.

[27] Liviu Panait and Sean Luke. Cooperative Multi-Agent Learning: The State of the Art. Au-
tonomous Agents and Multi-Agent Systems, 11(3):387–434, November 2005.

[28] Emilio Parisotto, Francis Song, Jack Rae, Razvan Pascanu, Caglar Gulcehre, Siddhant Jayaku-
mar, Max Jaderberg, Raphaël Lopez Kaufman, Aidan Clark, Seb Noury, Matthew Botvinick,
Nicolas Heess, and Raia Hadsell. Stabilizing Transformers for Reinforcement Learning. In
Hal Daumé III and Aarti Singh, editors, Proceedings of the 37th International Conference
on Machine Learning, volume 119 of Proceedings of Machine Learning Research, pages
7487–7498. PMLR, 13–18 Jul 2020.

12



[29] Thomy Phan, Lenz Belzner, Thomas Gabor, and Kyrill Schmid. Leveraging Statistical Multi-
Agent Online Planning with Emergent Value Function Approximation. In Proceedings of the
17th International Conference on Autonomous Agents and MultiAgent Systems, AAMAS ’18,
page 730–738, Richland, SC, 2018. International Foundation for Autonomous Agents and
Multiagent Systems.

[30] Thomy Phan, Lenz Belzner, Thomas Gabor, Andreas Sedlmeier, Fabian Ritz, and Claudia
Linnhoff-Popien. Resilient Multi-Agent Reinforcement Learning with Adversarial Value
Decomposition. Proceedings of the AAAI Conference on Artificial Intelligence, 35(13):11308–
11316, May 2021.

[31] Tabish Rashid, Gregory Farquhar, Bei Peng, and Shimon Whiteson. Weighted QMIX: Expand-
ing Monotonic Value Function Factorisation for Deep Multi-Agent Reinforcement Learning. In
H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, editors, Advances in Neural
Information Processing Systems, volume 33, pages 10199–10210. Curran Associates, Inc.,
2020.

[32] Tabish Rashid, Mikayel Samvelyan, Christian Schroeder, Gregory Farquhar, Jakob Foerster,
and Shimon Whiteson. QMIX: Monotonic Value Function Factorisation for Deep Multi-Agent
Reinforcement Learning. In Jennifer Dy and Andreas Krause, editors, Proceedings of the 35th
International Conference on Machine Learning, volume 80 of Proceedings of Machine Learning
Research, pages 4295–4304. PMLR, 10–15 Jul 2018.

[33] Mikayel Samvelyan, Tabish Rashid, Christian Schroeder de Witt, Gregory Farquhar, Nantas
Nardelli, Tim GJ Rudner, Chia-Man Hung, Philip HS Torr, Jakob Foerster, and Shimon White-
son. The StarCraft Multi-Agent Challenge. In Proceedings of the 18th International Conference
on Autonomous Agents and Multiagent Systems, AAMAS ’19, page 2186–2188, Richland, SC,
2019. International Foundation for Autonomous Agents and Multiagent Systems.

[34] Tuomas Sandholm, Kate Larson, Martin Andersson, Onn Shehory, and Fernando Tohmé.
Coalition Structure Generation with Worst Case Guarantees. Artificial Intelligence, 111(1):209–
238, 1999.

[35] Young-pa So and Edmund H Durfee. Designing Tree-Structured Organizations for Computa-
tional Agents. Computational & Mathematical Organization Theory, 2(3):219–245, 1996.

[36] Kyunghwan Son, Daewoo Kim, Wan Ju Kang, David Earl Hostallero, and Yung Yi. QTRAN:
Learning to Factorize with Transformation for Cooperative Multi-Agent Reinforcement Learn-
ing. In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the 36th
International Conference on Machine Learning, volume 97 of Proceedings of Machine Learn-
ing Research, pages 5887–5896. PMLR, 09–15 Jun 2019.

[37] Peter Stone and Manuela Veloso. Multiagent Systems: A Survey from a Machine Learning
Perspective. Autonomous Robots, 8(3):345–383, 2000.

[38] Jianyu Su, Stephen Adams, and Peter Beling. Value-Decomposition Multi-Agent Actor-Critics.
Proceedings of the AAAI Conference on Artificial Intelligence, 35(13):11352–11360, May 2021.

[39] Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vinicius Zambaldi,
Max Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z. Leibo, Karl Tuyls, and Thore Graepel.
Value-Decomposition Networks for Cooperative Multi-Agent Learning based on Team Reward.
In Proceedings of the 17th International Conference on Autonomous Agents and Multiagent
Systems, AAMAS ’18, page 2085–2087, Richland, SC, 2018. International Foundation for
Autonomous Agents and Multiagent Systems.

[40] Ming Tan. Multi-Agent Reinforcement Learning: Independent versus Cooperative Agents.
In Proceedings of the Tenth International Conference on International Conference on Ma-
chine Learning, ICML’93, page 330–337, San Francisco, CA, USA, 1993. Morgan Kaufmann
Publishers Inc.

[41] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is All You Need. In I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural
Information Processing Systems, volume 30. Curran Associates, Inc., 2017.

13



[42] Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik,
Junyoung Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grand-
master Level in StarCraft II using Multi-Agent Reinforcement Learning. Nature, pages 1–5,
2019.

[43] Qian Wan, Chonglin Gu, Sankui Sun, Mengxia Chen, Hejiao Huang, and Xiaohua Jia. Lifelong
Multi-Agent Path Finding in a Dynamic Environment. In 2018 15th International Conference
on Control, Automation, Robotics and Vision (ICARCV), pages 875–882. IEEE, 2018.

[44] Jianhao Wang, Zhizhou Ren, Terry Liu, Yang Yu, and Chongjie Zhang. QPLEX: Duplex
Dueling Multi-Agent Q-Learning. In International Conference on Learning Representations,
2021.

[45] Yihan Wang, Beining Han, Tonghan Wang, Heng Dong, and Chongjie Zhang. DOP: Off-
Policy Multi-Agent Decomposed Policy Gradients. In International Conference on Learning
Representations, 2020.

[46] Xin Wen, Zheng-Jun Zha, Zilei Wang, Liansheng Zhuang, and Houqiang Li. CCNet: Cluster-
Coordinated Net for Learning Multi-Agent Communication Protocols with Reinforcement
Learning. In Jun Zhu and Ichiro Takeuchi, editors, Proceedings of The 10th Asian Conference
on Machine Learning, volume 95 of Proceedings of Machine Learning Research, pages 582–597.
PMLR, 14–16 Nov 2018.

[47] Jess Whittlestone, Kai Arulkumaran, and Matthew Crosby. The Societal Implications of Deep
Reinforcement Learning. Journal of Artificial Intelligence Research, 70:1003–1030, May 2021.

[48] Zhongwen Xu, Hado P van Hasselt, and David Silver. Meta-Gradient Reinforcement Learning.
In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors,
Advances in Neural Information Processing Systems, volume 31. Curran Associates, Inc., 2018.

[49] Jiachen Yang, Igor Borovikov, and Hongyuan Zha. Hierarchical Cooperative Multi-Agent Rein-
forcement Learning with Skill Discovery. In Proceedings of the 19th International Conference
on Autonomous Agents and Multiagent Systems, AAMAS ’20, page 1566–1574, Richland, SC,
2020. International Foundation for Autonomous Agents and Multiagent Systems.

[50] Yaodong Yang, Rui Luo, Minne Li, Ming Zhou, Weinan Zhang, and Jun Wang. Mean Field
Multi-Agent Reinforcement Learning. In Jennifer Dy and Andreas Krause, editors, Proceedings
of the 35th International Conference on Machine Learning, volume 80 of Proceedings of
Machine Learning Research, pages 5571–5580. PMLR, 10–15 Jul 2018.

[51] Dayong Ye, Minjie Zhang, and Yun Yang. A Multi-Agent Framework for Packet Routing in
Wireless Sensor Networks. Sensors, 15(5):10026–10047, 2015.

[52] Lianmin Zheng, Jiacheng Yang, Han Cai, Ming Zhou, Weinan Zhang, Jun Wang, and Yong Yu.
MAgent: A Many-Agent Reinforcement Learning Platform for Artificial Collective Intelligence.
Proceedings of the AAAI Conference on Artificial Intelligence, 32(1), Apr. 2018.

14



Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] See Section 4 and 7.
(c) Did you discuss any potential negative societal impacts of your work? [Yes] See

Section 8.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] See Section 2
and 4.

(b) Did you include complete proofs of all theoretical results? [Yes] See complete proof
below Theorem 1 in Section 4.1.

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main exper-

imental results (either in the supplemental material or as a URL)? [Yes] Code and
README are available at https://github.com/thomyphan/scalable-marl.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Section 5 and Appendix A.1.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] All plots in Section 6 and Appendix A.3 display the 95%
confidence intervals of 30 independent random seeds.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See Section 5.2 and Appendix
A.1.3. We provide the average runtime of each training run of the results in Section
6 and Appendix A.3 including hyperparameter tuning to estimate the total amount of
compute.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [N/A] We (re)implemented

all algorithms and environments by ourselves in order to fit our MARL interface.
However, we cited all original works.

(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

Does not apply.
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A] Does not apply. Only simulated data from the domains described
in Section 5 was used.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A] Does not apply. Only simulated data from the
domains described in Section 5 was used.

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A] Does not apply.
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A] Does not apply.
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A] Does not apply.

15

https://github.com/thomyphan/scalable-marl

	Introduction
	Background
	Independent Learning of Value Functions
	Value Function Factorization

	Related Work
	Value Function Factorization with Variable Agent Sub-Teams (VAST)
	Variable Agent Sub-Teams
	Sub-Team Assignment Strategies

	Experimental Setup
	Evaluation Domains
	Learning Algorithms and Training

	Results
	Comparison of Value Function Factorization Operators for VAST
	State-of-the-Art Comparison
	Comparison of Sub-Team Assignment Strategies for VAST

	Discussion
	Potential Negative Societal Impacts

