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Abstract
Measuring the distance or similarity between
graphs is the foundation of many graph analy-
sis tasks, such as graph classification and clus-
tering, but remains a challenge on large datasets.
In this work, we treat the adjacency matrices of
two graphs as two kernel matrices given by some
unknown indefinite kernel function performed
on two discrete distributions and define the dis-
tance between the two distributions as a measure,
called MMFD, of the dissimilarity between two
graphs. We show that MMFD is a pseudo-metric.
Although the initial definition of MMFD seems
complex, we show that it has a closed-form so-
lution with extremely simple computation. To
further improve the efficiency of large-scale clus-
tering, we propose an MMFD-KM with linear
space and time complexity with respect to the
number of graphs. We also provide a general-
ization of MMFD, called MFD, which is more
effective in exploiting the information of factors
of adjacency matrices. The experiments on sim-
ulated graphs intuitively show that our methods
are effective in comparing graphs. The exper-
iments on real-world datasets demonstrate that,
compared to the competitors, our methods have
much better clustering performance in terms of
three evaluation metrics and time cost.

1. Introduction
A graph is a collection of nodes (or vertices) connected
by edges (or links). This structure is used to represent
complex relationships and interactions between objects or
entities. Common examples of graphs include chemical
molecules (Rong et al., 2020), biology networks (Agarwal,
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2006), social networks (Aggarwal, 2011), user-item inter-
action networks (Resnick & Varian, 1997), transportation
networks (Bell & Iida, 1997), knowledge graphs (Hogan
et al., 2021), and vision graphs (Riesen & Bunke, 2008).
In graph data analysis, quantifying the similarity or dissim-
ilarity between graphs (or comparing graphs for short) is
probably the most fundamental and important problem and
has numerous applications such as graph search, classifi-
cation, and clustering. However, due to the non-Euclidean
nature of graph data, comparing graphs remains a challenge
especially when the graphs are large, though many tech-
niques have been proposed in the past decades.

Numerous methods for comparing graphs are founded on the
principles of graph isomorphism (Kobler et al., 2012) and its
related concepts, including subgraph isomorphism and the
identification of the largest common subgraph. Although the
concept of examining graph isomorphism seems inherently
straightforward, no efficient algorithms have been devel-
oped for this task. Moreover, graph isomorphism-based
similarity measures and their derivatives require graphs to
be precisely identical or to encompass substantial identical
subgraphs to be considered similar, which is overly stringent
(Shervashidze et al., 2011). As a result, many researchers
attempted to develop more flexible measures of similarity.
Representative examples of these more flexible measures in-
clude graph edit distance (Bunke, 1997; Neuhaus & Bunke,
2007; Abu-Aisheh et al., 2015; Chang et al., 2022), chemi-
cal distance (Jochum et al., 1980; Bento & Ioannidis, 2018),
various graph kernels (Gärtner et al., 2003; Vishwanathan
et al., 2010; Shervashidze et al., 2011; Nikolentzos et al.,
2021), and Gromov-Wasserstein distance (Mémoli, 2011).

Graph edit distance (GED) is calculated by finding the min-
imum cost of a sequence of edit operations (e.g., node and
edge insertion/deletion) that can transform one graph into
another. While the computation of GED is NP-hard (Zeng
et al., 2009), there are several approximation algorithms
(Neuhaus & Bunke, 2007; Riesen & Bunke, 2009; Serratosa,
2014; 2015; Santacruz & Serratosa, 2020). For instance,
Riesen & Bunke (2009) proposed a Bipartite algorithm that
considers only local edge structure during the optimization
process to address the high computational complexity of
exact GED computation, meaning that the obtained distance
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tends to be larger than the exact one. Most of these algo-
rithms have a cubic computational cost with respect to the
number of nodes (Serratosa, 2015). Moreover, one major
limitation of GED is that it is not effective in comparing
graphs with highly diverse sizes. For instance, given two
complete graphs with very different numbers of nodes, the
GED is very large, although the two graphs have similar
topological patterns or practical functions.

Graph kernels are kernel functions that compute an inner
product on graphs (Gärtner et al., 2003; Shervashidze et al.,
2011; Mémoli, 2011; Bento & Ioannidis, 2018; Sun & Fan,
2024). Many graph kernels are based on the decomposi-
tion of graphs into a set of subgraphs or patterns, such as
walks, paths, and trees, on which the similarity is measured.
Examples of this kind of kernel include the shortest-path
kernel (Borgwardt & Kriegel, 2005), graphlet kernel (Sher-
vashidze et al., 2009), random walk kernel (Vishwanathan
et al., 2010), etc. Other types of graph kernels include
the neighborhood hash kernel (Hido & Kashima, 2009),
Weisfeiler-Lehman (WL) kernel family (Shervashidze et al.,
2011), multiscale Laplacian kernel (Kondor & Pan, 2016),
Lovász ϑ kernel (Johansson et al., 2014), etc. Particularly,
the WL kernel and its extensions (Kriege et al., 2016) are
based on the Weisfeiler-Lehman test of isomorphism (We-
isfeiler & Leman, 1968), making them very effective in
comparing graphs. While most graph kernels on two graphs
have at least cubic time complexity with respect to the num-
ber of nodes n (Nikolentzos et al., 2021), the WL subtree
kernel can be computed in time O(hl) (Shervashidze et al.,
2011), where h is the subtree height and l is the number of
edges of the graphs.

Recently, the Gromov-Wasserstein distance (GWD)
(Mémoli, 2011) has shown promising performance in com-
paring graphs and the follow-up graph learning problems
(Vayer et al., 2020; Xu et al., 2019; 2022). GWD is an
extension of the Wasserstein distance (Villani et al., 2009;
Cuturi & Doucet, 2014), which is used to compare probabil-
ity distributions on a given metric space. GWD, on the other
hand, allows for the comparison of probability distributions
defined on different metric spaces. The time complexity of
GWD is O(n4) or O(n3) (Peyré et al., 2016), which pro-
hibits its applications to large graphs. Several attempts have
been made to improve the scalability of GWD. For instance,
Vayer et al. (2019) proposed sliced GW, with a complexity
of O(n log n). However, the sliced GW has limited applica-
tions because a feature representation is needed to allow the
1D projection. Kerdoncuff et al. (2021) proposed a sampled
GW that uses the current estimate of the transport plan to
guide the sampling of cost matrices, leading to a complex-
ity of O(n2). However, the sampled GW may suffer from
accuracy degradation and inefficiency in real problems.

Besides the aforementioned direct comparison methods,

two graphs can be compared by first representing them as
vectors using unsupervised learning and then calculating
the similarity between the two vectors. There have been
a few unsupervised graph representation learning (UGRL)
methods that are based on graph neural networks (Kipf &
Welling, 2017; Gilmer et al., 2017; Wu et al., 2024; Wang &
Fan, 2024). Many of these methods (Sun et al., 2020; You
et al., 2020; 2021; Shen et al., 2023) are based on the Info-
Max principle (Linsker, 1988; Hjelm et al., 2019), where the
mutual information between the graph-level representation
and the representations of substructures of different scales
(e.g., nodes and edges) are maximized to learn the neural
network parameters. There are also UGRL methods based
on other principles such as the Lovász principle proposed
by (Sun et al., 2023). More methods of UGRL and more
discussion can be found in (Sun et al., 2023). It is worth
noting that there have been several end-to-end methods of
clustering graphs (Ju et al., 2023; Cai et al., 2024), which
also belong to UGRL, but can provide more discriminative
representations. While graph kernels often rely on hand-
crafted features and have quadratic complexity with respect
to the number of graphs N , UGRL methods can learn more
flexible features of graphs and have a linear complexity
with respect to N . Nevertheless, UGRL methods often have
more hyperparameters (e.g., network size, learning rate,
weights of terms in the loss function) to tune, which is never
easy in practice. Moreover, they are still time-consuming in
handling large graphs.

In this work, to effectively compare graphs and cluster
graphs, we propose a novel distance measure, called mini-
mum mean factor distance (MMFD), and several extensions.
The main idea behind MMFD is that the adjacency matrices
of two graphs can be regarded as kernel matrices obtained
by performing some unknown kernel function on two dis-
crete distributions. Then, comparing the two distributions is
a proxy for comparing the two graphs. Our contribution is
summarized as follows.

• We present a novel distance measure MMFD between
graphs, from the perspective of comparing distribu-
tions. We show that MMFD is a pseudo-metric and
analyze its robustness to perturbations.

• We provide a low-rank approximation for MMFD and
analyze the error bound theoretically. The low-rank
MMFD is more efficient than MMFD.

• Based on MMFD, we develop a fast clustering method
for datasets composed of a large number of graphs.

• We generalize MMFD to MFD, which is more effective
in exploiting the information of adjacency matrices.

• Based on MFD, we present an efficient clustering algo-
rithm for large datasets of graphs.

Table 1 shows the time complexities of two of our methods
and some representative methods of comparing graphs. Our
methods are very efficient, especially for a set of graphs.
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Notably, besides the merit of efficiency, as shown in Section
3, our methods have much higher clustering accuracy in
comparison to many strong competitors.

2. Methodology
2.1. Motivation

Let G1 = (V1, E1) and G2 = (V2, E2) be two undirected
graphs in some space G, where Vi and Ei with i = 1 or 2
denote the node set and edge set respectively. We aim to
provide a function

dist : G×G→ R

to quantify the distance between G1 and G2. We denote the
self-looped adjacency matrices (possibly weighted) of G1

and G2 as A1 ∈ Rn1×n1 and A2 ∈ Rn2×n2 , respectively.

Since the entries in an adjacency matrix quantify the affinity
or similarity between data points or objects, it is reasonable
to assume that A1 and A2 are generated by some kernel
function k on two sets of data points denoted as matrices
Z1 ∈ Rm×n1 and Z2 ∈ Rm×n2 respectively, i.e.,

[Ai]uv = k(z(i)u , z(i)v ), i = 1, 2, (1)

where z(i)u denotes the u-th column of Zi. For instance, in a
social network i with n subjects, if subjects u and v are very
similar to each other in terms of their attributes (denoted as
z
(i)
u and z

(i)
v ), they are probably connected by an edge. The

whole social network is based on a matrix Zi of subjects’ at-
tributes. Z1 and Z2 can be regarded as two discrete distribu-
tions or two samples drawn from two unknown continuous
distributions, respectively. Note that k does not necessar-
ily satisfy Mercer’s condition (Ong et al., 2004; Hofmann
et al., 2008) since A1 and A2 could be indefinite matri-
ces. Here are some examples of k: k1(zu, zv) = (z⊤u zv +
c)2, k2(zu, zv) = exp(−γ∥zu − zv∥2), k3(zu, zv) =
tanh(z⊤u zv − 1), k4(zu, zv) = 1(k2(zu, zv) > τ). Partic-
ularly, k3 and k4 (with appropriate τ ) are indefinite kernels,
and k4 can produce binary adjacency matrices.

To quantify the distance between G1 and G2, we propose to
calculate the distance between Z1 and Z2 and let

dist(G1, G2) := f(Z1,Z2) (2)

where f : Rm×n1 ×Rm×n2 → R denotes a function to cal-
culate the distance between two discrete distributions. Obvi-
ously, when Z1 and Z2 are identical (or up to a permutation),
G1 and G2 are isomorphic, where dist(G1, G2) = 0. See
the experiments in Appendix C.1.

2.2. Kernel Feature Map and PSD Matrix Construction

Suppose G1 and G2 have positive semi-definite (PSD) ad-
jacency matrices A1 and A2 respectively, and denote the

feature map induced by the PSD kernel k as ϕ : Rm → RM ,
where M > m. Then we have the following factorization
(though not unique)

Ai = Φ⊤
i Φi, (3)

where Φi = ϕ(Zi) = [ϕ(z
(i)
1 ), . . . , ϕ(z

(i)
ni )], i = 1, 2. How-

ever, graphs with PSD adjacency matrices are rare in real
applications, meaning that the factorization (3) often does
not exist. To address the challenge, we need to generate
some reasonable Φi using Ai, i = 1, 2, that can preserve
the major information of A1 and A2, or in other words, find
PSD proxies for A1 and A2.

In this work, we propose to use

Aϕ
i =

ni∑
j=1

|λ(i)
j |v

(i)
j v

(i)
j

⊤
, i = 1, 2, (4)

where λ
(i)
j and v

(i)
j are the j-th eigenvalue and eigenvector

of Ai (Luss & d’Aspremont, 2007), i = 1, 2. The moti-
vation behind this is that we can decompose an indefinite
kernel k (Ong et al., 2004) as

k(z, z′) = k+(z, z′)− k−(z, z′) (5)

where both k+ and k− are positive semi-definite. Denoting
their feature maps as ϕ+ and ϕ− respectively, we have
Ai = Φ+

i

⊤
Φ+

i −Φ−
i

⊤
Φ−

i , i = 1, 2. Thus in (4), we have
Aϕ

i = Φ⊤
i Φi, where Φi = [Φ+

i ;Φ
−
i ], the row-direction

concatenation of Φ+
i and Φ−

i . Note that (4) is equivalent
to Aϕ

i = UiSiU
⊤
i , where Ui and Si are the left (or right)

singular vectors and singular values of Ai respectively.

2.3. Basic MMFD

Recall that in (2), we want to define an f(Z1,Z2) to com-
pare Z1 and Z2. However, both Z1 and Z2 are unknown.
Instead, we know Φ⊤

1 Φ1 and Φ⊤
2 Φ2, where Φ1 and Φ2 are

discrete distributions, given by

Aϕ
i = Φ⊤

i Φi, i = 1, 2. (6)

Therefore, we propose to compare their mean vectors, i.e.,

µi :=
1

ni

ni∑
j=1

ϕ
(
z
(i)
j

)
, i = 1, 2. (7)

Note that when n1 ̸= n2, we can pad zero rows to
the smaller one of Φ1 and Φ2 to ensure a consistent
dimension M . Suppose ϕ can be well approximated
by a q-order polynomial feature map, e.g., ϕ(z) ≈
[. . . , zi, . . . , zizj , . . . , zizj · · · zk, . . .]⊤, where the coeffi-
cients are omitted for convenience, then µi can be regarded
as an estimate of moments 1 to q of the distribution. Thus,
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G1, G2 G1, G2, . . . , GN

Shortest path kernel (Borgwardt & Kriegel, 2005) O(n4) O(N2n4)
Random walk kernel (Vishwanathan et al., 2010) O(n3) O(N2n3)
Weisfeiler-Lehman subtree kernel (Shervashidze et al., 2011) O(hl) O(Nhl +N2hn)
Graph Edit Distance (Serratosa, 2014) O(n3) O(N2n3)
(Entropic) Gromov–Wasserstein (Peyré et al., 2016) O(n3) O(N2n3)
Sampled Gromov–Wasserstein (Kerdoncuff et al., 2021) O(n2) O(N2n2)
MMFDLR O(n2 log(d) + d2n) O(N(n2 log(d) + d2n) +N2)
MMFDLR-KM O(n2 log(d) + d2n) O(N(n2 log(d) + d2n) +NKT )

Table 1: Time complexity comparison between MMFD (with d≪ n) and a few representative graph distances or similarities
on two graphs or a set of N graphs, each with n nodes. See Appendix C.4 for the running time comparison.

the distance between µ1 and µ2 is an effective measure of
the dissimilarity between Z1 and Z2. However, the diffi-
culty is that Φ1 and Φ2 are usually not in the same space
since they cannot be uniquely determined by Aϕ

1 and Aϕ
2

(or A1 and A2) respectively. This means that µ1 and µ2

are not comparable. More precisely, for any orthonormal
matrices R1,R2 ∈ RM×M , letting

Φ̄i := RiΦi, i = 1, 2, (8)

we have Φ̄
⊤
i Φ̄i = Φ⊤

i R
⊤
i RiΦi = Aϕ

i , meaning that Φ̄i

and Φi are equivalent in terms of representing Aϕ
i . Further

discussion about this will be provided in Section 2.5.

To address the difficulty mentioned above, we propose align-
ing Φ1 and Φ2 using two projection matrices R1 and R2

to a common space so that we can compare the means
of Φ̄1 and Φ̄2, denoted as µ̄1 and µ̄2 respectively, where
µ̄i = Riµi, i = 1, 2. The question is what R1 and R2

we should choose. Given that we want to compare µ̄1 and
µ̄2, a natural principle is that R1 and R2 make the distance
between µ̄1 and µ̄2 as small as possible. Therefore, we may
solve the following problem

minimize
R1,R2∈R

∥R1µ1 −R2µ2∥ (9)

where R denotes the set of all real orthonormal matrices
of size M ×M , i.e., R = {R ∈ RM×M : R⊤R = IM}.
In (9), we have ∥R1µ1 −R2µ2∥ =

∥∥µ1 −R⊤
1 R2µ2

∥∥. It
means that instead of optimizing two matrices, we can equiv-
alently optimize a single matrix R12 := R⊤

1 R2, subject to
that R12 ∈ R. In other words, we can learn an R12 to align
Φ2 to the space of Φ1, which simplifies the computation.

Based on (2), (9) and the corresponding analysis, letting

f(Z1,Z2) = min
R12∈R

∥µ1 −R12µ2∥ (10)

we achieve the following distance between two graphs.

Definition 2.1 (MMFD). Let Aϕ
i = Φ⊤

i Φi and denote the
j-th column of Φi as ϕ(z(i)j ), i = 1, 2. The minimum mean

factor distance between G1 and G2 is defined as

MMFD(G1, G2)

= min
R12∈R

∥∥∥∥∥ 1

n1

n1∑
j=1

ϕ
(
z
(1)
j

)
− 1

n2

n2∑
j=1

R12ϕ
(
z
(2)
j

)∥∥∥∥∥ (11)

We provide the following theory for MMFD.

Theorem 2.2 (Pseudo-metric). Let G be the set of all
undirected graphs. MMFD satisfies the following axioms.
(a) MMFD(G1, G2) ≥ 0, MMFD(G1, G2) =
MMFD(G2, G1), and MMFD(G1, G1) = 0 hold for
any G1, G2 in G;
(b) MMFD(G1, G2) ≤ MMFD(G1, G3)+MMFD(G2, G3)
holds for any G1, G2, G3 in G.

The theorem shows that MMFD is a pseudo-metric, where
MMFD(G1, G2) = 0 ⇐⇒ G1 = G2 cannot be theoreti-
cally guaranteed. For instance:

Proposition 2.3. For any two complete graphs G1 and G2,
whenever n1 = n2 or n1 ̸= n2, MMFD(G1, G2) ≡ 0.

The following theorem shows that MMFD has a closed-
form solution, which is extremely simple. Although in the
motivation, definition, and optimization, we used Φi,Zi,
i = 1, 2, R12, etc., they are not present in the final format
of MMFD.

Theorem 2.4. Based on Definition 2.1, it follows that

MMFD(G1, G2) =

∣∣∣∣∣∣ 1n1

√∑
uv

[Aϕ
1 ]uv −

1

n2

√∑
uv

[Aϕ
2 ]uv

∣∣∣∣∣∣
(12)

As a distance measure between graphs, it is important to
understand the robustness of MMFD to perturbation on the
adjacency matrices. Hence, we present the following result.

Theorem 2.5 (Robustness). Given G1, G2, assume n1 =
n2 = n and let ∆1,∆2 ∈ Rn×n be perturbations on
A1,A2 respectively, resulting in perturbed graphs G′

1, G
′
2
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respectively, where σ1(∆i) ≤ 1
2σ1(Ai), i = 1, 2. Then∣∣MMFD(G′

1, G
′
2)−MMFD(G1, G2)

∣∣
≤ 5

n1/2

(
δ−1
1 σ1(A1)σ1(∆1) + δ−1

2 σ1(A2)σ1(∆2)
)1/2

where δi = minj ̸=k |σj(Ai)− σk(Ai)|, i = 1, 2.

The theorem shows that when the graphs are perturbed
slightly and the original adjacency matrices have distinct
singular values, MMFD does not change significantly. This
is important for downstream tasks where MMFDs between
graphs in the same cluster should be small.

Figure 2 shows the MMFD matrix on seven small graphs.
We can see the distance measures are consistent with our
intuitive observation on the graphs. For instance, G2 is
more similar to G3 than to G1; G7 lies between G5 and
G6; the difference between G6 and G7 is less than the
difference between G5 and G6. In sum, MMFD is effective
in comparing graphs. Moreover, according to Table 10 of
Appendix C.6, MMFD can outperform other methods.

– 0.0914 0.1589 0.2097 0.2528 0.2505 0.2505

0.0914 – 0.0675 0.1182 0.1614 0.1590 0.1591

0.1589 0.0675 – 0.0507 0.0939 0.0915 0.0916

0.2097 0.1182 0.0507 – 0.0432 0.0408 0.0409

0.2528 0.1614 0.0939 0.0432 – 0.0024 0.0023

0.2505 0.1590 0.0915 0.0408 0.0024 – 0.0001

0.2505 0.1591 0.0916 0.0409 0.0023 0.0001 –

Table 2: MMFDs between seven synthetic graphs
(G1, G2, . . . , G7 from left to right). In each row of the
matrix, the values of distances to the closest graph and most
distant graph are highlighted in red and blue respectively.

2.4. Low-Rank MMFD

Currently, the time complexity of MMFD is O(n3) with
n1 = n2 = n assumed, mainly due to the eigenvalue de-
composition (EVD) or singular value decomposition (SVD)
when constructing the PSD adjacency matrices, though it
can be lowered when taking advantage of the sparsity of
the adjacency matrices. For large graphs, instead of the full
SVD, we perform randomized SVD (Halko et al., 2011) on
A1 and A2 to obtain the following low-rank approximation

Ai ≈ ŪiS̄iV̄
⊤
i , i = 1, 2, (13)

where Ūi, V̄i ∈ Rn×d, S̄i ∈ Rd×d, and d is much less
than n. Now for (11), we let Φi = S̄

1/2
i V̄⊤

i . Letting

Āϕ
i = V̄iS̄iV̄

⊤
i , we obtain the following low-rank MMFD

MMFDLR(G1, G2) =
1

n

∣∣∣∣∣∣
√∑

uv

[Āϕ
1 ]uv −

√∑
uv

[Āϕ
2 ]uv

∣∣∣∣∣∣
(14)

which can be extended to the case that n1 ̸= n2. The
time complexity of MMFDLR isO(n2 log(d)+d2n) mainly
caused by the randomized SVD (Halko et al., 2011) of Ai.
Note that MMFDLR is also a pseudo-metric. The proof is
similar to that for MMFD and hence is omitted.

The following theorem shows the bound of the difference
between MMFD and MMFDLR.

Theorem 2.6. Suppose n1 = n2 = n and denote σ1(Ai) ≥
σ2(Ai) ≥ · · · ≥ σn(Ai) the singular values of Ai, i = 1, 2.
It holds that∣∣MMFDLR(G1, G2)−MMFD(G1, G2)

∣∣
≤ 1

n1/2

(
n∑

j=d+1

(
σj(A1) + σj(A2)

)

+ 2
(
σ
1/2
1 (A1)σ

1/2
d+1(A2) + σ

1/2
1 (A2)σ

1/2
d+1(A1)

))1/2

We see that when σd+1(Ai) are smaller, the bound becomes
tighter. Indeed, the adjacency matrices of large graphs
are often approximately low-rank, meaning that σd+1(Ai)
are small. Although leading to some information loss,
MMFDLR not only improves the computational efficiency
but also has the effect of denoising because smaller singular
values often correspond to the noise in data.

Figure 1 compares MMFDLR of different rank with MMFD
on the seven graphs introduced in Table 2. MMFDLR is
more effective in distinguishing highly similar graphs.

Figure 1: Visualization of MMFDLR (with different rank d)
between the seven graphs in Table 2. For clearer visualiza-
tion, we showed MMFD1/2

LR .

2.5. Comparison with MMD

MMFD is closely related to the maximum mean discrep-
ancy (MMD) (Gretton et al., 2012), though the latter is
not related to graphs. Performing MMD on Z1 and Z2

using Φ1 and Φ2 directly, we have MMD(Z1,Z2) =
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1
n

√∑
uv[A

ϕ
1 ]uv +

∑
uv[A

ϕ
2 ]uv − 2⟨H,Φ⊤

1 Φ2⟩, where H
is an n × n matrix consisting of ones only and we have
assumed n1 = n2 = n for simplicity. We see that compared
with MMFD, MMD(Z1,Z2) does not involve optimizing
an R12. Essentially, in (11), when we fix R12 as an identity
matrix, MMFD degrades to MMD. The fundamental limi-
tation of MMD(Z1,Z2) is that it makes no sense when Φ1

and Φ2 are not in the same space (i.e., the features in Φ1

and Φ2 are not comparable), which is always the case and
is explained as follows.

• In EVD (or SVD), though well-established, individual
eigenvectors (or singular vectors) have arbitrary signs
(Bro et al., 2008). This sign ambiguity in Φ1 and
Φ2 makes MMD failed to quantify the dissimilarity
between Φ1 and Φ2.

• When Ai has repeated eigenvalues, eigenvectors
sharing a common eigenvalue cannot be determined
uniquely even if the sign ambiguity is ignored. The
reason is that any set of orthogonal vectors lying in
their span are also eigenvectors with that eigenvalue.
This means Φ1 and Φ2 cannot be compared by MMD.

• Sorting eigenvectors according to eigenvalues may not
be optimal in comparing the adjacency matrices, espe-
cially when the adjacent eigenvalues are similar.

2.6. MMFD with Node Attributes

In many applications, the nodes of graphs have inherent
attributes, which provide additional information and should
be exploited effectively. Let Xi ∈ Rl×ni be the matrix of
nodes’ attributes of Gi, i = 1, 2. We may consider augment-
ing MMFD or MMFDLR with MMD(X1,X2). However,
this neglects the correspondence between each node and
its attribute vector, which can cause the inability to distin-
guish between G1 and G2. To address this problem, we
propose to use some technique (e.g. k-nearest neighbor) to
construct two graphs (denoted as G′

1, G
′
2) from X1 and X2

respectively and append G′
1, G

′
2 to the original graphs to

obtain two larger graphs G̃1, G̃2, where the node j of G′
i is

connected to the node j of Gi. The main idea is

G̃i = APPEND
(
Gi,G-CONSTRUCT(Xi)

)
(15)

Then we calculate MMFD(G̃1, G̃2) or MMFDLR(G̃1, G̃2).
For instance, the top of Figure 2 shows two simple graphs
with the same adjacency matrix but different node attributes.
In this case, MMFD(G1, G2) = 0 and MMD(X1,X2) = 0,
but G1 and G2 are different. In contrast, as shown by
the bottom of Figure 2, G̃1 and G̃2 are different and we
have MMFD(G̃1, G̃2) = 0.0026 and MMFDLR(G̃1, G̃2) =
0.0032 (d = 3). It is worth mentioning that, for MMFD,
compared to (15), there may exist more effective strategies

for exploiting node attributes, e.g., using graph neural net-
works.

Figure 2: Integration of adjacency matrix and node at-
tributes. G1 and G2 are two graphs with the same adjacency
matrix but different node attributes (colored), meaning that
they are not equal. G̃1 and G̃2 are the integrated graphs
(without node attributes) using the original adjacency ma-
trices and the 1-NN graphs constructed from the nodes’
attributes. Nodes 4, 5, 6 correspond to the attributes x1, x2,
x3, respectively. G̃1 and G̃2 are different (not isomorphic).

For convenience, we show the computation steps of MMFD
and MMFDLR in Algorithm 1. As a distance measure be-
tween graphs, MMFD is useful in many problems, such as
graph classification, clustering, and visualization. We can
define a graph kernel based on MMFD as follows

k(G1, G2) = exp
(
− γ ×MMFD2(G1, G2)

)
(16)

where γ > 0 is a hyperparameter. With this kernel, we
can conduct kernel density estimation, support vector ma-
chine (Cortes & Vapnik, 1995), spectral clustering (Ng et al.,
2001), etc.

Algorithm 1 Computation of MMFD between Graphs

Input: Graphs G1, G2 with self-looped adjacency matrices
A1,A2 and node attribute matrices X1,X2 (if avail-
able) respectively, using low-rank (d).

1: if X1,X2 are available and should be used then
2: Construct graph from Xi and append to Gi to gener-

ate an augmented Ai, i = 1, 2.
3: end if
4: SVD or randomized SVD: Ai ≈ UiSiV

⊤
i , i = 1, 2.

5: if using low-rank is True then
6: PSD: Aϕ

i = V̄iS̄iV̄
⊤
i , i = 1, 2. (V̄i = [vi1, . . . ,vid])

7: else
8: PSD: Aϕ

i = ViSiV
⊤
i , i = 1, 2.

9: end if
10: MMFD =

∣∣∣ 1
n1

√∑
uv[A

ϕ
1 ]uv − 1

n2

√∑
uv[A

ϕ
2 ]uv

∣∣∣
Output: MMFD
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2.7. MMFD for Large-Scale Clustering

Given a set of N graphs, denoted as G =
{G1, G2, . . . , GN}, belonging to K classes, if we
perform spectral clustering with MMFDLR on G, the space
complexity and time complexity are quadratic with N ,
which prevent its applications to very large graph datasets.

Inspired by K-means clustering, we may consider finding
K graphs, Ḡ1, . . . , ḠK , representing the centers of clusters
G1, . . . ,GK respectively, such that the sum of the squared
distances measure by MMFDLR (or MMFD) between the
graphs and their corresponding centers is minimum, i.e.,

minimize
Ḡ1,...,ḠK

K∑
j=1

∑
Gi∈Gj

MMFD2
LR(Gi, Ḡj) (17)

However, we cannot obtain Ḡ1, . . . , ḠK themselves be-
cause MMFDLR is operated on the PSD adjacency matrices.
Actually, we do not need to learn Ḡ1, . . . , ḠK . Based on
(14), we can rewrite (17) as

minimize
Ḡ1,...,ḠK

K∑
j=1

∑
Gi∈Gj

∣∣∣∣∣ 1ni

√∑
uv

[Āϕ
i ]uv −

1

n

√∑
uv

[Bj ]uv

∣∣∣∣∣
2

(18)
where Bj and n denote the adjacency matrix and the
number of nodes of Ḡj , j = 1, . . . ,K. Letting gi =

1
ni

√∑
uv[Ā

ϕ
i ]uv and cj = 1

n

√∑
uv[Bj ]uv, we obtain

from (18) that

minimize
c1,...,cK

K∑
j=1

∑
Gi∈Gj

(gi − cj)
2 (19)

where Gj = {G : (g − cj)
2 < (g − cl)

2 ∀l ̸= j}.
This is actually K-means on N 1-D data points, where
we only need to optimize scalars c1, . . . , cK , rather than
Ḡ1, . . . , ḠK . Suppose n1 = . . . = nN = n, then the to-
tal space and time complexity are O(n2 + dn + N + K)
and O(N(n2 log(d) + d2n) +NKT ), both linear with N ,
where T denotes the number of iterations in K-means. For
convenience, we call this clustering method MMFD-KM.

2.8. MFD–Beyond Mean Comparison

MMFD compares only the mean vectors of Φ1 and Φ2.
To exploit more information of Φ1 and Φ2, we provide a
generalized method, called MFD, in the following.

Definition 2.7 (MFD). Let Aϕ
i = Φ⊤

i Φi, i = 1, 2. The
minimum factor distance between G1 and G2 is defined as

MFD(G1, G2)

= min
R12∈R

∥∥∥∥ 1

n1

n1∑
j=1

ζ
(
ϕ

(1)
j

)
− 1

n2

n2∑
j=1

ζ
(
R12ϕ

(2)
j

)∥∥∥∥

= min
R12∈R

(
1

n2
1

∑
u,v

k(ϕ(1)
u ,ϕ(1)

v ) +
1

n2
2

∑
u,v

k(R12ϕ
(2)
u ,R12ϕ

(2)
v )

− 2

n1n2

∑
u,v

k(ϕ(1)
u ,R12ϕ

(2)
v )

)1/2

(20)

where k denotes a nonlinear kernel with feature map ζ.

The following theorem shows that MFD is a pseudo-metric
under some mild assumptions.

Theorem 2.8. When the kernel function in (20) is a rotation-
invariant kernel (e.g., radial basis function kernel), MFD is
a pseudo-metric.

Unlike MMFD, MFD has no closed-form solution and has a
higher computational cost. Letting k in (20) be the Gaussian
kernel with parameter β, we have

MFD(G1, G2)

= min
R12∈R

(
1

n2
1

∑
u,v

exp(−β∥ϕ(1)
u − ϕ

(1)
v ∥2)

+
1

n2
2

∑
u,v

exp(−β∥ϕ(2)
u − ϕ

(2)
v ∥2)

− 2

n1n2

∑
u,v

exp(−β∥ϕ(1)
u −R12ϕ

(2)
v ∥2)

)1/2

= min
R12∈R

(
C − 2

n1n2

∑
u,v

exp
(
− β

(
[Aϕ

1 ]uu + [Aϕ
2 ]vv

− 2⟨ϕ(1)
u ,R12ϕ

(2)
v ⟩
)))1/2

(21)
where C = 1

n2
1

∑
u,v exp

(
− β([Aϕ

1 ]uu + [Aϕ
1 ]vv −

2[Aϕ
1 ]uv)

)
+ 1

n2
2

∑
u,v exp

(
− β([Aϕ

2 ]uu + [Aϕ
2 ]vv −

2[Aϕ
2 ]uv)

)
. Thus, for MFD, we need to solve the following

problem

maximize
R12∈R

∑
u,v

αuv exp
(
2β⟨ϕ(1)

u ,R12ϕ
(2)
v ⟩
)
≜ L(R12)

(22)
where αuv = exp(−β([Aϕ

1 ]uu + [Aϕ
2 ]vv)). This is a chal-

lenging problem and has no closed-form solution because
of the sum-of-exp form and the orthonormality constraint.

To tackle the difficulty, letting R
(t−1)
12 be the solution at

iteration t− 1, we consider the following quadratic approxi-
mation at iteration t

L(R12) ≈ L(R(t−1)
12 ) + ⟨G(t−1),R12 −R

(t−1)
12 ⟩

− ρ

2
∥R12 −R

(t−1)
12 ∥2F

(23)

where G(t−1) = ∇L(R(t−1)
12 ) =

2β
∑

uv αuv exp(2β⟨ϕ(1)
u ,R

(t−1)
12 ϕ(2)

v ⟩)ϕ
(1)
u ϕ(2)

v

⊤
and
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ρ > 0 is a hyperparameter to be determined. Now we solve
the following problem at iteration t:

maximize
R12∈R

L(R(t−1)
12 ) + ⟨G(t−1),R12 −R

(t−1)
12 ⟩

− ρ

2
∥R12 −R

(t−1)
12 ∥2F

(24)

or the following equivalently

maximize
R12∈R

⟨G(t−1) + ρR
(t−1)
12 ,R12⟩ (25)

Letting Qt = G(t−1) + ρR
(t−1)
12 , we rewrite (25) as

maximize
R12∈R

⟨R12,Qt⟩ (26)

Then we have the following closed-form solution

R
(t)
12 = UV⊤, (27)

where U and V are from the SVD of Qt, i.e., Qt =
USV⊤.

We summarize the optimization steps for MFD in Algorithm
2, where the utilization of node attributes (if available) is
omitted for simplicity. The following theorem provides a
theoretical guarantee of the convergence of the optimization.

Theorem 2.9. Let {L(R(t)
12 )}t and {R(t)

12 }t be the se-
quences given by Algorithm 2. For any ρ > 0, it holds
that:
(a) {L(R(t)

12 )}t is non-decreasing, i.e., L(R(t)
12 ) ≥

L(R(t−1)
12 ) + ρ

2∥R
(t)
12 −R

(t−1)
12 ∥2F ;

(b) {R(t)
12 }t is convergent, i.e., R(t)

12 − R
(t−1)
12 → 0 when

t→∞.

The time complexity of MFD with low-rank approximation
isO(n2 log(d)+d2n+T (d3+dn2)), which is much higher
than that of MMFDLR. However, in the experiments (see Ta-
ble 3 and Figure 11), the performance of MFD is better than
that of MMFD, because MFD can utilize more information
of Φ1 and Φ2.

2.9. MFD for Large-Scale Clustering

Based on MFD, we provide a fast clustering algorithm called
MFD-KD, which is detailed in Appendix A.2.

3. Experiments
Previous studies usually used graph classification to evalu-
ate graph kernels or distances. Differently, in this work, we
use clustering, due to the following reasons. First, clustering
is more challenging than classification, especially for im-
balanced datasets. Second, clustering does not involve data
splitting and has fewer hyperparameters to tune, leading

Algorithm 2 Computation of MFD between Graphs

Input: Graphs G1, G2 with self-looped adjacency matrices
A1,A2, d, β, ε, T , ρ.

1: Randomized SVD (d): Ai ≈ ŪiS̄iV̄
⊤
i , i = 1, 2.

2: Φi = S̄
1/2
i V̄⊤

i , i = 1, 2.
3: Initialization: R(0)

12 = Id, t = 0.
4: while t < T do
5: t← t+ 1.
6: Qt =

(
2β
∑

uv αuv exp
(
2β⟨ϕ(1)

u ,R
(t−1)
12 ϕ(2)

v ⟩
)
×

ϕ(1)
u ϕ(2)

v

⊤)
+ ρR

(t−1)
12

7: Perform SVD: Qt = USV⊤.
8: R

(t)
12 = UV⊤.

9: if ∥R(t)
12 −R

(t−1)
12 ∥F /

√
d < ε then

10: Break.
11: end if
12: end while
13: Calculate MFD using R

(t)
12 and (21).

Output: MFD(G1, G2)

to lower uncertainty. Finally, our MMFD-KM and MFD-
KD are specified for clustering. We consider six large or
relatively large datasets of graphs from the TDUdatasets
(Morris et al., 2020). More details are in Appendix B.1.

The proposed methods are compared with three categories
of competitors. The first category is graph kernels includ-
ing SP (Borgwardt & Kriegel, 2005), GK (Shervashidze
et al., 2009), RW (Vishwanathan et al., 2010), WL (Sher-
vashidze et al., 2011), LT (Johansson et al., 2014), and
WL-OA (Kriege et al., 2016). The second category is unsu-
pervised graph representation learning methods including
InfoGraph (Sun et al., 2020), GraphCL (You et al., 2020),
JOAO (You et al., 2021), and GWF (Xu et al., 2022), fol-
lowed by K-means or spectral clustering. The last category
is the end-to-end GNN-based graph-level clustering meth-
ods including GLCC (Ju et al., 2023) and DCGLC (Cai et al.,
2024). Besides, we also include MMD (detailed in Section
2.5), Gromov- Wasserstein distance (GWD) with entropic
regularization, and graph edit distance (GED) (Serratosa,
2014) in the experiments. More details about the settings
are in Appendix B.2. The evaluation metrics for cluster-
ing performance are clustering accuracy (ACC), normalized
mutual information (NMI), and adjusted rand index (ARI).

Table 3 shows the clustering results on the four datasets
with moderate sizes, where for all compared methods ex-
cept MMD, GWD, and GED, we just use the results reported
in the paper of (Cai et al., 2024). All our methods outper-
formed other methods in terms of the three metrics on AIDS,
PROTEINS, and REDDIT-MULTI-5K significantly. On EN-
ZYMES, our MFD performs best. The differences between
MMFD, MMFDLR, and MMFDLR-KM are tiny but their per-
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Method AIDS (N = 2000) PROTEINS (N = 1113) ENZYMES (N = 600) REDDIT-MULTI-5K (N = 4999)

ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI

SP kernel 79.49±0.84 0.39±0.62 -0.71±1.13 64.42±0.00 6.03±0.00 5.87±0.00 22.00±0.00 2.57±0.00 1.69±0.00 20.02±0.00 0.05±0.00 0.00±0.00
GK kernel 79.95±0.00 0.04±0.00 -0.07±0.00 59.61±0.22 0.24±0.18 0.10±0.19 17.07±0.13 0.80±0.25 0.00±0.00 – – –
RW kernel 79.90±0.00 0.09±0.00 -0.15±0.00 – – – 17.00±0.00 0.66±0.00 0.25±0.00 – – –
WL kernel 78.50±0.00 1.17±0.00 -2.09±0.00 60.38±0.00 1.55±0.00 0.81±0.00 21.00±0.00 3.09±0.00 1.48±0.00 20.00±0.00 0.00±0.00 0.00±0.00
LT kernel 79.95±0.00 0.04±0.00 -0.07±0.00 – – – 17.00±0.09 0.42±0.11 0.00±0.00 – – –
WL-OA kernel 80.40±0.00 2.46±0.00 2.38±0.00 60.38±0.00 1.55±0.00 0.81±0.00 20.00±0.00 1.35±0.00 0.32±0.00 – – –

InfoGraph+KM 92.21±0.81 54.49±3.53 63.78±3.84 59.22±0.21 3.22±1.94 0.00±0.00 22.06±0.98 2.40±0.45 1.25±0.52 20.16±0.02 0.30±0.05 0.00±0.00
InfoGraph+SC 95.65±1.55 72.21±9.20 80.17±7.19 64.02±2.31 5.17±1.87 7.06±2.65 23.75±0.50 4.64±0.65 2.23±0.41 20.00±0.00 0.00±0.00 0.00±0.00
GraphCL+KM 90.40±1.06 46.56±4.31 55.29±5.28 59.47±0.01 0.37±0.31 0.00±0.00 21.50±0.22 1.55±0.12 0.90±0.09 20.32±0.00 0.56±0.00 0.00±0.00
GraphCL+SC 96.08±1.96 72.97±10.86 81.65±8.51 59.96±0.10 2.81±0.07 3.88±0.08 25.28±0.28 4.75±0.36 2.03±0.26 20.08±0.00 0.16±0.00 0.00±0.00
JOAO+KM 88.25±0.00 38.02±0.00 44.62±0.00 59.48±0.00 0.64±0.05 -0.06±0.00 21.66±0.37 1.60±0.01 0.94±0.02 20.34±0.00 0.60±0.00 0.00±0.00
JOAO+SC 80.13±0.02 0.84±0.15 0.80±0.14 59.75±0.00 0.47±0.00 0.17±0.00 24.65±0.44 4.85±0.37 2.07±0.18 20.39±0.49 0.08±0.00 0.01±0.01
GWF+KM 96.43±1.71 74.48±9.15 84.71±7.02 66.87±2.36 9.07±1.21 11.43±3.19 28.55±0.20 6.02±0.55 3.16±0.20 – – –
GWF+SC 96.44±2.92 76.01±15.23 83.54±13.61 68.79±2.05 10.17±1.74 13.88±2.72 25.66±1.57 5.24±1.28 1.78±0.61 – – –

GLCC 79.02±0.62 4.18±2.01 5.05±2.13 60.65±2.69 2.08±1.43 4.16±2.28 19.89±1.09 2.42±0.18 0.19±0.12 23.50±0.48 6.57±3.56 4.00±0.80
DCGLC 96.77±0.33 73.51±2.30 85.74±1.45 68.89±2.04 10.90±1.35 14.32±2.88 28.43±1.28 6.57±0.20 3.78±0.47 33.24±2.34 8.81±2.28 7.16±1.67

MMD 50.10±0.00 0.00±0.00 0.03±0.00 52.56±0.00 0.08±0.00 0.14±0.00 22.90±1.14 1.79±0.28 0.47±0.22 33.31±0.91 17.68±0.17 11.20±0.84
GWD 88.30±0.00 49.73±0.00 56.45±0.00 68.82±0.00 12.42±0.00 12.37±0.00 23.08±0.37 3.91±0.69 0.41±0.11 – – –
GED 89.55±0.00 43.33±0.00 51.02±0.00 52.24±0.07 3.92±0.23 -0.23±0.03 25.50±0.00 5.05±0.18 2.24±0.06 – – –

MMFD 98.80±0.00 88.37±0.00 94.49±0.00 72.60±0.00 14.18±0.00 19.67±0.00 23.68±1.31 5.99±0.78 1.96±0.33 35.97±0.48 18.12±0.61 13.74±1.97
MMFDLR 98.80±0.00 88.37±0.00 94.49±0.00 72.49±0.13 13.98±0.25 19.49±0.23 23.62±0.83 6.55±0.42 2.13±0.22 36.54±0.56 18.31±0.74 13.99±2.18
MMFDLR-KM 98.96±0.02 89.62±0.18 95.25±0.11 71.87±0.18 12.74±0.34 18.51±0.28 25.67±0.77 6.34±0.68 2.06±0.37 35.62±0.46 19.80±0.06 13.74±0.30
MFD 99.45±0.00 93.82±0.00 97.47±0.00 72.60±0.00 14.18±0.00 19.67±0.00 30.33±1.16 8.45±0.26 4.42±0.33 35.35±0.01 17.28±0.03 14.90±0.02
MFD-KD 99.02±0.00 90.01±0.34 95.51±0.18 72.39±0.30 14.06±0.40 19.24±0.57 26.25±1.44 7.54±0.69 2.21±0.60 34.86±0.22 19.70±0.29 14.46±0.36

Table 3: Clustering results (mean ± std of 10 trials) on the four moderate-size datasets. The best, second-best, and third-best
results are highlighted in purple, red, and orange respectively. “ –” denotes out-of-memory or taking more than 12 hours.

formances are lower than MFD and MFD-KD in most cases,
since MFD can exploit more information of distributions.

Table 4 compares the time costs of four methods in comput-
ing the distance or similarity matrices on two datasets. We
see that our MMFDLR is the fastest while GWD is extremely
time-consuming.

AIDS PROTEINS

Shortest-path kernel 1.51 7.55
WL-subtree kernel 0.81 0.90

Entropic GWD 25544.26 4549.31
MMFDLR 0.26 0.61

Table 4: Time costs (second) comparison.

Due to space limitations, the following results are presented
in the appendices:

• Distribution comparison (Appendix C.1)

• Effectiveness of node attributes (Appendix C.2)

• Hyperparameter analysis (Appendix C.3)

• More running time comparison (Appendix C.4)

• Visualization of graphs (Appendix C.5)

• More results on toy graphs (Appendix C.6)

• Experiments on larger datasets (Appendix C.7)

• Molecular property prediction (Appendix C.8)

4. Conclusion
This work proposed MMFD and MFD as efficient and ac-
curate distance measures between graphs. For large-scale
clustering, we also proposed MMFD-KM and MFD-KD,
which has a linear complexity with respect to the number of
graphs in a dataset. We analyzed the properties of the pro-
posed distance measures. We used synthetic graph data to
show the effectiveness of MMFD and MFD intuitively. The
experiments on real-world graph datasets showed that our
methods are not only efficient but also accurate in clustering.

One limitation of the current work is that we haven’t pro-
vided any numerical results of the variant of MFD proposed
in Appendix A.3 because the optimization is too costly.

The Python code of the proposed algorithms is avail-
able at https://github.com/jicongfan/
Graph-Minimum-Factor-Distance.
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A. Beyond Mean Comparison: MFD
A.1. Optimization of MFD

Based on Theorem 2.9, we can just let ρ be a small positive constant such as 10−4. Figure 3 shows the optimization process
of MFD with different ρ on the G̃1 and G̃2 presented by Figure 2. In the experiments of real datasets, we set T = 10, which
is sufficient.

Figure 3: Optimization process of MFD G̃1 and G̃2 in Figure 2.

It is worth mentioning that we can perform down-sampling on Φi to reduce the time cost of MFD. Suppose we randomly
select ns columns of Φi and then compute MFD, then the time complexity becomes O(n2 log(d) + d2n+ T (d3 + dn2

s)),
where ns ≪ n. This can greatly improve the efficiency of computing the MFDs of N graphs.

A.2. MFD-KD for Large-Scale Clustering

Similar to MMFD, we can extend MFD to large-scale clustering by reducing the complexity dependency on N2 to N .
Specifically, we propose to solve

minimize
Ḡ1,...,ḠK

K∑
l=1

∑
Gi∈Gl

MFD2(Gi, Ḡl) (28)

Instead of solving Ḡ1, . . . , ḠK , we solve their features denoted as Ψ1, . . . ,ΨK ∈ RM×n. We have

minimize
Ψ1,...,ΨK

K∑
l=1

∑
Gi∈Gl

min
Ri∈R

∥∥∥∥ 1

ni

ni∑
j=1

ζ(Riϕ
(i)
j )− 1

n

n∑
j=1

ζ(ψ
(l)
j )

∥∥∥∥2 ≜ L(Ψl,Ri) (29)

For convenience, we call this method MFD-KD, where ‘KD’ stands for ‘K-distributions’. The optimization is a little bit
similar to K-means clustering. First, we initialize Ψ

(0)
1 , . . . ,Ψ

(0)
K . At iteration t, for each Gi, we find its label by solving

l
(t)
i = argmin

1≤l≤K
min
Ri∈R

L(Ψ(t−1)
l ,Ri) (30)

where the corresponding optimal Ri are denoted as R(t)
i . The optimization for (30) can be similarly solved by Algorithm 2.

Base on l
(t)
i , i = 1, . . . , N , we have the updated G1, . . . ,GK . Next, we update each of Ψ1, . . . ,ΨK by

Ψ
(t)
l = argmin

Ψl

∑
Gi∈Gl

L(Ψj ,R
(t)
i ) (31)

This can be solved by any gradient-based methods. We alternate between (30) and (31) until some convergence condition is
reached.

Specifically, (31) is equivalent to

minimize
Ψl

∑
Gi∈Gl

1

n2

∑
u,v

exp(−β∥ψ(l)
u −ψ

(l)
v ∥2)−

2

nin

∑
u,v

exp(−β∥ϕ(i)
u −R

(t)
i ψ

(l)
v ∥2) (32)
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Let L be the objective function in (32), we have the gradient

∇Ψl
L =

∑
Gi∈Gl

4β

n2
Ψl(Ql − diag(1⊤Ql))−

4β

nin
R

(t)
i

⊤
(ΦiGl −R

(t)
i Ψldiag(1⊤Gl))

= Ψl

∑
Gi∈Gl

(
4β

n2
(Ql − diag(1⊤Ql)) +

4β

nin
diag(1⊤Gl)

)
−
∑

Gi∈Gl

4β

nin
R

(t)
i

⊤
ΦiGl

(33)

where Ql = [exp(−β∥ψ(l)
u −ψ

(l)
v ∥2)] and Gl = [exp(−β∥ϕ(i)

u −R
(t)
i ψ

(l)
v ∥2)]. Then we perform the following gradient

descent
Ψl ←− Ψl − η∇Ψl

L (34)

where η = c/∥H∥2, c ≤ 1 is some constant, and H =
∑

Gi∈Gl

(
4β
n2 (Ql − diag(1⊤Ql)) +

4β
nin

diag(1⊤Gl)
)

. Note that
here ∥H∥2 is a rough approximation of the Lipschitz constant of the gradient∇Ψl

L. In our experiments, we set c = 0.5.

The optimization steps of MFD-KD is summarized into Algorithm 3.

Algorithm 3 MFD-KD Clustering

Input: Graphs G1, G2, . . . , GN with self-looped adjacency matrices A1,A2, . . . ,AN , K, d, β, ρ, ε, T1, T2, T3.
1: for i=1:N do
2: Ai ≈ UiSiV

⊤
i (randomized SVD, rank-d).

3: Aϕ
i = V̄iS̄iV̄

⊤
i .

4: Φi = S̄
1/2
i V̄⊤

i .
5: end for
6: Initialization: Ψ(0)

1 , . . . ,Ψ
(0)
K ∈ RM×n, t = 0.

7: while t < T1 do
8: t← t+ 1.
9: for i=1:N do

10: Solve (30) for each j using Algorithm 2 with T2 iterations.
11: end for
12: for l=1:K do
13: Solve (31) using gradient descent (e.g., (34)) with T3 iterations.
14: end for
15: end while
Output: G1,G2, . . . ,GK

A.3. A Variant of MFD based on EMD

In MFD, instead of MMD, we can also use the optimal transportation theory to measure the distance between two
distributions. The corresponding distance is the Wasserstein distance or Earth Mover’s Distance (EMD). Let’s consider a
cost matrix defined as

C(R12) := cost(Φ1,R12Φi) (35)

where cost : RM×n1 × RM×n2 → Rn1×n2 . Now let ξ be the EMD and define P := {P ∈ Rn1×n2 : Puv ≥ 0,P⊤1n1 =
1n2/n2,P1n2 = 1n1/n1}, we obtain the following distance between G1 and G2

MFD(G1, G2) = min
R12∈R,P12∈P

⟨C(R12),P12⟩

= min
R12∈R,P12∈P

⟨cost(Φ1,R12Φi),P12⟩
(36)

The optimization of this MFD(G1, G2) is challenging. Since there are two blocks of parameters to optimize, we propose to
use alternating minimization, i.e.,

P
(t)
12 = argmin

P12∈P

〈
cost(Φ1,R

(t−1)
12 Φi),P12

〉
(37)
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R
(t)
12 = argmin

R12∈R

〈
cost(Φ1,R12Φi),P

(t)
12

〉
(38)

Subproblem (37) can be solved by Sinkhorn iteration, while subproblem (38) can be solved by a method similar to that for
(22). Both subproblems are time-consuming. The total time complexity of MFD with EMD is much higher than that of
MFD with MMD. In this work, we do not provide more details about this method.

B. Experimental Settings
B.1. Dataset Description

Table 5 presents the basic information of the datasets used in this work. They were downloaded from https://chrsmrrs.
github.io/datasets/. All experiments were conducted on a computer with Intel Core i9-12900K and RAM 64GB.

Name Graphs Average nodes Average edges Node Attributes Classes Domain
AIDS 2,000 15.69 16.20 4 2 Molecule
PROTEINS 1,113 39.06 72.82 29 2 Biology
ENZYMES 600 32.63 62.14 18 6 Biology
REDDIT-MULTI-5K 4,999 508.52 594.87 - 5 Social networks
DBLP-v1 19,456 10.48 19.65 - 2 Social networks
REDDIT-MULTI-12K 11,929 391.41 456.8 - 11 Social networks

Table 5: Statistics of the graph datasets used in this work.

B.2. Hyperparameter Settings

Since we just used the results of the graph kernels, graph representation learning, GLCC, and DCGLC reported in the
paper of (Cai et al., 2024), the corresponding settings of the hyperparameters or neural network architectures can be found
in (Cai et al., 2024). We implement the entropic-regularized GWD using the function of POT https://pythonot.
github.io/index.html, where the loss function is the square loss, the regularization hyperparameter ϵ is chosen from
{0.01, 0.1, 1}, the maximum iteration is 100, and the iteration tolerance is 0.01. We implement GED using the function of
graphkit-learn https://graphkit-learn.readthedocs.io/en/master/index.html, where the edit costs
of edge and node insertions and deletions are all set to 1.

In our MMFDLR and MMFDLR-KM, we set d = 20 on all datasets. In MFD and MFD-KD, we use a different rank d = 30
because we do not compare the full rank with low rank for simplicity. For spectral clustering, the γ in the Gaussian kernel
is set as 1/(cu)2, where u denotes the average MMDF (or MMD, GWD, and GED) between all graphs and c = 5 for all
datasets. On ENZYMES, we use the node attributes in MMFD, MMFDLR, and MMFDLR-KM, MFD, and MFD-KD, where
the graphs based on the attributes are constructed by Gaussian kernel. In MFD and MFD-KD, the hyperparameter β is
chosen from {0.01, 0.1, 1}. For MFD (Algorithm 2), we set T = 10. For MFD-KD (Algorithm 3), we set T2 = T3 = 5, on
all datasets, set T1 = 10 on large datasets (i.e., the two REDDIT datasets), and set T1 = 20 on other datasets. Particularly,
on the REDDIT-MULTI-5K dataset, for MFD, we let d = 5 and use down-sampling on Φi with a sampling rate 0.2 to
improve the efficiency, which leads to a total time cost of 5.5 hours.

C. More Results
C.1. Effectiveness of Distribution Comparison to Distinguish Graphs

We randomly generate Z1,Z2 ∈ R10×100 from the same Gaussian distribution with zero mean and unit variance and
generate Z3 ∈ R10×100 from a uniform distribution with zero mean and unit variance. From Z1,Z2,Z3, we construct three
graphs using the kernel function k(zu, zv) = 1(exp(−0.1∥zu − zv∥2) > 0.5) respectively. We then calculate the MMFDs
between the three graphs. For instance, in one experiment, we have MMFD(G1, G2)=0.0038 and MMFD(G1, G3)=0.0276,
meaning that G1 is more similar to G2 than to G3. We repeat the experiment 100 times and conduct t-test on the values
of MMFD(G1, G2) and MMFD(G1, G3). The p-value is less than 10−6, meaning that the difference is significant. When
we also generate Z3 from the Gaussian distribution and repeat the experiment 100 times, the p-value of t-test between
MMFD(G1, G2) and MMFD(G1, G3) is 0.6864, meaning that the difference is not significant. These results demonstrated
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that comparing distributions is an effective proxy of comparing graphs.

Figure 4: Visualization of the adjacency matrices of three graphs G1, G2, G3 constructed from two 10-D Gaussian
distributions (zero mean and unit variance) and one 10-D uniform distribution (unit variance) respectively. The kernel
function is k(zu, zv) = 1(exp(−0.1∥zu − zv∥2) > 0.5). We have MMFD(G1, G2)=0.0038 and MMFD(G1, G3)=0.0276.

C.2. Effectiveness of Node Attributes

AIDS, PROTEINS, and ENZYMES have inherent node attributes. Therefore, we use them to evaluate the effectiveness of
incorporating node attributes into our proposed methods. For simplicity, we take MMFDLR-KM as an example. The results
are reported in Table 6. We see that using node attributes can improve the clustering performance, and the improvement on
PROTEINS is most significant.

AIDS PROTEINS ENZYMES

ACC NMI ARI ACC NMI ARI ACC NMI ARI

without node attributes 98.96±0.02 89.62±0.18 95.25±0.11 71.87±0.18 12.74±0.34 18.51±0.28 23.27±0.28 3.34±0.37 0.82±0.09
with node attributes 99.10±0.00 90.68±0.00 95.87±0.00 75.19±0.05 18.17±0.10 24.81±0.11 25.67±0.77 6.34±0.68 2.06±0.37

Table 6: Clustering performance (mean ± std of 10 trials) of MMFDLR-KM with or without using node attributes.

C.3. Hyperparameter Analysis

In our MMFD, there is no hyperparameter. In our MMFDLR and MMFDLR-KM, the only hyperparameter is the rank d.
Here we take the datasets PROTEINS and REDDIT-MULTI-5K as examples to show the impact of d on the clustering
performance of MMFDLR. The average results of 10 trials are shown in Table 7. On PROTEINS, since the average number
of nodes is quite small, we have chosen d from 1 to 40 or used full-rank. We see that when d decreases, the performance in
terms of the three metrics becomes worse. On REDDIT-MULTI-5K, rank-10 performs the best. In general, the performance
of MMFDLR is not very sensitive to r. Even when the rank is 1, our MMFDLR still outperforms the competitors in Table 3.

Dataset Metrics rank

full-rank rank-40 rank-30 rank-20 rank-10 rank-5 rank-3 rank-1

PROTEINS
ACC 72.60±0.00 72.60±0.00 72.60±0.00 72.49±0.13 72.31±0.14 72.08±0.04 71.83±0.04 72.13±0.13
NMI 14.18±0.00 14.18±0.00 14.18±0.00 13.98±0.25 13.62±0.29 13.14±0.10 12.55±0.07 13.42±0.14
ARI 19.67±0.00 19.67±0.00 19.67±0.00 19.49±0.23 19.22±0.24 18.83±0.06 18.49±0.08 18.83±0.26

full-rank rank-200 rank-100 rank-50 rank-20 rank-10 rank-3 rank-1

REDDIT-MULTI-5K
ACC 35.97±0.48 36.13±0.64 36.33±0.56 36.12±0.91 36.18±0.80 36.85±0.81 36.60±0.82 35.77±0.59
NMI 18.12±0.61 18.09±0.62 18.45±0.59 18.06±0.61 18.62±0.65 18.83±0.20 17.83±0.33 17.01±0.32
ARI 13.74±1.97 13.65±2.11 14.57±1.95 12.46±2.12 13.87±1.96 15.08±2.21 13.56±0.19 12.60±1.32

Table 7: Impact of the rank d on the clustering performance of MMFDLR. The best result in each case is highlighted in bold.
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C.4. Runing Time Comparison

First, we study the time cost of our method and a few baselines in comparing two graphs. We generate random graphs with
the number of nodes n increasing from 100 to 30000, where the number of edges of each graph is about 0.1n2. We compare
the time costs (second) of MMFDLR, Shortest-path kernel, WL subtree kernel, and Gromov-Wasserstein distance with
entropic regularizer. In our MMFDLR, we set d = log(n). The results are reported in Table 8. We see that the Shortest-path
kernel is most time-consuming while our MMFDLR is always the most efficient one.

n 100 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 20000 30000
Shortest-path kernel 0.035 4.853 25.8 77.8 178.7 317.9 524.8 779.3 1125.0 1520.3 2022.4 – –
WL subtree kernel 0.009 0.393 1.5 3.4 6.6 10.5 15.3 21.1 27.4 34.9 43.4 182.6 449.7

Gromov-Wasserstein 0.021 0.367 0.5 1.2 2.3 3.9 6.4 9.0 12.8 17.1 21.9 169.1 579.7
MMFDLR 0.003 0.095 0.3 0.5 1.1 1.4 2.1 2.6 3.7 4.4 6.4 29.9 78.8

Table 8: Time cost (second) comparison on two random graphs. The number of nodes n increases from 100 to 30000.

Second, we compare the time costs of our method with the three baselines in computing the distance or similarity matrices
of a set of graphs. We consider AID, PROTEINS, and ENZYMES only because the Gromov-Wasserstein distance with
entropic regularizer is not scalable to larger graphs such as the REDDIT datasets. The results are reported in Table 9. Since
the graphs in the datasets are small, the Shortest-path kernel has a similar time cost as the WL-subtree kernel and our
MMFDLR. The Gromov-Wasserstein distance, though having used the entropic regularizer, is time-consuming.

AIDS (N=2000) PROTEINS (N=1113) ENZYMES (N=600)

Shortest-path kernel 1.51 7.55 1.34
WL subtree kernel 0.81 0.90 0.38

Gromov-Wasserstein 25544.26 4549.31 1600.87
MMFDLR 0.26 0.61 0.14

Table 9: Time cost (second) comparison on three moderate-size datasets.

C.5. Graph Visualization

According to the final format of MMFD, i.e. (12), we can visualize graphs in one-dimensional space directly using
1
ni

√∑
uv[A

ϕ
i ]uv, i = 1, . . . , N . Regarding MFD, we can apply t-SNE (Van der Maaten & Hinton, 2008) to the obtained

distance matrix between graphs to visualize graphs in 2-D space. As shown in Figure 5, we compare MMFD and MFD with
InfoGraph and DCGLC by visualizing graphs of AIDS in 2-D space. For InfoGraph and DCGLC, we just use the t-SNE
plots reported in (Cai et al., 2024). We see that among the four methods, MFD has the best separation between the two
clusters, which is consistent with its high ACC, NMI, and ARI.

C.6. More Results on Toy Graphs

C.6.1. MMFD V.S. OTHER MEASURES ON TOY GRAPHS

We compare MMFD with GED, GWD (without entropic regularizer), and WL-subtree kernel on the seven synthetic graphs
used in Table 2. We implement the WL-subtree kernel using the function of GraKel https://ysig.github.io/
GraKeL/0.1a8/, where the number of iterations is 3 and the node labels are all one. To be consistent with other methods,
we regard 1− k(Gi, Gj) as the distance between Gi and Gj . The results are shown in Table 10. We have the following
observations.

• Regarding GED, for each of G2, G4, G7, it cannot provide a unique closest graph. To each graph, there are always two
graphs with the same distances.

• Regarding GWD, the distances of G6 and G7 to G4 are the same. The closest graph to G7 is identified as G4, which is
not reliable.
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(a) InfoGraph (b) DCGLC

(c) MMFD (d) MFD

Figure 5: Visualization of graphs in AIDS. Plots (a), (b), and (d) are given by t-SNE, while (c) is the direct visualization of
1-D embedding (expanded to 2-D) of MMFD. The number of classes in the dataset is two.

• Regarding the WL-subtree kernel, it does not distinguish between G1, G2, G3. The distance between G7 and G4 is
much less than the distance between G7 and G5 (or G6), which is not reliable.

C.6.2. MFD V.S. MMFD ON TOY GRAPHS

We compare MFD with MMFD on four synthetic graphs in Table 11. Intuitively, G1 and G2 are more similar to each other
than to G3 and G4, and vice versa. MMFD with full rank failed to identify the most similar graphs to G2 and G3, while
MFD with rank one succeeded. In contrast, both MFD with full rank and MDF with rank one identified all similarities
correctly. These results demonstrated the superiority of MDF over MMFD. The fundamental reason is that MFD can exploit
more information of graphs in comparison to MMFD.

C.7. Clustering Results on Larger Datasets

We compare our methods with only three competitors, including WL-subtree kernel, InfoGraph+KM, and DCGLC, on
two large datasets DBLP-v1 and REDDIT-MULTI-12K because other competitors are too time-consuming and often
outperformed by the three methods. Nevertheless, we run the three methods only once because they are still costly, while our
methods are run 10 times because of their high efficiency. The results are reported in Table 12. Our methods outperformed
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(a) MMFD

– 0.0914 0.1589 0.2097 0.2528 0.2505 0.2505

0.0914 – 0.0675 0.1182 0.1614 0.1590 0.1591

0.1589 0.0675 – 0.0507 0.0939 0.0915 0.0916

0.2097 0.1182 0.0507 – 0.0432 0.0408 0.0409

0.2528 0.1614 0.0939 0.0432 – 0.0024 0.0023

0.2505 0.1590 0.0915 0.0408 0.0024 – 0.0001

0.2505 0.1591 0.0916 0.0409 0.0023 0.0001 –

(b) GED

– 4 6 10 10 12 12

4 – 4 6 8 12 10

6 4 – 2 4 10 8

10 6 2 – 2 8 6

10 8 4 2 – 6 4

12 12 10 8 6 – 4

12 10 8 6 4 4 –

(c) GWD

– 0.4500 0.2500 0.3214 0.5625 0.5625 0.5625

0.4500 – 0.1444 0.1845 0.2275 0.2275 0.2275

0.2500 0.1444 – 0.1349 0.1806 0.1806 0.1528

0.3124 0.1845 0.1349 – 0.1658 0.1071 0.1071

0.5625 0.2275 0.1806 0.1071 – 0.0625 0.1250

0.5625 0.2275 0.1806 0.1071 0.0625 – 0.1250

0.5625 0.2275 0.1528 0.1071 0.1875 0.1250 –

(d) WL-subtree kernel

– 0 0 0.2079 0.3610 0.4855 0.3965

0 – 0 0.2079 0.3610 0.4855 0.3965

0 0 – 0.2079 0.3610 0.4855 0.3965

0.2079 0.2079 0.2079 – 0.1323 0.1849 0.1083

0.3610 0.3610 0.3610 0.1323 – 0.2172 0.1693

0.4855 0.4855 0.4855 0.18749 0.2172 – 0.1401

0.3965 0.3965 0.3965 0.1083 0.1694 0.1401 –

Table 10: Comparison between MMFD and other measures on seven synthetic graphs (G1, G2, . . . , G7 from left to right).
In each row of each table, for the corresponding graph, the cell of the value of the numerically closest graph is highlighted in
red.

other methods in most cases.

C.8. Chemical Molecular Property Prediction

We combine MMFD with support vector regression and call this combination MMFD+SVR. We apply it to the QM9 dataset.
Since kernel SVR is not scalable to very large datasets, we only use 25000 graphs for training and 5000 graphs for testing.
Some results of MAE are in Table 13, where the classic MPNN and enn-s2s (Gilmer et al., 2017) are compared. We see
MMFD+SVR works well. It still has a lot of room for improvement, e.g., by using attributes more effectively, using the
extension MFD, or using more training data.
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(a) MMFD (full rank)

– 0.0205 0.0364 0.0753

0.0205 – 0.0159 0.0548

0.3564 0.0159 – 0.0389

0.0753 0.0548 0.0389 –

(b) MMFD (rank-1)

– 0.0235 0.0599 0.0866

0.0235 – 0.0365 0.0631

0.0599 0.0365 – 0.0267

0.0866 0.0631 0.0267 –

(c) MFD (full rank)

– 0.1169 0.2042 0.1773

0.1169 – 0.1700 0.1506

0.2042 0.1700 – 0.1162

0.1773 0.1506 0.1162 –

(d) MFD (rank-1)

– 0.0274 0.0948 0.1023

0.0274 – 0.0766 0.0770

0.0948 0.0766 – 0.0390

0.1023 0.0770 0.0390 –

Table 11: Comparison between MMFD and MFD on four synthetic graphs (G1, G2, G3, G4 from left to right). In each row
of each table, for the corresponding graph, the cell of the expected closest graph is marked in gray and the value of the
numerically closest graph is highlighted in red.

Dataset DBLP-v1 (N = 19456) REDDIT-MULTI-12K (N = 11929)

Metric ACC NMI ARI ACC NMI ARI

WL-subtree kernel 55.04 5.41 0.99 25.37 10.98 6.96
InfoGraph+KM 59.47 11.45 3.56 22.20 8.86 2.70

DCGLC 75.73 22.07 26.49 22.03 3.25 0.23

MMFD 76.13±0.00 20.77±0.00 27.31±0.00 20.64±0.65 10.04±0.46 4.58±0.76
MMFD-KM 76.12±0.00 20.76±0.00 27.29±0.00 21.01±0.18 12.03±0.10 5.04±0.21

MFD-KD 78.95±0.00 25.84±0.50 33.53±0.73 22.83±0.48 15.89±0.43 7.91±0.12

Table 12: Clustering performance on DBLP-v1 and REDDIT-MULTI-12K. The best, second-best, and third-best results are
highlighted in purple, red, and orange, respectively.

Target µ α HOMO LUMO gap R2 ZPVE U0
MPNN 1.22 1.55 1.17 1.08 1.70 3.99 2.52 3.02
enn-s2s 0.30 0.92 0.99 0.87 1.60 0.15 1.27 0.45

MMFD+SVR 0.64 0.34 0.64 0.43 0.43 0.54 0.07 0.41

Table 13: Molecular property prediction on QM9 dataset.
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D. Proof for Theorems
D.1. Proof for Theorme 2.2

Proof. It is obvious that MMFD(G1, G2) ≥ 0, MMFD(G1, G2) = MMFD(G2, G1), and MMFD(G1, G1) = 0 always
hold. So we only need to prove the triangle inequality. Let R∗

ij = argminRij∈R ∥µi −Rijµj∥ and consider an arbitrary
matrix W ∈ RM×M . Then based on the definition of MMFD, we have

MMFD(G1, G2)

= ∥µ1 −R∗
12µ2∥

≤ ∥µ1 −Wµ2∥
= ∥µ1 −R∗

13µ3 +R∗
13µ3 −Wµ2∥

≤ ∥µ1 −R∗
13µ3∥+ ∥R∗

13µ3 −Wµ2∥
= MMFD(G1, G3) + ∥µ2 −W⊤R∗

13µ3∥

(39)

Let W⊤R∗
13 = R∗

23, which has a solution Ŵ = (R∗
23(R

∗
13)

−1)⊤ = R∗
13(R

∗
23)

⊤. We also have Ŵ⊤Ŵ =

R∗
23(R

∗
13)

⊤R∗
13(R

∗
23)

⊤ = IM , which means Ŵ ∈ R. Now letting the W in (39) be Ŵ, we obtain

MMFD(G1, G2) ≤ MMFD(G1, G3) + MMFD(G2, G3) (40)

D.2. Proof for Proposition 2.3

Proof. A complete graph is a graph in which each vertex is connected to every other vertex. Therefore, for two complete
graphs, their self-looped adjacency matrices are Ai = [1]ni×ni , i = 1, 2. Ai are PSD and rank-1. We have Φi = s · [1]1×ni ,
where s is −1 or 1. That means µi = −1 or +1. The rotation matrix R12 is now just a scalar equal to −1 or +1. Therefore,
minR12∈R ∥µ1 −R12µ2∥ ≡ 0, for any (n1, n2).

D.3. Proof for Theorem 2.4

Proof. Let 1ni
be the ni-dimensional vector with all entries 1 and Hij = 1ni

1⊤
nj

. It is easy to show that

MMFD(G1, G2)

= min
R12∈R

( 1

n2
1

1⊤
n1
Φ⊤

1 Φ11n1 +
1

n2
2

1⊤
n2
Φ⊤

2 R
⊤
12R12Φ21n2

− 2

n1n2
1⊤
n1
Φ⊤

1 R12Φ21n2

)1/2
= min

R12∈R

( 1

n2
1

⟨Aϕ
1 ,H11⟩+

1

n2
2

⟨Aϕ
2 ,H22⟩ −

2

n1n2
⟨R12,Φ1H12Φ

⊤
2 ⟩
)1/2

(41)

This indicates that for MMFD, we need to solve

maximize
R12∈R

⟨R12,Q⟩ (42)

where Q = Φ1H12Φ
⊤
2 . Problem (42) (also (10)) is equivalent to the well-known orthogonal Procrustes problem

(Schönemann, 1966) and the optimal solution is

R∗
12 = UQV⊤

Q (43)
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where UQ,VQ are from the SVD of Q, i.e., Q = UQdiag(σ1(Q), . . . , σn(Q))V⊤
Q with σj(Q) denoting the j-th largest

singular value of Q. Since ⟨R∗
12,Q⟩ =

∑
j σj(Q), it follows from (41) that

MMFD(G1, G2)

=

√
1

n2
1

∑
uv

[Aϕ
1 ]uv +

1

n2
2

∑
uv

[Aϕ
2 ]uv −

2

n1n2

∑
j

σj(Φ1H12Φ
⊤
2 )

=

√√√√ 1

n2
1

∑
uv

[Aϕ
1 ]uv +

1

n2
2

∑
uv

[Aϕ
2 ]uv −

2

n1n2

√∑
uv

[Aϕ
1 ]uv

∑
uv

[Aϕ
2 ]uv

=

∣∣∣∣∣∣ 1n1

√∑
uv

[Aϕ
1 ]uv −

1

n2

√∑
uv

[Aϕ
2 ]uv

∣∣∣∣∣∣

(44)

The second equality in (44) holds because Φ1HΦ⊤
2 is a rank-one matrix due to H, which made

∑
j σj(Φ1H12Φ

⊤
2 ) =

σ1(Φ1H12Φ
⊤
2 ) + 0 = ∥Φ11n1

∥∥Φ21n2
∥ =

√
1⊤
n1
Φ⊤

1 Φ11n1

√
1⊤
n1
Φ⊤

2 Φ21n2
=
√(∑

uv[A
ϕ
1 ]uv

)(∑
uv[A

ϕ
2 ]uv

)
.

D.4. Proof for Theorem 2.5

Proof. For convenience, we denote Ãi := Ai +∆i, i = 1, 2. Given the SVDs Ai = UiSiV
⊤
i and Ãi = ŨiS̃iṼ

⊤
i , we

have Aϕ
i = ViSiV

⊤
i and Ãϕ

i = ṼiS̃iṼ
⊤
i . Letting Ei = Ãϕ

i −Aϕ
i , we have∣∣MMFD(G′

1, G
′
2)−MMFD(G1, G2)

∣∣
=

1

n
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∣∣∣∣∣
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2 +E2]uv
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2 ]uv
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≤ 1

n
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√∑
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√∑
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1 ]uv +

√∑
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2 ]uv −
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uv

[Aϕ
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n

∣∣∣∣∣∣
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1 +E1]uv −

√∑
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1 ]uv
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1 ]uv
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[E1]uv
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√√√√∣∣∣∣∣∑

uv

[E2]uv

∣∣∣∣∣
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≤ 1

n

(√
∥E1∥1 +

√
∥E2∥1

)
≤
√
2

n

√
∥E1∥1 + ∥E2∥1

≤
√
2

n3/4

√
∥E1∥F + ∥E2∥F (45)

In the above derivation, the third inequality holds due to the fact that |
√
x−√y| ≤

√
|x− y| is true for any nonnegative x

and y.

Now we need to find bounds for ∥E1∥F and ∥E2∥F .

∥Ei∥F = ∥ṼiS̃iṼ
⊤
i −ViSiV

⊤
i ∥F

≤ ∥ṼiS̃iṼ
⊤
i −ViS̃iṼ

⊤
i ∥F + ∥ViS̃iṼ

⊤
i −ViSiṼ

⊤
i ∥F + ∥ViSiṼ

⊤
i −ViSiV

⊤
i ∥F

≤ ∥Ṽi −Vi∥F ∥S̃i∥2∥Ṽi∥2 + ∥Vi∥2∥S̃i − Si∥F ∥Ṽi∥2 + ∥Vi∥2∥Si∥2∥Ṽi −Vi∥F

(46)
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It is known that
∥Si∥2 = σ1(Ai), ∥S̃i∥2 ≤ σ1(Ai) + σ1(∆i), ∥Ṽi∥2 = ∥Vi∥2 = 1 (47)

According to the Weyl’s inequality for singular values, we have

∥S̃i − Si∥F ≤
√
nσ1(∆i) (48)

According to the Corollary 3 of (Yu et al., 2015), a variant of the Davis-Kahan Theorem (Davis & Kahan, 1970), we have

∥Ṽi −Vi∥F ≤ 2
√
2nσ1(∆i)/δi (49)

where δi = minj ̸=k |σj(Ai)− σk(Ai)|. Combining (46), (48), and (49), we have

∥Ei∥F ≤ 2
√
2nδ−1

i σ1(∆i)(2σ1(Ai) + σ1(∆i)) +
√
nσ1(∆i)

≤ 5
√
2nδ−1

i σ1(∆i)σ1(Ai) +
√
nσ1(∆i)

= (5
√
2δ−1

i σ1(Ai) + 1)
√
nσ1(∆i)

≤ 6
√
2nδ−1

i σ1(Ai)σ1(∆i)

(50)

where the last inequality used the fact that σ1(Ai) > δi. Combing (45) and (50), we arrive at∣∣MMFD(G′
1, G

′
2)−MMFD(G1, G2)

∣∣
≤
√
2

n3/4

(
6
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)1/2 (51)

D.5. Proof for Theorem 2.6

Proof. We have the following derivation for the difference between MMFDLR and MMFD.

∣∣MMFDLR(G1, G2)−MMFD(G1, G2)
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=
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[Ā2 −A2]uv

∣∣∣∣∣+ 2

∣∣∣∣∣∣
∑
j

σj(Q)−
∑
j

σj(Q̄)

∣∣∣∣∣∣
≤ 1

n

√√√√√∑
uv
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In the above derivation, inequality (a) holds due to the fact that |
√
x−√y| ≤

√
|x− y| is true for any nonnegative x and y.

In the theorem, the positive semi-definite assumption on Ai indicates that the EVD and SVD of Ai are exactly the same,
which greatly simplifies the subsequent analysis, e.g., Φi = S

1/2
i V⊤

i and Φi = S̄
1/2
i V̄⊤

i . We now derive the upper bound
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for each term in the square root of the last inequality of (52). First, we have

∑
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[∣∣Ā1 −A1

∣∣]
uv
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where the equality (a) holds because Ā is the best rank-d approximation of A. Similarly, we have
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In the derivation above, equality (a) holds because padding a matrix with zeros does not change the original singular
values, inequality (b) holds according to the Theorem 3.4.5 in (Horn & Johnson, 1991), inequality (c) holds according
to the Corollary 3.4.3 in (Horn & Johnson, 1991), and inequality (d) holds due to the fact that ∥V1∥2 = ∥V2∥2 = 1 and
∥H∥∗ = n.
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Combining (52), (53), (54), and (55), we arrive at

∣∣MMFDLR(G1, G2)−MMFD(G1, G2)
∣∣

≤ 1

n

√√√√n

n∑
j=d+1

σj(A1) + n

n∑
j=d+1

σj(A2) + 2σ
1/2
d+1(A1)σ

1/2
1 (A2) + 2σ

1/2
d+1(A2)σ

1/2
1 (A1)

=
1

n

√√√√n

n∑
j=d+1

(
σj(A1) + σj(A2)

)
+ 2n

(
σ
1/2
1 (A1)σ

1/2
d+1(A2) + σ

1/2
1 (A2)σ

1/2
d+1(A1)

) (56)

This completed the proof.

D.6. Proof for Theorem 2.8

Proof. It is obvious that MFD(G1, G2) ≥ 0, MFD(G1, G2) = MFD(G2, G1), and MFD(G1, G1) = 0 always hold. Here
we only need to prove the triangle inequality. Let R∗

ij = argminRij∈R MMD (Φi,RijΦj) and consider an arbitrary matrix
W ∈ RM×M . Then based on the definition of MFD, we have

MFD(G1, G2)

= MMD (Φ1,R
∗
12Φ2)

≤MMD (Φ1,WΦ2)

≤MMD (Φ1,R
∗
13Φ3) + MMD (R∗

13Φ3,WΦ2)

(57)

When the kernel function used in MMD is a rotation-invariant kernel (e.g., polynomial kernel, radial basis function
kernel, sigmoid kernel, or their combination), the computation of MMD (R∗

13Φ3,WΦ2) is primarily based on the inner
product Φ⊤

3 R
∗
13

⊤WΦ2. Let W⊤R∗
13 = R∗

23, which has a solution Ŵ = (R∗
23(R

∗
13)

−1)⊤ = R∗
13(R

∗
23)

⊤. We also have
Ŵ⊤Ŵ = R∗

23(R
∗
13)

⊤R∗
13(R

∗
23)

⊤ = IM , which means Ŵ ∈ R. It follows that

Φ⊤
3 R

∗
13

⊤ŴΦ2 = Φ⊤
3 R

∗
23

⊤Φ2 (58)

This means

MMD((R∗
13Φ3,ŴΦ2) = MMD (R∗

23Φ3,Φ2) (59)

Combining (59) and (57) with W replaced by Ŵ, we obtain

MFD(G1, G2) ≤ MMD (Φ1,R
∗
13Φ3) + MMD (R∗

23Φ3,Φ2) = MFD(G1, G3) + MFD(G2, G3) (60)

Currently, we cannot prove that MFD(G1, G2)⇐⇒ G1 = G2. Therefore, MFD is a pseudo-metric.

D.7. Proof for Theorem 2.9

Proof. For convenience, we define

L̄(R12) := L(R(t−1)
12 ) + ⟨G(t−1),R12 −R

(t−1)
12 ⟩ (61)
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where G(t−1) = ∇L(R(t−1)
12 ) = 2β

∑
uv αuv exp

(
2β⟨ϕ(1)

u ,R
(t−1)
12 ϕ(2)

v ⟩
)
ϕ(1)

u ϕ(2)
v

⊤
. We have the following derivation

L(R12)− L̄(R12)

=
∑
u,v

αuv exp
(
2β⟨ϕ(1)

u ,R12ϕ
(2)
v ⟩
)
−
∑
u,v

αuv exp
(
2β⟨ϕ(1)

u ,R
(t−1)
12 ϕ(2)

v ⟩
)

−
〈
2β
∑
uv

αuv exp
(
2β⟨ϕ(1)

u ,R
(t−1)
12 ϕ(2)

v ⟩
)
ϕ(1)

u ϕ(2)
v

⊤
,R12 −R

(t−1)
12

〉
=
∑
u,v

αuv

(
exp

(
2β⟨ϕ(1)

u ,R12ϕ
(2)
v ⟩
)
− exp

(
2β⟨ϕ(1)

u ,R
(t−1)
12 ϕ(2)

v ⟩
)

−
〈
2β exp

(
2β⟨ϕ(1)

u ,R
(t−1)
12 ϕ(2)

v ⟩
)
ϕ(1)

u ϕ(2)
v

⊤
,R12 −R

(t−1)
12

〉)
=
∑
u,v

αuv exp
(
2β⟨ϕ(1)

u ,R
(t−1)
12 ϕ(2)

v ⟩
)(

exp
(
2β
〈
ϕ(1)

u ,R12 −R
(t−1)
12 ϕ(2)

v

〉)
−
(
1 + 2β

〈
ϕ(1)

u ,R12 −R
(t−1)
12 ϕ(2)

v

〉)
≥ 0

(62)

where the inequality holds because αuv exp
(
2β⟨ϕ(1)

u ,R
(t−1)
12 ϕ(2)

v ⟩
)
> 0 and exp(x) > 1 + x for any x.

Now we define
L̂(R12) = L̄(R12)−

ρ

2
∥R12 −R

(t−1)
12 ∥2F (63)

which is exactly the right-hand-side of (23). Note that L(R(t−1)
12 ) = L̄(R(t−1)

12 ) = L̂(R(t−1)
12 ).

Combining (62) and (63) yields

L(R12) ≥ L̄(R12) = L̂(R12) +
ρ

2
∥R12 −R

(t−1)
12 ∥2F (64)

As the inequality holds for any R12 ∈ R, letting R12 = R
(t)
12 , we have

L(R(t)
12 ) ≥ L̂(R

(t)
12 ) +

ρ

2
∥R(t)

12 −R
(t−1)
12 ∥2F (65)

Since R
(t)
12 maximize L̂(R12), it holds that

L̂(R(t)
12 ) ≥ L̂(R

(t−1)
12 ) (66)

Combining (66), (65), and the fact L̂(R(t−1)
12 ) = L(R(t−1)

12 ), we arrive at

L(R(t)
12 ) ≥ L(R

(t−1)
12 ) +

ρ

2
∥R(t)

12 −R
(t−1)
12 ∥2F (67)

This proved part (a) of the theorem.

For part (b) of the theorem, we sum up both sides of (67) from 1 to t and obtain

L(R(t)
12 )− L(R

(0)
12 ) ≥

ρ

2

t∑
i=1

∥R(i)
12 −R

(i−1)
12 ∥2F (68)

Note that L(R(∞)
12 ) <∞ and L(R(0)

12 ) ≥ 0, according to the definition of L(R12). Therefore,

ρ

2

∞∑
i=0

∥R(i)
12 −R

(i−1)
12 ∥2F <∞ (69)

Since ρ > 0, we conclude from (69) that

R
(i)
12 −R

(i−1)
12 → 0 when i→∞ (70)

This completed the proof for part (b) of the theorem.
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