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Abstract

Story visualization is a challenging text-to-001
image generation task for the difficulty of ren-002
dering visual details from abstract text descrip-003
tions. Besides the difficulty of image genera-004
tion, the generator also needs to conform to005
the narrative of a multi-sentence story input.006
While prior arts in this domain have focused007
on improving semantic relevance between gen-008
erated images and input text, controlling the009
generated images to be temporally consistent010
still remains a challenge. To generate a se-011
mantically coherent image sequence, we pro-012
pose an explicit memory controller which can013
augment the temporal coherence of images014
in the multi-modal autoregressive transformer,015
and call it Story visualization by MultimodAl016
Recurrent Transformers or SMART for short.017
Our method generates high resolution high018
quality images, outperforming prior works by019
a significant margin across multiple evaluation020
metrics on the PororoSV dataset.021

1 Introduction022

Story visualization is a challenging task of text-to-023

image generation. A story consists of a sequence024

of pairs of texts and images where the pairs are025

temporally coherent as a story. Our task is to re-026

produce the images given the multi-sentence input.027

The task lies at the intersection of natural language028

processing and computer vision. It is more chal-029

lenging than the conventional text-to-image genera-030

tion task owing to additional objectives such as un-031

derstanding narrative in the text input, semantic rel-032

evance and temporal consistency, e.g., foreground033

and background consistency, in the generated se-034

quence of images. At the first glance, the story035

visualization task may seem similar to text-based036

video synthesis. Nevertheless, story visualization037

has a unique challenge as the image frames of a038

story are more disjoint than that of a video. In sum,039

the task of story visualization shares the difficulty040
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Figure 1: Comparing visual generation tasks from
texts. Story visualization task aims to generate a se-
quence of images to describe a given story written in
a natural language paragraph and is different from text-
to-image or video generation.

of both text-to-image and text-to-video generation 041

tasks as depicted in Fig. 1. 042

To generate a semantically relevant and tem- 043

porally consistent sequence of images, we need 044

to utilize both past and current scene narratives 045

extracted from the sentence inputs. The recently 046

proposed copy-transform mechanism (Maharana 047

et al., 2021) based on attention-based semantic 048

alignment (Tao Xu, 2018) has shown some promis- 049

ing results but has a large room for improvement. 050

Memory-Augmented Recurrent Transformer 051

(MART) (Lei et al., 2020), a recent advancement 052

in video-captioning task, presents an interesting re- 053

search avenue in story visualization. It is based on 054

a shared gated-memory module, similar to an RNN, 055

which determines the importance of the preserva- 056

tion of historical feature information. The mem- 057

ory module is added between each layer of the 058

recurrent transformer and helps in the generation 059

of more coherent and diverse video captions while 060

maintaining semantic relevance to video events. 061

Inspired by these insights, we propose to use a 062

dynamic gated-memory module in a multimodal re- 063
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current autoregressive transformer to model the cor-064

relation of the generated image with both past and065

current sentence inputs. The autoregressive trans-066

former is a likelihood-based-model (Chen et al.,067

2020) and presents several advantages over tradi-068

tional GAN-based generation modules with respect069

to mode-collapse, training instabilities, and lack070

of sample diversity (Adiga et al., 2018). Further-071

more, a multimodal self-attention module preserves072

context over long-range text and image inputs for073

improved image resolution. With the added gated-074

memory module, we can expect the multimodal075

recurrent autoregressive transformer to generate076

images with a substantially higher degree of se-077

mantic relevance and temporal consistency, all on078

account of the sophisticated utilization of historical079

information.080

We call our proposed model architecture081

SMART (Story visualization by MultimodAl082

Recurrent Transformers). The experimental results083

manifest that we can improve the quality of vi-084

sualized stories with enhanced image quality and085

coherency between generations, as shown in Fig. 4.086

We summarize our contributions as follows:087

• We propose the first model using multimodal self-088

attention on long-range input of text and image089

in a recurrent manner for generating a temporally090

coherent image sequence given a paragraph.091

• We explicitly generate sequences of images at a092

higher resolution with higher quality than ever093

before on a benchmark dataset.094

• We outperform prior works by a large margin095

on the image quality and temporal coherence096

between generated images.097

2 Related Work098

Text-to-Image generation. Text-based image099

synthesis has been widely studied recently. Most100

papers in this area focus on enhancing the semantic101

relevance of the generated image for the input text102

description and on resolution improvements. MC-103

GAN (Park et al., 2018) models both background104

and foreground information to generate photo re-105

alistic foreground objects for a background. Stack-106

GAN (Zhang et al., 2017) uses a two-stage process107

to enhance the resolution of the image conditioned108

on an input text description. Subsequent works fo-109

cus on architectural enhancements over StackGAN.110

This is accomplished by either adding attention net-111

works for improved semantic relevance, extending112

the two-stage process, or adding memory networks113

to improve the resolution of generated images and 114

others (Xu et al., 2018; Zhang et al., 2018; Zhu 115

et al., 2019; Gao et al., 2019). Most recently, text- 116

based image synthesis has been studied in a zero- 117

shot setting. DALL-E (Ramesh et al., 2021) pro- 118

poses an autoregressive transformer to model the 119

text and image as a single data stream. More recent 120

approaches utilize the multimodal CLIP model to 121

achieve the same objective (Radford et al., 2021). 122

Story Visualization. The story visualization task 123

is a more complex counterpart of text-based image 124

generation that has recently garnered research inter- 125

est. StoryGAN (Li et al., 2019) was the first work in 126

this direction and utilized a story-level discrimina- 127

tor to improve global consistency in generated im- 128

ages. CP-CSV (Song et al., 2020) disentangles fig- 129

ure and background information to enhance charac- 130

ter consistency. DuCO-StoryGAN (Maharana et al., 131

2021) presents video captioning as an auxiliary task 132

for story visualization along with other design im- 133

provements to StoryGAN. VLC-StoryGAN (Ma- 134

harana and Bansal, 2021) uses constituency parse- 135

trees and common sense knowledge to improve con- 136

sistency and an object-level feedback loop to im- 137

prove image quality. DuCO-StoryGAN and DALL- 138

E are direct precursors of our work. While DuCO- 139

StoryGAN utilizes MART (Lei et al., 2020) to en- 140

code video captions, DALL-E presents a generation 141

framework based on joint autoregressive modeling 142

of text and images. 143

3 Method 144

SMART generates a semantically relevant and 145

temporally consistent sequence of images corre- 146

sponding to an input multi-sentence story input. 147

We train the model using a two-stage training pro- 148

cedure, similar to DALL-E (Ramesh et al., 2021). 149

In contrast to the single-stream context-agnostic 150

generation in DALL-E, our model utilizes a re- 151

current multimodal transformer architecture with 152

dynamic aggregation of historical information for 153

context-aware image sequence generation. 154

To generate an image sequence, we first com- 155

press the image into a discretized set of latent fea- 156

tures called image tokens. This is achieved using 157

a Vector Quantized Variational Autoencoder (VQ- 158

VAE) (van den Oord et al., 2017) for improved com- 159

putational efficiency. Second, we recurrently train 160

the multimodal autoregressive transformer model 161

with an infused dynamic gated-memory module to 162

solve the story visualization task. 163
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Figure 3: Image tokenization using VQ-VAE.

3.1 Image Tokenization164

Image tokens are generated at the compression165

stage of training. Real images usually consist of166

millions of sub-pixels which make the generative167

process extremely expensive. In the compression168

stage, we use a VQ-VAE (van den Oord et al., 2017)169

to transform the input images into a set of low-170

dimensional discrete latent features called image171

tokens. As shown in Fig. 3, this framework is the au-172

toencoder structure that learns a discretized latent173

encoding for input data x in the training procedure.174

3.2 Generating an Image Seq. from Texts175

An agent designed for the story visualization task176

needs to (1) understand the cross-modal relation-177

ship between text and images, (2) interpret the nar-178

rative of the story from the text, and (3) generate179

temporally consistent images while maintaining180

semantic relevance with the input text.181

Fig. 2 shows the proposed multimodal recur-182

rent transformer for generating an image sequence183

given a multi-sentence story. First, we tokenize the184

text and image inputs for training and add a posi-185

tional embedding. Both text and image tokens are 186

treated equally and the autoregressive transformer 187

carries out a language modeling task, i.e., left-to- 188

right token prediction. We then decode the image 189

tokens to form an image using a pre-trained VQ- 190

VAE decoder. 191

The multimodal self-attention module helps pre- 192

serve context even over long sequences of text and 193

image tokens and leads to high resolution images. 194

Additionally, we propose a dynamic memory ag- 195

gregation module for improved narrative under- 196

standing, infused in the intermediate layers of the 197

transformer as shown in Fig. 2 (right). The dynamic 198

updates occur as follows (1) intermediate layer is 199

modified for memory aggregation on current stage, 200

and (2) aggregated information is passed through 201

to next stage transformer. This module helps us 202

improve temporal consistency and overall seman- 203

tic relevance of the generated images by providing 204

easy access to historically aggregated features. 205

4 Experiments 206

Dataset. We use PororoSV dataset proposed 207

in (Li et al., 2019), which is a modified version 208

of (Kim et al., 2017) for story visualization task. 209

Each story sample consists of 5 image sequences 210

and corresponding 5 descriptions. Following the 211

task formulated in StoryGAN (Li et al., 2019), we 212

use 13,000 training pairs and 2,334 testing pairs. 213
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Methods FID↓ FSD↓
StoryGAN (Li et al., 2019) 75.65 80.39
CPC-SV (Song et al., 2020) 68.75 79.86
DuCo (Maharana et al., 2021) 64.94 96.32
SMART (Ours) 44.78 27.29
SMART w/o Recurrent 50.62 31.43
SMART w/o Character cls. 48.25 30.21

Table 1: Quantitative comparison. ↓ indicates ‘lower
the better’.
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Figure 4: Examples of generated sequence of images
using various methods. Ours generates semantically
and visually plausible image sequences.

Metrics. Evaluation method of generated image214

sequence needs to focus on the generated image215

quality and coherency between generated images.216

Following (Song et al., 2020), we use FID (Fréchet217

Inception Distance) and FSD (Fréchet Story Dis-218

tance) as quantitative metrics to evaluate the meth-219

ods. Please refer to (Song et al., 2020) for the de-220

tails about them.221

Implementation details. We use a recurrent222

GPT-based paragraph-to-image sequence generator223

having a memory layer for story visualization. In224

the first stage of training, we train a discrete vari-225

ational autoencoder with only PororoSV dataset,226

which compresses each input image into 16 × 16227

grid of image tokens having 8192 possible values228

for each element. Then, we use a simple text tok-229

enizer1 having vocaburary size of 49,408. Finally, 230

we use 128 text token length and totally 386 (128 231

+ 16 × 16 + 2) input tokens with two special to- 232

kens (i.e., start of sentence token and start of image 233

token) (Fig. 2). 234

5 Results 235

5.1 Quantitative Analysis 236

In Table 1, we summarize the performance com- 237

parison to prior works and ablated components on 238

PororoSV (Li et al., 2019) dataset. In both metrics 239

(i.e., FID and FSD) used for evaluating image qual- 240

ity and temporal coherency, SMART outperforms 241

prior existing works by a large margin. Particularly, 242

SMART shows a significant gain of FSD, which 243

measures the temporal coherency in the story, over 244

existing works. 245

Furthermore, to assess the contribution of recur- 246

rent architecture and character classification loss, 247

we performed an ablation experiment with different 248

configurations as shown in Table 1. Removing the 249

recurrent framework from the model degrades quite 250

a bit of performance, indicating that it is needed 251

for both local (e.g., FID) and global (e.g., FSD) 252

understanding of the story. Removing the character 253

classification loss also hurts the model performance 254

as shown in Table 1 The reason is that because the 255

dataset domain is quite simple, the object infor- 256

mation could guide for improving the performance. 257

Thus, the generative model in which the component 258

of character classification loss has been removed 259

has deteriorated. 260

5.2 Qualitative Analysis 261

We empirically investigate the advantage of recur- 262

rent memory and summarize the results in Fig. 4. 263

As shown in the examples, the proposed recur- 264

rent memory promotes to generate a semantically 265

more plausible and temporally consistent image 266

sequence (compare second rows to third rows). We 267

further compare our method to prior arts qualita- 268

tively in Appendix for the space sake. 269

6 Conclusion 270

We propose a novel architecture based on multi- 271

modal recurrent transformer for solving the task of 272

story visualization. Extending our model to out-of- 273

distribution datasets or in zero-shot setup would be 274

an interesting future research avenue. 275

1https://github.com/openai/CLIP/blob/
main/clip/simple_tokenizer.py
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A Additional Qualitative Results367

We present additional qualitative results in the fol-368

lowing figures.369

Loopy is dribbling to the goalpost.

Because the ball went to strange direction, 
pororo and eddy laughed.

Eddy and pororo thought that loopy missed 
the chance to score as friends expected.

Loopy celebrates loopy as petty got a score.

Pororo and eddy is hard to believe what just 
happened that loopy made a fantastic goal.
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Figure 5: Comparative Qualitative Results to Prior
Arts. GT refers to ground-truth. We compare our
method (SMART) to prior arts including StoryGAN,
CPC-SV and DuCo. Ours generates a semantically
more plausible and temporally more coherent image se-
quence than the prior arts. Note that our SMART gener-
ates 128×128 whereas other methods generate 64×64,
thus the clarity of the images is an additional benefit of
our method.

From now, we skip the sentences.370
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Figure 6: More Comparative Qualitative Results to
Prior Arts.
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Figure 7: More Comparative Qualitative Results to
Prior Arts.
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Figure 8: More Comparative Qualitative Results to
Prior Arts.
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