
Long-range Neural Atom Learning
for Molecular Graphs

Xuan Li1∗ Zhanke Zhou1∗ Jiangchao Yao2,3 Yu Rong4 Lu Zhang1 Bo Han1

1Hong Kong Baptist University 2CMIC, Shanghai Jiao Tong University
3Shanghai AI Laboratory 4Tencent AI Lab

{csxuanli, cszkzhou, ericluzhang, bhanml}@comp.hkbu.edu.hk
sunarker@sjtu.edu.cn yu.rong@hotmail.com

Abstract

Graph Neural Networks (GNNs) have been widely adopted for drug discovery
with molecular graphs. Nevertheless, current GNNs are mainly good at leveraging
short-range interactions (SRI) but struggle to capture long-range interactions (LRI),
both of which are crucial for determining molecular properties. To tackle this
issue, we propose a method that implicitly projects all original atoms into a few
Neural Atoms, which abstracts the collective information of atomic groups within a
molecule. Specifically, we explicitly exchange the information among neural atoms
and project them back to the atoms’ representations as an enhancement. With this
mechanism, neural atoms establish the communication channels among distant
nodes, effectively reducing the interaction scope of arbitrary node pairs into a single
hop. To provide an inspection of our method from a physical perspective, we reveal
its connection with the traditional LRI calculation method, Ewald Summation. We
conduct extensive experiments on three long-range graph benchmarks, covering
both graph-level and link-level tasks on molecular graphs. We empirically justify
that our method can be equipped with an arbitrary GNN and help to capture LRI.

1 Introduction

Graph Neural Networks (GNNs) show promising ability of modeling complex and irregular interac-
tions [39; 30; 44]. In particular, GNNs attract growing interest in accelerating drug discovery due to
the accurate prediction of the molecular properties [25; 15; 35; 21; 45].

Figure 1: An exemplar molecular with
the long-range interactions (dash lines)
and short-range interactions (solid lines).

The basic elements of a molecule are different types of
atoms, while the interactions among atoms can be gener-
ally categorized into short-range interactions (SRI) and
long-range interactions (LRI). Wherein, SRI, such as co-
valent bonds or ionic bonds, acts over relatively small dis-
tances that are typically within the range of a few atomic
diameters. By contrast, LRI, such as hydrogen bonds and
coulombic interactions, operates over much larger dis-
tances compared to the typical atomic diameter. Although
LRI is typically with weaker strength than SRI, it plays a
significant role in determining the physical and chemical
properties of molecules [36; 20].

∗Equal contributions.

NeurIPS 2023 New Frontiers in Graph Learning Workshop (NeurIPS GLFrontiers 2023).

Figure 2: Illustration of Neural Atoms. The mapping function f is to project the original atoms to
Neural Atoms, and the retrieving function f−1 aims to inject the information of Neural Atoms to
original atoms, allowing the GNN model to capture LRI via the interaction between Neural Atoms.

In Fig. 1, we give an illustration of SRI and LRI in a
molecular graph, which is formed by the covalent bonds with explicit hydrogens. The SRIs, e.g.,
the covalent bond between carbon () and hydrogen (), are denoted as solid lines (), which
involves the electron exchange of atoms to establish the stabilization of the molecular structure. As
such, the SRIs are considered to be the explicit edges of the molecular graph. Whereas the LRIs
(denoted as dashed lines) are presented as implicit force depending on the distance between atoms
in the 3D range and the molecular structure and could involve atoms with multiple hops distance.
For example, the hydrogen bond (,) can involve the 5-length path (, , , , ,) with four
middle atoms, whereas the hydrogen bond (,) can involve the 10-length path (, , , , ,

, , , ,) with nine middle atoms.

GNNs can effectively capture the SRI as they aggregate neighboring information in each layer,
however, they are intrinsically ineffective in capturing the LRI that is located among distant nodes.
Naively stacking more layers to perceive LRI will encounter exponentially increasing neighbor
nodes. This induces GNN to compress excessive spurious information of some irrelevant long-range
neighbor nodes, which results in the well-known over-squashing problem [1].

A common enhancement of GNNs is Graph Transformer (GT) [18; 19], which uses the self-attention
mechanism to process information from neighbors that allows the capture of complex and long-range
relationships between nodes. However, with self-attention, a node may attend to a large number of
nodes with no direct edge connection, where the excessive information can also bring difficulty in
capturing meaningful LRI that are usually sparse, and it could even involve irrelevant information
during the message aggregation and update process. In practice, only marginal improvements can
GTs achieve compared with GNNs [34], while the self-attention on the entire molecular makes GTs
much more computationally expensive than GNNs.

In this work, we aim to design an effective and efficient mechanism to enhance GNNs for capturing
long-range interactions. We notice that in areas of computational chemistry and molecular modeling,
the pseudo atoms can be employed to group atoms into a more manageable and computationally
efficient representation. Note these pseudo atoms are not real atoms with physical properties but are
introduced for simplification and convenience in calculations. One can approximate the effects of
LRIs by introducing pseudo atoms strategically, making simulations of complex molecular systems
more tractable while still retaining the essential characteristics of these interactions. However, pseudo
atoms cannot be directly applied here, as they are typically manually designed with expert knowledge.

To close this gap, we propose Neural Atoms: Learning to implicitly project all the original atoms into
a few neural atoms that abstract the collective information of atomic groups in a molecule. Based
on this, we explicitly exchange the information among neural atoms and project them back to the
atoms’ representations as an enhancement. Under this mechanism, the neural atoms establish the
communication channels among distant nodes, which can reduce the interaction scope of arbitrary
node pairs into a single hop. Note that the proposed method is architecture-agnostic and computation-
efficient, which can be equipped with an arbitrary GNN and help to capture LRI. Empirically, we
evaluate our method on three long-range graph benckmarks [34]2 with both link-level and graph-level
tasks. We achieve up to 27.32% improvement in the Peptides-struct dataset with different kinds of
commonly-used GNNs. Our main contributions are summarized as follows.

2As we focus on the 2D intra-molecule interaction in this study, our Neural Atom does not consider to handle
the 3D coordinate information for the present. Correspondingly, the employed benchmark does not provide the
3D coordinate information. We leave the extension of our Neural Atoms on the 3D scenario in the future.

2

• We formalize the concept of neural atoms, and instantiate it with dual self-attention mechanisms to
learn the atoms-neural atoms projection and model the interactions among neural atoms (Sec. 3).

• We conduct extensive experiments on long-range molecular datasets for property prediction and
structure reconstruction, and empirically justify that our method can boost various GNNs (Sec. 4).

• We provide an in-depth understanding of our method from a physical perspective and reveal its
intrinsic connection with a commonly-used LRI calculation method, Ewald Summation (Sec. 5).

2 Preliminaries

Notation. An undirected graph is denoted as G = (V, E), where V is the node set and E is the edge
set. For each node v ∈ V , its D-dimension node feature is denoted as xv ∈ RD. Besides, h(ℓ)

v denote
the node representation of node v in ℓ-th layer for a L-layer GNNs, where 0 ≤ ℓ ≤ L and h

(0)
v = xv .

Graph Neural Networks. Given a graph G, the neighbor information aggregate function f (ℓ) and
the node representation update function ϕ(ℓ), we can formulate the ℓ-th layer operation of GNNs as

h(ℓ)
v = ϕ(ℓ)

(
h(ℓ−1)
v , f (ℓ)(h(ℓ−1)

v)
)
,

where N (v)={u∈V|(u, v)∈E} are the neighbor nodes of node v. Different GNNs vary from the
design of the function f (ℓ) and ϕ(ℓ). For example, GCN [16] define its f (ℓ) as

f (ℓ)(h(ℓ−1)
v) = Σu∈N (v)∪{v}1/

√
d̂ud̂vW

(ℓ)h(ℓ−1)
u ,

and use ReLu function as ϕ(ℓ), where W is the learnable parameter for filtering the graph signal.
Likewise, GIN [40] obtain neighbor information by f (ℓ)(h

(ℓ−1)
v) =

∑
u∈N (v)∪{v} h

(ℓ−1)
u , and

update node representation via a feed-forward network. In addition, the node representations in the
last GNN layer would then be transformed by a feed-forward network for specific downstream tasks.
For example, for graph-level classification tasks, the whole representations H ∈RN×d would be
transformed to the logits Ŷ ∈RC with C classes that usually through the graph pooling operation.

Multi-head Attention Mechanism. Consider a molecular graph with N nodes, the input of the
attention mechanism fAtt consists of three components, termed as query Q∈Rk×dk , key K∈RN×dk ,
and value V ∈RN×dv , where dk and dv are dimensions. As such, the fAtt=σ(QK⊤)V is calculated
via the dot product of the query and the key, with σ denoting the activation function. To extend the
attention to the multi-head case, we further utilize the linear projection for Q,K, and V to yield M
representation subspace. The multi-head attention mechanism allows us to learn different attentions
between query and key, thus enhancing the model expressivity. Namely, with M attention heads,

MultiHead(Q,K,V) = WO∥Mm=1Om, s.t. Om = fAtt(QWQ
m ,KWK

m ,V W V
m),

where WO∈RMdh×dout is the linear projection matrix for learning the subspace representation of
the contracted head outputs to output dimension dout. Besides, WQ

m ∈Rdk×dk , WK
m ∈Rdk×dk , and

W V
m ∈Rdv×dv are the projection matrixes in the m-th head for query, key, and value, respectively.

Graph Hierarchical Learning. The GNNs can only propagate information through edges formed
by the SRI. To capture LRI, the model would inevitably aggregate information on the numerous
intermediate atoms from the source node to the target node. The overwhelming information could
suppress the information from distant target nodes, thus degenerating the ability of the model to
capture LRI. An intuitive idea is to group the intermediate atoms and abstract their information
into a single node. This could reduce the information propagating length of LRI by decreasing the
potential intermediate atoms, which helps enhance the distant atoms’ information strength. One
straightforward implementation is appending a supernode [10] to graph with connection with all
the atoms to extract global information to improve the model’s performance without 3D position
information available. The supernode technique has been proven to increase the expressiveness and
reduce under-reaching issues [14], and the ability to approximate the Graph Transformer [5]. However,
the supernode differs from the neural atom regarding the grouping strategy and the information-
exchanging mechanism. A detailed discussion can be found in Appendix E and F. The grouping
operation is achieved by graph pooling for abstracting the node representation while preserving the
local structure information [42; 23; 8; 3]. Such an operator allows the model to obtain multi-scale
graph-level representation, which implicitly enhances the model to capture LRI. However, graph

3

Figure 3: The proposed Neural Atom framework aims to obtain graph representation for different
downstream tasks. The Neural Atom can enhance arbitrary by injecting LRI information via the
interaction of neural atoms. We demonstrate the information exchange by the mixture of colors.

pooling is designed to obtain global representation without considering cooperating with the LRI and
SRI information, which makes the GNN unable to propagate and utilize the LRI information.

Graph Laplacian Position Encoding. The position encoding can benefit graph learning by instilling
distinguishable information to the node features, such as local structure and Laplacian eigenvec-
tors [19]. Standard GNNs are known to be bounded by the 1-Weisfeiler-Leman test (1-WL), meaning
they fail to distinguish non-isomorphic graphs with 1-hop message passing. Instilling graph position
encoding allows GNNs to be more expressive than the 1-WL test, as each node is equipped with the
distinguishable information [18; 19].

Ewald Summation. The Ewald Summation [31] is a calculation algorithm for molecular dynamics
simulation, which calculates the energy of the interaction by processing the atoms’ position and their
charges via mathematical models. The Ewald Summation decomposes the actual interaction into
the short-range and the long-range part, where the former decays vastly in the real space, and the
latter would only exhibit fast decay in the frequency space. The short-range part can be calculated
by employing a summation with the distance cut-off. Whereas the long-range part, transformed by
Fourier transformation, can be calculated via a low-frequency cut-off summation.

3 Method

In this section, we first introduce the concept of neural atoms and how it can benefit GNNs to capture
LRI (Sec. 3.1). Next, we elaborate on the attention-based approach to realize neural atoms (Sec. 3.2).
Finally, we connect it with the Ewald Summation from the graph representation learning (Sec. 3.3).

3.1 Formalizing the neural atoms on Molecular Graphs

As aforementioned, we proposed the neural atoms inspired by the pseudo-atoms of molecular
dynamics simulations, which abstract prefixed atom groups into individual representations. By
mapping the atoms into neural atoms and allowing a fully connected structure with neural atoms, one
can reduce the LRI into direct neighbor interaction. The formalization of neural atoms is as follows.

Definition 3.1. Neural atoms encompass a collection of virtual and adaptable atoms that symbolize
a cluster of atoms within a designated molecular graph. The process entails the acquisition of knowl-
edge that enables the transformation of conventional atoms into neural atoms. This transformation
can be technically executed through methodologies such as graph clustering or graph coarsening.

Advantages. Different neural atoms are designed to gather data from distinct local regions, with the
intent of preserving local information to the greatest extent possible. This approach serves to alleviate
the challenges associated with learning intricate graph structures. Consequently, interactions among
atoms that are widely separated are transformed into interactions among neural atoms, effectively
narrowing the interaction range from any arbitrary pair of atoms to a single step, as illustrated in
Fig. 2. Employing a layer-wise collaboration with GNNs, information from distant atoms can be
effectively exchanged through the interactions among neural atoms. In what follows we elaborate on
the implementation of neural atoms via the attention mechanism and the collaboration with GNNs.

4

3.2 Injecting long-range information into message passing by neural atoms

The overall inference pipeline is illustrated in Fig. 3. Specifically, in ℓ-th layer, we obtain the atom
representations H(ℓ)

GNN with neighborhood information via the ℓ-th GNN layer. Then, we apply neural
atoms to enhance the representations as (H(ℓ)

GNN,H
(ℓ)
NA)→H(ℓ), which includes three steps as follows.

Step1. Project atom representations H(ℓ)
GNN to neural atom representations H(ℓ)

NA . To achieve
this projection, we commence by initializing a learnable neural atom weights Q(ℓ)

NA∈RK×dk , where
K (≪ N) specifies the number of neural atoms as a hyperparameter and dk is the embedding
dimension. By employing the multi-head attention (MultiHead), we can learn the grouping function
for obtaining neural atoms representing the intermediate atoms. Wherein, the atom representations
H

(ℓ)
GNN ∈ RN×d are mapped to the key K ∈ RN×dh and value V ∈ RN×dh by linear projection

weights WK ∈Rdh×dh and WV ∈Rdh×dh , respectively. The allocation matrix Âm for m-th head
is obtained as Âm=σ(Q

(ℓ)
NAK

⊤)∈RK×N , and ⊕ denotes operation for combining representations,
e.g., sum or a feed forward network. The representations H(ℓ)

NA of neural atoms are obtained by:

H
(ℓ)
NA = LayerNorm

(
Q

(ℓ)
NA ⊕MultiHead(Q

(ℓ)
NA,H

(ℓ)
GNN,H

(ℓ)
GNN)

)
, (1)

where the LayerNorm represents the operation of Layer Normalization [2].

Step2. Exchange information among neural atoms H(ℓ)
NA →H̃

(ℓ)
NA . Then, we explicitly exchange

the information among neural atoms to capture the long-range interactions in this molecular graph.
We further employ the self-attention mechanism for efficient information exchange, namely,

H̃
(ℓ)
NA = LayerNorm

(
H

(ℓ)
NA ⊕MultiHead(H

(ℓ)
NA ,H

(ℓ)
NA ,H

(ℓ)
NA)

)
. (2)

Step3. Project neural atoms back and enhance the atoms’ representation (H
(ℓ)
GNN,H

(ℓ)
NA)→H(ℓ).

So far, the obtained H̃
(ℓ)
NA contains information from different atom groups. To cooperate the H̃

(ℓ)
NA

with the original molecular atom, we aggregate the allocation matrix Âm of different heads and
project the neural atoms into the atom space with size N . Here, we perform the matrix reduction
operations (e.g., mean or summation) to aggregate the multi-head Âm and get Ã(ℓ)

NA, which allows
the model to learn different allocation weights. The final atom representations H(ℓ) are obtained by
enhancing the atom representations H(ℓ)

GNN with the neural atoms’ representations Ã(ℓ)
NAH̃

(ℓ)
NA , i.e.,

H(ℓ) = H
(ℓ)
GNN ⊕ Ã

(ℓ)
NAH̃

(ℓ)
NA , s.t. Ã

(ℓ)
NA = Aggregate

(
{Âm}Mm=1

)⊤∈RN×K . (3)

The overall procedure. We summarize the forward pipeline in Algorithm 1. In brief, given the
atom representations of a molecular graph H

(ℓ−1)
GNN in (ℓ−1)-th layer, we first get the updated atoms’

representations H(ℓ)
GNN by the GNN in ℓ-th layer to capture the SRI. Then, the atoms H(ℓ)

GNN are pro-
jected to neural atoms Ã(ℓ)

NAH̃
(ℓ)
NA to capture the LRI with the three above steps. Finally, the enhanced

representations H(ℓ) are obtained by mixing both atoms’ and neural atoms’ representations.3

Remark 3.1. We map the atoms in the molecular graph to K neural atoms, which are far less
than the size of the atoms of the original molecular graph. Such a mechanism allows us to filter
out potentially irrelevant information since the attention mechanism aggregates the information
according to the similarity between the embedding of neural atoms and the atoms within the original
graph. In addition, rather than processing attention on the fully connected graph with huge time
consumption, neural atoms can reduce the computation burden. Specifically, instead of directly
modeling the atom interaction in a fully connected graph, we map the potential interaction into the
space constructed by neural atoms, which is more sparse compared to the original graph.

3One can scale neural atoms to a large molecular graph by employing a linear Transformer-like Performer [7]
or BigBrid [43]. One can also prune the connection between neural atoms and atoms within the molecular graph
based on the attention score to reduce the computation.

5

Algorithm 1 Message propagation with neural atoms.
Require: Molecular graph G, atoms feature X , and GNN model f .
1: Initialize H(0) ← X
2: for ℓ = 1 . . . L do
3: H

(ℓ)
GNN ← f (ℓ)(H(ℓ−1),G)

4: H
(ℓ)
NA ← LayerNorm

(
Q

(ℓ)
NA ⊕MultiHead(Q

(ℓ)
NA ,H

(ℓ)
GNN,H

(ℓ)
GNN)

)
5: H̃

(ℓ)
NA ← LayerNorm

(
H

(ℓ)
NA ⊕MultiHead(H

(ℓ)
NA ,H

(ℓ)
NA ,H

(ℓ)
NA)

)
6: Ã

(ℓ)
NA ← Aggregate

(
{Âm}Mm=1

)⊤
7: H(ℓ) ←H

(ℓ)
GNN ⊕ Ã

(ℓ)
NAH̃

(ℓ)
NA ,

8: end for
9: return H(L).

3.3 Connection to the Ewald Summation

Here, we utilize the aforementioned Ewald sum matrix [9] to show and understand the interaction
among particles. Each element in the matrix represents the corresponding Ewald summation, which
offers a more rapidly converging series that ensure accurate results even for distant interactions.
Specifically, the Ewald summation decomposes the interatomic interaction into short-range and
long-range parts. Wherein, the short-range interaction (denoted as x(r)

ij) can be straightforwardly

summed by imposing a distance cutoff; while the long-range component (termed as x(ℓ)
ij) exhibits a

rapid decay in its Fourier transform although diminishing slowly with distance, i.e.,

xij = ZiZj

∑
L

erfc
(
a ∥ri − rj + L∥2

)
∥ri − rj + L∥2︸ ︷︷ ︸

SRI: x(r)
ij

+
ZiZj

πV

∑
G

e−∥G∥2
2/(2a)

2

∥G∥22
cos (G · (ri − rj))︸ ︷︷ ︸

LRI: x(ℓ)
ij

+x
(s)
ij

The above equation gives the interatomic interaction strength, i.e., the non-diagonal elements in the
Ewald sum matrix. The Zi and ri are the atomic number and position of the i−th atom, and V is the
unit cell volume. Besides, L denotes the lattice vectors within the distance cutoff, G is the non-zero
reciprocal lattice vectors, and a is the hyperparameter that controls the summation converge speed.

The strength of SRI and LRI are determined by multiplying the atomic numbers, which indicate the
number of positive charges. The difference lies in the manner of calculating the distance between
atoms. The x

(r)
ij , corresponding to the strength of the interaction in the real space, is calculated by

the error function erfc and the Euclidian distance |ri − rj + L|2 between atoms. The x
(ℓ)
ij describe

the interaction strength in the reciprocal space, which is calculated by the distance given by the dot
product of G and the interatomic distance (ri − rj). Whereas the self-energy x

(s)
ij is a constant term

for the interaction from the positive atomic cores, which is irrelevant to the interatomic distance.

Remark 3.2. Recall in Eqn. (3), the final atom representations H(ℓ) are obtained by combining both
the atoms’ representations H(ℓ)

GNN and the neural atoms’ representations Ã(ℓ)
NAH̃

(ℓ)
NA . In association

with the Ewald summation, The H
(ℓ)
GNN contains the information of the SRI term x

(r)
ij and self-energy

term x
(s)
ij of the Ewald summation, while the enhanced Ã

(ℓ)
NAH̃

(ℓ)
NA is to approximate the LRI term x

(ℓ)
ij .

4 Experiments

In this section, we empirically evaluate the proposed method on real-world molecular graph datasets
for both graph-level and link-level tasks. All the datasets require modeling LRI for accurate prediction
on downstream tasks. We aim to provide answers to two following questions. Q1: How effective are
the proposed methods on real-world molecular datasets with common GNNs? Q2: How does the
grouping strategy of neural atoms affect the performance of different GNNs for capturing the LRI?

Setup. We implement the neural atom with GNNs in the GraphGPS framework [19], which provide
various choices of positional and structural encodings. All the experiments are run on an NVIDIA RTX

6

Table 1: Test performance on three LRGB datasets. Shown is the mean ± s.d. of 4 runs.

Model Peptides-func Peptides-struct PCQM-Contact
AP ↑ MAE ↓ MRR ↑

Transformer+LapPE 0.6326 ± 0.0126 0.2529 ± 0.0016 0.3174 ± 0.0020
SAN+LapPE 0.6384 ± 0.0121 0.2683 ± 0.0043 0.3350 ± 0.0003
GraphGPS 0.6535 ± 0.0041 0.2500 ± 0.0005 0.3337 ± 0.0006

GCN 0.5930 ± 0.0023 0.3496 ± 0.0013 0.2329 ± 0.0009
+ Neural Atoms 0.6220 ± 0.0046 0.2606 ± 0.0027 0.2534 ± 0.0200
GINE 0.5498 ± 0.0079 0.3547 ± 0.0045 0.3180 ± 0.0027
+ Neural Atoms 0.6154 ± 0.0157 0.2553 ± 0.0005 0.3126 ± 0.0021
GCNII 0.5543 ± 0.0078 0.3471 ± 0.0010 0.3161 ± 0.0004
+ Neural Atoms 0.5996 ± 0.0033 0.2563 ± 0.0020 0.3049 ± 0.0006
GatedGCN 0.5864 ± 0.0077 0.3420 ± 0.0013 0.3218 ± 0.0011
+ Neural Atoms 0.6562 ± 0.0075 0.2585 ± 0.0017 0.3258 ± 0.0003
GatedGCN+RWSE 0.6069 ± 0.0035 0.3357 ± 0.0006 0.3242 ± 0.0008
+ Neural Atoms 0.6591 ± 0.0050 0.2568 ± 0.0005 0.3262 ± 0.0010

3090 GPU with AMD Ryzen 3960X as the CPU. We employ the molecular datasets (Peptides-Func,
Petides-Struct, PCQM-Contact) that exhibit LRI from Long Range Graph Benchmarks (LRGB) [34].
Detailed experiment settings are shown in the appendix B.

Baseline. We employ the GCN [16], GINE [13], GCNII [6] and GatedGCN [4] and GatedGCN
augmented augmented with Random Walk Structure Encoding (RWSE) as the baseline GNNs. To
capture the LRI, one could adopt the fully connected graph to obtain interatomic interaction for
distant atom pairs explicitly. Here, we adopt the Graph Transformers for comparison. Specifically,
we introduce the fully connected Trasnforemr [32] with Laplacian Positon Encodings [33], SAN [18]
and the recent GraphGPS [19], which utilize GNNs and Transformer to capture short-range and
long-range information respectively. We cooperate our neural atom with different GNN models to
evaluate its performance, denoted as + Neural Atom.

4.1 Quantitative Results

Shown as Tab. 1, all the GNNs achieve significant improvement with the assistance of neural atoms.
The GNNs gain improvement from 8.17% to 12.55% on the peptides-func dataset. The GNNs also
receive significant improvement on the peptides-func dataset, at most 27.32% for the GINE model.
The improvement for different GNNs on various datasets empirically proves that neural atoms can
enhance the common GNNs to capture LRI on molecular graphs. Especially for the GatedGCN,
which exceeds the Transformer with LapPE on the peptides-func dataset and shows competitive
results for the other counterparts on both the peptides-func and PCQM-Contact datasets.

We also notice that more powerful GNNs, especially with edge learning or edge attention filtering
mechanisms, could lead to better performance in the scenario with LRI. Compared to other GNN
models, the significant improvement of GatedGCN could be the incoming information filtering via the
gate mechanism, which allows the neural atoms to obtain representation with rich SRI information.

4.2 The varying choice of K

As previously noted, our methodology involves the categorization of atoms inside the initial molecule
into K neural atoms. When determining the appropriate hyperparameter K, we take into account
the fluctuating quantity of atoms present in the molecules, aligning it with the average number of
atoms found within the dataset. We present an analysis of the impact of different strategies of the
K. The fixed technique, denoted as fixed K, involves setting the value of K as a proportion relative
to the average number of atoms in the dataset, as seen in Fig. 4(a). The technique involves setting
the value of K as a proportion to the average number of atoms on the dataset at the initial layer.
Subsequently, each layer is determined as a proportion to the previous value of k, as depicted in
Fig. 4(b). The incremental strategy can be considered as the antithesis of the decremental approach,
wherein the value of K is sequentially increased incrementally, as depicted in Fig. 4(c). We assess
various approaches for determining the count of neural atoms on peptides-struct, as depicted in Tab. 2.

The fixed configuration enables the model to establish a stable interaction space, which is generated
by a predetermined amount of neural atoms in each layer. This arrangement can be advantageous
for most GNNs. While employing the decremental approach, the model is capable of adopting an

7

(a) Fixed (b) Decremental (c) Incremental
Figure 4: Neural Atom grouping strategies.

Table 2: Test performance for different grouping strategies on Peptides-struct.
Model Fixed Incremental Decremental

GCN 0.2582 ± 0.0011 0.3239 ± 0.0014 0.2606± 0.0003
GINE 0.2559 ± 0.0001 0.2795 ± 0.0012 0.2578 ± 0.0017
GCNII 0.2579 ± 0.0025 0.4084 ± 0.0025 0.2563 ± 0.0020
GatedGCN 0.2592 ± 0.0017 0.2568 ± 0.0009 0.2569 ± 0.0007
GatedGCN+RWSE 0.2521 ± 0.0014 0.2600 ± 0.0012 0.2568± 0.0005

Table 3: Test performance for different proportions (#neural atoms / #atoms) on Peptides-func.
Model proportion = 0.1 proportion = 0.5 proportion = 0.9

GCN 0.5859 ± 0.0073 0.5903 ± 0.0054 0.6220 ± 0.0046
GINE 0.6128 ± 0.0060 0.6147 ± 0.0121 0.6154 ± 0.0157
GCNII 0.5862 ± 0.0066 0.5909 ± 0.0099 0.5996 ± 0.0033
GatedGCN 0.6533 ± 0.0030 0.6562 ± 0.0044 0.6562 ± 0.0075
GatedGCN+RWSE 0.6550 ± 0.0032 0.6565 ± 0.0074 0.6591 ± 0.0050

Table 4: Running time comparison and relative improvements for GNNs with Neural Atom and
Graph Transformers. Average epoch time (average of 5 epochs, including validation performance
evaluation) is shown for each model and dataset combination. The GTs are compared to the average
time and performance of the three shown GNNs. Full results can be found in the Appendix. C.

GINE GCNII GatedGCN Transformer+LapPE SAN+LapPE
Peptides-func (+2.2s, 11.90%↑) (+2.2s, 11.90%↑) (+2.8s, 11.90%↑) (+3.6s, 12.26%↑) (+57.2s, 13.29%↑)
Peptides-struct (+1.6s, 27.32%↓) (+2.8s, 26.16%↓) (+2.3s, 24.88%↓) (+3.5s, 27.30%↓) (+54.8s, 22.88%↓)

interaction space characterized by an inverse pyramid structure, hence facilitating the acquisition
of information from a local to a global perspective. The use of incremental methods may not be
appropriate for the LRI scenario due to the potential disruption of the local structure. This disruption
can occur when the atom representation is mapped to an increasingly complicated interaction space.

An experiment is conducted to investigate the effects of different proportions, as presented in
Tab. 3. Reduced grouping proportions are associated with heightened levels of assertive grouping
techniques, while conversely, higher proportions tend to be linked to more moderate approaches. It
has been observed that employing a more moderate grouping approach yields superior outcomes. The
grouping procedure has the potential to coarsen the molecular graph, hence potentially improving the
preservation of the local structure, specifically the SRI.

In order to showcase the effectiveness of our suggested neural atom, we have conducted calculations
to determine the duration of each training epoch. The results are presented in Tab. 4. Although
our method requires slightly more time, it exhibits more computational efficiency compared to
the Transformer approach, particularly in the case of the SAN with LapPE. We also provide a
comparison on larger graphs in Tab. 10 to further demonstrate the running time gaps between the
Transformer-based method and our proposed Nerual Atoms.

5 Understanding

In order to demonstrate the impact of neural atoms on the process of grouping atoms and establishing
high-level connections between them, as well as its capability to form meaningful groups of atoms,
we adopt the Mutagenicity dataset [24] as a case study. This dataset offers explicit labels for atom
groups within the molecular graph category, specifically accounting for the presence of −NO and
−NH2 groups, which are indicative of the mutagen properties of the respective molecules.

To represent the potential interatomic interactions, we utilize the Ewald sum matrix to visualize. The
Ewald sum matrix comprises elements that represent the Ewald Summation for distinct interatomic
interactions, as denoted by the respective row and column indices within the matrix. In this study, we
utilize a three-layer Graph Isomorphism Network (GIN) model [40], with a predetermined number of

8

Layer-0 Layer-1 Layer-2 Ewald Sum
Figure 9: Neural Atom grouping pattern at each layer for non-mutagen molecular

Layer-0 Layer-1 Layer-2 Ewald Sum
Figure 14: Neural Atom grouping pattern at each layer for mutagen molecular (−NO)

neural atoms. Specifically, our model consists of four neural atoms in each layer. The atom allocation
matrix is visualized through the assignment of a distinct color to each atom within the original
chemical graph based on the index of the highest attention weight within the matrix. The allocation
pattern for the neural atoms at each layer, as well as the interatomic interactions suggested by the
Ewald sum matrix, are visualized in Fig. 5 to 7. The observed grouping pattern is consistent with the
interatomic interaction as suggested by the Ewald sum matrix, with the application of thresholding
for the purpose of enhancing visual clarity. Atoms displaying the same color are indicative of their
possession of a high degree of interaction potential. As illustrated in Fig. 9, the atoms located within
the range of (C:3-C:9) and (C:2-C:8) are assigned to separate neural atoms. This enables the model
to depict their interaction by sharing information between these neural atoms.

Furthermore, we employ visual representation to depict the molecular structure of the mutagen
compound containing the −NO group, as illustrated in Fig. 14. In the primary layer, hydrogen atoms
(H) and oxygen atoms (O) are segregated into distinct neural atoms, regardless of the multi-hop
distance between them. This enables the model to get the atom representation corresponding to each
element. Within the remaining layers, the constituents of −NO (N:8 and O:9) are organized into a
neural atom, enabling the model to capture their representation comprehensively. This facilitates the
prediction of the molecular graph. It is worth noting that the observed grouping pattern is consistent
with the interatomic interaction, as shown by the Ewlad sum matrix. The atoms denoted as (C:2-O:9)
and (C:7-O:3) are assigned to distinct neural atoms. The model is capable of accurately representing
the LRI even when there are multiple hops and intermediate atoms between the interacting entities.
The presented visualization showcases the efficacy of our proposed methodology in facilitating the
connection between remote atoms. Additionally, the atom groups identified in this study have the
potential to impact the accurate prediction of molecular graph features significantly. We provide more
visualization understanding in the Appendix C.

6 Discussion and Conclusion

Limitation. This work mainly focuses on the molecular graph without 3D coordinate information,
which could benefit the incorporation of LRI, as it depends on the interatomic distance in 3D space.
In addition, our work pays close attention to the intra-molecular interaction rather than the inter-
molecular interaction, where more valuable information might lie. For example, protein docking also
involves the formation of the hydrogen bond between two biochemical components [38].

Extension. One intuitive approach is extending the Neural Atom to leverage the atomic coordinate
information better to capture the LRI. The Neural Atom can also model the inter-molecular interaction
by extending to the 3D scenario. Another possible direction is to instill expert knowledge in the
grouping strategy to improve the interpretation ability and discriminability of the grouped atoms.

Conclusion. In this study, we aim to enhance GNNs to capture long-range interactions better. We
achieve this by transforming original atoms into neural atoms, facilitating information exchange, and
then projecting the improved information back to atomic representations. This novel approach reduces
interaction distances between nodes to a single hop. Extensive experiments on three long-range graph
benchmarks validate our method’s ability to enhance any GNN to capture long-range interactions.

9

Statements

Ethic Statement. This paper does not raise any ethical concerns. This study does not involve human
subjects, practices to data set releases, potentially harmful insights, methodologies and applications,
potential conflicts of interest and sponsorship, discrimination/bias/fairness concerns, privacy and
security issues, legal compliance, and research integrity issues.

Reproducibility Statement. The experimental setups for training and evaluation, as well as the
hyperparameters, are described in detail in Section 4 and Appendix B, and the experiments are all
conducted using public datasets.

References
[1] U. Alon and E. Yahav. On the bottleneck of graph neural networks and its practical implications.

In ICLR, 2020.

[2] J. Ba, J. Kiros, and G. Hinton. Layer normalization. arXiv:1607.06450, 2016.

[3] J. Baek, M. Kang, and S. Hwang. Accurate learning of graph representations with graph multiset
pooling. In ICLR, 2021.

[4] X. Bresson and T. Laurent. Residual gated graph convnets. arXiv:1711.07553, 2017.

[5] C. Cai, T. Hy, R. Yu, and Y. Wang. On the connection between mpnn and graph transformer.
ICML, 2023.

[6] M. Chen, Z. Wei, Z. Huang, B. Ding, and Y. Li. Simple and deep graph convolutional networks.
In ICML, 2020.

[7] K. Choromanski, V. Likhosherstov, D Dohan, X. Song, A. Gane, T. Sarlos, P. Hawkins, J. Davis,
A. Mohiuddin, L. Kaiser, D. Belanger, L. Colwell, and A. Weller. Rethinking attention with
performers. In ICLR, 2021.

[8] R. Ekagra, S. Soumya, and T. Partha. ASAP: Adaptive structure aware pooling for learning
hierarchical graph representations. In AAAI, 2020.

[9] F. Faber, A. Lindmaa, O A. Von L., and R. Armiento. Crystal structure representations for
machine learning models of formation energies. IJQC, 115(16):1094–1101, 2015.

[10] J. Gilmer, S. Schoenholz, P. Riley, O. Vinyals, and G. Dahl. Neural message passing for
quantum chemistry. In ICML, 2017.

[11] M. Gromiha and S. Selvaraj. Importance of long-range interactions in protein folding.
Biophysical chemistry, 77(1):49–68, 1999.

[12] W. Hu, M. Fey, M. Zitnik, Y. Dong, H. Ren, B. Liu, M. Catasta, and J. Leskovec. Open graph
benchmark: Datasets for machine learning on graphs. NeurIPS, 2020.

[13] W. Hu, B. Liu, J. Gomes, M. Zitnik, P. Liang, V. Pande, and J. Leskovec. Strategies for
pre-training graph neural networks. In ICLR, 2020.

[14] E. Hwang, V. Thost, S. Dasgupta, and T. Ma. An analysis of virtual nodes in graph neural
networks for link prediction (extended abstract). In LoG, 2022.

[15] V. Ioannidis, D. Zheng, and G. Karypis. Few-shot link prediction via graph neural networks for
covid-19 drug-repurposing. arXiv:2007.10261, 2020.

[16] T. Kipf and M. Welling. Semi-supervised classification with graph convolutional networks. In
ICLR, 2016.

[17] A. Kosmala, J. Gasteiger, N. Gao, and S. Günnemann. Ewald-based long-range message passing
for molecular graphs. In ICML, 2023.

[18] D. Kreuzer, D. Beaini, W. Hamilton, V. Létourneau, and P. Tossou. Rethinking graph transform-
ers with spectral attention. In NeurIPS, 2021.

10

[19] R. Ladislav, M. Galkin, D. Prakash, L. Tuan, W. Guy, and B. Dominique. Recipe for a general,
powerful, scalable graph transformer. In NeurIPS, 2022.

[20] D. Leeson and J. Young. Molecular property design: does everyone get it?, 2015.

[21] Z. Li, M. Jiang, S. Wang, and S. Zhang. Deep learning methods for molecular representation
and property prediction. Drug Discovery Today, page 103373, 2022.

[22] S. Liu, H. Wang, W. Liu, J. Lasenby, H. Guo, and J. Tang. Pre-training molecular graph
representation with 3d geometry. In ICLR, 2022.

[23] Y. Ma, S. Wang, C. Aggarwal, and J. Tang. Graph convolutional networks with eigenpooling.
In KDD, 2019.

[24] C. Morris, N. Kriege, F. Bause, K. Kersting, P. Mutzel, and M. Neumann. Tudataset: A
collection of benchmark datasets for learning with graphs. In ICML Workshop on Graph
Representation Learning and Beyond, 2020.

[25] M. Rycker, B. Baragaña, L. Duce, and I. Gilbert. Challenges and recent progress in drug
discovery for tropical diseases. Nature, 559(7715):498–506, 2018.

[26] K. Schütt, P. Kindermans, Huziel E. Sauceda F., S. Chmiela, A. Tkatchenko, and K. Müller.
Schnet: A continuous-filter convolutional neural network for modeling quantum interactions.
NeurIPS, 30, 2017.

[27] O. Shchur, M. Mumme, A. Bojchevski, and S. Günnemann. Pitfalls of graph neural network
evaluation. Relational Representation Learning Workshop (R2L 2018), NeurIPS, 2018.

[28] A. Stuke, C. Kunkel, D. Golze, M. Todorović, J. Margraf, K. Reuter, P. Rinke, and H. Oberhofer.
Atomic structures and orbital energies of 61,489 crystal-forming organic molecules. Scientific
data, 7(1):58, 2020.

[29] H. Stärk, D. Beaini, G. Corso, P. Tossou, C. Dallago, S. Günnemann, and P. Liò. 3d infomax
improves gnns for molecular property prediction. arXiv:2110.04126, 2021.

[30] J. Thomas, A. Moallemy-Oureh, S. Beddar-Wiesing, and C. Holzhüter. Graph neural networks
designed for different graph types: A survey. Transactions on Machine Learning Research,
2023. ISSN 2835-8856. URL https://openreview.net/forum?id=h4BYtZ79uy.

[31] A. Toukmaji and J. Board Jr. Ewald summation techniques in perspective: a survey. Computer
physics communications, 95(2-3):73–92, 1996.

[32] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, N. Gomez, Ł. Kaiser, and I. Polo-
sukhin. Attention is all you need. In NeurIPS, 2017.

[33] D. Vijay, L. Anh, L. Thomas, B. Yoshua, and B. Xavier. Graph neural networks with learnable
structural and positional representations. In ICLR, 2022.

[34] D. Vijay, R. Ladislav, G. Mikhail, P. Ali, W. Guy, L. Anh, and B. Dominique. Long range graph
benchmark. In NeurIPS Datasets and Benchmarks Track, 2022.

[35] O. Wieder, S. Kohlbacher, M. Kuenemann, A. Garon, P. Ducrot, T. Seidel, and T. Langer. A
compact review of molecular property prediction with graph neural networks. Drug Discovery
Today: Technologies, 37:1–12, 2020.

[36] W. Winterbach, P. Mieghem, M. Reinders, H. Wang, and D. Ridder. Topology of molecular
interaction networks. BMC systems biology, 7:1–15, 2013.

[37] F. Wu, D. Radev, and S. Li. Molformer: Motif-based transformer on 3d heterogeneous molecular
graphs. In AAAI, 2023.

[38] M. Wu, D. Dai, and H. Yan. Prl-dock: Protein-ligand docking based on hydrogen bond matching
and probabilistic relaxation labeling. Proteins: Structure, Function, and Bioinformatics, 80(9):
2137–2153, 2012.

11

https://openreview.net/forum?id=h4BYtZ79uy

[39] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. Yu. A comprehensive survey on graph neural
networks. IEEE transactions on neural networks and learning systems, 32(1):4–24, 2020.

[40] K. Xu, W. Hu, J. Leskovec, and S. Jegelka. How powerful are graph neural networks? In ICLR,
2018.

[41] C. Ying, T. Cai, S. Luo, S. Zheng, G. Ke, D. He, Y. Shen, and T. Liu. Do transformers really
perform badly for graph representation? In NeurIPS, 2021.

[42] Z. Ying, J. You, C. Morris, X. Ren, W. Hamilton, and J. Leskovec. Hierarchical graph
representation learning with differentiable pooling. In NeurIPS, 2018.

[43] M. Zaheer, G. Guruganesh, K. Dubey, J. Ainslie, C. Alberti, S. Ontanon, P. Pham, A. Ravula,
Q. Wang, and L. Amr A. Yang. Big bird: Transformers for longer sequences. NeurIPS, 2020.

[44] Y. Zhang, Y. Hu, N. Han, A. Yang, X. Liu, and H. Cai. A survey of drug-target interaction and
affinity prediction methods via graph neural networks. Computers in Biology and Medicine,
page 107136, 2023.

[45] Z. Zhang, L. Chen, F. Zhong, D. Wang, J. Jiang, S. Zhang, H. Jiang, M. Zheng, and X. Li.
Graph neural network approaches for drug-target interactions. Current Opinion in Structural
Biology, 73:102327, 2022.

12

Appendix

Table of Contents
A Long Range Interaction examples 13

B Reproduction details 14
B.1 Hyperparameters . 14
B.2 Dataset details . 14

C Running time compairson 15

D Comparison with Ewald-based GNN in OE62 15
D.1 The training/validation curves . 16

E Comparison with super/virtual node 16

F Further discussion 17

G Performance comparison for neural atoms and virtual nodes 18

H Neural Atoms Assignment and Interaction Visualization 19

A Long Range Interaction examples

The long-range interaction affects the surface area of the molecule or contributes to the formation of
hydrogen bonds, which in turn affects the properties, such as melting point, water affinity, viscosity,
of the molecule [41; 22; 29; 11]. Understanding and quantifying these long-range interactions is
crucial in chemistry, physics, and materials science, as they influence the behavior and properties
of molecules, materials, and biological systems. Here, we show different types of LRI and their
properties.

• Van der Waals Force is a weak attractive interaction that occurs between all atoms and
molecules. These forces arise due to temporary fluctuations in electron distribution, creating
temporary dipoles. Van der Waals forces include London dispersion forces (arising from
instantaneous dipoles), dipole-dipole interactions, and induced dipole-induced dipole in-
teractions. These forces can act over relatively long distances and are responsible for the
condensation of gases into liquids.

• Hydrogen Bond is a special type of dipole-dipole interaction that occurs when hydrogen
is bonded to a highly electronegative atom (such as oxygen, nitrogen, or fluorine) and
is attracted to another electronegative atom in a nearby molecule. Hydrogen bonds are
relatively strong compared to other long-range interactions and play a crucial role in the
structure and properties of water, DNA, and proteins.
Electrostatic Interaction, also known as Coulombic interactions, occur between charged
particles. While ionic bonds are a type of strong electrostatic interaction, long-range
electrostatic interactions can also occur between charged ions or polar molecules that are
not directly bonded to each other. These interactions can be both attractive and repulsive,
depending on the charges involved.
Dipole-Dipole Interaction occurs between molecules that have permanent dipoles, mean-
ing they have a separation of positive and negative charges within the molecule. These
interactions are stronger than van der Waals forces and can act over longer distances.
Ion-Dipole Interaction occurs when an ion interacts with the dipole moment of a polar
molecule. These interactions are important in solutions where ions are dissolved in a polar
solvent.

13

Dispersion Interaction, also known as London dispersion forces, is a component of van
der Waals forces. They arise from temporary fluctuations in electron distribution and can act
between all molecules, even non-polar ones. These forces can be relatively weak but can
accumulate to have a significant impact on molecular interactions.
Magnetic Interaction is a long-range magnetic interaction that can occur between magnetic
moments associated with atoms or ions. These interactions are responsible for the behavior
of ferromagnetic and antiferromagnetic materials.

B Reproduction details

B.1 Hyperparameters

We performed our experiment on four seeds and reported the mean with standard deviation as the
final result. We summarize the common hyperparameters that are shared across different models
on the introduced datasets, along with the model-specific hyperparameters, shown as Tab. 5 to
Tab. 8. Our code is added in the anonymous link: https://anonymous.4open.science/r/
Neural-Atom-CF5C/.

Table 5: Common hyperparameters for datasets from Long Range Graph Benchmark.
Hyperparameter PCQM-Contact Peptides-func Peptides-struct
Dropout 0 0.12 0.2
Allocation matrix Grouping mean mean mean

Positional Encoding LapPE-10 LapPE-10 LapPE-10
PE dim 16 16 20
PE encoder DeepSet DeepSet DeepSet

Batch size 256 128 128
Learning Rate 0.001 0.0003 0.0003
Epochs 200 200 200

Table 6: Model-specific hyperparameters for PCQM-Contact
Hyperparameter # GNN Layers Hidden dim # Heads proportion # Neural Atoms
GCN 5 300 1 0.9 27
GCNII 5 100 2 0.8 24
GINE 5 100 1 0.95 28
GatedGCN 8 72 1 0.5 15

Table 7: Model-specific hyperparameters for Peptides-func
Hyperparameter # GNN Layers Hidden dim # Heads proportion # Neural Atoms
GCN 5 155 1 0.15 22
GCNII 5 88 1 0.2 27
GINE 5 88 2 0.9 135
GatedGCN 5 88 1 0.5 75

Table 8: Model-specific hyperparameters for Peptides-struct
Hyperparameter # GNN Layers Hidden dim # Heads proportion # Neural Atoms
GCN 5 155 1 0.15 22
GCNII 5 88 1 0.2 30
GINE 5 88 2 0.9 135
GatedGCN 5 88 1 0.5 135

B.2 Dataset details

The statistical information of the datasets is shown as Tab. 9. Note that all three datasets consist
of multiple graphs and are evaluated under the inductive setting, which means that the evaluating

14

https://anonymous.4open.science/r/Neural-Atom-CF5C/
https://anonymous.4open.science/r/Neural-Atom-CF5C/

Table 9: Dataset statistical information. All the datasets consist of molecular graphs that exhibit LRI.

Dataset Total
Graphs

Total
Nodes

Avg
Nodes

Mean
Deg.

Total
Edges

Avg
Edges

Avg
Short.Path.

Avg
Diameter

pcqm-contact 529,434 15,955,687 30.14 2.03 32,341,644 61.09 4.63±0.63 9.86±1.79
pepfunc 15,535 2,344,859 150.94 2.04 4,773,974 307.30 20.89±9.79 56.99±28.72
pepstruct 15,535 2,344,859 150.94 2.04 4,773,974 307.30 20.89±9.79 56.99±28.72

Table 10: Dataset statistical information for larger graph.

Dataset Total
Graphs

Total
Nodes

Total
Edges

Task
Type

Task
Metric

ogbn-arXiv [12] 1 169,343 1,166,243
Node multi-class

classification Accuracy

Amazon Product-Computer [27] 1 13,752 491,7222
Node multi-class

classification Accuracy

Table 11: Wall-clock run times. Average epoch time (average of 5 epochs, including validation
performance evaluation) is shown for each model and dataset combination.

avg. time / epoch Peptides-func Peptides-struct PCQM-Contact
GCN 2.6s 2.5s 56.9s
+ Neural Atom 5.5s 4.9s 65.1s
GINE 2.6s 2.6s 56.7s
+ Neural Atom 4.8s 4.2s 66.8s
GCNII 2.5s 2.3s 56.9s
+ Neural Atom 4.7s 5.1s 59.4s
GatedGCN 3.3s 3.2s 56.5s
+ Neural Atom 6.1s 5.5s 61.6s
GatedGCN+RWSE 3.4s 4.1s 59.4s
+ Neural Atom 6.4s 5.2s 65.0s

Transformer+LapPE 6.4s 6.2s 59.2s
SAN+LapPE 60s 57.5s 205s
GraphGPS 6.5s 6.5s 61.5s

portion of the dataset differs from the training counterparts. For the PCQM-Contact dataset, the
task is to predict whether the distant node pairs (with more than 5 hops away in a molecular graph)
would be in contact with each other in the 3D space, i.e., forming hydrogen bonds, which is the
inductive link prediction task. The metric for the performance of the model is measured by the Mean
Reciprocal Rank (MRR). Both Peptides-func and Peptides-struct are constructed from the same
source but serve different purposes. The Peptides-func is a multi-label graph classification dataset
for evaluating the model’s ability to capture molecular properties. We adopt the unweighted mean
Average Precision (AP) as the metric. The Peptides-struct is a multi-label graph regression dataset
based on the 3D structure of the peptides and uses Mean Absolute Error (MAE) as the metric.

C Running time compairson

We show the running time for different models in Tab. 11, training with the hyperparameters given as
Tab. 6 to Tab. 8.

we provide a running time comparison on the two graph datasets to demonstrate the gap between the
Transformer-based method and our proposed Nerual Atoms. The statistical information of the two
applied datasets is shown in Tab. 10, and running times are listed in Tab. ??.

D Comparison with Ewald-based GNN in OE62

We directly adopt the neural atoms to the 3D scenario without 3D coordinate information and provide
the comparison with Ewald-based GNN [17] (denoted as +Ewald Block) on the OE62 [28] dataset.
We follow the same setting from Ewald-based GNN and use SchNet [26] as the backbone GNN.
We only take 10 Nerual Atoms (denoted as +Neural Atoms), and half the hidden channels, num
filters, and num interactions according to the setting of the Ewald-based GNN. Shown as Tab. 12,

15

Table 12: Energy MAE and MSE comparison on OE62
Energy MAE ↓ Energy MSE ↓ Using 3D information

Baseline (SchNet) 0.1351 0.0658 ✓
+ Ewald Block 0.0811 0.0301 ✓
+ Neural Atoms 0.0834 0.0309 ×

Figure 15: Training curves visualizations (1) the training loss curve, (2) the training MAE curve, (3)
the training MSE curve.

Figure 16: Validation curves visualizations (1) the validation loss curve, (2) the validation MAE
curve, (3) the validation MSE curve.

our method achieves competitive performance even with the absence of 3D coordinate information,
showing the generalization and effectiveness of neural atoms.

D.1 The training/validation curves

We provide the training curves for the methods in Tab. 12, shown as Fig. 15 and 16 with smoothing
ratio as 0.9.

E Comparison with super/virtual node

Both the pipeline of supernode or virtual node and neural atoms for obtaining global graph information
can be described as two steps.

• Information aggregating: The information of atoms within the molecular graph is aggregated
into either supernode or multiple neural atoms with pair-wise connection.

• Interaction among node/atoms: The second step shows differences in interaction among
node/atoms. Supernode commonly exists alone, which means there is only one super node
and thus lacks the ability to interact with others like neural atoms.

• Backward Projection: The final step shows differences in terms of the interaction among
nodes/atoms. As supernode commonly exists alone, it thereby lacks the ability to interact
with others like neural atoms.

We provide a detailed comparison in Tab. 13.

16

Table 13: Comparison with super/virtual node
Super/Virtual Node Neural Atoms

#Atoms or
#Nodes

1 (In most cases, there is only one
single supernode for aggregating the
global graph information, as increas-
ing the number of which might not
lead to performance improvement.)

K (Our neural atoms can be defined
as the proportion of the average num-
ber of atoms of the molecular graph
dataset, which is significantly smaller
than the original number of atoms.
The more neural atoms, the better the
performance.)

Information ag-
gregating

The global pooling method, e.g.,
global sum/mean/max pooling, treats
all the information from nodes the
same, thus lacking diversity among dif-
ferent nodes in the graph.

The multi-head Attention mechanism
allows aggregating information with
different weights according to the sim-
ilarity between specific neural atoms
and the original atoms, which allows
diversity among different atoms.

Interaction
among supern-
ode/neural
atoms

None. (Since supernode usually exists
alone, it thus lacks the ability to inter-
act with others.)

A fully connected graph with an atten-
tion mechanism to bridge the neural
atoms for information exchange. This
allows the information located in a dif-
ferent part of the graph, even with a
large hop distance, to share informa-
tion based on their embedding similar-
ities.

Backward pro-
jection

Direct element-wise adding. The
information of the supernode is di-
rectly added to the representation of
each node, which fuses the informa-
tion from the single supernode, which
might lead to the similarity among dif-
ferent atoms.

Weighted combination. Our proposed
neural atoms can fuse the information
within according to the similarity score
between neural atoms and the atoms
in the original molecular graph. Such
a mechanism allows the model to ob-
tain diversity representation for further
purposes.

F Further discussion

Molformer [37] combines molecular motifs and 3D geometry information by heterogeneous self-
attention to create expressive molecular representations. The paper uses a virtual atom as a starting
point to extract the graph representation for downstream graph-level tasks. The paper proposes
attentive farthest point sampling for sampling atoms in 3D space not only according to their coordi-
nates but also their attention score. However, the virtual atom they utilize does not participate in the
message aggregation nor graph-level representation extraction, as they claim to “locate a virtual node
in 3D space and build connections to existing vertices.” As such, the potential long-range interaction
they capture might be due to the atom pair-wise heterogeneous self-attention, which differs from
our method, where the long-range interaction is captured by both the attention mechanism (step.1 in
Fig. 3) and the interaction among the neural atoms (step.2 in Fig. 3).

[10] firstly introduce the concept of Message Passing Neural Networks (MPNN) to develop a unified
framework for predicting molecular properties. The paper introduces the “virtual node” as an
argument for global information extraction. The virtual node, connected to all other nodes within the
graph, acts as the global communication channel, enhancing the model’s ability to capture long-range
interactions and dependencies in molecular graphs. The authors experimented with a “master node”
connected to all other nodes, serving as a global feature aggregator. This approach showed promise
in improving the model’s performance, especially in scenarios where spatial information, e.g., 3D
coordination, is limited or absent.

[14] study the benefit of introducing single or multiple virtual nodes for link prediction tasks.
Virtual node, traditionally thought to serve as aggregated representations of the entire graph, is

17

connected to subsets of graph nodes based on either randomness or clustering mechanism. Such
methodology significantly increases the expressiveness and reduces under-reaching issues in MPNN.
The study reveals that virtual nodes, when strategically integrated, can provide stable performance
improvements across various MPNN architectures and are particularly beneficial in dense graph
scenarios. Their virtual node differs from our Neural Atom regarding the grouping strategy and the
information-exchanging mechanism.

[5] investigates the relationship between MPNN and Graph Transformers (GT) via the bridge of
the virtual node. It demonstrates that MPNN augmented with virtual nodes can approximate the
self-attention layer of GT. Under certain circumstances, the paper provides a construction for MPNN
+ VN with O(1) width and O(n) depth to approximate the self-attention layer in GTs. The paper
provides valuable insight into understanding the theoretical capabilities of MPNN with virtual nodes
in approximating GT. Compared to our neural atoms, we do not focus on establishing a theoretical
connection between MPNN and GT. Instead, we are interested in leveraging the attention mechanism’s
ability to construct an interaction subspace constructed by the neural atoms. As such, the subspace
acts as a communication channel to reduce interaction distances between nodes to a single hop.

G Performance comparison for neural atoms and virtual nodes

In this section, we show the difference between Nerual Atoms and virtual nodes, w.r.t. the performance
by increasing their number. Specifically, we borrow the setting of Tab.3 in our draft by aligning
the number of neural atoms and virtual nodes and the backbone GNN they used. We employ
the "VirtualNode" data transform from the PyG framework and set all VNs connected for a fair
comparison.

Table 14: Performance for virtual nodes (VNs) and neural atoms (NAs) in Peptide-Func, evaluated by
AP (the higher, the better).

Model Method #VNs /#NAs
= 5

#VNs /#NAs
= 15

#VNs /#NAs
= 75

#VNs /#NAs
= 135

GCN VNs 0.5566 0.5543 0.5568 0.5588
NAs 0.5962 0.5859 0.5903 0.6220

GINE VNs 0.5437 0.5500 0.5426 0.5426
NAs 0.6107 0.6128 0.6147 0.6154

GCNII VNs 0.5086 0.5106 0.5077 0.5083
NAs 0.6061 0.5862 0.5909 0.5996

GatedGCN VNs 0.5810 0.5868 0.5761 0.5810
NAs 0.6660 0.6533 0.6562 0.6562

Table 15: Performance for virtual nodes (VNs) and neural atoms (NAs) in Peptide-Struct, evaluated
by MAE (the lower, the better).

Model Method #VNs /#NAs
= 5

#VNs /#NAs
= 15

#VNs /#NAs
= 75

#VNs /#NAs
= 135

GCN VNs 0.3499 0.3492 0.3504 0.3492
NAs 0.2635 0.2581 0.2575 0.2582

GINE VNs 0.3665 0.3614 0.3653 0.3687
NAs 0.2624 0.2565 0.2580 0.2598

GCNII VNs 0.3686 0.3644 0.3648 0.3632
NAs 0.2670 0.2577 0.2551 0.2606

GatedGCN VNs 0.3425 0.3398 0.3409 0.3374
NAs 0.2596 0.2553 0.2467 0.2473

As can be seen from Tab. 14 and Tab. 15, neural atoms achieve consistently and significantly better
performance than the virtual nodes approach, regardless of their number. In both datasets, a larger

18

number of neural atoms could lead to a better performance. In contrast, virtual nodes achieve almost
identical performance with the increase of their number, even with the pair-wise connections among
them.

We speculate that such a phenomenon is because multiple virtual nodes might not learn representative
subgraph patterns, which is crucial for the model to learn long-range interaction. The poor perfor-
mance of multiple virtual nodes might be caused by the overwhelming aggregated information from
all atoms within the graph, which leads to over-squashing and decreases the quality of the virtual
node embeddings. This aligns with the description in the “Information aggregating” in Tab. 13. In
addition, the virtual nodes are simply connected to all atoms within the molecular graph without
considering their discrepancy. This could encourage the similarity among atom embeddings, which
leads to poor performance. This aligns with the description in the “Backward projection” in Tab. 13.

Thus, we could claim that adopting and increasing the number of virtual nodes could not bring a
noticeable improvement; by contrast, neural atoms could alleviate these issues and achieve better
performance.

H Neural Atoms Assignment and Interaction Visualization

We visualize the interaction strength for the Mutagenicity dataset. Specifically, we extract the
attention weight for both the allocation matrix Â (upper figure), the attention weights for different
neural atoms, which we denote as interaction matrix (lower left figure), and the original molecular
graph with atom indices (lower right figure).

Shown as Fig. 17 to 21, the neural atoms aggregate information from different atoms within the
molecular graph with varying attention strength. Such attention patterns allow the neural atoms
to ensure the diversity of aggregated information by assigning different weights to different atom
information. The interactions among neural atoms are established via the neural atom numbered
one, which shows weak attention strength for all atoms in the original graph. Such an attention
pattern indicates that the model learns to leverage the communication channel, i.e., the Neural Atom
numbered one, to bridge the atoms with potential long-range interactions.

19

0 5 10 15 20 25 30 35

Atom Index

0
1
2
3N

As
 In

de
x

0 1 2 3

NAs index

0

1

2

3

NA
s i

nd
ex

Original molecular graph with indices

weak

strong

At
te

nt
io

n
st

re
ng

th

Figure 17: Mutagenicity test set index-18

0 5 10 15

Atom Index

0
1
2
3N

As
 In

de
x

0 1 2 3

NAs index

0

1

2

3

NA
s i

nd
ex

Original molecular graph with indices

weak

strong

At
te

nt
io

n
st

re
ng

th

Figure 18: Mutagenicity test set index-26

0 10 20 30 40 50

Atom Index

0
1
2
3N

As
 In

de
x

0 1 2 3

NAs index

0

1

2

3

NA
s i

nd
ex

Original molecular graph with indices

weak

strong
At

te
nt

io
n

st
re

ng
th

Figure 19: Mutagenicity test set index-29

20

0 5 10 15 20 25

Atom Index

0
1
2
3N

As
 In

de
x

0 1 2 3

NAs index

0

1

2

3

NA
s i

nd
ex

Original molecular graph with indices

weak

strong

At
te

nt
io

n
st

re
ng

th

Figure 20: Mutagenicity test set index-36

0 2 4 6 8 10

Atom Index

0
1
2
3N

As
 In

de
x

0 1 2 3

NAs index

0

1

2

3

NA
s i

nd
ex

Original molecular graph with indices

weak

strong

At
te

nt
io

n
st

re
ng

th

Figure 21: Mutagenicity test set index-211

21

	Introduction
	Preliminaries
	Method
	Formalizing the neural atoms on Molecular Graphs
	Injecting long-range information into message passing by neural atoms
	Connection to the Ewald Summation

	Experiments
	Quantitative Results
	The varying choice of K

	Understanding
	Discussion and Conclusion
	Appendix
	 Appendix
	Long Range Interaction examples
	Reproduction details
	Hyperparameters
	Dataset details

	Running time compairson
	Comparison with Ewald-based GNN in OE62
	The training/validation curves

	Comparison with super/virtual node
	Further discussion
	Performance comparison for neural atoms and virtual nodes
	Neural Atoms Assignment and Interaction Visualization

