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Abstract

Domain adaptation methods for 2D human pose estima-
tion typically require continuous access to the source data
during adaptation, which can be challenging due to pri-
vacy, memory, or computational constraints. To address
this limitation, we focus on the task of source-free domain
adaptation for pose estimation, where a source model must
adapt to a new target domain using only unlabeled target
data. Although recent advances have introduced source-free
methods for classification tasks, extending them to the re-
gression task of pose estimation is non-trivial. In this paper,
we present Prior-guided Self-training (POST), a pseudo-
labeling approach that builds on the popular Mean Teacher
framework to compensate for the distribution shift. POST
leverages prediction-level and feature-level consistency be-
tween a student and teacher model against certain image
transformations. In the absence of source data, POST uti-
lizes a human pose prior that regularizes the adaptation pro-
cess by directing the model to generate more accurate and
anatomically plausible pose pseudo-labels. Despite being
simple and intuitive, our framework can deliver significant
performance gains compared to applying the source model
directly to the target data, as demonstrated in our extensive
experiments and ablation studies. In fact, our approach
achieves comparable performance to recent state-of-the-art
methods that use source data for adaptation.

1. Introduction

Human pose estimation is a fundamental task in com-
puter vision that involves determining the precise locations
of keypoints, such as joints, on a human body in an image or
video [1]. The growing need for pose estimation in various
applications such as action recognition [2], human-computer
interaction [3], and video surveillance [4] has driven the
rapid development of highly accurate deep learning tech-
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Figure 1. Problem setup. Existing UDA methods for pose estima-
tion rely on a labeled source dataset while adapting to an unlabeled
target dataset. However, privacy concerns surrounding the use of
personally identifiable information in these labeled datasets, as well
as the significant storage and computational requirements, can limit
access to such data. Hence, our work focuses on source-free UDA
of pose estimation models.

niques. However, the challenge of obtaining large annotated
datasets for training, compounded with the susceptibility to
a performance decline in the face of data distribution shifts
still poses limitations for current pose estimation models.

To overcome these limitations, recent studies have fo-
cused on unsupervised domain adaptation (UDA) of pose
estimators [5, 6]. UDA allows for transferring a pose esti-
mation model trained on a source domain, where labeled
data is available, to a target domain where labeled data is
unavailable. Despite improved and robust pose estimation,
the requirement of simultaneous access to both source and
target domains during adaptation hinders real-world imple-
mentation. For instance, the labeled source data may not
be accessible post-deployment due to privacy or proprietary
issues. This is particularly relevant for human pose datasets,
which contain personally identifiable information (PII) [7].
Furthermore, adaptation using the entire source data might

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

14996



be infeasible due to both memory and computational con-
straints. In light of these issues, we focus on source-free
UDA of human pose estimation models.

Concretely, our objective is to adapt a 2D human pose
estimation model to a new target domain utilizing only its
trained parameters and unlabeled target data. This presents
a major challenge as the absence of source data for regu-
larization can cause catastrophic forgetting. While recent
advances have introduced methods to tackle this issue in
classification tasks [8, 9, 10], extending them to the regres-
sion task of pose estimation is non-trivial . To address this
challenge, we introduce Prior-guided Self-training (POST),
a self-training regression framework that employs a human
pose prior to effectively guide the adaptation process in the
absence of source data. An overview of our problem setup
is shown in Figure 1.

Our approach builds on the Mean Teacher [11] frame-
work, which uses consistency in the prediction space of a stu-
dent and teacher model to produce trustworthy pseudo-labels
and learn from the unlabeled target domain. To achieve this,
we create two augmented views of each target image, vary-
ing in scale, spatial context, and color statistics. Aligned
pose predictions from both models in both views are then
obtained, and consistency between the predictions across the
different views is encouraged to facilitate prediction space
adaptation. However, our empirical results show that relying
solely on consistency in the output space is insufficient when
supervision from the source data is lacking. To address this,
we also introduce feature space adaptation, which aims to
encourage consistency across features extracted from the
two separate views. We adopt the Barlow Twins [12] ap-
proach to accomplish this. Specifically, we seek to make
the cross-correlation matrix calculated from a pair of feature
embeddings as close to the identity matrix as possible.

In addition to the adaptation across both outputs and fea-
tures, we employ a human pose prior that models the full
manifold of plausible poses in some high-dimensional pose
space to refine possible noisy pseudo-labels that may arise
during self-training. The plausible poses are represented
as points on the manifold surface, with zero distance from
it, while non-plausible poses are located outside the sur-
face, with a non-zero distance from it. This manifold is
learned using a high-dimensional neural field, similar to
Pose-NDF [13]. The pose prior acts as a strong regularizer,
directing the model to generate more accurate pose pseudo-
labels on the target data and leading to improved adaptation.
The learning of this prior requires an auxiliary dataset of
plausible human poses, but this does not compromise the pri-
vacy aspect of our framework as the prior does not make use
of RGB images. In addition, it is worth noting that the prior
can be trained offline, separately from the adaptation process.
This not only saves computational resources but also reduces
the amount of storage required. Compared to storing entire

images, it is much more efficient to store pose coordinates,
which requires approximately 3000× less memory.
Main contributions. To summarize, our primary contribu-
tions are as follows:
• We address the problem of adapting a human pose estima-

tion model to a target domain consisting of unlabeled data,
without access to the original source dataset. This ame-
liorates the privacy concern associated with the current
domain adaptive pose estimation methods.

• We introduce Prior-guided Self-training (POST), a sim-
ple source-free unsupervised adaptation algorithm. POST
leverages both prediction-level and feature-level consis-
tency, in addition to a human pose prior, to drive self-
training for improved adaptation to the target domain.

• We evaluate our method qualitatively and quantitatively on
three challenging domain adaptive scenarios, demonstrat-
ing comparable performance to existing UDA methods
that have access to the source data.

2. Related Works
Pose Estimation. 2D human pose estimation aims to locate
human anatomical keypoints, such as the elbow and knee.
Prior works can be categorized into two primary frameworks:
the top-down framework and the bottom-up framework. Top-
down methods [14, 15, 16, 17, 18, 19, 1] first detect each
person from the image and then perform single-person pose
estimation on each bounding box independently. On the
other hand, bottom-up methods [20, 21, 22, 23, 24, 25, 26]
predict keypoints of each person directly in an end-to-end
manner. Typical bottom-up methods consist of two steps:
predicting keypoint heatmaps and grouping the detected
keypoints into separate poses. In this work, we focus on the
bottom-up framework for efficiency purposes and adopt the
Simple Baseline [18] architecture following [6] to ensure
fair comparisons with prior domain adaptation algorithms.

Unsupervised Domain Adaptation. UDA methods have
been extensively applied to a broad range of computer vi-
sion tasks, including image classification [27], semantic seg-
mentation [28], object detection [29], and reinforcement
learning [30] to tackle the issue of data distribution shift.
Most approaches aim to align the source and target data
distributions through techniques such as maximum mean
discrepancy [31] and adversarial learning [32, 27]. Another
line of research utilizes image translation methods to per-
form adaptation by transforming the source images into the
target domain [33, 34]. More recently, there has been a
surge of interest in adaptation using only a pre-trained source
model due to privacy and memory storage concerns related
to the source data. These include techniques such as infor-
mation maximization [8, 9], pseudo-labeling [35, 36] and
self-supervision [37]. Compared to other tasks, domain adap-
tation for regression tasks, such as pose estimation, remains
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relatively unexplored.

Domain Adaptive Pose Estimation. UDA methods for pose
estimation have explored various techniques for overcoming
the domain gap, including adversarial feature alignment and
pseudo-labeling. RegDA [5] estimates the domain discrep-
ancy by evaluating false predictions on the target domain
and minimizes it. Mu et al. [38] proposed consistency reg-
ularization with respect to transformations and temporal
consistency learning within a video. Li et al. [39] proposed
a refinement module and a self-feedback loop to obtain re-
liable pseudo-labels. Recently, Kim et al. [6] introduced
a unified framework for both human and animal keypoint
detection, which aligns representations using input-level and
output-level cues. Typically, these methods require access to
the source data, which may raise data privacy, memory and
computation concerns. In contrast, our method addresses the
domain adaptation problem in a source-free setting.

3. Prior-guided Self-training
Our work investigates source-free domain adaptation for

2D human pose estimation. In the pose estimation task, given
an input image x ∈ RH×W×3, the goal is to predict the
corresponding y ∈ RK×2 representing the 2D coordinates
of K keypoints using a pose regression model f . In this
paper, we assume access to a pre-trained model, denoted by
fS , as well as N unlabeled images D = {xi}Ni=1 from a
target domain T . Our goal is to adapt the source model to
the target such that it performs better on images drawn from
the target distribution than when directly using the source
model on the target images.

Overview. In the absence of source data, we propose to use
self-training to adapt the source pose estimation model to the
target domain. However, self-training methods are prone to
error accumulation, particularly when labeled data is absent
to act as regularization. Hence, we introduce POST, an
enhanced self-training strategy that employs three essential
ideas to prevent such errors:
1. A weight-averaged teacher model is used to generate the

pseudo-labels for self-training. This ensures better reten-
tion of the source knowledge within the teacher model
by reducing the effect of updating the weights via noisy
pseudo-labels (Section 3.1.1).

2. In addition to adaptation over the output space via pseudo-
labels, the model is adapted in the feature space as well.
For each target image, two aligned predictive views are
generated via data augmentation, and consistency across
features extracted from the two separate views is encour-
aged via a contrastive learning strategy (Section 3.1.2).

3. A human pose prior is used to regularize the adaptation
by directing the model to generate more accurate and
anatomically plausible pose pseudo-labels (Section 3.2).

An overview of our framework is presented in Figure 2.

3.1. Self-training via Mean Teacher

Motivated by research suggesting that weight-averaged
models over training steps tend to perform better than the
final model [6, 39], we utilize the Mean Teacher frame-
work [11] to generate pseudo-labels for self-training. The
framework involves creating two identical models, a teacher
model ftea and a student model fstu, both of which are initial-
ized with the pre-trained network fS at time step t = 0. At
each subsequent time step t, the student model parameters θ
are updated by backpropagating the supervisory signals pro-
vided by the teacher model. The parameters of the teacher
model θ̃ are updated via an exponential moving average
(EMA) of the student model parameters:

θ̃t = αθ̃t−1 + (1− α)θt, (1)

where α denotes the smoothing coefficient which is set to
0.999 by default. The EMA update prevents the teacher
model from overfitting to noisy pseudo-labels during the
initial rounds of self-training, thereby, preserving the source
knowledge. This is especially advantageous in our scenario
where source data is unavailable to regularize the adaptation.

In the following sections, we demonstrate how to adapt
fstu using supervisory signals from ftea on both the feature
space and the pose prediction space.

3.1.1 Prediction Space Adaptation

At each time step t, we apply two different data aug-
mentations, A1 and A2, to a target image x to generate
two views. We then obtain the keypoint heatmap corre-
sponding to the first transformed image h̃t = f t

tea(A1(x)).
Here h̃t ∈ RK×H′×W ′

denotes the spatial likelihood of
the K different keypoints on each channel. The pseudo-
label from the teacher model is generated by obtaining
the coordinates which produce the maximum activations
ŷt = argmaxuh̃

t
[:,u].

To reduce the influence of erroneous pseudo-labels in
our training process, we utilize a confidence threshold to
discard potentially unreliable labels. Specifically, we only
retain the keypoint activations with the top p% maximum
values among all activations and discard the rest. We set the
threshold τ accordingly to reflect this, thereby ensuring that
only the most confident labels are used for training.

Following prior work on supervised pose estimation,
we first convert the pseudo-labels to normalized Gaussian
heatmaps [40] and then use the mean squared error (MSE)
loss to update the student model over batches of target im-
ages sampled from D:

Lout =
1

|B|
∑
x∈B

K∑
k=1

1
(
ĥt
k ≥ τ

)
∥Ã1(ĥ

t
k)− Ã2(h

t
k)∥2.

(2)
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Figure 2. Framework overview. Our approach builds on the Mean Teacher framework and performs adaptation both in the pose prediction
space using Lout, and the feature space using Lfeat. This is supplemented by a human pose prior g that scores the predicted pseudo-labels in
terms of plausibility. These scores are used to regularize the adaptation process in the absence of labeled source data via Lprior. The student
model fstu is trained by the combination of the three losses, while the teacher model ftea is updated with the exponential moving average
(EMA) of the weights of the student model.

We denote the inverse functions of the chosen augmenta-
tions A1 and A2 as Ã1 and Ã2, respectively. The heatmap
predicted by the student model for the k-th keypoint is repre-
sented by ht

k = f t
stu(A2(x))

k, while the heatmap generated
from the pseudo-labels predicted by the teacher model is rep-
resented by ĥt

k = L(ŷt)k. Here, L(·) represents the heatmap
generating function and B denotes a batch of target images.

3.1.2 Feature Apace Adaptation

Pose estimation models primarily rely on a high-to-low-
resolution feature encoder to generate low-resolution repre-
sentations, which are then used to recover high-resolution
pose heatmaps [18]. Since the upsampling process is inher-
ently noisy, providing intermediate supervision to explicitly
adapt the features, in addition to adapting the output pose
keypoints as shown in the previous section, can be benefi-
cial [17]. While previous work has demonstrated the benefits
of joint adaptation across the output and feature space via
adversarial learning in tasks such as semantic segmenta-
tion [41], this has been exclusively focused on scenarios
where source data is available. Here, we propose an alter-
native way to accomplish feature space adaptation in the
absence of source data via contrastive learning.

We begin by creating two different views of each tar-
get image x using a pair of sampled augmentations A1

and A2, as previously shown. Next, considering the pose
estimation model as a composition of a feature encoder
and an output regressor, i.e., f = Dec ◦ Enc, we extract

the augmentation reversed feature maps from the teacher
model z̃ = Ã1(Enctea(A1(x))) and the student model
z = Ã2(Encstu(A2(x))). We extract pairs of features for
every image in a batch, pool them along the spatial dimen-
sions, and then normalize them along the batch dimension
to ensure that each covariate has a mean of 0 over the batch.
For simplicity, we overload z, z̃ to represent the normalized
features, and drop the time index t.

We utilize feature-level consistency between the differ-
ent views in order to accomplish feature space adaptation.
This is achieved via a contrastive learning strategy which
encourages the cross-correlation matrix between the outputs
of the two networks to be as close to the identity matrix as
possible [12],

Lfeat =
∑
i

(1− Cii)
2 + γ

∑
i

∑
j ̸=i

Cij
2. (3)

We define γ as a positive constant that balances the impor-
tance of the first and second terms of the loss function. C
represents the cross-correlation matrix computed between
the outputs of the student and teacher networks along the
batch dimension:

Cij =

∑|B|
b=1 z̃b,izb,j√∑|B|

b=1 (z̃b,i)
2
√∑|B|

b=1 (zb,j)
2
. (4)

Here, b represents the batch index, while i and j index the
feature dimensions of the networks’ outputs. We set γ =
5e− 3 following [12].
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The first term of Lfeat encourages the consistency of pose
features within the same image by equating the diagonal
elements of the cross-correlation matrix to 1, effectively re-
versing the effects of augmentations. In contrast, the second
term aims to decorrelate the different feature dimensions of
the embedding by forcing the off-diagonal elements of the
cross-correlation matrix to 0.

3.2. Regularization via Pose Prior

Enhancing the performance of the pose estimation model
on the target domain through joint adaptation over the output
and feature space is undoubtedly valuable. However, this
approach has its limitations, as it relies solely on general do-
main adaptation principles and overlooks the rich structural
priors associated with human poses. To address this issue,
we propose incorporating a parametric human pose prior to
better adapt the pose estimation model to the target domain.

3.2.1 2D Human Pose Prior

Building upon the work of [13], we propose a human pose
prior modeled as a manifold consisting of plausible 2D poses.
To represent the 2D poses while ignoring aspects such as
size and scale, we use a set of 2D orientation vectors that
connect pairs of joints in the human skeleton, denoted by
G = {θ = (θ1, . . . , θL) | θl ∈ R2, ∥θl∥2 = 1 ∀l ∈ [L]}.
We assume that plausible 2D human poses lie on a manifold
embedded in this pose space G. We use a function g : G −→
R+, which maps a pose to a non-negative scalar, to represent
the manifold of plausible poses as the zero-level set:

P = {θ ∈ G | g(θ) = 0}, (5)

where g represents the unsigned distance to the manifold. We
construct this distance function by first encoding the pose us-
ing a hierarchical network genc that encodes the human pose
based on its anatomical structure [42], and subsequently, use
gdec to predict the distance based on the pose representation.

Specifically, for a given pose θ, we encode it as follows,

v1 = g1enc(θ1), vl = glenc(θl,vΩ(l)), l ∈ {2, . . . , L}. (6)

Here, Ω(l) is a function that maps the index of each orienta-
tion vector to its parent orientation vector in the kinematic
chain of the human skeleton. We obtain the overall pose
encoding as p = [v1| . . . |vL] by concatenating all the in-
dividual orientation encodings. This pose encoding is then
processed by gdec : Rd.L −→ R+, which predicts the un-
signed distance for the given pose representation p. A lower
distance value for a pose implies that the configuration of
joints is more likely to be a plausible human pose.

3.2.2 Pose Prior Training

To train the parametric prior g, we rely on an auxiliary
dataset of M human poses DA = {θi}NA

i=1, where θi =

(θi1, . . . , θ
i
L). Importantly, these poses are not associated

with their corresponding RGB images, which preserves the
privacy aspect of the method. Additionally, storing only the
pose coordinates instead of entire images makes data storage
much more efficient and feasible.

We adopt a supervised approach to train g to predict the
L2 distance to the plausible pose manifold for a given pose.
To achieve this, we construct a dataset D̃ = {(θi, di)}Mi=1,
consisting of pose and distance pairs, from DA. As the poses
from DA lie on the desired manifold, we assign d = 0 to all
poses in the dataset. To diversify our training samples, we
randomly generate negative samples with distance d > 0 by
perturbing the poses from DA with noise.

We train the network with the standard L1 loss,

Ldist =
∑

(θ,d)∈D̃

∥g(θ)− d∥1. (7)

More details on the training process of the prior are pro-
vided in Section 4.2.

3.2.3 Adaptation using Pose Prior

We leverage the trained pose prior g to regularize the adapta-
tion process by incentivizing the pose estimator to generate
pseudo-labels that resemble plausible human poses.

Given the heatmaps {ht
k}Kk=1 generated for each keypoint

by the student model f t
stu for a target image x, we calculate

the corresponding orientation vectors in a differentiable man-
ner to evaluate the plausibility of the predicted pose using the
prior. First, we renormalize each heatmap to a probability
distribution via spatial softmax and condense it to a point
by computing the spatial expected value of the latter. For
computational efficiency, we carry this out in a separable
manner along the two spatial dimensions. Namely, assum-
ing u = (u1, u2) to be the two components of each pixel
coordinate, we set

uk
i =

∑
ui

uie
ht
k(ui)∑

ui
eh

t
k(ui)

, ht
k(ui) =

∑
uj

ht
k(u1, u2), (8)

where i = 1, 2 and j = 2, 1 respectively. Next, we use
the pose coordinates to determine the orientation vectors
between pairs of connected keypoints. Specifically, for every
pair (a, b) of connected keypoints in the human skeleton
(denoted by the set E), we calculate the unit vector θ in the
direction from ua to ub, where ua and ub are the estimated
softmax coordinates of keypoints a and b, respectively, i.e.,

θ =
ua − ub

∥ua − ub∥2
, ∀(a, b) ∈ E . (9)

Finally, we use the prior as a regularization term to minimize
the distance of the current pose from our learned manifold,

Lprior =
1

|B|
∑
x∈B

g(T (f t
stu(x))), (10)
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where T (·) converts the predicted heatmaps to the orientation
vector format required as input by the prior.

3.3. Overall Adaptation

The final training objective for the student model fstu can
be expressed as:

min
fstu

Lout + λ1Lfeat + λ2Lprior. (11)

Here, λ1 and λ2 are hyper-parameters that control the influ-
ence of feature space adaptation and prior regularization, re-
spectively. The teacher model ftea is updated asynchronously
by computing an exponential moving average of the student
model weights as shown in Equation 1.

4. Experiments
In this section, we demonstrate POST’s ability to adapt a

2D human pose estimation model to a target domain using
only unlabeled data from that domain. We conduct exper-
iments on three domain adaptive scenarios and compare
with state-of-the-art domain adaptation baselines that utilize
source data during adaptation. We also conduct extensive
analysis to analyze the contribution and interaction between
each component in our framework.

4.1. Datasets

SURREAL: SURREAL [43] is a large-scale dataset of syn-
thetically generated images of people rendered from 3D
sequences of human motion capture data against indoor back-
grounds. It contains over 6 million frames, making it one of
the largest and most diverse datasets of its kind.

Human3.6M: Human3.6M [44] is a real-world video dataset
captured in indoor environments, comprising 3.6 million
frames. The dataset features human subjects performing
various actions. In order to reduce redundancy and computa-
tional complexity, we down-sampled the videos from 50fps
to 10fps as per the approach proposed in [5]. For training,
we follow the standard protocol proposed in [6] and use 5
subjects (S1, S5, S6, S7, S8), while the remaining 2 subjects
(S9, S11) are reserved for testing.

LSP: Leeds Sports Pose (LSP) [45] is a real-world dataset
that contains 2,000 images with annotated human body joint
locations collected from sports activities. The images in LSP
are captured in the wild, featuring a wide variety of human
poses that are often challenging to detect.

BRIAR: BRIAR [46] is a cutting-edge biometric dataset
featuring a large-scale collection of videos of human subjects
captured in extremely challenging conditions. The videos
are recorded at varying distances, i.e., close range, 100m,
200m, 400m, 500m, and unmanned aerial vehicles (UAV),
with each video lasting around 90 seconds. We randomly

sample 20 frames from each sequence for each of the 158
subjects for our experiments.

4.2. Experiment Protocols

Pose estimation model. We adopt the Simple Baseline [18]
as our pose estimation model, with the ResNet-101 [47]
as the backbone. To train the model, we use the Adam
optimizer [48] with a base learning rate of 1e− 4, scheduled
to decrease to 1e− 5 after 5 epochs and to 1e− 6 after 20
epochs. The model is trained for 30 epochs. We use a batch
size of 32 and run 500 iterations per epoch. To threshold
the model predictions, we set the confidence thresholding
ratio p to 0.5. To augment the images during training, we
follow [6] and use rotation, translation, shear, and Gaussian
blur. The hyper-parameters λ1 and λ2 are set to 1e− 3 and
1e− 6, respectively.

Pose prior model. The training of the parametric prior
follows a multi-stage approach that involves using different
types of training samples. Initially, we use a combination
of manifold poses θm and non-manifold poses θnm with a
considerable distance from the desired manifold. Over the
course of training, we gradually increase the number of non-
manifold poses θnm with a small distance from the manifold.
This enables our model to first learn a smooth surface and
then gradually incorporate finer details as training progresses.
We create these non-manifold poses θnm by injecting noise
into the manifold poses θm obtained from the auxiliary
dataset. Specifically, we sample directional noise from the
Von-Mises distribution [49] and add it to the manifold poses
in order to obtain the implausible poses.

The architecture for the encoder genc consists of a 2-layer
MLP with an output feature size of d = 6 for each orientation
vector, similar to [42]. The distance field network gdec is
implemented as a 5-layer MLP. Given its large size and
diverse poses, we train the prior for our primary experiments
using the SURREAL dataset.

4.3. Comparison with Baselines

Baselines. We evaluate the performance of our proposed
method against several state-of-the-art domain adaptive
frameworks. This includes adversarial learning-based fea-
ture alignment methods, such as DAN[31], DD[50], and
RegDA[5]. Additionally, we consider approaches based on
pseudo-labeling, namely CCSSL[38], and UDAPE [6]. It
is worth noting that all these methods employ the source
data during the adaptation process. To establish a compre-
hensive performance baseline, we report the results of two
additional baselines: Oracle and Source only. The Oracle
baseline represents the upper bound of the model’s perfor-
mance, achieved by training the model jointly with target 2D
annotations. On the other hand, Source only represents the
model’s performance when it is directly applied to the target
domain without any adaptation.
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Table 1. PCK@0.05 on SURREAL → LSP. (Best value is in red
color, while the second best value is in blue color.)

Method SF Sld. Elb. Wrist Hip Knee Ankle Avg.

Source only - 51.5 65.0 62.9 68.0 68.7 67.4 63.9
Oracle - - - - - - - -

DAN ✗ 52.2 62.9 58.9 71.0 68.1 65.1 63.0
DD ✗ 28.4 65.9 56.8 75.0 74.3 73.9 62.4
RegDA ✗ 62.7 76.7 71.1 81.0 80.3 75.3 74.6
CCSSL ✗ 36.8 66.3 63.9 59.6 67.3 70.4 60.7
UDAPE ✗ 69.2 84.9 83.3 85.5 84.7 84.3 82.0

POST ✓ 66.5 83.9 81.0 84.6 83.1 82.6 80.3

Table 2. PCK@0.05 on SURREAL → Human3.6M.

Method SF Sld. Elb. Wrist Hip Knee Ankle Avg.

Source only - 69.4 75.4 66.4 37.9 77.3 77.7 67.3
Oracle - 95.3 91.8 86.9 95.6 94.1 93.6 92.9

DAN ✗ 68.1 77.5 62.3 30.4 78.4 79.4 66.0
DD ✗ 71.6 83.3 75.1 42.1 76.2 76.1 70.7
RegDA ✗ 73.3 86.4 72.8 54.8 82.0 84.4 75.6
CCSSL ✗ 44.3 68.5 55.2 22.2 62.3 57.8 51.7
UDAPE ✗ 78.1 89.6 81.1 52.6 85.3 87.1 79.0

POST ✓ 81.3 88.5 77.4 46.1 83.4 83.4 76.7

Metrics. We adopt the evaluation metric of Percentage
of Correct Keypoint (PCK) for all experiments and report
PCK@0.05 that measures the ratio of correct prediction
within a range of 5% with respect to the image size.

4.4. Results

Quantitative results. We evaluate POST in two adaptation
scenarios: SURREAL→LSP and SURREAL→Human3.6M,
and report the quantitative results in Table 1 and Table 2,
respectively. Specifically, we report the PCK@0.05 on 16
keypoints of the human body, including shoulders (sld.), el-
bows (elb.), wrists, hips, knees, and ankles. Our method
achieves comparable results to many recent approaches that
leverage source data for adaptation. Among these methods,
UDAPE [6] achieves the highest performance on both cases,
with our framework achieving a close second and only 2
percentage points behind on average. Notably, we outper-
form every other method, including the recently proposed
RegDA [5] approach, by a significant margin of up to 5.7
percentage points. It is worth noting that not only do these
methods require source data, but also involve additional
models such as discriminators or style transfer modules, and
unstable adversarial training. In contrast, our framework is
lightweight, only involves pseudo-label training, and utilizes
a simple prior model that can be trained offline.

Qualitative results. In addition to quantitative results, we
also present qualitative results on SURREAL→Human3.6M
in Figure 3 and on SURREAL→LSP in Figure 4. Also,

Figure 3. Qualitative results on SURREAL → Human3.6M. We
demonstrate sample results on the Human3.6M dataset. For each
row, the leftmost shows the Source only prediction, the middle
one shows the UDAPE [6] prediction, and the rightmost shows the
prediction made POST.

Figure 4. Qualitative results on SURREAL → LSP. We demon-
strate sample results on the LSP dataset. For each row, the left-
most shows the Source only prediction, the middle one shows the
UDAPE [6] prediction, and the rightmost shows the prediction
made POST.

we present only visual results on the SURREAL→BRIAR
adaptation scenario since pose annotations are absent in the
BRIAR dataset. Figure 5 displays the predicted human poses
on images taken from six different imaging ranges in the
BRIAR dataset. While using the source model directly pro-
duces completely inaccurate poses, POST can accurately
localize the keypoint locations, even in the presence of oc-
clusions and atmospheric turbulence. Our approach can also
accurately reconstruct poses even when the human is imaged
from an elevated perspective, resulting in a high camera an-
gle (Figure 5.f). Notably, our approach achieves this without
using any source data for adaptation. Our results are com-
parable to those produced by UDAPE [6], which utilizes
source data for adaptation. Additional qualitative results can
be found in the supplementary document.
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a) 100m

b) 200m

c) 400m

d) 500m

e) close range

f) uav

Figure 5. Qualitative results on SURREAL → BRIAR. We demonstrate sample results on BRIAR at all ranges. For each range, we
display three images: the leftmost shows the Source only prediction, the middle one shows the UDAPE [6] prediction, and the rightmost
shows the prediction using POST. Although POST does not use source data for adaptation, it is able to match the predictions produced by
UDAPE, which uses source data.

4.5. Ablation Studies

Effect of auxiliary dataset. We conduct experiments to
evaluate the impact of the choice of the auxiliary dataset
(used to train the prior) on downstream adaptation. The
results are presented in Table 3. Our findings indicate that

POST is robust to the choice of the auxiliary dataset, with
performance differences of ∼ 0.5 percentage points.

Effect of loss terms. We conduct an experiment to evaluate
the performance of each component of our framework. The
results on the SURREAL→Human3.6M adaptation scenario
are presented in Table 4. Our findings indicate that in addi-
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Table 3. Effect of auxiliary dataset. We evaluate the effect of
auxiliary dataset on downstream adaptation tasks.

SURREAL→HUMAN3.6M

Aux. dataset Sld. Elb. Wrist Hip Knee Ankle Avg.

SURREAL 81.3 88.5 77.4 46.1 83.4 83.4 76.7
Human3.6M 80.9 88.0 77.2 45.0 83.1 82.8 76.2

SURREAL→LSP

Aux. dataset Sld. Elb. Wrist Hip Knee Ankle Avg.

SURREAL 66.5 83.9 81.0 84.6 83.1 82.6 80.3
Human3.6M 66.1 83.6 80.7 84.4 83.1 82.5 80.1

Table 4. Effect of each loss term. We evaluate the contribution of
each loss term on SURREAL→Human3.6M.

Lout Lfeat Lprior Sld. Elb. Wrist Hip Knee Ankle Avg.

✗ ✗ ✗ 69.4 75.4 66.4 37.9 77.3 77.7 67.3
✓ ✗ ✗ 77.9 86.7 73.7 38.8 83.0 84.3 74.1
✓ ✓ ✗ 81.7 87.1 75.2 44.3 82.3 82.2 75.5
✓ ✓ ✓ 81.3 88.5 77.4 46.1 83.4 83.4 76.7

tion to prediction space adaptation, feature space adaptation
also plays a crucial role in enabling effective unsupervised
learning from pseudo-labels. Moreover, we observed that
the human pose prior brings additional improvements, thus
validating our hypothesis that noisy pose pseudo-labels can
be refined implicitly by a prior in the absence of source
data. Overall, our results demonstrate the effectiveness of
our framework and the importance of each of its components
in achieving state-of-the-art performance.

Cross-dataset performance of prior. We evaluate the abil-
ity of the learned prior to handle distribution shift separately
from the adaptation performance. Specifically, we assess
the robustness of the prior by computing pose scores across
datasets, and the results are presented in Figure 6. The plot
demonstrates that our prior is effective in scoring plausible
(real) poses with low scores and scoring implausible poses
with higher scores. Note that the bell curve shape of the
noisy pose scores is due to the Von-Mises noise added to
create the noisy poses.

Effect of thresholding. We analyze the impact of the
pseudo-label threshold τ on the adaptation performance in
Table 5. The results on SURREAL→Human3.6M reveal
that as we increase this ratio, the performance gradually de-
creases. This can be attributed to the fact that higher thresh-
olding ratios tend to include lower confident predictions as
pseudo-labels, which can negatively impact adaptation.

5. Conclusion

We address the problem of adapting a pre-trained 2D hu-
man pose estimator to a new target domain with unlabeled

Table 5. Effect of τ . We evaluate adaptation performance on
SURREAL→Human3.6M as τ is varied.

τ = 0.1 τ = 0.3 τ = 0.5 τ = 0.7 τ = 0.9

76.4 76.5 76.7 75.3 73.8

(a) Human3.6M → SURREAL

(b) SURREAL → Human3.6M

Figure 6. Cross-dataset prior transfer. We plot the histogram
of scores predicted by the prior. The prior can clearly demarcate
plausible poses from implausible poses across datasets.

target data. To this end, we propose a self-training algorithm,
POST, that leverages a Mean Teacher framework to enforce
both prediction-level and feature-level consistency between
a pair of student and teacher models. Our approach incorpo-
rates a human pose prior that captures the manifold of possi-
ble poses in a high-dimensional space, which helps to refine
noisy pseudo-labels generated during self-training. We eval-
uate our method on three challenging adaptation scenarios
and show that it achieves competitive performance compared
to existing UDA methods that have access to source data.
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