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ABSTRACT

The rapid advancement of Large Language Models (LLMs) has ushered multi-
variate time series forecasting (MTSF) into a transformative era through the in-
tegration of natural language. Despite effectiveness of recent language-integrated
TSF approaches, they originally stem from engineering intuition, lacking theo-
retical grounding, and entail considerable manual effort. Moreover, given the
importance of inter-channel correlations in MTSF task, current MTSF methods
either superficially investigate the intrinsic relations among time series chan-
nels or rely heavily on expert knowledge to predefine them, both are with lim-
ited flexibility. To address these challenges, we provide an information-theoretic
analysis of the role of textual information in augmenting TSF and propose Re-
TaMTSF, an MTSF paradigm that automatically aligns and incorporates exoge-
nous text with time series while adaptively capturing inter-channel correlations.
We further introduce ReTaMForecaster, a baseline model for ReTaMTSF, and
validate its effectiveness through extensive experiments on multimodal MTSF
benchmarks spanning diverse domains. ReTaMForecaster achieves state-of-the-
art or second-best performance in more than half of the benchmarks and fore-
casting horizons, with mean squared error (MSE) reductions of up to 74% com-
pared to the best baseline, thereby demonstrating the soundness of the pro-
posed framework with substantial manual effort reduction. Code is available at
https://anonymous.4open.science/r/ReTaMTSF-CC0A/.

1 INTRODUCTION

Time series (TS) are a ubiquitous type of data in both daily life and various engineering practices.
In particular, multivariate time series (MTS) data contain underlying information that characterizes
system dynamics and reveals the interrelationships and operating mechanisms of complex systems.
Owing to their significant research value, MTS forecasting problem has attracted extensive attention
from researchers across a wide range of domains, including earth sciences (Karpatne et al., 2019),
transportation (Jin et al., 2024a), energy (Zhu et al., 2024), healthcare (Harutyunyan et al., 2019),
environmental studies (Xia et al., 2023), finance (Xu et al., 2025), and so on.

To achieve accurate prediction of MTS, a variety of deep learning models with carefully designed
architectures have been proposed (Nie et al., 2022; Zhang et al., 2025b; Huang et al., 2024). These
models aim to capture the underlying dynamics of MTS, such as long-term trends and periodic
patterns. However, recent studies (Xu et al., 2024) suggest that unimodal deep models may have
reached a performance plateau, where further improvements from increasingly complex architec-
tures are marginal. For example, when relying solely on historical traffic data without access to
weather information, unimodal models are unlikely to accurately predict the changes in traffic flow
caused by upcoming heavy rain.

Traditionally, exogenous textual information, such as weather condition above, has served as an es-
sential and even indispensable reference for manual forecasting, on which domain experts often rely
to anticipate future conditions and trends (Williams et al., 2024). Considering that exogenous textual
information provides complementary sources of information for TSF tasks, recent efforts (Zhang
et al., 2024; Zhou et al., 2023) have been made to introduce exogenous textual information into deep
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models. The emergence of LLMs has further provided a new paradigm for processing textual data,
enabling TS and text, as two heterogeneous modalities, to be represented and integrated within a uni-
fied framework. This advancement opens up new possibilities for enhancing the automatic reasoning
and forecasting of MTS with the aid of textual information (Zhang et al., 2024). Meanwhile, with
the in-depth study and wide application of the Transformer architecture, self-attention mechanisms
have been increasingly employed to model system dynamics of MTS (Chang et al., 2025).

However, existing methods and analyses for text-augmented MTSF still exhibit three major gaps or
limitations: (1) Lack of theoretical foundation. The augmentation for TSF by textual information
was initially motivated by engineering intuition and subsequently validated through empirical stud-
ies (Rodrigues et al., 2019). However, to the best of our knowledge, this augmentation still lacks
a theoretical foundation based on probability theory and information theory. (2) Inflexible TS re-
trieval. Retrieving relevant TS channels and feeding them into the forecasting model can improve
prediction accuracy, especially when the ratio of the output length (or forecasting horizon) to the
sum of the input and output lengths is relatively high. In such cases, relevant TS retrieval becomes
an indispensable component in MTSF. Some researchers (Jing et al., 2022) have proposed methods
that quantify the correlations among TS channels and retrieve relevant channels based on manually
predefined graph structures, which rely heavily on expert knowledge and lack flexibility. (3) Costly
manual alignment of textual and numerical data. Ensuring temporal alignment between textual
and numerical data is essential as it requires the synchronization of reported text timestamps with
the corresponding numerical time steps. Existing methods rely on manual alignment of TS and text
at each time step (Xu et al., 2024), which is highly labor-intensive.

To address the issue of theoretical support, this work conducts an analysis grounded in information
theory and establishes the theoretical foundation for the augmenting role of textual information. To
flexibly capture the correlations among TS channels to retrieve relevant TS, this work proposes a
frequency-domain coherence–based retrieval method. In addition, this work introduces a semantics-
driven text retrieval and alignment approach that eliminates reliance on manual efforts. Furthermore,
the proposed paradigm is evaluated on a comprehensive benchmark spanning diverse domains to
rigorously assess its effectiveness. The main contributions of this work are summarized as follows:

• Theoretical Grounding of Text Augmentation. We conduct a theoretical analysis of the
augmentation effect of exogenous textual information in TSF based on information the-
ory and machine learning principles. We demonstrate that incorporating exogenous textual
information reduces the uncertainty for the forecasting accuracy and provide a solid the-
oretical foundation, having the situation of reliance solely on engineering intuition and
empirical evidence undergo an exciting transformative moment.

• Flexible Retrieval, Alignment, and Attention-Based MTSF. We propose a novel
coherence-based relevant TS channels retrieval method, which flexibly captures complex
and time-varying dependencies in MTS channels; We also propose an embedding-based
retrieval and automatic alignment method that effectively associates relevant exogenous
texts with corresponding time steps in TS, alleviating the reliance on manual collection
and alignment. Building upon the above approaches and employing attention mechanisms,
we propose a new paradigm: Retrieval-Based Text-Augmented Multivariate Time Series
Forecasting (ReTaMTSF).

• Extensive Evaluations with Significant Improvement. ReTaMForecaster, the baseline
model for ReTaMTSF, is evaluated on a multi-domain benchmark, achieving the best or
second-best performance in most experiments, with up to a 74% reduction in MSE com-
pared to the best baseline. Further ablation studies demonstrate the augmentation effect of
textual information in TSF tasks.

We include additional related works in Appendix A.

2 INFORMATION-THEORETIC GROUNDING OF TEXT-AUGMENTED TSF

In this section, we establish connections among the uncertainty of forecasting accuracy, MSE, and
mutual information (MI) to demonstrate that incorporating relevant textual information enhances
TSF performance.
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2.1 PROBLEM FORMULATION

Let the historical TS within the look-back window be denoted as x = (x1, x2, ..., xL);
the retrieved exogenous textual information as y = (yL+1, yL+2, ..., yL+H); the TS gen-
erated by the TSF model as x̂ = (x̂L+1, x̂L+2, ..., x̂L+H); the ground-truth TS over
the prediction horizon as x̃ = (x̃L+1, x̃L+2, ..., x̃L+H), where L is the length of the
look-back window and H is the length of prediction horizon. The relations among the
above variables are illustrated in Fig. 1, where g and r denote the generation model and
the retrieval model (or method), respectively, and p characterizes the relation between x̂
and x̃. We assume that p follow Gaussian distributions, which can be expressed as:

(a) With text augmentation

(b) Without text augmentation

Figure 1: Relations between variables for predic-
tions w/ or w/o text augmentation. Historical TS
x retrieves exogenous texts y through retrieval
model (or method) r in text-augmented predic-
tion. Then generation model g makes predictions
x̂ based on inputs. p characterizes the relation be-
tween x̂ and x̃.

p(x̃ | x̂) = N
(
x̃ | x̂, σ2I

)
(1)

where N denotes the Gaussian distribution, σ
is the standard deviation, and I ∈ RH×H is the
identity matrix. The uncertainty of the accuracy
of x̂, denoted as ∆(x̂), can be quantitatively de-
fined by conditional entropy as follows:

∆(x̂ | mref ) = H(x̃ | x̂ = g(mref )) (2)

where mref denotes the reference data or infor-
mation used for prediction, i.e. the TSF model
input. The augmentation effect of textual infor-
mation on TSF can be formally expressed as:

∆(x̂ | x) ≥ ∆(x̂ | x,y) (3)

2.2 ANALYSIS AND PROOF

By combining the formation of information en-
tropy and Eq. (1), the uncertainty can be ex-
pressed as:

∆(x̂) = H(x̃ | x̂) = H

2
log 2πeσ2 (4)

where ∆(x̂) denotes the uncertainty of the pre-
diction accuracy when the input is unspecified
and the detailed derivation is provided in the
Appendix B. It can be seen that ∆(x̂) depends only on the standard deviation σ, which can be
computed from the predicted outputs x̂ and corresponding ground-truth values x̃ as:

σ =

√√√√ 1

Z

Z∑
i=1

(x̃i − x̂i)2 =
√
MSE (5)

where Z denotes the total number of predicted-output and ground-truth element pairs. This effec-
tively establishes an equivalence between uncertainty and MSE under the assumption of a Gaussian
distribution. Meanwhile, minimizing the MSE between x̃ and x̂ is also equivalent to maximizing the
log-likelihood log p(x̃ | x̂) (see the Appendix B for the detailed derivation), which can be expressed
as:

minMSE ⇔ maxEp(x̃,x̂)[log p(x̃ | x̂)] (6)
According to the relation between MI and entropy, we have I(x̃; x̂) = H(x̃)−H(x̃ | x̂), by treating
the ground-truth value x̃ as constants, the following formula holds:

max I(x̃; x̂) ⇔ max−H(x̃ | x̂) = maxEp(x̃,x̂)[log p(x̃ | x̂)] (7)

The MSE serves as a bridge that establishes the connection between uncertainty and MI:

min∆(x̂) ⇔ minMSE ⇔ max I(x̃; x̂) (8)

Considering the chain rule of MI, we have I(x̃;x,y) = I(x̃;x)+I(x̃;y | x), and with I(x̃;y | x) ≥
0, we obtain I(x̃;x,y) ≥ I(x̃;x). Assuming that the generative model g is capable of integrating
its inputs, we then obtain I(x̃; x̂ = g(x,y)) ≥ I(x̃; x̂ = g(x)). Finally, by the equivalence relation,
Eq. (3) is proved.
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TS Database Target TS Channels 

Output TS

①

Short-term Fourier Transformation

Coherence Analysis

TS Content Synthesis

Self-Attention

Modality Cross Attention & Transformer Encoder

Multi-layer Perceptron

BERT Embedding

Query TextsNews Database Channel Description

Cosine Similarity Analysis

Text Cross Attention ×2

𝐾 𝑉 𝑄

𝐾 𝑉 𝑄! 𝑄"

②

③

Reference Text

Figure 2: Model design of ReTaMForecaster. The model consists of three main modules: ① TS
retrieval and synthesis module, which retrieves the reference TS most relevant to the target time
series channels (TTC) and performs content synthesis; ② text retrieval and alignment module,
which retrieves relevant textual information and aligns it with the TTC and temporal steps; ③
modality alignment and output module, which aligns the MTS with the retrieved text modality
and produces the final output through Transformer-based encoding.

3 APPROACHES AND MODEL DESIGN

To validate the effectiveness of our proposed ReTaMTSF paradigm, we develope ReTaMForecaster,
a streamlined baseline model for MTSF. As illustrated in Fig. 2, the model leverages our designed TS
retrieval mechanism and exogenous text retrieval mechanism to match the most relevant TS channels
and textual information as reference for the target channels and time periods. In addition, the text
retrieval and alignment module enables automatic text alignment with time steps in the TS. Building
on the theoretical foundation presented in section 2, the model leverages modality alignment through
a cross attention mechanism to exploit textual information for enhancing the accuracy of MTSF.

3.1 TS RETRIEVAL AND SYNTHESIS MODULE

In MTS analysis, variables across different channels often exhibit interdependencies, i.e., inter-
channel correlations. Such correlations play a crucial role in improving the accuracy of MTSF but
not all channels demonstrate significant correlation with the TTC as illustrated in Fig. 3. From a
mathematical perspective, TSF benchmark datasets exhibit intrinsic low-rank characteristics (Chen
& Sun, 2020; Liu, 2022). Focusing the analysis only on reference TS with strong correlations
to the TTC essentially corresponds to a reduced-rank regression (RRR) analysis, which not only
improves computational efficiency but also mitigates the risk of potential data contamination. The
inter-channel correlations of MTS in the time domain can be transformed into coherence in the
frequency domain. Building on this property, we propose a reference TS retrieval approach based
on coherence as illustrated in Fig. 2.

4
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Figure 3: Example for inter-channel correlations of a weather dataset (Xu et al., 2024). Figure (a)
illustrates the temporal variations of three TS variables, temperature, wind speed, and humidity,
highlighting the inter-channel correlations among them. Generally, higher temperatures increase
the air’s moisture capacity and may lower relative humidity. Greater humidity raises air density,
which can slow wind, while higher temperatures can also intensify pressure differences and gener-
ate stronger winds. Figure (b) depicts the temporal dynamics of two TS variables, rain and CO2,
indicating that there is almost no inter-channel correlation between them.

Since TS are discrete-time signals, we first employ the short-term fourier transform (STFT) to con-
vert both the time series database (TSD, which includes all TS channels except TTC) xD and the
TTC xT into the frequency domain. Subsequently, coherence analysis and retrieval are performed.
The windowed STFT can be expressed as:

X(n, f) =

L∑
t=1

x(t)ω(t− n)e−ift,x = xD,xT (9)

where XD, XT denote all channels transformed in xD,xT , n represents the time shift, f is the
frequency, and ω(·) is the Hanning window function. In the subsequent coherence analysis, we
compute the cross power spectral density (CPSD) between every channel in xD and xT , as well as
their respective auto power spectral densities (APSDs):

Pxi
Dxj

T
(f) = E[Xi

D(n, f)Xj∗
T (n, f)], i = 1, 2, . . . , CD, j = 1, 2, . . . , CT (10)

Pxkxk(f) = E[Xk(n, f)2], x = xD, X = XD, k = i or x = xT , X = XT , k = j (11)

where xi
D and xj

T denote i-th channel of xD and j-th channel of xT respectively, Pxi
Dxj

T
(f) rep-

resents CPSD between xi
D and xj

T , Pxi
Dxi

D
(f) and Pxj

Txj
T
(f) represent APSD for xi

D and xj
T

respectively, CD and CT denote the number of channels in xD and xT respectively. E[·] denotes
the expectation operator, which in practice corresponds to averaging across windows (along the
n-dimension). The mean coherence between xi

D and xj
T is then computed as:

C̄xi
Dxj

T
= E[Cxi

Dxj
T
(f)] = E[

∣∣∣Pxi
Dxj

T
(f)

∣∣∣2
Pxi

Dxi
D
(f) · Pxj

Txj
T
(f)

] (12)

where C̄xi
Dxj

T
denotes the mean coherence, and E[·] here represents the averaging operation along

the frequency (f ) dimension. For each target channel in xT , we rank the channels in xD according to
their mean coherence with the target channel. The top-KT channels with the highest mean coherence
values are then selected as the reference TS xref ∈ RB×CT ·KT×L. Formally, the selected reference
TS set is given by:

Rj = TopKKT

({
C̄xi

Dxj
T
|i = 1, 2, . . . , CD}

)
(13)

xj
ref = x

Rj

D , j = 1, 2, . . . , CT (14)
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By employing the TS content synthesis module (Jing et al., 2022) (illustrated in Appendix C), we
model both the inter-channel correlations and temporal dependencies between the reference TS and
TTC, yielding Xsyn ∈ RB×CT ·(KT+1)×L×D.

3.2 TEXT RETRIEVAL AND ALIGNMENT MODULE

In natural language processing (NLP) researches, textual information is typically mapped into a se-
mantic space of the model, i.e., transformed into text embeddings to capture semantic information
and facilitate downstream tasks. In TSF, incorporating text embeddings can provide external knowl-
edge to the model, thereby enhancing predictive accuracy (Xu et al., 2024; Jin et al., 2024b; Zhang
et al., 2025a). To alleviate the burden of precisely aligning text with time steps in TS, we propose a
text retrieval and alignment module as illustrated in Fig. 2.

Query texts, which include information about the prediction time steps, and channel descriptions,
which describe the TTC, are designed as inputs, with detailed examples provided in Appendix D.
Within the horizon window length, each time step corresponds to a query text, where the semantics
of each query text encapsulate the shortest time interval associated with that step, consistent with
the dataset’s sampling frequency. The channel descriptions refer to a textual characterization of the
channel’s properties, which is generated by LLMs based on the channel name. Each channel in the
MTS is associated with a channel description but in our experiments, only the channel description
of the target channel is utilized. The query texts and channel descriptions are then processed to-
gether with the exogenous news database texts using BERT to obtain their embeddings, which are
subsequently normalized to unit length.

Continuously, we perform cosine similarity analysis between the embeddings of the news database
Ynd and the embeddings of the query texts Yqt. Since words that are close in the semantic space tend
to share similar meanings, whereas those that are distant exhibit less semantic similarity (Mikolov
et al., 2013), we compute the cosine similarity between every query text and every news item in the
database. By ranking the results, we retrieve the top-Kn most relevant news items for each query
text, which together constitute reference text embedding Yref ∈ RB×CT ·Kn×H×D. The process is
formally expressed as:

Rj = TopKKn

({
cos(Y i

nd,Y
j

qt ) | i = 1, 2, . . . , N
})

Y j
ref = Y

Rj

nd , j = 1, 2, . . . , CT ·H
(15)

Since each time step of the TTC corresponds to a query text, and each query text retrieves Kn

reference texts, the task naturally involves aligning textual information with the corresponding time
steps in TS instead of costly manual alignment.

Ultimately, we employ two successive cross attention modules to aggregate the textual information.
In the first module, the reference text embeddings Yref are used as keys and values, while the chan-
nel description embeddings Ydes serve as queries, in order to calculate the relevance of each news
item to every TTC and generate a composite embedding for each TTC. In the second module, the
output from the first module is used as keys and values, and the query text embeddings Yqt serve as
queries, to calculate the relevance of the news items to each time step within the forecasting hori-
zon, thereby culminating in a composite embedding for every time step, which can be expressed as
Ysyn ∈ RB×CT×H×D.

3.3 MODALITY ALIGNMENT AND OUTPUT MODULE

In this module, the fusion of TS and text modalities is achieved through cross attention mechanism,
illustrated by Fig. 2. First, the last label length time steps of the output Xsyn from the TS retrieval
and synthesis module are extracted as the output guidance and concatenated with the output Ysyn

from the text retrieval and alignment module, yielding Ycat ∈ RB×CT×(Llabel+H)×D. Subsequently,
Xsyn is treated as keys and values, while Ycat serves as queries to achieve modality alignment.
The aligned representations are then modeled by Transformer encoders, and finally, an multi-layer
perceptron (MLP) layer generates the predicted TS x̂ ∈ RB×CT×H .

6
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Table 1: Overview of the selected datasets from Time-MMD benchmark.
Domain Target Variable Dimension Frequency Number of Samples

Energy Gasoline Prices 9 Weekly 1479
Climate Drought Level 6 Monthly 496

Health (US) Influenza Patients Proportion 11 Weekly 1389
Environment Air Quality Index 4 Daily 11102

4 EXPERIMENTS

Based on the proposed ReTaMForecaster baseline model, we conduct comprehensive experiments
on MTSF datasets from the Time-MMD benchmark (Liu et al., 2024), thereby validating the effec-
tiveness of the ReTaMTSF paradigm. Furthermore, we performed ablation studies to examine the
contribution of textual information to augmenting MTSF performance.

4.1 EVALUATION ON MULTIMODAL MTSF

The Time-MMD benchmark is a multi-domain multimodal time series benchmark publicly available
at https://github.com/AdityaLab/Time-MMD. It encompasses nine primary data do-
mains, among which we select four multivariate datasets, namely Energy, Climate, Health (US), and
Environment, to evaluate the model performance. Tab. 1 provides a overview for the four datasets
we selected.

Table 2: Evaluation results on four MTSF datasets of Time-MMD. For each dataset and each horizon
window length, the best result is highlighted with a gray background and the second-best result is
underlined. The unimodal results of ReTaMForecaster are obtained through ablation studies detailed
in section 4.2. The results of baseline models are in Liu et al. (2024).

Dataset Energy Climate Health(US) Environment

Horizon Window Length 12 24 36 48 6 8 10 12 12 24 36 48 48 96 192 336

Model Modal
Uni 0.21 0.30 0.37 0.49 1.42 1.39 1.40 1.40 2.53 2.59 2.46 2.38 0.32 0.35 0.35 0.32FiLM Multi 0.17 0.28 0.36 0.48 1.15 1.15 1.14 1.17 1.67 1.83 1.80 1.81 0.30 0.32 0.32 0.30
Uni 0.26 0.32 0.39 0.50 1.35 1.41 1.36 1.36 2.37 2.61 2.50 2.48 0.41 0.57 0.73 0.59DLinear Multi 0.22 0.29 0.36 0.47 1.06 1.05 1.07 1.08 1.62 1.67 1.68 1.78 0.32 0.40 0.46 0.42
Uni 0.18 0.26 0.36 0.44 1.04 1.14 1.12 1.11 1.22 1.56 1.43 1.55 0.32 0.32 0.48 0.44Transformer Multi 0.13 0.22 0.32 0.42 0.97 1.01 1.00 1.00 0.93 1.34 1.26 1.29 0.59 0.61 0.70 0.32
Uni 0.28 0.38 0.49 0.57 1.24 1.06 1.13 1.16 1.63 1.99 1.91 1.90 0.39 0.45 0.51 0.48Reformer Multi 0.25 0.38 0.43 0.54 0.97 0.95 0.94 0.98 1.06 1.30 1.33 1.39 0.29 0.35 0.36 0.32
Uni 0.18 0.29 0.35 0.48 1.08 1.11 1.08 1.07 1.24 1.61 1.61 1.67 0.39 0.42 0.46 0.48Informer Multi 0.15 0.24 0.32 0.44 1.04 1.03 1.04 1.02 0.98 1.23 1.28 1.40 0.31 0.33 0.39 0.34
Uni 0.18 0.31 0.34 0.47 1.30 1.24 1.28 1.25 1.99 2.25 2.26 2.39 0.43 0.36 0.52 0.37Autoformer Multi 0.16 0.27 0.32 0.45 1.08 1.02 1.05 1.05 1.43 1.74 1.76 1.69 0.35 0.35 0.35 0.34
Uni 0.11 0.24 0.34 0.45 1.32 1.36 1.28 1.27 1.08 1.58 1.69 1.76 0.36 0.43 0.42 0.35FEDformer Multi 0.09 0.21 0.32 0.44 0.98 1.00 1.03 1.02 0.92 1.25 1.36 1.42 0.30 0.34 0.34 0.33
Uni 0.11 0.21 0.34 0.48 1.30 1.32 1.36 1.32 1.19 1.68 1.91 2.02 0.31 0.39 0.43 0.38Nonstationary

Transformer Multi 0.10 0.20 0.28 0.46 1.00 1.02 1.02 1.01 0.94 1.14 1.17 1.30 0.29 0.31 0.32 0.30
Uni 0.14 0.29 0.36 0.41 1.12 1.10 1.12 1.10 1.45 1.57 1.62 1.65 0.34 0.33 0.73 0.53Crossformer Multi 0.13 0.26 0.36 0.41 1.00 0.99 1.00 1.01 1.01 1.29 1.28 1.37 0.29 0.30 0.36 0.36
Uni 0.10 0.21 0.30 0.42 1.36 1.33 1.27 1.28 1.23 1.63 1.78 1.86 0.35 0.38 0.36 0.32PatchTST Multi 0.10 0.21 0.29 0.41 0.99 1.01 1.04 1.06 0.98 1.27 1.49 1.60 0.31 0.32 0.32 0.30
Uni 0.10 0.21 0.30 0.42 1.16 1.23 1.24 1.22 1.14 1.62 1.84 1.89 0.28 0.29 0.30 0.28iTransformer Multi 0.09 0.19 0.29 0.41 0.99 1.01 1.04 1.06 0.97 1.38 1.71 1.72 0.28 0.29 0.29 0.27
Uni 0.16 0.27 0.31 0.45 1.36 1.26 1.27 1.27 1.60 1.94 1.95 2.17 0.38 0.37 0.45 0.33Time-LLM Multi 0.10 0.20 0.29 0.41 0.99 1.01 1.04 1.07 0.98 1.36 1.65 1.69 0.29 0.30 0.31 0.28
Uni 0.14 0.44 0.30 0.41 0.26 0.42 0.72 0.66 1.67 1.48 1.36 1.39 0.32 0.47 0.46 0.38ReTaM-

Forecaster Multi 0.09 0.18 0.28 0.39 0.23 0.40 0.70 0.61 0.89 1.18 1.19 1.34 0.29 0.30 0.37 0.35

We follow the general experimental setup of Time-MMD to forecast a single TTC from MTS in-
puts, treating the remaining channels as covariates. The horizon window lengths span from short-
to long-term forecasting tasks, with four horizon window lengths for each dataset determined by
its sampling frequency. We evaluate the performance of ReTaMForecaster on four MTSF datasets
from Time-MMD as we mentioned above, and compare it against competitive baselines. To pro-
cess textual inputs, we employ the paraphrase-MiniLM-L6-v2 model to obtain their embeddings.
Model performance is assessed using the widely adopted MSE metric, where lower values indicate
better predictive accuracy. As demonstrated in Tab. 2, ReTaMForecaster achieves state-of-the-art
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Figure 4: Results of ablation studies. Figure (a) illustrates the results of the text ablation experiment,
while Figure (b) shows results of the aggregation ablation experiment. In both figures, the blue bars
represent the performance of ReTaMForecaster, and the orange bars indicate the differences between
the ablation experiment results and the ReTaMForecaster results, reflecting the contribution of the
corresponding module.

performance across all evaluated horizon window lengths on the Energy and Climate datasets. For
the Health (US) and Environment datasets, it attains the best or second-best performance in at least
half of the evaluated horizon window lengths. This validates the effectiveness of ReTaMTSF, in-
cluding TS and text retrieval and modality alignment through cross attention. Despite the strong
performance of the multimodal version, the unimodal results of ReTaMForecaster are generally
inferior to those of the baseline unimodal versions. However, the incorporation of textual informa-
tion substantially enhances forecasting accuracy, with the maximum improvement achieving up to
a 74% reduction in MSE compared to the best-performing baseline model. This observation is con-
sistent with the findings of Zhang et al. (2025a), which suggest that incorporating extra modalities
is particularly beneficial for weaker unimodal forecasting models as text information provides the
most value when the TS model lacks sufficient capacity to capture temporal patterns on its own.

4.2 ABLATION STUDIES

To assess the contribution of textual information to MTSF and the role of the aggregation module in
TS content synthesis, we conducted additional ablation studies. In the text ablation experiment, the
composite text embedding Ysyn is replaced with an all-zero tensor, thereby removing the augmenta-
tion effect of textual information. In the aggregation ablation experiment, the aggregation module
is removed, leaving no dedicated mechanism to capture inter-channel correlations and temporal de-
pendencies in the MTS. Fig. 4 presents the results, with detailed outcomes provided in Tab. 3.

Table 3: Ablation study results of ReTaMForecaster on four datasets with different horizon window
lengths.

Dataset Energy Climate Health(US) Environment

Horizon Length 12 24 36 48 6 8 10 12 12 24 36 48 48 96 192 336

ReTaMForecaster 0.09 0.18 0.28 0.39 0.23 0.40 0.70 0.61 0.89 1.18 1.19 1.34 0.29 0.30 0.37 0.35
w/o text augmentation 0.14 0.44 0.30 0.41 0.26 0.42 0.72 0.66 1.67 1.48 1.36 1.39 0.32 0.47 0.46 0.38

w/o TS aggregation 0.14 0.45 0.43 0.41 0.51 0.78 0.89 1.07 0.90 1.27 1.38 1.46 0.32 0.32 0.44 0.40

Quantitatively, textual information contributes on average 18% to the performance of ReTaMFore-
caster, while the aggregation module accounts for an average of 23% of the observed performance
improvement. The results substantiate the efficacy of incorporating exogenous textual information
in addressing the information insufficiency inherent in TSF models (Xu et al., 2024), thereby val-
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idating the theoretical analysis presented in section 2 and demonstrating the effectiveness of the
proposed aggregation module.

4.3 EFFECT OF TS AND TEXT RETRIEVAL

The role of TS and text retrieval in the model is investigated by examining the impact of the number
of retrieved TS (KT ) as well as exogenous texts (Kn) on model performance. For each dataset, we
select the shortest horizon window length for experimentation, and the results are shown in Fig. 5. It
can be observed that the MSE initially decreases as KT and Kn increase, reaching a minimum point.
Beyond this point, however, the MSE ceases to decrease or even starts to rise, in some cases exceed-
ing the performance of the setting without TS and text retrieval. This indicates that while MTS
covariates and exogenous texts can provide additional information to improve forecasting accuracy,
redundant information may introduce noise, thereby degrading model performance.

Figure 5: The impact of the number of retrieved TS (KT ) as well as exogenous texts (Kn) on
model performance is investigated on (a) Energy, (b) Climate, (c) Health (US) and (d) Environment
datasets.

5 CONCLUSION AND LIMITATIONS

Conclusion. In this work, we provide a theoretical foundation for the augmentation of TSF through
textual information, and subsequently propose ReTaMTSF, a retrieval-based text-augmented multi-
variate time series forecasting paradigm. We further design ReTaMForecaster, a baseline model for
ReTaMTSF, which leverages flexible retrieval of relevant TS and exogenous text to facilitate multi-
modal MTSF. Extensive experiments on four multimodal MTSF datasets from Time-MMD across
diverse domains demonstrate the effectiveness of ReTaMTSF, underscoring the importance of incor-
porating exogenous textual information and flexibly capturing inter-channel correlations. This work
alleviates the manual burden inherent in prior multimodal TSF approaches and offers new perspec-
tives and methodologies for advancing and optimizing MTSF. For future work, incorporating spatial
information into the model to support spatiotemporal forecasting could provide more comprehensive
predictive insights.

Limitations. Despite the contributions, this work still has several limitations. The theoretical anal-
ysis provided in this work regarding the augmentation effect of textual information on TSF is based
on the Gaussian distribution assumption. However, the relation between ground-truth and predicted
values may not necessarily follow this assumption, and further validation is required under alterna-
tive conditions. The proposed TS retrieval mechanism relies on frequency-domain coherence, which
only captures linear correlations and thus fails to reflect nonlinear dependencies. In addition, when
retrieving and aligning relevant textual information, the model must load a large number of text em-
beddings, resulting in a space complexity approximately linear in the sum of the look-back window
length and the horizon window length, i.e., O(L + H). Consequently, long-term forecasting may
incur substantial computational costs.
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A RELATED WORKS

A.1 MULTIMODAL TRANSFER LEARNING WITH LARGE LANGUAGE MODELS AND THEIR
APPLICATIONS IN TIME SERIES ANALYSIS

LLMs have demonstrated remarkable performance in multimodal transfer learning, including tasks
involving images (Lin et al., 2024), audio (Ghosal et al., 2023), tabular data (Hegselmann et al.,
2023), and time series data (Zhou et al., 2023). A key motivation for employing LLMs in multimodal
tasks is their ability to achieve strong performance even under limited data scenarios (Zhou et al.,
2023). To preserve their data-independent representation learning capability, most parameters of
these models are typically kept frozen, and empirical evidence suggests that LLMs with largely
frozen parameters often outperform those trained from scratch(Lin et al., 2024; Zhou et al., 2023).

Current approaches for transferring and extracting the knowledge stored in LLMs parameters for
TS analysis can be broadly categorized into five types (Zhang et al., 2024): (1) prompting (input
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stage); (2) time series quantization (tokenization stage); (3) aligning (embedding stage); (4) vision as
bridge (LLM stage); and (5) tool integration (output stage). All these methods focus on transferring
the knowledge embedded in LLMs parameters to other modalities. Among these, aligning requires
synchronizing textual and sequential data at the timestep level before modality alignment. However,
existing methods often rely on manual alignment (Xu et al., 2024), which is both time-consuming
and labor-intensive. To address this limitation, our work introduces a text retrieval and alignment
mechanism that enables this process to be performed automatically, thereby improving efficiency.

A.2 TIME SERIES REPRESENTATION LEARNING AND FORECASTING

In the TS domain, self-supervised learning has emerged as an important approach for representation
learning. Although Transformers are widely recognized as a leading solution for end-to-end TS
analysis (Nie et al., 2023), backbone networks based on CNNs (Yue et al., 2022) or RNNs (Tonek-
aboni et al., 2021) have traditionally been the preferred architectures for self-supervised learning
in TS. Conventional TS forecasting methods take a statistical perspective, treating forecasting as a
standard regression problem with time-varying parameters (Zhang, 2003). Recent advances in deep
learning, however, have led to significant breakthroughs, giving rise to models such as LSTNet (Lai
et al., 2018) and N-BEATS (Oreshkin et al., 2020).

Due to the inherent ability of the Transformer’s self-attention mechanism to capture long-range de-
pendencies and complex patterns, it is particularly well-suited for TS data with intricate sequential
relationships. Consequently, many state-of-the-art deep learning methods are built upon Trans-
former architectures (Zhou et al., 2021; Wu et al., 2021). However, these methods overlook the
low-rank property of TS datasets and rely entirely on Transformers to model the inter-channel cor-
relations of MTS. These approaches can lead to low computational efficiency and difficulty in focus-
ing attention on the truly relevant channels. In contrast, our work first employs numerical methods
to flexibly capture the inter-channel correlations of MTS and performs dimensionality reduction ac-
cordingly, before leveraging a Transformer to model the data. This two-step approach improves both
the predictive accuracy and efficiency of the model.

A.3 RETRIEVAL-AUGMENTED GENERATION MODELS

Retrieval-Augmented Generation (RAG) is an emerging hybrid architecture designed to address the
limitations of pure generative models. RAG integrates two key components: a retrieval mechanism,
which searches for relevant documents or information from external knowledge sources, and a gen-
eration module, which processes the retrieved information to produce more accurate outputs, often
in a human-like textual form. This combination enables RAG models not only to generate coher-
ent and fluent text but also to incorporate up-to-date real-world knowledge into their outputs. For
instance, Re3Sum (Cao et al., 2018) generates document summaries based on retrieved templates,
while Song et al. (2018) suggests generating dialogue responses grounded in retrieved references.
In the field of MTSF, Jing et al. (2022) introduces a retrieval-based forecasting model; however, this
model relies solely on manually predefined relationships for retrieval within TS data. In contrast,
our work performs flexible retrieval jointly over both TS and textual information, thereby enabling
a more context-aware forecasting framework.

B THEORETICAL GROUNDING SUPPLEMENT

B.1 DERIVATION OF THE ENTROPY-BASED UNCERTAINTY EXPRESSION

For a c-dimensional multivariate Gaussian distribution N (µ,Σ), the probability density function is
given by:

p(x) =
1

(2π)
c
2 |Σ| 12

exp

(
−1

2
(x− µ)⊤Σ−1(x− µ)

)
(16)

Taking the logarithm yields:

log p(x) = − c

2
log(2π)− 1

2
log |Σ| − 1

2
(x− µ)⊤Σ−1(x− µ) (17)
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Substituting into the differential entropy formula H(x) = −
∫
p(x) log p(x)dx gives:

H(x) =

∫
p(x)

[
c

2
log(2π) +

1

2
log |Σ|+ 1

2
(x− µ)⊤Σ−1(x− µ)

]
dx (18)

=
c

2
log(2π) +

1

2
log |Σ|+ 1

2
E
[
(x− µ)⊤Σ−1(x− µ)

]
(19)

The last term can be rewritten as:

1

2
E
[
(x− µ)⊤Σ−1(x− µ)

]
=

1

2
tr
(
Σ−1E

[
(x− µ)(x− µ)⊤

])
=

1

2
tr
(
Σ−1Σ

)
=

1

2
c (20)

Substituting back into Eq. 19 gives:

H(x) =
c

2
(1 + log 2π) +

1

2
log |Σ| (21)

Considering Eq. 1 gives:

H(x̃ | x̂) = c

2
(1 + log 2π) +

1

2
log

(
σ2

)c
=

c

2
log 2πeσ2 (22)

B.2 PROOF OF THE MSE–LOG-LIKELIHOOD EQUIVALENCE

Assume a forecasting model as:

x̃ = f(x;θ) + ϵ = x̂+ ϵ, ϵ ∼ N
(
0, σ2I

)
(23)

where x denotes the input sequence to the model, x̂ represents the predicted sequence, x̃ denotes
the ground-truth sequence over the forecasting horizon, θ corresponds to the model parameters, and
the distribution function of ϵ is given by:

p(ϵ) =
1

(2πσ2)
c
2
exp

(
−∥ϵ∥2

2σ2

)
(24)

where c denotes the dimension of the sequence. Then the conditional distribution of x̃ can be
expressed as:

p(x̃ | x̂) = p(x̃ | f(x;θ)) = N
(
x̃ | f(x;θ), σ2I

)
=

1

(2πσ2)
c
2
exp

(
−∥x̃− x̂∥2

2σ2

)
(25)

Given a dataset D = {(xi, x̃i)}Ni=1, xi and x̃i denote the values at the i-th time step in the input
sequence and the ground-truth sequence, respectively, the likelihood function can be written as:

p(D | θ) =
N∏
i=1

p (x̃i | xi;θ) =
N∏
i=1

p (x̃i | x̂i) (26)

Taking the logarithm of the likelihood function, we obtain the log-likelihood function:

log p(D | θ) =
N∑
i=1

log p (x̃i | x̂i) (27)

Considering Eq. 1 gives:

N∑
i=1

log p (x̃i | x̂i) =

N∑
i=1

[
− c

2
log

(
2πσ2

)
− ∥x̃i − x̂i∥2

2σ2

]
∝ − 1

2σ2

N∑
i=1

∥x̃i − x̂i∥2 (28)

MSE is defined as 1
N

∑N
i=1 ∥x̃i − x̂i∥2 and we can obtain:

min
θ

MSE ⇔ min
θ

Σ ∥x̃i − x̂i∥2 ⇔ maxEp(x̃,x̂)[log p(x̃ | x̂)] (29)
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C TS CONTENT SYNTHESIS

Linear Linear

Pos. Enc. & Norm

Concatenation

Content Attention

Temporal Attention

Forward

Reference TS Target TS Channels

Input
Module

Aggregation
Module

Figure 6: The architecture of the TS content synthesis module.

As illustrated in Fig. 6, the architecture of the TS content synthesis module consists of an input
module and aggregation modules. In the input module, the reference TS and TTC are individu-
ally processed by a linear layer, followed by positional encoding and normalization. The resulting
representations are then concatenated and passed into Na successive aggregation modules. Within
each aggregation module, content attention and temporal attention are employed to capture inter-
channel correlations and temporal dependencies. Finally, the representations are refined through a
feed-forward network, producing the synthesized output Xsyn.

D QUERY TEXT AND CHANNEL DESCRIPTION EXAMPLES

D.1 QUERY TEXT

Example: In the weekly reported Energy dataset, the query text corresponding to April 5,
1993, is:

”From 1993-04-05 to 1993-04-11.”

D.2 CHANNEL DESCRIPTION

Example: In the Energy dataset, the channel description for target channel ”Gasoline
Prices” is:

”Gasoline prices refer to the retail cost consumers pay per gallon of gasoline, reflecting
factors such as crude oil prices, taxes, and refining costs.”

E THE USE OF LARGE LANGUAGE MODELS (LLMS)

Large Language Models (LLMs) were employed exclusively to assist with the writing process.
Specifically, they were used to polish the language, improve grammar, and enhance clarity of pre-
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sentation. The LLMs did not contribute to research ideation, methodology design, data analysis, or
interpretation of the results.
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