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ABSTRACT

The rapid advancement of Large Language Models (LLMs) has ushered multi-
variate time series forecasting (MTSF) into a transformative era through the in-
tegration of natural language. Despite effectiveness of recent language-integrated
TSF approaches, they originally stem from engineering intuition, lacking theo-
retical grounding, and entail considerable manual effort. Moreover, given the
importance of inter-channel correlations in MTSF task, current MTSF methods
either superficially investigate the intrinsic relations among time series chan-
nels or rely heavily on expert knowledge to predefine them, both are with lim-
ited flexibility. To address these challenges, we provide an information-theoretic
analysis of the role of textual information in augmenting TSF and propose Re-
TaMTSF, an MTSF paradigm that automatically aligns and incorporates exoge-
nous text with time series while adaptively capturing inter-channel correlations.
We further introduce ReTaMForecaster, a baseline model for ReTaMTSEF, and
validate its effectiveness through extensive experiments on multimodal MTSF
benchmarks spanning diverse domains. ReTaMForecaster achieves state-of-the-
art or second-best performance in more than half of the benchmarks and fore-
casting horizons, with mean squared error (MSE) reductions of up to 74% com-
pared to the best baseline, thereby demonstrating the soundness of the pro-
posed framework with substantial manual effort reduction. Code is available at
https://anonymous.4open.science/r/ReTaMTSF-CCOA/.

1 INTRODUCTION

Time series (TS) are a ubiquitous type of data in both daily life and various engineering practices.
In particular, multivariate time series (MTS) data contain underlying information that characterizes
system dynamics and reveals the interrelationships and operating mechanisms of complex systems.
Owing to their significant research value, MTS forecasting problem has attracted extensive attention
from researchers across a wide range of domains, including earth sciences (Karpatne et al.,|2019),
transportation (Jin et al.l [2024a)), energy (Zhu et al.| [2024)), healthcare (Harutyunyan et al., |2019),
environmental studies (Xia et al.,[2023)), finance (Xu et al., [2025)), and so on.

To achieve accurate prediction of MTS, a variety of deep learning models with carefully designed
architectures have been proposed (Nie et al., [2022} |Zhang et al., [2025b; [Huang et al.| 2024). These
models aim to capture the underlying dynamics of MTS, such as long-term trends and periodic
patterns. However, recent studies (Xu et al., |2024) suggest that unimodal deep models may have
reached a performance plateau, where further improvements from increasingly complex architec-
tures are marginal. For example, when relying solely on historical traffic data without access to
weather information, unimodal models are unlikely to accurately predict the changes in traffic flow
caused by upcoming heavy rain.

Traditionally, exogenous textual information, such as weather condition above, has served as an es-
sential and even indispensable reference for manual forecasting, on which domain experts often rely
to anticipate future conditions and trends (Williams et al.|[2024). Considering that exogenous textual
information provides complementary sources of information for TSF tasks, recent efforts (Zhang
et al., 2024;|Zhou et al.,[2023)) have been made to introduce exogenous textual information into deep
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models. The emergence of LLMs has further provided a new paradigm for processing textual data,
enabling TS and text, as two heterogeneous modalities, to be represented and integrated within a uni-
fied framework. This advancement opens up new possibilities for enhancing the automatic reasoning
and forecasting of MTS with the aid of textual information (Zhang et al., |2024). Meanwhile, with
the in-depth study and wide application of the Transformer architecture, self-attention mechanisms
have been increasingly employed to model system dynamics of MTS (Chang et al., 2025).

However, existing methods and analyses for text-augmented MTSF still exhibit three major gaps or
limitations: (1) Lack of theoretical foundation. The augmentation for TSF by textual information
was initially motivated by engineering intuition and subsequently validated through empirical stud-
ies (Rodrigues et al., [2019). However, to the best of our knowledge, this augmentation still lacks
a theoretical foundation based on probability theory and information theory. (2) Inflexible TS re-
trieval. Retrieving relevant TS channels and feeding them into the forecasting model can improve
prediction accuracy, especially when the ratio of the output length (or forecasting horizon) to the
sum of the input and output lengths is relatively high. In such cases, relevant TS retrieval becomes
an indispensable component in MTSF. Some researchers (Jing et al.}2022)) have proposed methods
that quantify the correlations among TS channels and retrieve relevant channels based on manually
predefined graph structures, which rely heavily on expert knowledge and lack flexibility. (3) Costly
manual alignment of textual and numerical data. Ensuring temporal alignment between textual
and numerical data is essential as it requires the synchronization of reported text timestamps with
the corresponding numerical time steps. Existing methods rely on manual alignment of TS and text
at each time step (Xu et al.,[2024), which is highly labor-intensive.

To address the issue of theoretical support, this work conducts an analysis grounded in information
theory and establishes the theoretical foundation for the augmenting role of textual information. To
flexibly capture the correlations among TS channels to retrieve relevant TS, this work proposes a
frequency-domain coherence—based retrieval method. In addition, this work introduces a semantics-
driven text retrieval and alignment approach that eliminates reliance on manual efforts. Furthermore,
the proposed paradigm is evaluated on a comprehensive benchmark spanning diverse domains to
rigorously assess its effectiveness. The main contributions of this work are summarized as follows:

* Theoretical Grounding of Text Augmentation. We conduct a theoretical analysis of the
augmentation effect of exogenous textual information in TSF based on information the-
ory and machine learning principles. We demonstrate that incorporating exogenous textual
information reduces the uncertainty for the forecasting accuracy and provide a solid the-
oretical foundation, having the situation of reliance solely on engineering intuition and
empirical evidence undergo an exciting transformative moment.

* Flexible Retrieval, Alignment, and Attention-Based MTSF. We propose a novel
coherence-based relevant TS channels retrieval method, which flexibly captures complex
and time-varying dependencies in MTS channels; We also propose an embedding-based
retrieval and automatic alignment method that effectively associates relevant exogenous
texts with corresponding time steps in TS, alleviating the reliance on manual collection
and alignment. Building upon the above approaches and employing attention mechanisms,
we propose a new paradigm: Retrieval-Based Text-Augmented Multivariate Time Series
Forecasting (ReTaMTSF).

* Extensive Evaluations with Significant Improvement. ReTaMForecaster, the baseline
model for ReTaMTSEF, is evaluated on a multi-domain benchmark, achieving the best or
second-best performance in most experiments, with up to a 74% reduction in MSE com-
pared to the best baseline. Further ablation studies demonstrate the augmentation effect of
textual information in TSF tasks.

We include additional related works in Appendix

2 INFORMATION-THEORETIC GROUNDING OF TEXT-AUGMENTED TSF

In this section, we establish connections among the uncertainty of forecasting accuracy, MSE, and
mutual information (MI) to demonstrate that incorporating relevant textual information enhances
TSF performance.
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2.1 PROBLEM FORMULATION

Let the historical TS within the look-back window be denoted as x = (Xx1,Xa2,...,X5);
the retrieved exogenous textual information as y = (y;,1,Y;40:-Yr4m): the TS gen-
erated by the TSF model as X = (Xp41,Xp+42,.,Xr+m); the ground-truth TS over
the prediction horizon as X = (Xp41,X542,...,X5+H), where L is the length of the
look-back window and H is the length of prediction horizon. The relations among the
above variables are illustrated in Fig. [T, where g and r denote the generation model and
the retrieval model (or method), respectively, and p characterizes the relation between X
and X. We assume that p follow Gaussian distributions, which can be expressed as:

p(X | %) =N (x| %,0%1) )
where A denotes the Gaussian distribution, o °
is the standard deviation, and I € RF*H ig the
identity matrix. The uncertainty of the accuracy r p
of X, denoted as A (%), can be quantitatively de-
fined by conditional entropy as follows: °
A |[myes) = HEX [ x=g(mr)) ()
where m.,.. y denotes the reference data or infor-

mation used for prediction, i.e. the TSF model
input. The augmentation effect of textual infor-

mation on TSF can be formally expressed as: g D
Ax|x) = AKIxY) ) ° e e

2.2 ANALYSIS AND PROOF

(a) With text augmentation

(b) Without text augmentation

By combining the formation of information en-

tropy and Eq. @, the uncertainty can be ex- Figure 1: Relations between variables for predic-

pressed as: tions w/ or w/o text augmentation. Historical TS
H X retrieves exogenous texts y through retrieval

A(X) = H(X | X) = —log2mes® (4) model (or method) 7 in text-augmented predic-

2 tion. Then generation model g makes predictions

where A(%) denotes the uncertainty of the pre-  x based on inputs. p characterizes the relation be-

diction accuracy when the input is unspecified tween % and X.

and the detailed derivation is provided in the

Appendix [B| It can be seen that A(%X) depends only on the standard deviation o, which can be

computed from the predicted outputs x and corresponding ground-truth values x as:

&)

where Z denotes the total number of predicted-output and ground-truth element pairs. This effec-
tively establishes an equivalence between uncertainty and MSE under the assumption of a Gaussian
distribution. Meanwhile, minimizing the MSE between X and X is also equivalent to maximizing the
log-likelihood log p(x | ) (see the Appendix [B|for the detailed derivation), which can be expressed
as:

min MSE < max Ep 5 [log p(X | X)] (6)

According to the relation between MI and entropy, we have I (X;x) = H(x) — H(x | x), by treating
the ground-truth value x as constants, the following formula holds:

max [ (X;X) < max —H (X | X) = max Ej,x 5 [log p(X | X)] (7)
The MSE serves as a bridge that establishes the connection between uncertainty and MI:
min A(X) & min M SE < max [ (X;X) (8)

Considering the chain rule of MI, we have I (X;x,y) = I(X;x)+1(X;y | x), and with I (X;y | x) >
0, we obtain I(X;x,y) > I(X;x). Assuming that the generative model g is capable of integrating
its inputs, we then obtain I(X;%x = g(x,y)) > I(X;% = g(x)). Finally, by the equivalence relation,
Eq. (3) is proved.
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Figure 2: Model design of ReTaMForecaster. The model consists of three main modules: @ TS
retrieval and synthesis module, which retrieves the reference TS most relevant to the target time
series channels (TTC) and performs content synthesis; @ text retrieval and alignment module,
which retrieves relevant textual information and aligns it with the TTC and temporal steps; @
modality alignment and output module, which aligns the MTS with the retrieved text modality
and produces the final output through Transformer-based encoding.

3 APPROACHES AND MODEL DESIGN

To validate the effectiveness of our proposed ReTaMTSF paradigm, we develope ReTaMForecaster,
a streamlined baseline model for MTSF. As illustrated in Fig.[2] the model leverages our designed TS
retrieval mechanism and exogenous text retrieval mechanism to match the most relevant TS channels
and textual information as reference for the target channels and time periods. In addition, the text
retrieval and alignment module enables automatic text alignment with time steps in the TS. Building
on the theoretical foundation presented in section 2] the model leverages modality alignment through
a cross attention mechanism to exploit textual information for enhancing the accuracy of MTSE.

3.1 TS RETRIEVAL AND SYNTHESIS MODULE

In MTS analysis, variables across different channels often exhibit interdependencies, i.e., inter-
channel correlations. Such correlations play a crucial role in improving the accuracy of MTSF but
not all channels demonstrate significant correlation with the TTC as illustrated in Fig. [3] From a
mathematical perspective, TSF benchmark datasets exhibit intrinsic low-rank characteristics (Chen
& Sun, 2020; [Livl [2022). Focusing the analysis only on reference TS with strong correlations
to the TTC essentially corresponds to a reduced-rank regression (RRR) analysis, which not only
improves computational efficiency but also mitigates the risk of potential data contamination. The
inter-channel correlations of MTS in the time domain can be transformed into coherence in the
frequency domain. Building on this property, we propose a reference TS retrieval approach based
on coherence as illustrated in Fig.
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Figure 3: Example for inter-channel correlations of a weather dataset (Xu et al., [2024). Figure (a)
illustrates the temporal variations of three TS variables, temperature, wind speed, and humidity,
highlighting the inter-channel correlations among them. Generally, higher temperatures increase
the air’s moisture capacity and may lower relative humidity. Greater humidity raises air density,
which can slow wind, while higher temperatures can also intensify pressure differences and gener-
ate stronger winds. Figure (b) depicts the temporal dynamics of two TS variables, rain and CO,
indicating that there is almost no inter-channel correlation between them.

Since TS are discrete-time signals, we first employ the short-term fourier transform (STFT) to con-
vert both the time series database (TSD, which includes all TS channels except TTC) xp and the
TTC xr into the frequency domain. Subsequently, coherence analysis and retrieval are performed.
The windowed STFT can be expressed as:

L
X(n, f) :ZX w(t —n)e” it x = xp,xXr 9)

where X p, X7 denote all channels transformed in xp,xp, n represents the time shift, f is the
frequency, and w(-) is the Hanning window function. In the subsequent coherence analysis, we
compute the cross power spectral density (CPSD) between every channel in xp and x7, as well as
their respective auto power spectral densities (APSDs):

P. s (f)=EXh(n, XS (n, f)], i=12...,Cp, j=1,2,...,Cr (10)

XpXT
kaxk(f):E[Xk(n7f)2}7 X:XD7X:XD7 k:iorX:XT7X:XT7 k:] (11)
where x%, and x%-q denote i-th channel of xp and j-th channel of x respectively, P,; . (f) rep-
D T

resents CPSD between x%, and xjf, Pyi xi (f) and P . (f) represent APSD for x4 and XT

X X
respectively, Cp and Cr denote the number of channels in xp and xr respectively. E[] denotes
the expectation operator, which in practice corresponds to averaging across windows (along the

n-dimension). The mean coherence between x%, and x7. is then computed as:
2

P ()]

leDx’ (f) PJ J (f)

where éxi . denotes the mean coherence, and E[-] here represents the averaging operation along
DT

the frequency (f) dimension. For each target channel in x7, we rank the channels in xp according to

their mean coherence with the target channel. The top- K channels with the highest mean coherence

values are then selected as the reference TS Xy € REXCT KT XL Formally, the selected reference

TS set is given by:

Crt i, = E[Crs i ()] =E

XpXT XpXT

] (12)

R; = TopK ., ({CxlijT li=1,2,.. .,CD}) (13)

Xf;f:X§j7j:1a2v"-aCT (14)
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By employing the TS content synthesis module (Jing et al., 2022) (illustrated in Appendix [C), we
model both the inter-channel correlations and temporal dependencies between the reference TS and
TTC, yielding Xy, € REXCr (Kr+1)xLxD

3.2 TEXT RETRIEVAL AND ALIGNMENT MODULE

In natural language processing (NLP) researches, textual information is typically mapped into a se-
mantic space of the model, i.e., transformed into text embeddings to capture semantic information
and facilitate downstream tasks. In TSF, incorporating text embeddings can provide external knowl-
edge to the model, thereby enhancing predictive accuracy (Xu et al., 2024; Jin et al., [2024b; [Zhang
et al.| 2025a). To alleviate the burden of precisely aligning text with time steps in TS, we propose a
text retrieval and alignment module as illustrated in Fig.[2]

Query texts, which include information about the prediction time steps, and channel descriptions,
which describe the TTC, are designed as inputs, with detailed examples provided in Appendix [D}
Within the horizon window length, each time step corresponds to a query text, where the semantics
of each query text encapsulate the shortest time interval associated with that step, consistent with
the dataset’s sampling frequency. The channel descriptions refer to a textual characterization of the
channel’s properties, which is generated by LLMs based on the channel name. Each channel in the
MTS is associated with a channel description but in our experiments, only the channel description
of the target channel is utilized. The query texts and channel descriptions are then processed to-
gether with the exogenous news database texts using BERT to obtain their embeddings, which are
subsequently normalized to unit length.

Continuously, we perform cosine similarity analysis between the embeddings of the news database
Y4 and the embeddings of the query texts Y. Since words that are close in the semantic space tend
to share similar meanings, whereas those that are distant exhibit less semantic similarity (Mikolov
et al.| 2013)), we compute the cosine similarity between every query text and every news item in the
database. By ranking the results, we retrieve the top-K,, most relevant news items for each query
text, which together constitute reference text embedding Yjf € REXCT EnxHXD The process is
formally expressed as:

R; = TopKy, ({cos( oY) |i:1,2,...,N})
Y=Y j=12..Cr H

ref = T n

(15)

Since each time step of the TTC corresponds to a query text, and each query text retrieves K,
reference texts, the task naturally involves aligning textual information with the corresponding time
steps in TS instead of costly manual alignment.

Ultimately, we employ two successive cross attention modules to aggregate the textual information.
In the first module, the reference text embeddings Y. are used as keys and values, while the chan-
nel description embeddings Yg.s serve as queries, in order to calculate the relevance of each news
item to every TTC and generate a composite embedding for each TTC. In the second module, the
output from the first module is used as keys and values, and the query text embeddings Yy serve as
queries, to calculate the relevance of the news items to each time step within the forecasting hori-

zon, thereby culminating in a composite embedding for every time step, which can be expressed as
Y;yn c RBXCTxHxD.

3.3 MODALITY ALIGNMENT AND OUTPUT MODULE

In this module, the fusion of TS and text modalities is achieved through cross attention mechanism,
illustrated by Fig. @ First, the last label length time steps of the output Xy, from the TS retrieval
and synthesis module are extracted as the output guidance and concatenated with the output Yy,
from the text retrieval and alignment module, yielding Yo, € REXCr*(Lua+H)xD - Quhsequently,
Xgyn is treated as keys and values, while Y, serves as queries to achieve modality alignment.
The aligned representations are then modeled by Transformer encoders, and finally, an multi-layer
perceptron (MLP) layer generates the predicted TS x € REXCrxH
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Table 1: Overview of the selected datasets from Time-MMD benchmark

Domain Target Variable Dimension Frequency Number of Samples
Energy Gasoline Prices 9 Weekly 1479
Climate Drought Level 6 Monthly 496
Health (US) Influenza Patients Proportion 11 Weekly 1389
Environment Air Quality Index 4 Daily 11102

4 EXPERIMENTS

Based on the proposed ReTaMForecaster baseline model, we conduct comprehensive experiments
on MTSF datasets from the Time-MMD benchmark (Liu et al.,|2024), thereby validating the effec-
tiveness of the ReTaMTSF paradigm. Furthermore, we performed ablation studies to examine the
contribution of textual information to augmenting MTSF performance.

4.1 EVALUATION ON MULTIMODAL MTSF

The Time-MMD benchmark is a multi-domain multimodal time series benchmark publicly available
athttps://github.com/Adityalab/Time—-MMD. It encompasses nine primary data do-
mains, among which we select four multivariate datasets, namely Energy, Climate, Health (US), and
Environment, to evaluate the model performance. Tab. |l|provides a overview for the four datasets
we selected.

Table 2: Evaluation results on four MTSF datasets of Time-MMD. For each dataset and each horizon
window length, the best result is highlighted with a gray background and the second-best result is
underlined. The unimodal results of ReTaMForecaster are obtained through ablation studies detailed
in section The results of baseline models are in|Liu et al. (2024).
Dataset Energy Climate Health(US) Environment
Horizon Window Length 12 24 36 48 6 8 10 12 12 24 36 48 48 96 192 336
Model Modal

FiLM Uni. 021 030 037 049 142 139 140 140 253 259 246 238 032 035 035 032

Multi 017 028 036 048 LI5S 115 114 LI7 167 183 180 181 030 032 032 030

DLinear Uni. 026 032 039 050 135 141 136 136 237 261 250 248 041 057 073 059

Multi 022 029 036 047 106 105 107 108 1.62 1.67 1.68 178 032 040 046 042

Transformer Uni. 018 026 036 044 104 LI4 LI12 LI1 122 156 143 155 032 032 048 044
Multi 013 022 032 042 097 101 1.00 100 093 134 126 129 059 061 070 032

Reformer Uni. 028 038 049 057 124 106 LI3 116 1.63 199 191 190 039 045 051 048
Multi 025 038 043 054 097 095 094 098 106 130 133 139 029 035 036 032

Informer Uni. 018 029 035 048 108 LIl 108 107 124 161 161 167 039 042 046 048
Multi 015 024 032 044 104 103 1.04 102 098 123 128 140 031 033 039 034

Autoformer Uni. 0.8 031 034 047 130 124 128 125 199 225 226 239 043 036 052 037
Multi 016 027 032 045 108 102 1.05 105 143 174 176 169 035 035 035 034

FEDformer Uni 011 024 034 045 132 136 128 127 1.08 158 169 176 036 043 042 035
Multi 009 021 032 044 098 100 103 1.02 092 125 136 142 030 034 034 033

Nonstationary Uni 0.11 021 034 048 130 132 136 132 TI19 1.68 191 202 031 039 043 038
Transformer Multi 0.0 020 028 046 100 102 102 101 094 114 117 130 029 031 032 030
Crossformer Uni. 014 029 036 041 LI2 110 LI2 110 145 157 162 165 034 033 073 053
Multi 013 026 036 041 100 099 1.00 101 101 129 128 137 029 030 036 036

PatchTST Uni. 000 021 030 042 136 133 127 128 123 163 178 186 035 038 036 032
Multi 000 021 029 041 099 101 104 1.06 098 127 149 160 031 032 032 030

Transformer Uni. 000 021 030 042 116 123 124 122 114 162 184 189 028 029 030 028
Multi 009 019 029 041 099 101 104 106 097 138 171 172 028 029 029 027

Time.LLM Uni 016 027 031 045 136 126 127 127 160 194 195 217 038 037 045 033
Multi 000 020 029 041 099 101 104 1.07 098 136 1.65 169 029 030 031 028

ReTaM- Uni 014 044 030 041 026 042 072 066 1.67 148 136 139 032 047 046 038

Forecaster Multi 009 018 028 039 023 040 070 0.61 089 118 119 134 029 030 037 035

We follow the general experimental setup of Time-MMD to forecast a single TTC from MTS in-
puts, treating the remaining channels as covariates. The horizon window lengths span from short-
to long-term forecasting tasks, with four horizon window lengths for each dataset determined by
its sampling frequency. We evaluate the performance of ReTaMForecaster on four MTSF datasets
from Time-MMD as we mentioned above, and compare it against competitive baselines. To pro-
cess textual inputs, we employ the paraphrase-MiniLM-L6-v2 model to obtain their embeddings.
Model performance is assessed using the widely adopted MSE metric, where lower values indicate
better predictive accuracy. As demonstrated in Tab. [2, ReTaMForecaster achieves state-of-the-art
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MSE
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Horizon Window Length

Figure 4: Results of ablation studies. Figure (a) illustrates the results of the text ablation experiment,
while Figure (b) shows results of the aggregation ablation experiment. In both figures, the blue bars
represent the performance of ReTaMForecaster, and the orange bars indicate the differences between
the ablation experiment results and the ReTaMForecaster results, reflecting the contribution of the
corresponding module.

performance across all evaluated horizon window lengths on the Energy and Climate datasets. For
the Health (US) and Environment datasets, it attains the best or second-best performance in at least
half of the evaluated horizon window lengths. This validates the effectiveness of ReTaMTSEF, in-
cluding TS and text retrieval and modality alignment through cross attention. Despite the strong
performance of the multimodal version, the unimodal results of ReTaMForecaster are generally
inferior to those of the baseline unimodal versions. However, the incorporation of textual informa-
tion substantially enhances forecasting accuracy, with the maximum improvement achieving up to
a 74% reduction in MSE compared to the best-performing baseline model. This observation is con-
sistent with the findings of |[Zhang et al.| (2025a), which suggest that incorporating extra modalities
is particularly beneficial for weaker unimodal forecasting models as text information provides the
most value when the TS model lacks sufficient capacity to capture temporal patterns on its own.

4.2 ABLATION STUDIES

To assess the contribution of textual information to MTSF and the role of the aggregation module in
TS content synthesis, we conducted additional ablation studies. In the text ablation experiment, the
composite text embedding Yy, is replaced with an all-zero tensor, thereby removing the augmenta-
tion effect of textual information. In the aggregation ablation experiment, the aggregation module
is removed, leaving no dedicated mechanism to capture inter-channel correlations and temporal de-
pendencies in the MTS. Fig. ] presents the results, with detailed outcomes provided in Tab. 3]

Table 3: Ablation study results of ReTaMForecaster on four datasets with different horizon window
lengths.
Dataset Energy Climate Health(US) Environment
Horizon Length 12 24 3 48 6 8 10 12 12 24 36 48 48 96 192 336

ReTaMForecaster 0.09 0.18 028 039 023 040 070 061 089 1.18 1.19 134 029 030 037 035
w/o text augmentation  0.14 044 030 041 026 042 072 066 1.67 148 136 139 032 047 046 0.38
w/o TS aggregation ~ 0.14 045 043 041 051 078 089 107 090 127 138 146 032 032 044 040

Quantitatively, textual information contributes on average 18% to the performance of ReTaMFore-
caster, while the aggregation module accounts for an average of 23% of the observed performance
improvement. The results substantiate the efficacy of incorporating exogenous textual information
in addressing the information insufficiency inherent in TSF models (Xu et al.| [2024)), thereby val-
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idating the theoretical analysis presented in section [2] and demonstrating the effectiveness of the
proposed aggregation module.

4.3 EFFECT OF TS AND TEXT RETRIEVAL

The role of TS and text retrieval in the model is investigated by examining the impact of the number
of retrieved TS (K1) as well as exogenous texts (X,,) on model performance. For each dataset, we
select the shortest horizon window length for experimentation, and the results are shown in Fig.[5] It
can be observed that the MSE initially decreases as K and K, increase, reaching a minimum point.
Beyond this point, however, the MSE ceases to decrease or even starts to rise, in some cases exceed-
ing the performance of the setting without TS and text retrieval. This indicates that while MTS
covariates and exogenous texts can provide additional information to improve forecasting accuracy,
redundant information may introduce noise, thereby degrading model performance.
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Figure 5: The impact of the number of retrieved TS (Kr) as well as exogenous texts (/) on
model performance is investigated on (a) Energy, (b) Climate, (c) Health (US) and (d) Environment
datasets.

5 CONCLUSION AND LIMITATIONS

Conclusion. In this work, we provide a theoretical foundation for the augmentation of TSF through
textual information, and subsequently propose ReTaMTSF, a retrieval-based text-augmented multi-
variate time series forecasting paradigm. We further design ReTaMForecaster, a baseline model for
ReTaMTSEF, which leverages flexible retrieval of relevant TS and exogenous text to facilitate multi-
modal MTSF. Extensive experiments on four multimodal MTSF datasets from Time-MMD across
diverse domains demonstrate the effectiveness of ReTaMTSF, underscoring the importance of incor-
porating exogenous textual information and flexibly capturing inter-channel correlations. This work
alleviates the manual burden inherent in prior multimodal TSF approaches and offers new perspec-
tives and methodologies for advancing and optimizing MTSFE. For future work, incorporating spatial
information into the model to support spatiotemporal forecasting could provide more comprehensive
predictive insights.

Limitations. Despite the contributions, this work still has several limitations. The theoretical anal-
ysis provided in this work regarding the augmentation effect of textual information on TSF is based
on the Gaussian distribution assumption. However, the relation between ground-truth and predicted
values may not necessarily follow this assumption, and further validation is required under alterna-
tive conditions. The proposed TS retrieval mechanism relies on frequency-domain coherence, which
only captures linear correlations and thus fails to reflect nonlinear dependencies. In addition, when
retrieving and aligning relevant textual information, the model must load a large number of text em-
beddings, resulting in a space complexity approximately linear in the sum of the look-back window
length and the horizon window length, i.e., O(L + H). Consequently, long-term forecasting may
incur substantial computational costs.



Under review as a conference paper at ICLR 2026

REFERENCES

Zigiang Cao, Wenjie Li, Sujian Li, and Furu Wei. Retrieve, rerank and rewrite: Soft template
based neural summarization. In Iryna Gurevych and Yusuke Miyao (eds.), Proceedings of the
56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pp. 152-161, Melbourne, Australia, July 2018. Association for Computational Linguistics. doi:
10.18653/v1/P18-1015. URL https://aclanthology.org/P18-1015/.

Ching Chang, Wei-Yao Wang, Wen-Chih Peng, and Tien-Fu Chen. Llm4ts: Aligning pre-trained
llms as data-efficient time-series forecasters. ACM Trans. Intell. Syst. Technol., 16(3), April 2025.
ISSN 2157-6904. doi: 10.1145/3719207. URL https://doi.org/10.1145/3719207.

Xinyu Chen and Lijun Sun. Low-rank autoregressive tensor completion for multivariate time series
forecasting, 2020. URL https://arxiv.org/abs/2006.10436

Deepanway Ghosal, Navonil Majumder, Ambuj Mehrish, and Soujanya Poria. Text-to-audio gen-
eration using instruction guided latent diffusion model. In Proceedings of the 31st ACM In-
ternational Conference on Multimedia, MM 23, pp. 3590-3598, New York, NY, USA, 2023.
Association for Computing Machinery. ISBN 9798400701085. doi: 10.1145/3581783.3612348.
URL https://doi.org/10.1145/3581783.3612348.

Hrayr Harutyunyan, Hrant Khachatrian, David C. Kale, Greg Ver Steeg, and Aram Galstyan. Mul-
titask learning and benchmarking with clinical time series data. Scientific Data, 6(1), June
2019. ISSN 2052-4463. doi: 10.1038/s41597-019-0103-9. URL http://dx.doi.org/
10.1038/s41597-019-0103-09.

Stefan Hegselmann, Alejandro Buendia, Hunter Lang, Monica Agrawal, Xiaoyi Jiang, and David
Sontag. Tabllm: Few-shot classification of tabular data with large language models, 2023. URL
https://arxiv.org/abs/2210.10723.

Qihe Huang, Zhengyang Zhou, Kuo Yang, Zhongchao Yi, Xu Wang, Wu Jiang, and Yang Wang.
Timebase: The power of minimalism in long-term time series forecasting, 2024. URL https:
//openreview.net/forum?id=HksnKo0iVO.

Guangyin Jin, Yuxuan Liang, Yuchen Fang, Zezhi Shao, Jincai Huang, Junbo Zhang, and Yu Zheng.
Spatio-Temporal Graph Neural Networks for Predictive Learning in Urban Computing: A
Survey . [IEEE Transactions on Knowledge & Data Engineering, 36(10):5388-5408, Octo-
ber 2024a. ISSN 1558-2191. doi: 10.1109/TKDE.2023.3333824. URL https://doi.
leeecomputersociety.orqg/10.1109/TKDE.2023.3333824,

Ming Jin, Shiyu Wang, Lintao Ma, Zhixuan Chu, James Zhang, Xiaoming Shi, Pin-Yu Chen, Yuxuan
Liang, Yuan-Fang Li, Shirui Pan, and Qingsong Wen. Time-1lm: Time series forecasting by repro-
gramming large language models. In B. Kim, Y. Yue, S. Chaudhuri, K. Fragkiadaki, M. Khan, and
Y. Sun (eds.), International Conference on Representation Learning, volume 2024, pp. 23857-
23880, 2024b. URL https://proceedings.iclr.cc/paper_files/paper/2024/
file/680b2a8135b9¢c71278a09cafb605869e—-Paper—Conference.pdf.

Baoyu Jing, Si Zhang, Yada Zhu, Bin Peng, Kaiyu Guan, Andrew Margenot, and Hanghang Tong.
Retrieval based time series forecasting. ArXiv, abs/2209.13525, 2022. URL https://api.
semanticscholar.org/CorpusID:252545150.

Anuj Karpatne, Imme Ebert-Uphoff, Sai Ravela, Hassan Ali Babaie, and Vipin Kumar. Machine
learning for the geosciences: Challenges and opportunities. IEEE Transactions on Knowledge
and Data Engineering, 31(8):1544—-1554, 2019. doi: 10.1109/TKDE.2018.2861006.

Guokun Lai, Wei-Cheng Chang, Yiming Yang, and Hanxiao Liu. Modeling long- and short-term
temporal patterns with deep neural networks. In The 41st International ACM SIGIR Conference on
Research & Development in Information Retrieval, SIGIR " 18, pp. 95-104, New York, NY, USA,
2018. Association for Computing Machinery. ISBN 9781450356572. doi: 10.1145/3209978.
3210006. URL https://doi.org/10.1145/3209978.3210006.

Ji Lin, Hongxu Yin, Wei Ping, Yao Lu, Pavlo Molchanov, Andrew Tao, Huizi Mao, Jan Kautz,
Mohammad Shoeybi, and Song Han. Vila: On pre-training for visual language models, 2024.
URL https://arxiv.org/abs/2312.07533.

10


https://aclanthology.org/P18-1015/
https://doi.org/10.1145/3719207
https://arxiv.org/abs/2006.10436
https://doi.org/10.1145/3581783.3612348
http://dx.doi.org/10.1038/s41597-019-0103-9
http://dx.doi.org/10.1038/s41597-019-0103-9
https://arxiv.org/abs/2210.10723
https://openreview.net/forum?id=HksnKo0iV9
https://openreview.net/forum?id=HksnKo0iV9
https://doi.ieeecomputersociety.org/10.1109/TKDE.2023.3333824
https://doi.ieeecomputersociety.org/10.1109/TKDE.2023.3333824
https://proceedings.iclr.cc/paper_files/paper/2024/file/680b2a8135b9c71278a09cafb605869e-Paper-Conference.pdf
https://proceedings.iclr.cc/paper_files/paper/2024/file/680b2a8135b9c71278a09cafb605869e-Paper-Conference.pdf
https://api.semanticscholar.org/CorpusID:252545150
https://api.semanticscholar.org/CorpusID:252545150
https://doi.org/10.1145/3209978.3210006
https://arxiv.org/abs/2312.07533

Under review as a conference paper at ICLR 2026

Guangcan Liu. Time series forecasting via learning convolutionally low-rank models. IEEE
Transactions on Information Theory, 68(5):3362-3380, May 2022. ISSN 1557-9654. doi:
10.1109/tit.2022.3144605. URL http://dx.doi.org/10.1109/TIT.2022.3144605/

Haoxin Liu, Shangqing Xu, Zhiyuan Zhao, Lingkai Kong, Harshavardhan Kamarthi, Aditya B.
Sasanur, Megha Sharma, Jiaming Cui, Qingsong Wen, Chao Zhang, and B. Aditya Prakash.
Time-mmd: Multi-domain multimodal dataset for time series analysis. In A. Globerson,
L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), Advances in Neural
Information Processing Systems, volume 37, pp. 77888-77933. Curran Associates, Inc., 2024.
URL |https://proceedings.neurips.cc/paper_files/paper/2024/file/
8e7768122f3eeecbd’7cd2b424b72413-Paper—-Datasets_and_Benchmarks_
Track.pdfl

Tomas Mikolov, Kai Chen, Gregory S. Corrado, and Jeffrey Dean. Efficient estimation of word
representations in vector space. In International Conference on Learning Representations, 2013.
URLhttps://api.semanticscholar.org/CorpusID:5959482.

Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth 64
words: Long-term forecasting with transformers. arXiv preprint arXiv:2211.14730, 2022.

Yuqi Nie, Nam H. Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth
64 words: Long-term forecasting with transformers, 2023. URL https://arxiv.org/abs/
2211.14730.

Boris N. Oreshkin, Dmitri Carpov, Nicolas Chapados, and Yoshua Bengio. N-beats: Neural basis
expansion analysis for interpretable time series forecasting, 2020. URL https://arxiv.
org/abs/1905.10437.

Filipe Rodrigues, Ioulia Markou, and Francisco C. Pereira. Combining time-series and textual data
for taxi demand prediction in event areas: A deep learning approach. Information Fusion, 49:
120-129, September 2019. ISSN 1566-2535. doi: 10.1016/].inffus.2018.07.007. URL http:
//dx.doi.org/10.1016/7.inffus.2018.07.007.

Yiping Song, Cheng-Te Li, Jian-Yun Nie, Ming Zhang, Dongyan Zhao, and Rui Yan. An ensemble
of retrieval-based and generation-based human-computer conversation systems. In Proceedings
of the 27th International Joint Conference on Artificial Intelligence, IICAI’ 18, pp. 4382-4388.
AAAI Press, 2018. ISBN 9780999241127.

Sana Tonekaboni, Danny Eytan, and Anna Goldenberg. Unsupervised representation learning for
time series with temporal neighborhood coding, 2021. URL https://arxiv.org/abs/
2106.00750L

Andrew Robert Williams, Arjun Ashok, Etienne Marcotte, Valentina Zantedeschi, Jithendaraa
Subramanian, Roland Riachi, James Requeima, Alexandre Lacoste, Irina Rish, Nicolas Cha-
pados, and Alexandre Drouin. Context is key: A benchmark for forecasting with essential
textual information. CoRR, abs/2410.18959, 2024. doi: 10.48550/ARXIV.2410.18959. URL
https://doi.org/10.48550/arXiv.2410.18959.

Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: decomposition transform-
ers with auto-correlation for long-term series forecasting. In Proceedings of the 35th International
Conference on Neural Information Processing Systems, NIPS *21, Red Hook, NY, USA, 2021.
Curran Associates Inc. ISBN 9781713845393.

Yutong Xia, Yuxuan Liang, Haomin Wen, Xu Liu, Kun Wang, Zhengyang Zhou, and Roger Zim-
mermann. Deciphering spatio-temporal graph forecasting: A causal lens and treatment. In
A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in
Neural Information Processing Systems, volume 36, pp. 37068-37088. Curran Associates, Inc.,
2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/
file/74fa3651b41560e1c7555e0958c70333-Paper—-Conference.pdfl

Ruyao Xu, Shuxiao Chen, Mingjun Ma, Chenyu Wang, and Zhongchen Miao. Time series fore-
casting for financial futures based on de-stationarity and cross-product dependence. In Proceed-
ings of the 2024 13th International Conference on Computing and Pattern Recognition, ICCPR

11


http://dx.doi.org/10.1109/TIT.2022.3144605
https://proceedings.neurips.cc/paper_files/paper/2024/file/8e7768122f3eeec6d77cd2b424b72413-Paper-Datasets_and_Benchmarks_Track.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/8e7768122f3eeec6d77cd2b424b72413-Paper-Datasets_and_Benchmarks_Track.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/8e7768122f3eeec6d77cd2b424b72413-Paper-Datasets_and_Benchmarks_Track.pdf
https://api.semanticscholar.org/CorpusID:5959482
https://arxiv.org/abs/2211.14730
https://arxiv.org/abs/2211.14730
https://arxiv.org/abs/1905.10437
https://arxiv.org/abs/1905.10437
http://dx.doi.org/10.1016/j.inffus.2018.07.007
http://dx.doi.org/10.1016/j.inffus.2018.07.007
https://arxiv.org/abs/2106.00750
https://arxiv.org/abs/2106.00750
https://doi.org/10.48550/arXiv.2410.18959
https://proceedings.neurips.cc/paper_files/paper/2023/file/74fa3651b41560e1c7555e0958c70333-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/74fa3651b41560e1c7555e0958c70333-Paper-Conference.pdf

Under review as a conference paper at ICLR 2026

24, pp. 328-333, New York, NY, USA, 2025. Association for Computing Machinery. ISBN
9798400717482. doi: 10.1145/3704323.3704376. URL https://doi.org/10.1145/
3704323.3704376.

Zhijian Xu, Yuxuan Bian, Jianyuan Zhong, Xiangyu Wen, and Qiang Xu. Beyond trend and peri-
odicity: Guiding time series forecasting with textual cues. CoRR, abs/2405.13522, 2024. URL
https://doi.org/10.48550/arXiv.2405.13522,

Zhihan Yue, Yujing Wang, Juanyong Duan, Tianmeng Yang, Congrui Huang, Yunhai Tong, and
Bixiong Xu. Ts2vec: Towards universal representation of time series, 2022. URL https:
//arxiv.orqg/abs/2106.10466.

G.Peter Zhang. Time series forecasting using a hybrid arima and neural network
model.  Neurocomputing, 50:159-175, 2003. ISSN 0925-2312. doi: https://doi.org/10.
1016/S0925-2312(01)00702-0. URL https://www.sciencedirect.com/science/
article/pii/S0925231201007020.

Xiyuan Zhang, Ranak Roy Chowdhury, Rajesh K. Gupta, and Jingbo Shang. Large language models
for time series: A survey. In Proceedings of the Thirty-Third International Joint Conference on
Artificial Intelligence, IJCAI 2024, Jeju, South Korea, August 3-9, 2024, pp. 8335-8343. ijcai.org,
2024. URL https://www.ijcai.org/proceedings/2024/921.

Xiyuan Zhang, Boran Han, Haoyang Fang, Abdul Fatir Ansari, Shuai Zhang, Danielle C. Mad-
dix, Cuixiong Hu, Andrew Gordon Wilson, Michael W. Mahoney, Hao Wang, Yan Liu, Huzefa
Rangwala, George Karypis, and Bernie Wang. Does multimodality lead to better time series
forecasting?, 2025a. URL https://arxiv.org/abs/2506.21611,

Yudong Zhang, Xu Wang, Xuan Yu, Zhengyang Zhou, Xing Xu, Lei Bai, and Yang Wang. Diffode:
Neural ode with differentiable hidden state for irregular time series analysis. In 2025 IEEE 41st
International Conference on Data Engineering (ICDE), pp. 1-14. IEEE, 2025b.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
Informer: Beyond efficient transformer for long sequence time-series forecasting, 2021. URL
https://arxiv.org/abs/2012.07436.

Tian Zhou, Peisong Niu, Xue Wang, Liang Sun, and Rong Jin. One fits all: Power general time
series analysis by pretrained LM. In Thirty-seventh Conference on Neural Information Processing
Systems, 2023. URL https://openreview.net/forum?id=gMS6FVZvmFL.

Zhaoyang Zhu, Weiqi Chen, Rui Xia, Tian Zhou, Peisong Niu, Bingqing Peng, Wenwei Wang,
Hengbo Liu, Ziging Ma, Qingsong Wen, and Liang Sun. eforecaster: Unifying electricity
forecasting with robust, flexible, and explainable machine learning algorithms. Proceedings
of the AAAI Conference on Artificial Intelligence, 37(13):15630-15638, Jul. 2024. doi: 10.
1609/aaai.v37i13.26853. URL https://ojs.aaai.org/index.php/AAAI/article/
view/26853l

A RELATED WORKS

A.1 MULTIMODAL TRANSFER LEARNING WITH LARGE LANGUAGE MODELS AND THEIR
APPLICATIONS IN TIME SERIES ANALYSIS

LLMs have demonstrated remarkable performance in multimodal transfer learning, including tasks
involving images (Lin et al., [2024), audio (Ghosal et al.l 2023)), tabular data (Hegselmann et al.,
2023)), and time series data (Zhou et al.,[2023)). A key motivation for employing LLMs in multimodal
tasks is their ability to achieve strong performance even under limited data scenarios (Zhou et al.,
2023). To preserve their data-independent representation learning capability, most parameters of
these models are typically kept frozen, and empirical evidence suggests that LLMs with largely
frozen parameters often outperform those trained from scratch(Lin et al.l 2024} Zhou et al., 2023)).

Current approaches for transferring and extracting the knowledge stored in LLMs parameters for
TS analysis can be broadly categorized into five types (Zhang et al., [2024): (1) prompting (input
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stage); (2) time series quantization (tokenization stage); (3) aligning (embedding stage); (4) vision as
bridge (LLM stage); and (5) tool integration (output stage). All these methods focus on transferring
the knowledge embedded in LLMs parameters to other modalities. Among these, aligning requires
synchronizing textual and sequential data at the timestep level before modality alignment. However,
existing methods often rely on manual alignment (Xu et al., |2024)), which is both time-consuming
and labor-intensive. To address this limitation, our work introduces a text retrieval and alignment
mechanism that enables this process to be performed automatically, thereby improving efficiency.

A.2 TIME SERIES REPRESENTATION LEARNING AND FORECASTING

In the TS domain, self-supervised learning has emerged as an important approach for representation
learning. Although Transformers are widely recognized as a leading solution for end-to-end TS
analysis (Nie et al., 2023), backbone networks based on CNNs (Yue et al., [2022) or RNNs (Tonek-
aboni et al., |2021) have traditionally been the preferred architectures for self-supervised learning
in TS. Conventional TS forecasting methods take a statistical perspective, treating forecasting as a
standard regression problem with time-varying parameters (Zhang, [2003). Recent advances in deep
learning, however, have led to significant breakthroughs, giving rise to models such as LSTNet (Lai
et al.,|2018) and N-BEAT'S (Oreshkin et al., |2020).

Due to the inherent ability of the Transformer’s self-attention mechanism to capture long-range de-
pendencies and complex patterns, it is particularly well-suited for TS data with intricate sequential
relationships. Consequently, many state-of-the-art deep learning methods are built upon Trans-
former architectures (Zhou et al.| [2021; Wu et al., [2021). However, these methods overlook the
low-rank property of TS datasets and rely entirely on Transformers to model the inter-channel cor-
relations of MTS. These approaches can lead to low computational efficiency and difficulty in focus-
ing attention on the truly relevant channels. In contrast, our work first employs numerical methods
to flexibly capture the inter-channel correlations of MTS and performs dimensionality reduction ac-
cordingly, before leveraging a Transformer to model the data. This two-step approach improves both
the predictive accuracy and efficiency of the model.

A.3 RETRIEVAL-AUGMENTED GENERATION MODELS

Retrieval-Augmented Generation (RAG) is an emerging hybrid architecture designed to address the
limitations of pure generative models. RAG integrates two key components: a retrieval mechanism,
which searches for relevant documents or information from external knowledge sources, and a gen-
eration module, which processes the retrieved information to produce more accurate outputs, often
in a human-like textual form. This combination enables RAG models not only to generate coher-
ent and fluent text but also to incorporate up-to-date real-world knowledge into their outputs. For
instance, Re®Sum (Cao et al., 2018) generates document summaries based on retrieved templates,
while [Song et al.| (2018)) suggests generating dialogue responses grounded in retrieved references.
In the field of MTSE, Jing et al.|(2022)) introduces a retrieval-based forecasting model; however, this
model relies solely on manually predefined relationships for retrieval within TS data. In contrast,
our work performs flexible retrieval jointly over both TS and textual information, thereby enabling
a more context-aware forecasting framework.

B THEORETICAL GROUNDING SUPPLEMENT

B.1 DERIVATION OF THE ENTROPY-BASED UNCERTAINTY EXPRESSION

For a c-dimensional multivariate Gaussian distribution A/ (u, 3), the probability density function is
given by:

1 Lol )
X)=——F——exp|—=(x— Y (x— (16)
p(x) ERESE p( 5 (X —n) (x — p)
Taking the logarithm yields:
c 1 1 Te-1
logp(x) = —7 log(2m) — 5 log [E] — S (x —p) T (x — ) (17)
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Substituting into the differential entropy formula H (x) = — [ p(x)log p(x)dx gives:
c 1 1 Tw—1
H(x) = [ p(x) | 5log(2m) + 5 log |T[ + S (x — p) E77(x — p)| dx (18)
c 1 1 _
=3 log(27) + 3 log | 3] + §E [(x—p) = (x—p)] (19)

The last term can be rewritten as:
SB[ S k-] = i (BB [ - w)T]) = g (378) = Je Q0)
Substituting back into Eq.[I9| gives:
H(x) = S(1+ log2m) + %1og B @n
Considering Eq. [T] gives:

1
Hx| %)= g(l + log 2m) + 5 log (02)6 = glog 2mec? (22)

B.2 PROOF OF THE MSE-LOG-LIKELIHOOD EQUIVALENCE

Assume a forecasting model as:
5{:f(x;9)+e:§(+e,e~./\f(0,a2[) (23)

where x denotes the input sequence to the model, X represents the predicted sequence, X denotes
the ground-truth sequence over the forecasting horizon, 8 corresponds to the model parameters, and
the distribution function of € is given by:

1 lle]l®
p(e) = m exp <—w> 24)

where ¢ denotes the dimension of the sequence. Then the conditional distribution of x can be
expressed as:

R %) = plx | F0:6) = (% | f0),0°0) = e (<50 9

Given a dataset D = {(x;, ii)}fvzl, x; and X; denote the values at the i-th time step in the input
sequence and the ground-truth sequence, respectively, the likelihood function can be written as:

N
p(D|0) = Hp (X | xi:0) =[] p (% | %) (26)
i=1

Taking the logarithm of the likelihood function, we obtain the log-likelihood function:

logp(D | 0) Zlogp X; | X;) 27
Considering Eq. [T| gives:
g (3 3 [T IO TR
D logp (X [ %) =D |- log (2m0%) — =55 Z %i — %] (28)
i=1 i=1 i—1

MSE is defined as Zfil ||%; — %;]|* and we can obtain:

min MSE  min ¥ |%; - %i))* & max Bz 5 [log p(X | %)) (29)
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C TS CONTENT SYNTHESIS
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Figure 6: The architecture of the TS content synthesis module.

As illustrated in Fig. [§] the architecture of the TS content synthesis module consists of an input
module and aggregation modules. In the input module, the reference TS and TTC are individu-
ally processed by a linear layer, followed by positional encoding and normalization. The resulting
representations are then concatenated and passed into N, successive aggregation modules. Within
each aggregation module, content attention and temporal attention are employed to capture inter-
channel correlations and temporal dependencies. Finally, the representations are refined through a
feed-forward network, producing the synthesized output Xy,.

D QUERY TEXT AND CHANNEL DESCRIPTION EXAMPLES

D.1 QUERY TEXT

Example: In the weekly reported Energy dataset, the query text corresponding to April 5,
1993, is:

“From 1993-04-05 to 1993-04-11.”

D.2 CHANNEL DESCRIPTION

Example: In the Energy dataset, the channel description for target channel “Gasoline
Prices” is:

”Gasoline prices refer to the retail cost consumers pay per gallon of gasoline, reflecting
factors such as crude oil prices, taxes, and refining costs.”

E THE USE OF LARGE LANGUAGE MODELS (LLMS)

Large Language Models (LLMs) were employed exclusively to assist with the writing process.
Specifically, they were used to polish the language, improve grammar, and enhance clarity of pre-
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sentation. The LLMs did not contribute to research ideation, methodology design, data analysis, or
interpretation of the results.

16



	Introduction
	Information-Theoretic Grounding of Text-Augmented TSF
	Problem Formulation
	Analysis and Proof

	Approaches and Model Design
	TS Retrieval and Synthesis Module
	Text Retrieval and Alignment Module
	Modality Alignment and Output Module

	Experiments
	Evaluation on Multimodal MTSF
	Ablation Studies
	Effect of TS and Text Retrieval

	Conclusion and Limitations
	Related Works
	Multimodal Transfer Learning with Large Language Models and Their Applications in Time Series Analysis
	Time Series Representation Learning and Forecasting
	Retrieval-Augmented Generation Models

	Theoretical Grounding Supplement
	Derivation of the Entropy-Based Uncertainty Expression
	Proof of the MSE–Log-Likelihood Equivalence

	TS content synthesis
	Query Text and Channel Description Examples
	Query Text
	Channel Description

	The Use of Large Language Models (LLMs)

