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Abstract

The human brain exhibits remarkable proficiency in dynamic learning and adap-
tation, seamlessly integrating prior knowledge with new information, thereby
enabling flexible memory retention and efficient transfer across multiple views.
In contrast, traditional multi-view learning methods are predominantly designed
for static and fixed-view datasets, leading to the notorious "view forgetting phe-
nomenon", where the introduction of new views leads to the erosion of prior
knowledge. This phenomenon starkly contrasts with the brain’s remarkable abil-
ity to continuously integrate and migrate past knowledge, ensuring both the re-
tention of old information and the assimilation of new insights. This oversight
presents a critical challenge: how to efficiently learn and integrate new views
while simultaneously preserving knowledge from previously acquired views and
enabling flexible knowledge transfer across diverse views. Inspired by underlying
neural processing mechanisms, we propose a view transfer learning framework
named Hebbian View Orthogonal Projection (HVOP), which realizes efficient
knowledge migration and sharing between multi-view data. HVOP constructs
a knowledge transfer space (KTS), where the KTS reduces the interference be-
tween the old and the new views through an orthogonal learning mechanism. By
further incorporating recursive lateral connections and Hebbian learning, the pro-
posed model endows the learning process with brain-like dynamic adaptability,
enhancing knowledge transfer and integration, and bringing the model closer to
human cognition. We extensively validate the proposed model on node classifi-
cation tasks and demonstrate its superior performance in knowledge retention and
transfer compared to traditional methods. Our results underscore the potential of
biologically inspired mechanisms in advancing multi-view learning and mitigat-
ing the view forgetting phenomenon.

1 Introduction

Brain-inspired computing seeks to mimic the human brain’s ability to process information through
its complex network of neurons and synapses, enabling remarkable capabilities in learning and mem-
ory retention. Neuroscientific research reveals that the brain can continually adapt and reconfigure
its neural connections in response to new stimuli Deco et al. (2011); Hassabis et al. (2017). This
dynamic capability underlies cognitive functions such as learning from multiple sensory inputs and
retaining memories over time Stein & Stanford (2008).

The need for such adaptability is particularly evident in modern computational environments where
we increasingly deal with incremental views, such as in medical image analysis Konz & Mazurowski
(2024); Weng et al. (2024); Zhou et al. (2023), social network analysis Meng et al. (2024); Wen et al.
(2023); Song et al. (2023), recommendation systems Li et al. (2024b); Paliwal et al. (2024); Prakash
et al. (2023), and video surveillance Bao et al. (2022); Liu et al. (2020). In these applications, new
data sources, or "views", continuously emerge, challenging traditional multi-view learning methods
that were originally designed for static datasets. These traditional methods Zhao et al. (2017); Wu
et al. (2023) struggle with dynamic data integration, lacking the brain-like flexibility to adapt to
new views without forgetting previously acquired knowledge. This necessitates costly retraining to
integrate new views or risks discarding previously learned insights when trained directly on new
data. Such static approaches starkly contrast with the brain’s fluid and adaptive learning processes,
underscoring a significant gap in existing methodologies.
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Figure 1: (a) Traditional multi-view methods suffer from view forgetting in the view increment
setting in dataset 100leaves. Leaf color, shape and venation views are sequentially entered into the
model for learning, and the performance of the model depends only on the quality of the current
view. (b) Plot of the updated direction of weights for the arrival of the new view, where the blue
curve represents the updated direction of the traditional method and the red curve represents the
desired updated direction. (c) The graph of view complementarity, where the combination of leaf
shape, venation, and color produces the most complete representation of the data.

As illustrated in Fig.2(a), the performance of traditional models with settings of view increments
(marked in blue) deteriorates because these models fail to effectively transfer the knowledge accu-
mulated from previous views to assist in learning the new view. Instead, they rely solely on the
information from the new view to complete the learning process independently. Such a learning
pattern is heavily constrained by the specific performance of the current learned view, limiting the
model’s overall knowledge integration and generalization capabilities. The gradient direction of the
old view is forgotten during the weight updating process and is directly docked onto the new view
(Fig.2(b) blue line) without keeping the old and new views updated in the same direction (Fig.2(b)
red line)Kirkpatrick et al. (2017). Moreover, the relationships between new and old views, such as
consistency (i.e., similarity in descriptions of the same object or event across different views) and
complementarity (i.e., different views provide unique and mutually complementary information) (as
shown in Fig. 2(c)), require the model to possess strong knowledge integration capabilities to effi-
ciently assimilate the incremental information from the new view while maintaining the coherence
of knowledge from the old view.

To address these challenges, it is instructive to consider how the human brain manages similar tasks.
The brain’s ability to handle information from various sensory inputs without losing prior knowl-
edge is underpinned by its unique structure and function Chiel & Beer (1997); Ito et al. (2022).
Notably, the hippocampus plays a crucial role in this process, aiding in the formation and storage
of new memories as well as in the retrieval of existing memories without interference from newly
incoming information. This capability is achieved through sophisticated mechanisms, such as the
creation of separate but interconnected neural pathways for new and old memories, allowing for the
simultaneous retention of stability and plasticity in neural representations Kumaran et al. (2016);
McClelland et al. (1995); Scoville & Milner (1957); Squire (1992). These insights into hippocam-
pal function suggest a model of memory that is both dynamic and robust, essential characteristics
for the development of effective multi-view learning algorithms.

To bridge the gap between human cognitive abilities and machine learning models, we propose a
novel framework that draws direct inspiration from neural mechanisms. Our model, termed Heb-
bian View Orthogonal Projection (HVOP), integrates concepts from neuroscience to enhance the
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learning architecture’s capacity for knowledge retention and transfer in multi-view learning tasks.
Specifically, the framework employs mechanisms analogous to:

• Lateral connections in neural circuits: These are simulated in our network architecture
to facilitate the integration of information across different views, enhancing the model’s
ability to maintain a coherent representation of the data Harris & Mrsic-Flogel (2013).

• Synaptic plasticity via Hebbian learning: This is used to adapt the synaptic weights,
ensuring that the connections are strengthened or weakened according to their utility in
task performance Feldman (2012); Gerstner et al. (2018). This adjustment supports the
mechanism of orthogonal projection.

• Memory retention and transfer in the hippocampus: We mimic this aspect by intro-
ducing a specific space within our model – the Knowledge Transfer Space (KTS). This is
akin to regions in the hippocampus that are responsible for encoding new memories and
consolidating long-term ones, respectively Cohen (1993).

This brain-inspired approach not only addresses the key limitations of existing multi-view learning
models but also provides a more robust framework for handling dynamic, incrementally available
data. By employing lateral connections and Hebbian learning, our methodology approximates or-
thogonal projection, a crucial function for minimizing information loss during the learning of evolv-
ing views. By embedding KTS into the learning process, HVOP demonstrates superior performance
in knowledge retention and transfer, effectively mimicking the human brain’s capacity to integrate
and preserve information across multiple sensory channels. The effectiveness of this approach is val-
idated through extensive experiments across various multi-view datasets, where HVOP consistently
outperforms both traditional and state-of-the-art multi-view learning methods.

2 RelatedWork

2.1 Multi-view Continual Learning

Multi-view learning Wang et al. (2021); Yao et al. (2024); Guo et al. (2025) involves integrating and
encoding information from multiple sources to derive a low-dimensional representation that cap-
tures both consistency and complementarity across views. Current multi-view continual learning
has two dominant classifications: task-incremental and class-incremental types Van de Ven et al.
(2022). Multi-view task-incremental learning Li et al. (2017); Sun et al. (2018) establish connec-
tions between tasks and extract consistent information across multiple views to complement each
task learning. Thus, the multi-view class-incremental learning Yang et al. (2022); Qian et al. (2023);
Li et al. (2024a) has been proposed, where new class data is seamlessly introduced without explicit
prompting to the model, requiring the model to autonomously discern the onset of a new task. These
methods focus regularizing the update of weights, thus alleviating the catastrophic forgetting. Catas-
trophic forgetting is the phenomenon in which a neural network forgets what it has learnt previously
when learning a new task Ramasesh et al. (2021); De Lange et al. (2021); Elsayed & Mahmood
(2024). Related research has focused on two strategies: knowledge retention and knowledge trans-
fer. Knowledge retention methods help models retain information from old tasks while training new
tasks by introducing memory mechanisms or employing regularization techniques Babakniya et al.
(2024); Chen et al. (2021a;b). On the other hand, knowledge transfer methods attempt to transfer
knowledge from a previous task to a new task, e.g., by using the output of the old task as a guide
in the new task through knowledge distillation techniques Kang et al. (2023); Kumari et al. (2022);
Zhou & Cao (2021). Despite ongoing research efforts to mitigate catastrophic forgetting, achieving
a balance between retaining old knowledge and acquiring new knowledge remains a challenge. Our
proposed view incremental learning is quite different from both task and class incremental learn-
ing settings. Notably, it operates without the need for prompts signaling new tasks, placing special
emphasis on monitoring the transferability of knowledge across different views. This approach un-
derscores the importance of capturing overall cognition, striving for equilibrium between preserving
past knowledge and assimilating novel information.
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2.2 Transfer Learning

Transfer learning is a pivotal method in machine learning to enhance model’s efficiency by applying
knowledge from previously learned tasks to new, related ones Falk et al. (2023); Lin & Reimherr
(2024). It mirrors the way human brains utilize past experiences to learn new tasks faster. Tradi-
tionally, machine learning models are trained from scratch for each new task, which can be data-
intensive and time-consuming. Transfer learning mitigates these challenges by reusing pre-trained
models, thereby reducing the necessity for lengthy training periods. This technique has proven
effective in diverse applications such as natural language processing Zhao et al. (2024); Ge et al.
(2024), where models like BERT and GPT are adapted for tasks like sentiment analysis, and in com-
puter vision Sohn et al. (2023); Jain et al. (2023), where convolutional neural networks pre-trained
on large datasets are tailored for image recognition tasks. It also aids in adapting general speech
recognition models to recognize specialized vocabulary or accents Kheddar et al. (2024); Lei et al.
(2023). In multi-view learning, transfer learning is particularly crucial as it addresses the challenge
of effectively transferring and utilizing knowledge across different views that may have varying dis-
tributions or feature spaces. Traditional multi-view transfer learning methods, as discussed in Chen
et al. (2024); Tang et al. (2021), emphasize knowledge transfer across domains but often neglect the
heterogeneity between views, especially when the views are not only different but also dynamically
evolving. This oversight has spurred us to explore further and accomplish knowledge transfer among
diverse views. In multi-view learning, transfer learning acts as a bridge, our work aims to achieve
more effective knowledge transfer and integration within dynamically evolving view data.

3 Methodology

Drawing inspiration from the biological processes in the human brain, our methodology, Hebbian
View Orthogonal Projection (HVOP), aims to replicate the dynamic adaptability seen in natural
neural systems. This approach not only facilitates the integration and retention of knowledge across
multiple views but also embodies the principles of synaptic plasticity and memory consolidation
observed in biological networks.

ColorShapeVenation

View 𝐗𝑣 sequentially comes… 

Knowledge Transfer Space (KTS)

Structural Consistency

Hebbian Extraction

∆𝜔ij =  𝜂 ⋅ 𝑥𝑖 ⋅ 𝑥𝑗

𝐏 = 𝐈 − 𝐊 𝐊𝑇

Holistic Perception of View

Recursive Lateral Connection

Knowledge Integration

𝐐 = 𝐐 −  𝐑𝑇𝐑𝐐

Figure 2: An overview of the proposed framework HVOP. HVOP refines a knowledge transfer
space through recursive lateral connections and Hebbian learning, aiming at the transfer of view
knowledge, while capturing the topological consistency of the multi-view structure, thus realizing
holistic cognition in scenarios with incremental views.
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3.1 Cause of the View Forgetting

Firstly we introduce the basic notations used in our framework. Denote given multi-view feature
matrices as X = {Xv}

V
v=1, where Xv = [x1, · · · , xn] ∈ Rn×dV is the data from the vth view for any

v ∈ {1, · · · ,V}. Here, n is the number of samples, V is the number of views, and dv denotes the
distinct dimensionality of the feature matrices for each view. Additionally, c represents the number
of classes. We examine the phenomenon of view forgetting using Fi, j, which denotes the testing
accuracy of task j after learning task i.

Definition 3.1 View Forgetting. Given a sequence of view data X = {Xv}
V
v=1, after learning the v

view data Xv, the performance of the learned view v is tested, represented as Fv,v. When the learning
of the last view data XV is completed, the performance of the model significantly decreases in the
previously tested views, shown as Fv,V < Fv,v.

Definition 3.2 View Transfer Learning. Given a sequence of view data X = {Xv}
V
v=1, where the

distribution of each view {Dv}
V
v=1 differs significantly, but the task T remains the same. Transfer

learning is designed to help improve the learning of the target prediction function f (·), which enables
the model to achieve robust overall cognition despite the evolving data distributions.

View forgetting occurs when the model encounters new views. Although the model initially captures
the previous view, it struggles to retain this memory throughout the learning process. We attribute
the core cause of this phenomenon to the dynamic changes in neural network parameters during
training. We have conducted an in-depth analysis of the network’s specific updating mechanisms.
Our findings reveal that the gradient update direction is influenced by the entire input vector space.
The transformation of view information shifts this gradient direction, leading to the forgetting of
previously learned view information. Furthermore, in graph networks, weight updates depend not
only on the feature gradients of individual nodes but also on the gradients of neighboring nodes
and the structural gradients of the graph. As view data evolves, the graph’s structural information
changes, further complicating the retention of knowledge from earlier views. Notably, preventing
forgetting is a prerequisite for effective knowledge migration. It is due to the fact that shifts in the
direction of the gradient can impede this migration, making retention of learnt knowledge more
challenging.

3.2 Model initialization on arrival of the first view

Firstly, we design a streaming graph learning model wherein upon the arrival of new view data Xv,
we construct the corresponding adjacency Av by applying k-Nearest Neighbor (kNN). We utilize a
shared weights single layer GCN, which can be represented as,

Zv = GC(Av,Xv) = σ
(
ÂvXvW

)
. (1)

Âv = D̃−
1
2

1 ÃvD̃−
1
2

v and Ãv = Av + I. Av ∈ R
n×n corresponds to an adjacency matrix constructed

by Xv. Herein, W ∈ Rdv×d denotes the learnable shared weight matrix, which would be shared
by all the view. Immediately after that, we designed a fully connected layer for implementing the
classification, which can be represented as,

Hv = FCW f (Zv), (2)

where HV ∈ R
n×c defaults to the final predicted output. Previous work has shown that the above

models perform well in static multi-view learning scenarios. However, dynamic view-level learning
has been neglected, especially when only a portion of the view data is captured during training, and
the model is unable to reuse this information when posing the newly captured views. Therefore, the
question is how to realize view incremental learning without compromising performance?

3.3 Introduction of the orthogonal projection

For the initial complete first-view data, we employ graph convolutional neural networks and fully
connected layers to capture view-specific knowledge. For the continuous addition of subsequent
view information, we aim to achieve two objectives: preserving existing knowledge and integrating
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newly introduced knowledge. Specifically, the prior view knowledge must not be forgotten, and
learning from new views should not interfere with the knowledge acquired from previous ones.

Assume the input vectors xold ∈ R
n from prior views, span the subspace X. Considering that changes

in view information affect the updating of weights, which leads to view forgetting, in order to pre-
serve the knowledge of the old view, we need to impose restrictions on the direction of the gradi-
ent ∆WP update for the next view, which makes it orthogonal to the subspace X, satisfactory that
∆WPxold = 0, which xold denotes the past input vectors. This ensures that the gradient update of the
weights does not affect the integration of knowledge of past views, demonstrated as

(W + ∆WP)xold =Wxold. (3)

To address this, we specifically designate the principal subspace of X as the Knowledge Transfer
Space (KTS). The KTS is pivotal in assimilating crucial information that enhances a global cogni-
tive perspective, essential for cultivating a comprehensive understanding and insight across various
domains.

If we calculate a projection matrix P to the subspace orthogonal to the KTS, then gradients can be
projected as ∆WP = ∆WP. Inspired by Saha et al., for the gradient update of the fully connected
layer, it can be adjust by subtracting its projection onto the space spanned by the top k principal
components,

∇WL = ∇WL −KKT∇WL = (I −KKT )∇WL = P∇WL. (4)
Here, ∇WL is the gradient of loss with respect to weight W, K denotes the matrix of top k prin-
cipal components of representation calculated by SVD with a small batch of data and KKT is the
projection matrix to the principal subspace of the input feature. This effectively filters out compo-
nents of the gradient that align with the principal directions, potentially reducing interference from
predominant features that are already well-represented in the model. It removes the part of the gra-
dient of the new view that is relevant to the old view from the gradient of the new view, ensuring
that the learning of the new view does not interfere with the learning outcomes of the old view.
However, principal components K are mostly extracted by performing an SVD decomposition of
the representation matrix, which is not able to capture important features dynamically.

3.4 Simulation of orthogonal projection by recursive lateral connections

In biological neural networks, recursive lateral connections are essential for integrating sensory
information and higher-level processing. It mirrors the biological processes of synaptic plasticity,
where the brain adjusts its connections based on new stimuli without overriding prior learning.
Thus, we incorporate a recursive lateral connection mechanism and Hebbian learning within the
Knowledge Transfer Space (KTS) to facilitate the extraction and integration of new knowledge.
More specifically, we project the input features into the neural subspace and recursively compute
them according to the following formula:

Q− = −RT O, (5)

where R encodes transformations between the new and prior knowledge, O = RQ is the space
obtained by matrix projection of Q, which stands for the integration of knowledge after lateral
connections and Q− is the space after recurrent mapping. We consolidate lateral connections and
preparatory knowledge to obtain high-value bio-filtered information Q̂.

Q̂ = Q +Q− = Q − RT RQ = (I − RT R)Q. (6)

In this way, the new view knowledge in the KTS can be further integrated and enhanced to provide
richer information for global cognition. Here, the Q will change when each view is added, and will
spontaneously integrate the knowledge left over from the previous step of the model, represented as

Qv = σ
(
ÂvXvW

)
+ αZv−1. (7)

Among them, Qv refers to the representation we fuse after each new view arrives, which is composed
of the representation of the current view and the knowledge of the previous view. From Equation 6,
we can conclude that the projection matrix P′ as

P
′

= I − RT R. (8)
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We find a striking similarity between equation 8 and the orthogonal projection mechanism in equa-
tion 4. Thus, as long as the recursive lateral connections R are equal or similar to the principal
component matrix K, the model can realize orthogonal projections, which inspires us to employ
Hebbian learning to dynamically extract the principal component matrix. Oja rule, as an improve-
ment of Hebbian learning, gradually approximates the principal direction of the data by adjusting
the weight matrix. Its update formula is:

Rt+1 = Rt + η(xtyT
t − ytyT

t Rt), (9)

where Rt denotes the dynamic principal matrix, η refers to learning rate, xt is the input vector and yt
indicates the output vector computed from the current weight matrix and inputs.

With this rule, the data is projected and normalized to gradually approach its principal direction,
ultimately causing the weight matrix to approximate the principal components of the input data.
This adaptive weight updating mechanism ensures that the new gradient directions do not interfere
with the learned knowledge, thus replacing the principal component matrix originally generated
by the SVD decomposition. In this way, we leverage the biological mechanisms of recursive lateral
connections and Hebbian learning to achieve orthogonal projection and facilitate knowledge transfer
within a view incremental framework.

To further ensure the structural consistency of the model when dealing with different views, we de-
sign the following loss function to ensure that the graph structural information can be preserved in
the incremental learning of views: LRE =

1
2
∑|T |

t=1 ∥At −σ
(
Q|T | ·QT

|T |

)
∥2F , where At denotes the adja-

cency in the past view information and |T | is the current training number of views. Despite the fact
that the view data is in a constant state of flux, the intrinsic topology of the graph data shows sur-
prising stability. With such constraints, we can capture the consistent representation between view
information very well. Besides, for semi-supervised node classification, we calculate CrossEntropy
and update parameters in HGE-DED, as follows LCE = −

∑
i∈Ω
∑c

j=1 ŷi j ln yi j, where Ω refers to
the set of labeled samples, ŷi j usually denotes to one-hot encoding format and c is the amount of
classes. Our approach constantly transfers and retains knowledge in the view incremental setting,
while approaching a more comprehensive overall perception.

4 Experiments

To further validate the effectiveness of the proposed method, we have designed the experimental
section intended to answer the following key evaluation questions (EQs):

• EQ1 Does HVOP achieve superior performance compared to its competitors for the semi-
supervised multi-view classification task?

• EQ2 Does HVOP successfully implement orthogonal projection to alleviate view forgetting
in view incremental learning?

• EQ3 Does HVOP capture the tight association between old and new views when new ones
add up, and does it promote learning about the whole knowledge?

4.1 Excellent Overall Perception: Comparison to SOTA (EQ1)

We next evaluate the effectiveness of our method on the node classification task compared with
several classical and state-of-the-art methods in Table 1, where the best performance is highlighted
in bold and the second-best results are underlined. We divide the compared methods into two classes:
static multi-view learning and view incremental learning.

Static Multi-view Learning. The three compared methods, DUANet Geng et al. (2021), LGC-
NFF Chen et al. (2023) and RCML Xu et al. (2024) are designed to simultaneously access all views,
effectively leveraging inter-view correlations. DUANet excels at integrating reliable evidence by
assessing the confidence level of each view. In contrast, LGCNFF and RCML achieve impressive
results by capturing both consistent and complementary information from multi-view data. Notably,
static multi-view learning performs exceptionally well on datasets with fewer high-quality views;
however, when confronted with datasets containing a larger number of views, it struggles to capture
overall cognition and accurately assess view quality.

7
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Classification Static Multi-view Learning Multi-view Incremental Learning

Datasets Metric DUANet LGCNFF RCML GAT SI MAS MVCIL HVOP

Animals

ACC 68.29 (0.46) 74.15 (1.32) 82.11 (0.17) 39.20 (0.36) 45.86 (0.14) 46.29 (0.16) 67.03 (0.03) 84.73 (0.12)
P 66.63 (0.69) 69.07 (1.71) 78.43 (0.44) 34.18 (1.33) 39.92 (0.18) 39.89 (0.28) 64.86 (0.10) 82.53 (0.26)
R 61.54 (0.45) 65.49 (1.46) 76.03 (0.18) 32.45 (0.44) 38.15 (0.04) 38.59 (0.18) 60.53 (0.03) 77.93 (0.03)

MAF1 61.43 (0.55) 65.20 (1.59) 76.08 (0.20) 31.53 (0.69) 37.03 (0.13) 37.19 (0.02) 61.05 (0.00) 78.43 (0.03)

Flower17

ACC 58.24 (1.24) 45.35 (4.20) 30.42 (1.92)) 17.78 (1.56) 44.81 (0.20) 47.10 (0.20) 40.93 (1.63) 69.34 (0.42)
P 60.22 (1.75) 55.44 (6.80) 35.06 (4.12) 10.53 (3.75) 43.26 (0.22) 45.82 (0.33) 42.01 (1.62) 70.29 (0.39)
R 58.24 (1.24) 45.32 (4.20) 30.42 (1.92) 17.78 (1.56) 44.81 (0.20) 47.10 (0.20) 40.93 (1.63) 69.34 (0.42)

MAF1 57.31 (1.13) 39.75 (5.54) 25.06 (2.52) 10.19 (2.77) 42.86 (0.22) 45.61 (0.31) 38.53 (2.18) 69.10 (0.56)

Iaprtc12

ACC 37.53 (0.88) 57.84 (1.27) 52.36 (1.34) 34.98 (0.12) 57.00 (0.10) 57.01 (0.10) 43.12 (0.22) 64.59 (0.30)
P 42.69 (1.21) 60.18 (1.47) 66.83 (0.77) 54.52 (0.18) 57.94 (0.09) 57.95 (0.09) 42.10 (0.32) 64.65 (0.41)
R 37.29 (0.89) 58.87 (1.41) 51.65 (1.64) 31.08 (0.24) 57.81 (0.10) 57.82 (0.10) 44.18 (0.19) 66.64 (0.24)

MAF1 37.83 (0.97) 59.28 (1.39) 55.22 (1.48) 27.69 (0.33) 57.85 (0.10) 57.86 (0.10) 42.14 (0.21) 65.23 (0.35)

NGs

ACC 32.62 (2.66) 90.65 (1.27) 81.53 (0.58) 72.52 (4.74) 79.11 (1.33) 83.56 (0.67) 58.89 (7.11) 95.19 (0.10)
P 57.28 (4.22) 92.02 (0.66) 87.01 (0.29) 75.00 (4.66) 82.56 (0.07) 84.13 (0.62) 60.38 (8.56) 95.40 (0.08)
R 32.62 (2.66) 90.67 (1.27) 81.53 (0.58) 72.52 (4.74) 79.11 (1.33) 83.56 (0.67) 58.89 (7.11) 95.19 (0.10)

MAF1 25.84 (3.66) 90.57 (1.23) 82.32 (0.56) 72.50 (5.12) 79.31 (1.30) 83.60 (0.64) 58.81 (7.67) 95.21 (0.11)

NoisyMNIST_15000

ACC 73.28 (2.86) 89.78 (0.48) 86.81 (0.11) 73.43 (0.61) 82.74 (2.10) 90.02 (0.29) 90.24 (0.62) 90.79 (0.47)
P 72.85 (4.46) 89.75 (0.47) 86.89 (0.08) 74.02 (0.87) 85.44 (0.97) 90.20 (0.04) 90.26 (0.46) 90.64 (0.50)
R 72.92 (2.81) 89.58 (0.49) 86.37 (0.11) 72.89 (0.63) 82.45 (2.07) 89.80 (0.30) 90.04 (0.47) 90.60 (0.64)

MAF1 72.14 (3.87) 89.58 (0.49) 86.30 (0.12) 72.43 (0.71) 82.25 (1.96) 89.83 (0.28) 90.00 (0.48) 90.59 (0.72)

YaleB_Extended

ACC 66.57 (1.81) 34.01 (1.43) 62.59 (0.57) 31.19 (0.82) 32.76 (0.25) 32.86 (0.16) 64.16 (0.82) 64.53 (0.55)
P 74.48 (1.91) 48.32 (6.29) 81.25 (0.84) 60.14 (4.80) 36.12 (0.33) 36.98 (0.45) 67.45 (0.97) 67.88 (0.23)
R 66.54 (1.79) 33.99 (1.40) 62.61 (0.56) 31.21 (0.86) 32.83 (0.25) 32.92 (0.15) 64.24 (0.82) 64.59 (0.55)

MAF1 67.62 (1.82) 33.24 (3.38) 67.22 (0.39) 34.01 (1.87) 33.51 (0.23) 33.85 (0.00) 64.86 (0.81) 65.15 (0.51)

Table 1: Node classification performance with various algorithms. Among them, bold represents the
optimal value, and underline represents the suboptimal value.

GATLGCNFFDUA-Net

HVOP

RCML

MVCILSI MAS

Figure 3: The visualization for multi-view semi-supervised classification on NoisyMNIST_15000.

Multi-view Incremental Learning. First, we incorporate GAT Veličković et al. (2018) into the
view incremental framework and observe that GAT struggles to retain information from previous
views, with its performance largely dependent on the quality of the most recent view data rather
than the integration of all views. We then compare this to continual learning methods that leverage
synaptic plasticity, such as SI Zenke et al. (2017) and MAS et al. (2018), which aim to capture
overall information through plasticity mechanisms. However, these methods face challenges when
dealing with low-quality views and large category sets. Additionally, we compare our approach to
multi-view class-incremental learning (MVCIL) methods Li et al. (2024a). MVCIL demonstrates
strong performance in handling datasets with multiple views, largely due to its effective retention
of previously learned knowledge. From the Table 1, it demonstrates that even with dynamic multi-
view data, our model effectively captures a comprehensive representation as the number of views
increases. Moreover, it reinforces the model’s ability to extract maximal information from each view
while seamlessly and efficiently integrating the continuously expanding view data. We draw t-SNE
visualizations for node representations in Fig. 3.
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4.2 Stability in Knowledge Retention: Demonstration of View Forgetting Relief (EQ2)

To confirm that HVOP excelled at memorizing and integrating knowledge of old views, we tested
it on inductive reasoning in Fig. 4. We evaluated the performance of GCN and HVOP under view
incrementl settings on previous views. The results show that GCN experiences more pronounced
degradation in view performance, whereas HVOP demonstrates a smoother decline, even stabilizing
in some instances. This suggests that the HVOP model has a strong capacity for memory retention,
maintaining stable knowledge of past views while fostering the development of a more comprehen-
sive overall cognition, even as new views are continuously introduced.

(a) GCN of NGs (b) HVOP of NGs (c) GCN of Animals (d) HVOP of Animals

Figure 4: A figure illustrates the phenomenon of view forgetting for HVOP vs. GCN in scenarios
with incremental views.

4.3 Mitigating Forgetting: Verification of Knowledge Transfer Ability (EQ3)

We plot the change in performance as the views continue to increase, and add the results of training
with only one view as a comparison, on the Fig. 5. We observed that the performance of single-view
learning is inferior to that of HVOP, indicating that HVOP effectively facilitates knowledge transfer
and integration between views during the learning process, thereby enhancing overall cognitive abil-
ity. This finding not only validates the effectiveness of the multi-view incremental strategy, but also
highlights its clear superiority over the traditional single-view learning paradigm. By integrating
both coherent and complementary information from multiple views, model gains a more compre-
hensive understanding of data, resulting in more accurate and robust predictions or classifications.

(a) Flower17 (b) YaleB_Extended

Figure 5: A comparison of HVOP streaming input and single-view learning performance.

More further, we carefully designed the ablation experiment by removing the orthogonal projection
module (shown as the purple folded line in Fig. 5) to visualize its importance. The experimental
results show that the performance is significantly affected by the fluctuations in the quality of the
new view data, showing an unstable behavior. This finding not only highlights the critical role of
the orthogonal projection module in stabilising the model performance, but also strongly validates
the role of the forgetting problem in constraining the ability to transfer knowledge. If the forgetting
phenomenon is not effectively mitigated, the model will have difficulty in absorbing new knowledge
while maintaining a solid memory of the old knowledge, thus leading to a significant reduction.

It highlights the importance of paying great attention to the forgetting problem when constructing
multi-view learning models, and exploring effective strategies to maintain the durability and accu-
racy of model memory to ensure smooth and efficient knowledge transfer. While our HVOP not only
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underscores the model’s exceptional capacity for knowledge accumulation and integration, but also
demonstrates its ability to continuously absorb and utilize new knowledge from additional views
while preserving previously learned information.

4.4 Stability in Learning: Convergence Insights (EQ3)

In Fig. 6(a), we show the loss convergence of the NGs dataset under both GCN and HVOP methods.
Each view data was trained for 800 rounds. It can be clearly seen that the loss of GCN fluctuates
sharply when the new view data comes, indicating that knowledge transfer and integration are not
carried out effectively. In contrast, under the HVOP framework, the change of view data has less
impact on the loss, which indicates that HVOP can well integrate the association between the old
and new data, and promote the overall cognition to progress continuously.

(a) Loss Comparison

50

60

70

80

90

100

[2,1,3] [1,2,3] [2,3,1]

view 1 view 2 view 3

(b) View Order Analysis

A
cc

ur
ac

y

Figure 6: (a) Comparison of the loss reduction between HVOP and GCN in learning NGs dataset.
(b) The overall performance of learning from NGs datasets in different view orders.

4.5 Cognitive Pathways Investigate: View Order Analysis (EQ3)

In Fig. 6(b), we present the impact of different sequential combinations of views on HVOP. Un-
surprisingly, all variations of view permutations had a positive effect on the final overall cogni-
tion. While the diversity of these combinations resulted in distinct cognitive paths, they consistently
pointed to a common trend—a steady improvement in overall cognitive ability. In future work, we
will further explore the influence of sequencing on overall cognition.

5 Discussions and Conclusions

The traditional multi-view learning frameworks are often limited by their ability to handle static
multi-view data, making it difficult to adapt to the dynamic growth and changes in real-world view
data. In response, this study proposes a Hebbian-based View Orthogonal Projection framework,
called HVOP to overcome this challenge. Unlike continual learning, which focuses on adapting
to sequential tasks, HVOP emphasizes view incremental learning, aiming to maintain the stability
of the overall cognitive structure while focusing on the in-depth understanding of a single view in
each learning task. We have thoroughly analyzed the phenomenon of view forgetting, which refers
to the issue of forgetting old view information when learning new views, and for the first time, as
view transfer learning. This concept hypothesizes that by effectively mitigating view forgetting, it
is possible to achieve smooth transfer and integration of knowledge across views. To realize this
goal, the HVOP method cleverly integrates recursive lateral connection mechanisms with Hebbian
learning principles. This combination not only facilitates efficient knowledge extraction across views
but also ensures deep integration and continual optimization of both new and old view information
within the neural network. The experimental results exhibited that HVOP significantly enhances the
model’s adaptability and generalization ability in handling dynamic multi-view data.
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data-based perspective on transfer learning. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 3613–3622, 2023.

Mengxue Kang, Jinpeng Zhang, Jinming Zhang, Xiashuang Wang, Yang Chen, Zhe Ma, and Xuhui
Huang. Alleviating catastrophic forgetting of incremental object detection via within-class and
between-class knowledge distillation. In Proceedings of the International Conference on Com-
puter Vision, ICCV 2023, pp. 18848–18858, 2023.

Hamza Kheddar, Mustapha Hemis, and Yassine Himeur. Automatic speech recognition using ad-
vanced deep learning approaches: A survey. Information Fusion, pp. 102422, 2024.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcom-
ing catastrophic forgetting in neural networks. Proceedings of the national academy of sciences,
114(13):3521–3526, 2017.

Nicholas Konz and Maciej A. Mazurowski. The effect of intrinsic dataset properties on generaliza-
tion: Unraveling learning differences between natural and medical images. In The Twelfth Interna-
tional Conference on Learning Representations, ICLR 2024, 2024. URL https://openreview.
net/forum?id=ixP76Y33y1.

Dharshan Kumaran, Demis Hassabis, and James L McClelland. What learning systems do intelligent
agents need? complementary learning systems theory updated. Trends in cognitive sciences, 20
(7):512–534, 2016.

Lilly Kumari, Shengjie Wang, Tianyi Zhou, and Jeff A Bilmes. Retrospective adversarial replay for
continual learning. Advances in neural information processing systems, 35:28530–28544, 2022.

Tao Lei, Junwen Bai, Siddhartha Brahma, Joshua Ainslie, Kenton Lee, Yanqi Zhou, Nan Du, Vincent
Zhao, Yuexin Wu, Bo Li, et al. Conditional adapters: Parameter-efficient transfer learning with
fast inference. Advances in Neural Information Processing Systems, 36:8152–8172, 2023.

Depeng Li, Tianqi Wang, Junwei Chen, Kenji Kawaguchi, Cheng Lian, and Zhigang Zeng. Multi-
view class incremental learning. Information Fusion, 102:102021, 2024a.

Xiaoli Li, Sai Nivedita Chandrasekaran, and Jun Huan. Lifelong multi-task multi-view learning
using latent spaces. In 2017 IEEE international conference on big data (Big Data), pp. 37–46.
IEEE, 2017.

Yang Li, Qi’Ao Zhao, Chen Lin, Jinsong Su, and Zhilin Zhang. Who to align with: Feedback-
oriented multi-modal alignment in recommendation systems. In Proceedings of the 47th Inter-
national ACM SIGIR Conference on Research and Development in Information Retrieval, pp.
667–676, 2024b.

Haotian Lin and Matthew Reimherr. Smoothness adaptive hypothesis transfer learning. In
Forty-first International Conference on Machine Learning, ICML 2024, 2024. URL https:
//openreview.net/forum?id=v0VUsQI5yw.

12

https://openreview.net/forum?id=ixP76Y33y1
https://openreview.net/forum?id=ixP76Y33y1
https://openreview.net/forum?id=v0VUsQI5yw
https://openreview.net/forum?id=v0VUsQI5yw


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Kun Liu, Minzhi Zhu, Huiyuan Fu, Huadong Ma, and Tat-Seng Chua. Enhancing anomaly detection
in surveillance videos with transfer learning from action recognition. In Proceedings of the 28th
ACM International Conference on Multimedia, pp. 4664–4668, 2020.

James L McClelland, Bruce L McNaughton, and Randall C O’Reilly. Why there are complementary
learning systems in the hippocampus and neocortex: insights from the successes and failures of
connectionist models of learning and memory. Psychological review, 102(3):419, 1995.

Zizhuo Meng, Ke Wan, Yadong Huang, Zhidong Li, Yang Wang, and Feng Zhou. Interpretable
transformer hawkes processes: Unveiling complex interactions in social networks. In Proceedings
of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD 2024,
pp. 2200–2211, 2024. doi: 10.1145/3637528.3671720.

Charul Paliwal, Anirban Majumder, and Sivaramakrishnan Kaveri. Predictive relevance uncertainty
for recommendation systems. In Proceedings of the ACM on Web Conference 2024, pp. 3900–
3909, 2024.

Tushar Prakash, Raksha Jalan, and Naoyuki Onoe. Enhancing social recommendation with multi-
view BERT network. In IEEE International Conference on Data Mining, ICDM 2023, pp. 1277–
1282, 2023. doi: 10.1109/ICDM58522.2023.00161.

Shengsheng Qian, Shengjie Zhang, Dizhan Xue, Huaiwen Zhang, and Changsheng Xu. Class-
incremental continual learning for multi-view clustering. 2023.

Vinay Venkatesh Ramasesh, Aitor Lewkowycz, and Ethan Dyer. Effect of scale on catastrophic
forgetting in neural networks. In International Conference on Learning Representations, 2021.

Gobinda Saha, Isha Garg, and Kaushik Roy. Gradient projection memory for continual learning. In
International Conference on Learning Representations.

William Beecher Scoville and Brenda Milner. Loss of recent memory after bilateral hippocampal
lesions. Journal of neurology, neurosurgery, and psychiatry, 20(1):11, 1957.

Kihyuk Sohn, Huiwen Chang, José Lezama, Luisa Polania, Han Zhang, Yuan Hao, Irfan Essa, and
Lu Jiang. Visual prompt tuning for generative transfer learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 19840–19851, 2023.

Yulong Song, Bin Fu, Jianxiong Guo, and Xiaofeng Gao. Interactive activities initiation through
retrieving hidden social information networks. In 2023 IEEE International Conference on Data
Mining (ICDM), pp. 538–547, 2023.

Larry R Squire. Memory and the hippocampus: a synthesis from findings with rats, monkeys, and
humans. Psychological review, 99(2):195, 1992.

Barry E Stein and Terrence R Stanford. Multisensory integration: current issues from the perspective
of the single neuron. Nature reviews neuroscience, 9(4):255–266, 2008.

Gan Sun, Yang Cong, Jun Li, and Yun Fu. Robust lifelong multi-task multi-view representation
learning. In 2018 IEEE international conference on big knowledge (ICBK), pp. 91–98. IEEE,
2018.

Jingjing Tang, Yiwei He, Yingjie Tian, Dalian Liu, Gang Kou, and Fawaz E. Alsaadi. Coupling loss
and self-used privileged information guided multi-view transfer learning. Information Science,
551:245–269, 2021.

Gido M Van de Ven, Tinne Tuytelaars, and Andreas S Tolias. Three types of incremental learning.
Nature Machine Intelligence, 4(12):1185–1197, 2022.
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