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ABSTRACT

In this study, we investigate the behavioral change of a heterogeneous population
as a system of information exchange. Previous approaches, such as OpenAIFive
and NeuPL, have modeled a population as a single conditioned neural network
to achieve rapid competitive learning. However, we found that this approach can
overgeneralize the population as Generalists and hinder individual learning of spe-
cializations. To address this challenge, we propose Joint Entropy Minimization
(JEM), a novel policy gradient formulation for heterogeneous populations. Our
theoretical and experimental results show that JEM enables the training of Gener-
alist populations to become Specialists. Compared to previous methods, Special-
ists trained with JEM exhibit increased strategy diversity, improved competitive
performance, and reduced population performance disparity. These findings sug-
gest that modeling a heterogeneous population as a group of Specialists can more
fully realize the diverse potential of individual agents.

In a heterogeneous population, individuals may possess varying degrees of comparative advantage.
These advantages may include physical or cognitive talents such as larger lung capacity, perfect
pitch, or eidetic memory. By realizing the unique potential of individuals, the population as a whole
benefits (Perez-Nieves et al., 2021). Each specialist can more competitively handle a different subset
of problems. This allows individuals to focus on developing their skills and knowledge in areas
where they have natural talent or ability. As a result, they can perform tasks more efficiently and
effectively than others.

However, the learning representation of learning to specialize is much less explored than the well-
studied learning for generalization. How the two concepts may be utilized to study the behavioral
change of a heterogeneous population remains an interesting open challenge in the field of popula-
tion learning.

Recent advancements in Deep Reinforcement Learning (DRL) and Game Theory-based multi-agent
learning have enabled researchers to explore and simulate complex behavior change among hetero-
geneous agents. Two recent population studies, AlphaStar (Vinyals et al., 2019) and OpenAIFive
(OpenAI et al., 2019), investigated the modeling of heterogeneous agents as a set of individual neural
networks or as a single population collective in multi-agent competitive games.

In the AlphaStar research, researchers utilized human data to pretrain a set of diverse policy be-
haviors. Through multiple rounds of self-play, close to a thousand separate models were created to
represent the diverse behavior set of the heterogeneous agents. On the other hand, OpenAIFive used
a conditional neural network approach to represent a population of heterogeneous agents as a single
neural network. Through distributed RL, a conditional neural network was replicated N times for
each round of self-play to learn to maximize the expected return of the population.

While both methods have demonstrated empirical success in learning population competitive behav-
iors, two open questions remain unanswered. First, is there a way to learn the diverse behaviors of
individual agents naturally without human data bias? Second, it is unclear if learning a heteroge-
neous population’s policy behaviors as the expected return of the population can actually realize the
potential of individual agent characters. A famous example is that the champion of Earthshaker in
Dota 2 is known to be competitive due to its unique skill of Fissure. However, under generalized
population learning, the conditional neural network of OpenAIFive was unable to realize the agent’s
potential.
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In this paper, we investigate the long-term effects of modeling a heterogeneous population as a single
Generalist model by analyzing the policy gradient integration. Our theoretical analysis enables
us to predict the behavioral change of the heterogeneous population over the period of behavior
optimization. Our derivation suggests that the population’s behavior change over time is strongly tie
to Information Theory concepts of Mutual Information and Interaction Information Maximization.

Maximizing Mutual Information between two variables in the context of two agents’ actions means
their shared behaviors becoming more over time. Knowing one variable gives us more information
about the other. Interaction information maximization is a related concept that involves maximiz-
ing the mutual information between multiple variables. The result of population learning is similar
population behaviors with a one-size-fits-all Generalist policy. To address the problem of overgener-
alization, we propose a novel approach called Joint Entropy Minimization (JEM), where each agent
learns to be a Specialist by maximizing their relative comparative advantage with respect to the
Generalist.

Empirically, we demonstrates the effect of JEM on a diverse character population of Naruto Mobile
Game, where individual character has their own unique character attributes. The game environ-
ment is in Fighting Game genre format of one versus one matches. Each character is individually
incentivized to maximize its own comparative advantage to win their competitive matches. The
unique characters and individualized competition environment makes it an ideal testbed for con-
trasting transferable skills and specialized strategies. JEM demonstrates increased diverse behaviors
in the population, improved win rate competitive performances, and reduced performance disparity
among agents. Our empirical results suggest that maximizing the comparative advantage of individ-
ual agents as Specialists may improve agents’ abilities beyond generalization.

1 BACKGROUND AND RELATED WORK

Research on population learning has explored the mechanisms by which agent populations learn in
both individually and as a populatio (Parker-Holder et al., 2020)(Canaan et al., 2019)(McAleer et al.,
2020)(McAleer et al., 2021)(Wang et al., 2020). In these settings, the behavior of a population may
evolve based on competition with opponents as well as changes in the behavior due to a population’s
peer influence.

1.1 INDIVIDUAL COMPETITIVE LEARNING

In competitive environments, the goal of multi-agent research is to optimize the performance of an
agent population through competition. One approach to achieving this is individualized learning,
where each agent improves its policy by learning a best-response (BR) against the policies of agents
from previous iterations. The iterated elimination of dominated strategies is used to optimize a
population of policies using Game Theory. Previous studies, such as (Jaderberg et al., 2018), PSRO
(Lanctot et al., 2017)(Smith et al., 2021), PSRO-TRPO (Gupta et al., 2017), (Vinitsky et al., 2020),
and AlphaStar, have employed various forms of self-play (Heinrich et al., 2015) to learn competitive
Nash Equilibrium behaviors for a population. These approaches address issues such as stability
(TRPO constraint), robustness (adversarial population), and diversity (leagues of policies pretrained
on human data) in individualized learning.

1.2 EXCHANGE OF GRADIENT: SKILL-TRANSFER

Recent studies, such as OpenAIFive (OpenAI et al., 2019) and simplex-NeuPL (Liu et al., 2022a),
have introduced a conditional population net approach for heterogeneous population learning. This
approach involves replicating a conditional neural network into N copies during population self-play,
with agents’ IDs used to distinguish between different agents. The goal is to maximize the expected
return of the population by jointly optimizing the behaviors of all agents. By communicating the
learning gradient through Distributive RL, this approach has been shown to efficiently exchange
individual agents’ learned behavior across the population. This exchange mechanism has been more
formally studied as Skill-Transfer (Liu et al., 2022b), where competitive behaviors are exchanged
among the population.
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However, we find that the mechanism of Skill-Transfer bears a striking resemblance to Mutual In-
formation maximization, where knowledge about one variable provides more information about
another. We contend that transferring common behaviors across a population may be counterintu-
itive to a heterogeneous population’s natural diversity. Instead of leveraging the unique advantages
of individual agents, Skill-Transfer may lead to overgeneralization of the population’s behavior and
result in poor utilization of individual agents’ unique strengths.

2 PRELIMINARY

In this study, we consider a two-sided zero-sum game. We define a population of agents, denoted by
N = {1, 2, . . . , n}, is termed as heterogeneous if and only if each agent i ∈ N is associated with a
unique type αi. Each attribute is a quantifiable characteristic of the agent that influences the agent’s
payoff function in a game. The attributes can be either discrete or continuous variables representing
features such as height, weight, skill level, etc. The game is defined by a tuple (O,S,A,R), where
O represents the observation space and S : O × O is the joint observation of the two players in a
fully observable game. A represents the total action space of the heterogeneous population, where
each agent has access to only a subset of A. The heterogeneity of the population includes individual
differences in physical attributes and unique action sets for each agent. The discounted return for
each player at time step t is defined asRt =

∑∞
τ=t γ

τrτ , where γ is the discount factor for all agents
in the range [0, 1). The goal of population learning is to study the emerging behavior under different
frameworks of population learning through the competition mechanism of self-play.

2.1 PROBLEM FORMULATION

Before analyze the mechanism of Skill-Transfer, we first lay out the premises of standard single-
agent learning using Policy Gradient from (Sutton et al., 1999). We consider the learning envi-
ronment as a stationary Markov decision process (MDP), where in each iteration of self-play the
opponent’s policy is fixed and the learner policy learns a best response (BR) in a stationary envi-
ronment. At each time step t ∈ {0, 1, 2, . . . }, the state, actions and rewards are denoted as st ∈ S,
at ∈ A, and rt ∈ R, respectively. To find an optimal behavior policy for an agent that maximizes
reward accumulation, we model the agent’s policy with a parameterized function with respect to θ.
The policy is characterized by πθ(a|s) = Pr{at = a|st = s} and aims to maximize the objective
function J(θ).

We denote the objective function as:

MaximizeJ(θ) =
∑
s∈S

dπ(s)
∑
a∈A

[Adv(s, a) ∗ πθ(a|s)] (1)

where dπ(s) is the stationary environment state distribution and Adv(s, a) := Q(s, a)−V (s) is the
advantage function representing the difference between the Q-value and the value state estimation
function. The discounted return at time step t is defined as Ridt =

∑∞
τ=t γ

τrτ , where γ is the
discount factor in the range [0, 1).

From the Policy Gradient Theorem (Sutton & Barto, 2018), computing the gradient to optimize the
behavior of an agent’s policy can be reformulated as:

∇θJ(θ) =
∑
s∈S

dπ(s)
∑
a∈A

[Adv(s, a) ∗ πθ(a|s) ∗ (∇θlog(πθ(a|s)))] (2)

where we use the log trick to obtain∇θ log(πθ(a|s)) = ∇θπθ(a|s)
πθ(a|s) .

2.2 EXPLORING SKILL TRANSFER

In this section, we delve into the concept of Skill Transfer, extending the single agent Policy Gradient
to a conditional neural network. This exploration allows us to observe the phenomenon of Skill
Transfer as a consequence of a population gradient exchange. A population gradient exchange is
characterized by the influence one agent’s behavioral changes have on the behaviors of other agents,
given that all agents in the population share a single conditional neural network.
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Conceptual Framework: Let’s consider a basic scenario involving two distinct agents, denoted as
N := {i, ii}. Under a single conditional neural network, {Πθ0(a|s, idk)}Nk=i, the conditional policy
maps input states and an agent’s id := {i, ii}, to the respective actions of each agent. Essentially,
all agents in the population share a single conditional neural network of NeuPL during the training
phase. During the inference phase, the conditional neural network can emulate any agent of id, with
id serving as the conditional input.

In each distributive episode of self-play τ , the learner {Πθτ (a|s, idk)}Nk=i learns a best re-
sponse (BR) against a prioritized distribution of its past selves as the learning opponents
{Πθ0∼τ−1

(a|s, idk)}Nk=i. We define the priority based on the Prioritized Fictional Self-Play (PFSP)
(Vinyals et al., 2019) as the win rate of {Πθ0∼τ−1(a|s, idk)}Nk=i relative to the current learner.

The objective of {Πθτ (a|s, idk)}Nk=i can be formulated as the joint Policy Gradient to maximize the
expected return of N := {i, ii}:

Maximize J(θτ ) =
∑
s∈S

dΠ(s)
∑
a∈A

[
1

N

∑
k=(i,ii)

Adv(s, ak, idk) (3)

∗ (Πθτ (ai|s, idi) · (Πθτ (aii|s, idii)]

Where dΠ(s) is the opponents’ prioritized distribution. 1
N

∑
k=(i,ii)Adv(s, a

k, idk) is the expected
Advantage estimation of the two agents, and let {Adv(s, ak, idk) = Q(s, ak, idk)− V (s, idk)}Nk=i.
(Πθτ (a

i|s, idi) · (Πθτ (aii|s, idii) denotes the agents’ exchange of skill or behavior.

To derive the exchange of gradient, take the derivative of Product Rule and log trick (Williams,
1992):

∇θJ(θτ ) =
∑

s,ai,aii,k

Adv(s, ak, idk) (4)

∗[ Πθτ (aii|s, idii) Πθτ (ai|s, idi)∇θτ log(Πθτ (ai|s, idi))
+ Πθτ (a

i|s, idi) Πθτ (aii|s, idii)∇θτ log(Πθτ (aii|s, idii))]

Where the Advantage function may be expanded to {Q(s, ak, idk) − V (s, idk)}Nid=i. By applying
the probability of independence and the logarithmic product rule, the exchange of gradient can be
expressed as:

∇θ J(θτ ) =
∑

s,ai,aii,k

Q(s, ak, idk)
[
Πθτ (a

i, aii|s, id(i,ii))∇θτ log(Πθτ (ai, aii|s, id(i,ii)))
]

(5)

−V (s, idk)
[
Πθτ (a

i, aii|s, id(i,ii))
[
∇θτ log(Πθτ (ai|s, idi)) +∇θτ log(Πθτ (aii|s, idii))

]]
Here we separate the Value estimation’s Πiθτ (a

i|s) and Πiiθτ (a
ii|s) as independent. This is for the

reason that each joint gradient update is comparing the Advantage gained between the joint gradient
of Q estimation versus each agent’s current Value estimation.

2.2.1 POLICY GRADIENT INTEGRAL

Equation 5 demonstrates how an agent’s behavior changes with each gradient pass. By performing a
discrete integral

∑
of the duration of policy optimization, represented by T , over the gradient∇θτ ,

we can utilize integration to analyze the overall change in policy behavior. Here, T signifies the total
duration of policy training until convergence. This approach emphasizes the use of integration as a
powerful tool for understanding the evolution of policy behavior throughout the training process.
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J(θτ ) =
∑

s,ai,aii,k

Q(s, ak, idk)

[
Πθτ (a

i, aii|s, id(i,ii))
T∑
0

∇θτ log(Πθτ (ai, aii|s, id(i,ii)))

]
(6)

−V (s, idk)

[
Πθτ (a

i, aii|s, id(i,ii))
T∑
0

[
∇θτ log(Πθτ (ai|s, idi)) +∇θτ log(Πθτ (aii|s, idii))

]]

We can simplify the expressions by substituting Πθτ (a
i|s, idi) with p(x), Πθτ (a

ii|s, idii) with p(y)
and Πθτ (a

i, aii|s, id(i,ii)) with p(x, y). This is to replace ai as x, and aii as y, we can rewrite the
equation as follows:

J(θτ ) =
∑

s,ai,aii,k

[
Q(s, ak, idk) [p(x,y)log(p(x,y))]

−V (s, idk) [p(x,y) [log(p(x)) + log(p(y))]]
]

(7)

The simplified form of Equation 7 allows us to intuitively understand that the total behavior change
of agents x and y is evaluated based on whether the joint action distribution of [p(x,y)log(p(x,y))
is more advantageous than the individual estimated expected values of x and y, represented by
[p(x,y)[log(p(x)) + log(p(y)). The change in the action distribution, whether positively or nega-
tively, results in the implicit maximization of their weighted Mutual Information (MI). This implies
that the behavior of one agent provides information about the other, thereby demonstrating that Skill-
Transfer can be mathematically expressed as the maximization of weighted MI over the behaviors
of the agents.

Figure 1: The figure visualizes Skill Transfer as Mutual Information Learning between two agents.
Their behavior space is depicted as a Venn diagram, with common policy behaviors indicating po-
tential competitive return. Unique, non-overlapping policy behaviors represent distinct strategies
preferred by one agent but not the other.

In a population represented by a single conditional neural network, agents refine their learning pro-
cess by exchanging policy gradients. This refinement is particularly focused on areas where their
behaviors overlap, as shown in Figure 1. The process identifies general skills that can be applied
across the agent population by maximizing their weighted Mutual Information (Guiaşu, 1977), a
measure from information theory.

The weight of two probabilistic random variables, represented asw(x, y), is defined as the difference
Q(s, ak, idk) − V (s, idk) for k ∈ {i, ii}. This weight functions similarly to a voting mechanism,
enabling individual agents to input their preferences and thereby influence the optimization trajec-
tory of the two agents jointly. This exchange of weighted preferences improves the efficiency of the
learning process, which would otherwise involve individual exploration and isolated learning.

I(X,Y ) =
∑
x,y

[ w(x, y) ∗ p(x,y) log(
p(x,y)

p(x)p(y)
)] (8)
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In general, for a heterogeneous population of size greater than two, represented as i, ii,. . . n, the
Mutual Information takes on a more general form known as Interaction Information (InteractInfo)
from Information Theory:

w(i; ...;n+ 1) ∗ I(Xi; ...;Xn+1) (9)
= w(i; ...;n+ 1) ∗ [I(Xi; ...;Xn)− I(Xi; ...;Xn|Xn+1)]

A conditional population net facilitates the exchange of gradient information across an agent popu-
lation, enabling faster learning by transferring learned behavior from one agent to another. However,
Skill-Transfer can also result in overgeneralization of population behaviors over time.

The Policy Gradient Integral demonstrates that over the learning duration, agents learn to maximize
InteractInfo behaviors that are general and at the intersection of all agents. This concept is illustrated
with a visualization of InteractInfo in Figure 2.

Figure 2: Figure 2 shows three heterogeneous agents (A, B, C) learning to maximize InteractInfo,
resulting in a set of population behaviors represented by the central region (A + B + C). This area of
behavioral intersection finds general skills transferable amongst the agents (left). However, the gen-
eral skills and behaviors in the (A + B + C) region may result in a high degree of behavior similarity
across the agents. Instead, we argue that to realize the full unique potential of the population, agents
must learn to maximize their individual comparative advantage (right).

Figure 2 shows that when InteractInfo is maximized, the conditional population net learns a set of
competitive behaviors at the intersection of the population. However, such optimization leads to a
population with reduced specialization and diversity. We formally define such agent population that
optimize the objective of InteractInfo maximization as the Generalists Πθ∗(ag|s, id).

3 METHOD

In this section, we introduce Joint Entropy Minimization (JEM) to address the problem of overgen-
eralization in a population’s behavior. We address this problem by individualizing the advantage
estimation function and policy learning for each agent.

Let the learned action behaviors of the Generalist represent the expected value of the agent pop-
ulation. We allow each agent to learn an individual Q-value estimation and policy BR for use in
one-versus-all competitive population learning games involving N agents from the Generalist pop-
ulation. The goal is to help agents maximize what is unique to themselves that is better than the
common skills, general behaviors exhibited by the Generalist population. The maximization pro-
cess is characterized by each agent’s learning of their comparative advantage relative to the expected
behavior of the Generalist.

Formally, we express the maximization of comparative advantage as follows:
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MaximizeJ(ψk) =
1

N

N∑
g=i

∑
s,ag,ak

[Q(s, ak, idk) · −H(ak) +V(s, idk) ·H(ag)] (10)

Let’s define H(ak) as the entropy of agent k’s action distribution, conditioned on the behavior of the
Generalist. This is given by −πψk(ak)|ag, s, idk)log(πψk(ak|ag, s, idk)). Similarly, let’s define
H(ag) as agent k’s estimation of the Generalist’s expected action response distribution. This is rep-
resented by the joint entropy of g = {i,ii,...n} and is given by πψk(ag)|s, idk)log(πψk(ag|s, idk)).

The maximization of J(ψk) in Eq 10 can be intuitively understood as the learning process of an indi-
vidualized agent. This agent is learning a specific orderly action behavior, represented by −H(ak),
that aims to outperform the expected common skills or actions of the Generalist population, repre-
sented by H(ag). This relative comparison is necessary for learning to specialize since ”special” is
a relative term anchored on what is defined as general.

4 EXPERIMENTS

Our research on population competitive learning was evaluated on the Fighting Game Naruto Mo-
bile. This game allows us to test a wide range of agent behaviors without the complexity of partial
observation and sparse rewards. Naruto Mobile is also widely accessible with over 100 million
downloads.

We compared the performance of the “Generalists” population, optimized under NeuPL’s condi-
tional population net of up to 50 unique Naruto Mobile characters, to that of the “Specialists” pop-
ulation. We examined the agents’ behavior through several metrics, including behavioral similarity,
competitive win rates and how population size affects the overgeneralization & specialization of
agents’ competitive behaviors.

4.1 INTRODUCTION TO NARUTO MOBILE GAME MECHANICS

The game mechanics of Naruto Mobile involve real-time 1 vs 1 gameplay with a pool of over 300
unique characters, each with their own set of attributes and skills. Before the start of a match, both
sides of players select their characters, auxiliary skill scroll, and pet summon. Each character has
a unique set of character attributes, such as attack speed, range, and movement variations. Addi-
tionally, each character can have skills of different cooldowns, status effects, range, and duration.
Things that are common among each character are the selection pool of scrolls, pet summons, and
a short defensive Invincible skill to evade attacks. The key to winning a match is to reduce the
opponent’s health point (HP) to zero or have a higher HP at the end of a 60-second match timer.

4.2 BEHAVIORAL SIMILARITY

In this experiment, we aim to record and analyze the behavior similarity within the agent population.
To facilitate our analysis of agent behavior, we have introduced several metrics that are specifically
designed to track the timing of agents’ skill usage.

The radial charts in Figure 3 depict the behavioral strategies of agents, categorized as Generalists
(blue) and Specialists (red). The distinct variations in the red radial plot indicate that each Specialist
agent employs a unique strategy during interactions, demonstrating a higher degree of behavior
diversity. Conversely, the Generalists, represented in blue, show more uniform strategy variations
across all agents.

In addition to visual representation, we also quantify this diversity numerically using strategy vec-
tors. By maximizing InteractInfo and minimizing joint entropy, we optimize population behavior.
The expected differences in vector distance between all pairs of agents are calculated numerically,
providing a measure of similarity or dissimilarity between different members of the population.

The Generalists exhibit an expected vector distance difference of 0.9210, while the Specialists have
a difference of 1.0585. This translates to a 14.9% increase in vector distance in Euclidean space for
the Specialists, indicating a 14.9% increase in their behavior diversity.
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Figure 3: Evaluation Metrics: We assess the behavior diversity of Generalists and Specialists
within the same heterogeneous character set, facing identical opponents. Behavior differences are
visualized using radial plots of unit circles, where distance from the center signifies the frequency
of an action, and direction represents skill utilization. Skills are categorized into forcingMove (ini-
tiating engagement), counterMove (counteracting attacks), and a substitute skill for temporary in-
vincibility. The circle’s center denotes the population’s mean value, while radial edges show the
maximum observed deviation.

Furthermore, we compare all pairwise agent interactions and measure the relative increase of behav-
ior diversity on the right comparison. The higher the value, the more dissimilar two agents’ actions
are. This comprehensive approach allows us to analyze and compare the behavior of Generalists and
Specialists effectively.

4.3 COMPETITIVE WIN RATES

In our second experiment, we plot the win rate performance of the top 8 Generalist and Specialist
agents against the most recent policy of the Generalists. The evaluation is based on N × N com-
petitive play among members of the agent population. Additionally we show the wall time learning
curve in Appendix [12].

Figure 4: In the figure, we use blue to represent each agent’s expected win rate as a Generalist
and orange to represent their expected win rate as a Specialist. As shown in the figure, with the
exception of Agent T, all other agents have experienced an improvement in their win rates after
transitioning from being Generalists to being Specialists. This result suggests that most agents are
capable of learning more competitive strategies that fall outside of the region of population behavior
intersection.

As shown in Figure 4, there has been a general increase in the competitiveness performance of
individual agents. This improvement in competitiveness performance indicates that, with the ex-
ception of Agent T’s policy, other agents have become more competitive by maximizing their own
comparative advantage.

In addition, our second finding on outcome disparity reveals an unconventional relationship between
a population’s outcome disparity and population behavior. The high degree of behavioral similar-
ity among Generalists is associated with a high standard deviation of 9.95. In contrast, the more
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unique behaviors of the Specialists have a low standard deviation of 5.99. The approximately 30%
reduction reflect an improvement in a population’s outcome disparity. The experiment illustrates a
specialists agent population may improve both the individual agents’ competitiveness as well as a
more equitable outcome.

4.4 POPULATION SIZE STUDY

In this ablation study, we adjust the population size to carry out a comparative analysis. We have two
populations: Population 1, which consists of 8 agents [I,... ,VIII], and Population 2, which expands
to a population size of 50, including the initial 8 agents. We first train each population to convergence
using the Simplex-NeuPL baseline (Liu et al., 2022a), resulting in two sets of Generalists (IIM8 and
IIM50). We then apply JEM to enhance specialization in selected individual agents, specifically JEM
50⇒ 1 and JEM 8⇒ 1. The evaluation comparison is conducted based on one-vs-one matches of
1,000 games between the same agent modeled differently.

Figure 5: The figure shows the relative performance of four different population from the view of
the row players. Green indicate an increase of performance from IIM training objective to JEM. Red
indicate a decrease of performance.

Figure 5 illustrates that 14 out of the 16 Specialists outperforms their Generalists variation. With
the two exceptions being AgentIII. (JEM 8⇒ 1) and AgentVII. (JEM 50⇒ 1). This indicates most
agents benefit from learning to generalize to specializing with their own characteristics. In regards to
the exceptions, observe that their alternative population size AgentIII. (JEM 50⇒ 1) and AgentVII.
(JEM 8 ⇒ 1) shows the top 2 improvement relative to IIM. The result indicates specializing in
different population size can also contributes to an agent’s performance.

5 CONCLUSION

In this paper, we studied the impact of different Information Theory formulations on the overall
behavior change of a heterogeneous population. While the popular approach of using a conditional
population net can enable efficient transfer of learning across the population and increase sample ef-
ficiency, it may not always succeed in learning individual agent behavior to fully realize the potential
of a heterogeneous population.

To address this, we propose JEM as a method to minimize an individual agent’s action entropy
relative to the average behavior of the population. Our approach enables heterogeneous agents to
find more competitive behaviors than those that would be found using a set of general behaviors for
the entire population. Specialization within a population not only increases the win rate performance
of individual agents but also improves outcome disparity and results in a more equitable distribution
of outcomes across the entire population.

Limitation: One limitation of our approach is the additional computation required for learning the
specialization of individual agents. JEM relies on learning an individualized neural net behavior for
each unique agent in a population. When the population size is large, the additional computation per
agent can accumulate to a significant amount. In future research, it may be possible consider cluster
the agent population into a finite set of groups.
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