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Abstract

This study addresses the problem of hal-001
lucinated span detection in the outputs of002
large language models. It has received less003
attention than output-level hallucination004
detection despite its practical importance.005
Prior work has shown that attentions of-006
ten exhibit irregular patterns when hallu-007
cinations occur. Motivated by these find-008
ings, we extract features from the atten-009
tion matrix that provide complementary010
views capturing (a) whether certain tokens011
are influential or ignored, (b) whether at-012
tention is biased toward specific subsets,013
and (c) whether a token is generated refer-014
ring to a narrow or broad context, in the015
generation. These features are input to a016
Transformer-based classifier to conduct se-017
quential labelling to identify hallucinated018
spans. Experimental results indicate that019
the proposed method outperforms strong020
baselines on hallucinated span detection021
with longer input contexts, such as data-to-022
text and summarisation tasks.023

1 Introduction024

Large Language Models (LLMs) have signifi-025

cantly advanced natural language processing026

and demonstrated high performance across027

tasks (Minaee et al., 2024). However, halluci-028

nations persisting in texts generated by LLMs029

have been identified as a serious issue, which030

undermines LLM safety (Ji et al., 2024b).031

To tackle this challenge, hallucination detec-032

tion has been actively studied (Huang et al.,033

2025). Model-level (e.g., (Min et al., 2023)) or034

response-level (e.g., (Manakul et al., 2023)) hal-035

lucination detection has been proposed. How-036

ever, identification of the hallucinated span037

is less explored despite its practical impor-038

tance. Hallucinated span detection enables039

understanding and revising the problematic040

portion of the output. It also provides clues to 041

mitigate hallucinations in LLM development. 042

To address this, we tackle hallucinated span 043

detection. While there have been various types 044

of hallucinations (Wang et al., 2024), this study 045

targets hallucinations on contextualised gen- 046

erations that add baseless and contradictive 047

information against the given input context. 048

Motivated by the findings that irregular atten- 049

tion patterns are observed when hallucination 050

occurs (Chuang et al., 2024; Zaranis et al., 051

2024), we extract features to characterise the 052

distributions of attention weights. Specifically, 053

the proposed method extracts an attention ma- 054

trix from an LLM by inputting a set of prompt, 055

context, and LLM output of concern. It then 056

assembles features for each token from the at- 057

tention matrix: average and diversity of incom- 058

ing attention as well as diversity of outgoing 059

attention, which complementarily capture the 060

attention patterns of language models. The 061

former two features indicate whether attention 062

is distributed in a balanced manner for tokens 063

in the output text. The last feature reveals 064

if an output token was generated by broadly 065

attending to other tokens. These features are 066

then fed to a Transformer encoder with a con- 067

ditional random field layer on top to conduct 068

sequential labelling to determine whether a 069

token is hallucinated or not. 070

Experimental results on hallucinated span 071

detection confirmed that the proposed method 072

outperforms strong baselines on data-to-text 073

and summarisation tasks, improving token- 074

level F1 score for 4.9 and 2.9 points, respec- 075

tively. An in-depth analysis reveals that the 076

proposed method is capable of handling longer 077

input contexts. Our code is available at https: 078

//anonymous_for_review. 079
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Figure 1: Overview of the proposed method

2 Related Work080

This section discusses hallucination detection081

that utilises various internal states of LLMs.082

Attention-Based Hallucination Detection083

Lookback Lens (Chuang et al., 2024) is the084

most relevant method to our study, which iden-085

tifies hallucinations using only attention ma-086

trices. It computes the “Lookback” ratio of087

attention to assess whether generated tokens088

attend well to the input context. In contrast,089

our features primarily focus on the attention090

of output texts. ALTI+ (Ferrando et al., 2022;091

Zaranis et al., 2024) tracks token interactions092

across layers. ALTI+ has been applied to hallu-093

cination detection in machine translation, high-094

lighting cases where the model fails to properly095

utilise source text information. A drawback of096

ALTI+ is its computational cost. It computes097

a token-to-token contribution matrix for each098

layer and for each attention head. Therefore,099

memory consumption linearly increases depend-100

ing on the length of context and output as well101

as LLM sizes. Indeed, Zaranis et al. (2024)102

excluded sequences longer than 400 tokens due103

to GPU memory constraints.104

Other Internal States for Hallucination105

Detection Hallucination detection has also106

explored various internal states of LLMs other107

than attention. Xiao and Wang (2021) and108

Zhang et al. (2023) identify hallucinations as109

tokens generated with anomalously low confi-110

dence based on the probability distribution in111

the final layer. Azaria and Mitchell (2023) and112

Ji et al. (2024a) use layer-wise Transformer113

block outputs to estimate hallucination risk.114

These studies assume that hallucination de-115

tection will be conducted on the same LLM116

generating output and can access such Trans- 117

former block outputs. In contrast, we empiri- 118

cally showed that the proposed method can also 119

be applied to closed LLMs. Further, attention- 120

based methods are distinctive from these stud- 121

ies in that they aim to model inter-token inter- 122

actions. 123

3 Proposed Method 124

The proposed method is illustrated in Figure 1. 125

It conducts sequential labelling, i.e., predicts 126

binary labels that indicate whether a token in 127

text, which has been generated by a certain 128

LLM, is hallucinated or not. Specifically, the 129

proposed method takes a set of prompt, input 130

context, and output generated by an LLM of 131

concern as input to another LLM and obtains 132

the attention matrix of the output text span. 133

It then extracts features from the attention ma- 134

trix (Sections 3.1 and 3.2). These features are 135

fed to a Transformer encoder model with the 136

prediction head of a conditional random field 137

(CRF) to conduct sequential labelling to iden- 138

tify hallucinated spans (Section 3.3). As the 139

attention matrix provides crucial information 140

for our method, we compare the raw atten- 141

tion and a variation based on the analysis of 142

attention mechanism (Kobayashi et al., 2020) 143

(Section 3.4). We remark that only the halluci- 144

nation detection model needs training, i.e., the 145

LLM for attention matrix extraction is kept 146

frozen, which makes our method computation- 147

ally efficient. 148

Our method applies to both scenarios where 149

the LLM that generated outputs and the LLM 150

for hallucinated span detection are the same 151

or different. In practice, the latter setting is 152

expected to be more common in an era where 153
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Figure 2: Feature extraction from attention matrix (these attention values are for illustrative purposes.)

LLMs are widely used for writing tasks. In154

addition, we cannot access the internal state155

of proprietary LLMs. Our experiments assume156

the scenario where the LLM for generation and157

the LLM for detection are different.158

3.1 Feature Design159

Previous studies revealed that irregular pat-160

terns of attention are incurred when halluci-161

nation occurs (Chuang et al., 2024; Zaranis162

et al., 2024). Based on these findings, we design163

features to complementarily capture irregular164

attentions. Specifically, we extract features165

providing complementary views of the atten-166

tion matrix as shown in Figure 2: (a) average167

attention a token receives (Average Incom-168

ing Attention), (b) diversity of attention a to-169

ken receives (Incoming Attention Entropy),170

and (c) diversity of tokens that a token attends171

to (Outgoing Attention Entropy).172

Average Incoming Attention We compute173

the average attention weights that a token re-174

ceives when generating others. This feature175

indicates whether certain tokens are influential176

or ignored in generation. Specifically, it com-177

putes the average attention weight in the key178

direction on the attention matrix as illustrated179

on the left side of Figure 2.180

Incoming Attention Entropy This feature181

captures the diversity of attention weights, i.e.,182

whether attention is biased toward specific sub-183

sets or is more uniformly distributed. It com-184

putes the entropy of attention weights in the185

key direction on the attention matrix as illus-186

trated on the left side of Figure 2.187

Outgoing Attention Entropy The final188

feature models the diversity of tokens that a189

token attends to when being generated. This 190

indicates whether the model references a nar- 191

row or broad range of context for generating 192

the token. Specifically, this feature computes 193

the entropy of attention weights in the query 194

direction on the attention matrix as illustrated 195

on the right side of Figure 2. 196

Given the complex and diverse nature of at- 197

tention dynamics, we do not regard individual 198

features as independently effective. Rather, we 199

assume these features complementary capture 200

irregular attention patterns due to hallucina- 201

tion by providing views from different angles. 202

3.2 Feature Extraction 203

We extract these features for each token from 204

the attention matrix. As notation, the output 205

by an LLM to detect hallucinated span consists 206

of T tokens. The LLM for attention matrix 207

extraction consists of L layers of a Transformer 208

decoder with H heads of multi-head attention. 209

Average Incoming Attention This feature 210

computes the average attention weights that 211

a token receives when generating other tokens. 212

The attention matrix A is lower triangular 213

due to masked self-attention, meaning each 214

query token i attends only to key tokens j 215

with 1 ≤ j ≤ i. Thus, earlier tokens receive 216

attention more often, and tokens close to the 217

end receive attention less often. To compensate 218

for the imbalanced frequency, we adjust the 219

attention weights αi,j as: 220

α′
ij = αij · i. (1) 221

Using the adjusted attention matrix A′, the 222

average attention that a key token j receives 223
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is computed as:224

µ
(ℓ,h)
j = 1

T − j + 1

T∑
i=j

α
′(ℓ,h)
ij , (2)225

where 1 ≤ ℓ ≤ L is the layer index and 1 ≤226

h ≤ H is the head index. The final feature227

vector is obtained by concatenating the average228

attention weights across all layers and heads:229

v(j) =
[
µ

(1,1)
j , µ

(1,2)
j , . . . , µ

(L,H)
j

]
∈ RLH (3)230

Incoming Attention Entropy To model231

the diversity of attention a token receives, we232

use the entropy of the weights. As discussed in233

the previous paragraph, the attention matrix234

is lower triangular. To compensate for differ-235

ent numbers of times to receive attention, we236

normalise an entropy value by dividing by the237

maximum entropy:238

β
(ℓ,h)
j =

−
∑T

i=j κ
(ℓ,h)
ij log κ

(ℓ,h)
ij

log(T − j + 1) , (4)239

κ
(ℓ,h)
ij =

α
′(ℓ,h)
ij∑i

k=1 α
′(ℓ,h)
ik

. (5)240

The final feature vector is a concatenation of241

the entropy values across layers and heads:242

e(j) =
[
β

(1,1)
j , β

(1,2)
j , . . . , β

(L,H)
j

]
∈ RLH (6)243

Outgoing Attention Entropy This feature244

models the diversity of tokens that a token245

attends to when being generated. Similar to246

the “Incoming Attention Entropy” feature, we247

compute the entropy of attention weights of248

query tokens1 by dividing by the maximum249

entropy:250

γ
(ℓ,h)
i =

−
∑i

j=1 α
(ℓ,h)
ij log α

(ℓ,h)
ij

log(i) . (7)251

The final feature vector is a concatenation of252

the entropy values across layers and heads:253

ê(i) =
[
γ

(1,1)
i , γ

(1,2)
i , . . . , γ

(L,H)
i

]
∈ RLH (8)254

Final Feature Vector The three features255

v(j) (Average Incoming Attention), e(j) (In-256

coming Attention Entropy), and ê(i) (Outgo-257

ing Attention Entropy) are concatenated as a258

final feature vector for hallucination detection.259

Each feature has LH elements; thus, the final260

feature vector consists of 3LH elements.261
1Remind that attention weights are normalised in

the query direction.
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Figure 3: Hallucination Detector

3.3 Hallucination Detector 262

Our hallucination detector consists of a linear 263

layer, a Transformer encoder layer, and a CRF 264

layer on top, as illustrated in Figure 3. To han- 265

dle spans, we employ the CRF layer to model 266

dependencies between adjacent tokens, improv- 267

ing the consistency of hallucinated spans com- 268

pared to independent token-wise classification.2 269

The CRF has been successfully integrated with 270

Transformer-based models for structured NLP 271

tasks (Yan et al., 2019; Wang et al., 2021). 272

Feature vectors are first standardised to have 273

zero mean and 1 standard deviation per feature 274

type. After standardisation, the feature vector 275

first goes through a linear layer for transforma- 276

tion, which is primarily employed to adapt to 277

various LLMs that can have different numbers 278

of layers and attention heads. Then the trans- 279

formed vector is input to the transformer layer 280

with positional encoding to incorporate token 281

order information. Finally, the CRF layer pre- 282

dicts a binary label indicating whether a token 283

is hallucinated (label 1) or not (label 0). Dur- 284

ing inference, the Viterbi algorithm determines 285

the most likely label sequences. 286

3.4 Attention Weights 287

Attention weights have been used to analyse 288

context dependency (Clark et al., 2019; Koval- 289

eva et al., 2019; Htut et al., 2019) of Trans- 290

former models. Recently, Kobayashi et al. 291

(2020) revealed that the norm of the trans- 292

formed input vector plays a significant role in 293

the attention mechanism. They reformulated 294

the computation in the Transformer as: 295

yi =
T∑

j=1
αi,jf(xj) (9) 296

2We empirically confirmed that a linear layer is infe-
rior to CRF in our study.
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Dataset QA Data2Text Summarisation

train 4, 584 (1, 421) (31.0%) 4, 848 (3, 360) (69.3%) 4, 308 (1, 347) (31.3%)
valid 450 ( 143) (31.8%) 450 ( 315) (70.0%) 450 ( 135) (30.0%)
test 900 ( 160) (17.8%) 900 ( 579) (64.3%) 900 ( 204) (22.7%)
Total 5, 934 (1, 724) (29.1%) 6, 198 (4, 254) (68.6%) 5, 658 (1, 686) (29.8%)

Table 1: Number of samples in the RAGTruth dataset (Numbers in parentheses indicate the raw number
of and percentage of sentences containing at least one hallucination span.)

where αi,j is the raw attention weight and f(xj)297

is the transformed vector of input xj . The298

transformation function is defined as:299

f(x) =
(
xW V + bV

)
W O, (10)300

where W V ∈ Rdin×dv and bV ∈ Rdv are301

the parameters for value transformations and302

W O ∈ Rdv×dout is the output matrix multi-303

plication. Kobayashi et al. (2020) found that304

frequently occurring tokens often receive high305

attention weights but have small vector norms,306

reducing their actual contribution to the out-307

put. This suggests that attention mechanisms308

adjust token influence, prioritising informative309

tokens over frequent but less meaningful ones.310

This study compares the effectiveness of311

raw and the transformed attention weights of312

Kobayashi et al. (2020). Specifically, we employ313

the adjusted attention matrix Anorm defined314

as:315

Anorm = A · diag(∥f(x)∥), (11)316

where A is the raw attention weight matrix,317

and diag(∥f(x)∥) represents a diagonal matrix318

containing the transformed vector norms.319

4 Evaluation320

We evaluate the effectiveness of the proposed321

method for hallucinated span detection.322

4.1 Dataset323

As the dataset providing hallucination span324

annotation, we employ RAGTruth (Niu et al.,325

2024)3, a benchmark dataset that annotates326

responses generated by LLMs (GPT-3.5-turbo-327

0613, GPT-4-0613, Llama-2-7B-chat, Llama-328

2-13B-chat, Llama-2-70B-chat, and Mistral-329

7B-Instruct). It covers three scenarios of us-330

ing LLMs in practice, i.e., question answer-331

ing (QA), data-to-text generation (Data2Text),332

3https://github.com/ParticleMedia/RAGTruth

and news summarisation (Summarisation). 333

RAGTruth provides 18, 000 annotated re- 334

sponses, where hallucinated spans in each re- 335

sponse are tagged at the character level. The 336

number of samples is shown in Table 1. As 337

there is no official validation split in RAGTruth, 338

we randomly sampled 450 instances (75 IDs) 339

from the training set for validation. 340

4.2 Evaluation Metric 341

Although RAGTruth labels hallucinations at 342

the character level, we convert these labels 343

into the token level for intuitive interpretation 344

of evaluation results. We employed the same 345

tokeniser of LLM to extract attention matrices. 346

We compute the token-level precision (Prec) 347

and recall (Rec). Given a set of gold-standard 348

hallucination tokens Y = {y0, y1, · · · , yN } 349

and predicted hallucination tokens Ŷ = 350

{ŷ0, ŷ1, · · · , ŷM }, 351

precision = |Ŷ ∩ Y|
|Ŷ|

, recall = |Ŷ ∩ Y|
|Y|

. (12) 352

Matching of the gold-standard and predicted 353

tokens is computed in the context of output 354

texts. The primary evaluation metric is the F1 355

score of token-level hallucination predictions, 356

which is the harmonic mean of precision and 357

recall. Following the RAGTruth evaluation 358

scheme, we used the micro-average of precision, 359

recall, and F1. 360

4.3 Implementation 361

The proposed method consists of the linear 362

layer, the Transformer encoder layer, and the 363

CRF layer. The settings of the Transformer 364

layer, i.e., the numbers of layers and attention 365

heads, the dimensions, and the dropout rate, 366

were tuned together with other hyperparam- 367

eters of learning rate and weight decay using 368

the Data2Text task, as it provides the largest 369

samples. We apply the same hyperparameters 370

5
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Methods LLM QA Data2Text Summarisation

Prec Rec F1 Prec Rec F1 Prec Rec F1

Oursraw

Llama

47.7 68.7 56.3 55.6 55.0 55.3 51.1 36.7 42.7
Oursnorm 57.4 54.0 55.6 53.4 57.1 55.2 51.0 39.5 44.5
Fine-tuning 62.8 56.9 59.7 55.4 46.2 50.4 52.0 34.6 41.6
Lookback Lens 53.5 7.6 13.2 0.0 0.0 0.0 0.0 0.0 0.0

Table 2: Hallucinated span detection results on Llama-3-8B-Instruct. The proposed method is denoted as
“Ours” with variations of raw attention (“raw”) or the transformed attention (“norm”). It outperformed
the baselines on tasks with longer input contexts, i.e., Data2Text and Summarisation.

for other tasks. The specific hyperparameter371

search range is in Appendix A. We employed372

early stopping on training: training was termi-373

nated if the F1 score on the validation set did374

not improve for 10 consecutive epochs.375

As the LLM to obtain attention matrices, we376

employed the recent smaller yet strong mod-377

els of Llama-3-8B-Instruct (Touvron et al.,378

2023; Llama Team, 2024) and Qwen2.5-7B-379

Instruct (Team, 2025) (see Appendix B.3 for380

details). We adapted the template by Niu et al.381

(2024) for promoting. Notice that these LLMs382

are different from the ones used to create the383

RAGTruth dataset, which simulates the sce-384

nario where we cannot access the LLMs gener-385

ated outputs for hallucinated span detection.386

4.4 Baselines387

We compared the proposed method to two base-388

lines employing the same LLMs as our method.389

Fine-tuned LLMs Although straightfor-390

ward, fine-tuned LLMs serve as a strong base-391

line (Niu et al., 2024). We fine-tuned the LLMs392

using the prompt of Niu et al. (2024) with in-393

structions to predict hallucinated spans. More394

details are provided in Appendix B.4.395

Lookback Lens We employed Lookback396

Lens (Chuang et al., 2024), which also utilises397

the attention matrix for hallucination detec-398

tion. It computes the “Lookback” ratio; the399

ratio of attention weights on the input context400

versus newly generated tokens. The Lookback401

feature is input to a logistic regression model402

to predict the probability of a token being hal-403

lucinated.4 We regarded tokens for which the404

4Lookback Lens can also conduct span-level predic-
tion by segmenting texts using a sliding window. For
direct comparison to our method, we used the token-
level variant (i.e., window size is one).

QA Data2Text Summ.
In Out In Out In Out

Mean 400 140 788 199 723 136
Max 646 437 1, 499 406 2, 063 412
Min 244 9 517 69 225 16

Table 3: Numbers of tokens of context (‘In’)
and output (‘Out’) (measured using Llama-3-8B-
Instruct tokeniser).

predicted probabilities are equal to or larger 405

than 0.5 as hallucination, following the traits 406

of the logistic regression classifier. We used 407

the author’s implementation5 for the Lookback 408

Lens model training. 409

4.5 Experimental Results 410

The experimental results on Llama-3-8B- 411

Instruct are shown in Table 2. The proposed 412

method is denoted as “Ours” with variations 413

of using raw attention weights (denoted as 414

“raw”) and the transformed attention weights 415

(denoted as “norm”). 416

The proposed method outperformed both 417

the fine-tuning and Lookback Lens for halluci- 418

nated span detection in Data2Text and sum- 419

marisation, achieving the highest token-level 420

F1 scores. On QA, the proposed method tends 421

to have higher recall yet lower precision, i.e., 422

it tends to overly detect hallucinations. A pos- 423

sible factor is shorter lengths of input context. 424

Table 3 shows the numbers of tokens in context 425

and output texts. QA has significantly shorter 426

contexts on average compared to Data2Text 427

and summarisation, while the output lengths 428

are similar. This result may imply that the 429

proposed method better handles tasks where 430

consistency with long context is important, like 431

5https://github.com/voidism/Lookback-Lens
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Source text: [. . .] From the giant sequoias of Yosemite to the geysers of Yellowstone,
the United States’ national parks were made for you and me. And for Saturday and
Sunday, they’re also free. Though most of the National Park Service’s 407 sites are
free year-round, the 128 parks that charge a fee – like Yellowstone and Yosemite –
will be free those two days. It’s all part of National Park Week, happening April 18
through April 26, and it’s hosted by the National Park Service and the National Park
Foundation. [. . .]
Output summary: National Park Service offers free admission to 128 parks, including
Yellowstone and Yosemite, on April 18-19 and 25-26, as part of National Park Week.
Ground Truth: on April 18-19 and 25-26
Oursraw: April 18-19 and 25-26
Fine-tuning: – (Detection failed)

Table 4: Hallucination detection example (Summarisation)

Methods QA Data2Text Summarisation

0–2 2–4 4–6 6–8 0–2 2–4 4–6 6–8 0–2 2–4 4–6 6–8

Oursraw 27.7 − 48.6 59.4 33.0 − 52.6 63.3 0.0 42.3 28.5 54.4
Oursnorm 25.1 − 41.1 61.0 33.0 − 51.2 61.9 0.0 41.9 30.5 59.0
Fine-tuning 38.4 − 52.7 62.3 23.8 − 45.8 57.9 0.0 41.0 31.4 56.4

Table 5: Token-level F1 scores of hallucinated span detection per different hallucination ratios (Llama-3-
8B-Instruct). “−” indicates there was no sample falling in the corresponding bin.

summarisation. We conduct further analysis432

in Sections 4.6 and 4.7.433

For attention weights, the effectiveness of the434

raw and transformed attention weights depends435

on tasks. The raw attention weights performed436

higher in QA, while the transformed weights437

outperformed the raw attention in summarisa-438

tion, and they are comparable on Data2Text.439

Lookback Lens consistently exhibited the440

lowest F1 scores.6 Our inspection confirmed441

that Lookback Lens overfitted the majority442

class, i.e., no hallucination. Hallucinated spans443

are much more infrequent compared to the no-444

hallucination tokens. This implies that making445

a binary decision based on the predicted hal-446

lucination probability is non-trivial. Further-447

more, Lookback Lens seems to have struggled448

to handle longer input contexts, i.e., Data2Text449

and summarisation tasks, in contrast to the450

proposed method. This may be because the451

Lookback Lens strongly depends on attention452

weights for the input context. We evaluated453

the combination of features of Lookback Lens454

and ours to see if they are complementary. As a455

result, no improvement was observed; possibly456

because our “Outgoing Attention Entropy” fea-457

ture also takes the input context into account.458

6This looks largely different from the original paper.
We remark that in addition to the experimental dataset
difference, the original paper reported AUROC.

Table 4 presents an example of hallucination 459

detection on summarisation. In the output 460

text, the red-coloured span indicates the hal- 461

lucination. While the Fine-tuning failed to 462

detect the hallucination, the proposed method 463

successfully identified the span very close to 464

the ground truth (only missing a preposition). 465

Further examples are in Appendix C. 466

4.6 Effects of Hallucination Ratio 467

Intuitively, the ratio of hallucinated tokens in 468

a text affects the performance. When the fre- 469

quency of hallucinations is small, detection 470

should become more challenging. Table 5 shows 471

the token-level F1 scores on different percent- 472

ages of hallucinated tokens. These results con- 473

firm that the intuition holds true. Across meth- 474

ods and tasks, higher F1 scores were achieved 475

when hallucinated tokens were more frequent. 476

Another interesting observation is that the 477

effect of task type is dominant than the hal- 478

lucinated token ratio. Table 5 shows that the 479

superior method is consistent across different 480

frequencies of hallucinated tokens within the 481

same task. 482

4.7 Effects of Hallucination Type 483

We further analysed the hallucination detection 484

capability of the proposed method for different 485

hallucination types. RAGTruth categorises hal- 486
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Methods LLM QA Data2Text Summarisation

Prec Rec F1 Prec Rec F1 Prec Rec F1

Oursraw

Qwen

38.5 73.7 50.6 53.5 57.1 55.2 49.6 35.7 41.5
Oursnorm 39.0 64.7 48.7 55.5 55.3 55.4 49.3 33.6 39.9
Fine-tuning 60.1 57.1 58.6 58.9 51.4 54.9 62.0 30.0 40.4
Lookback Lens 46.6 5.6 9.9 50.0 0.0 0.0 0.0 0.0 0.0

Table 6: Hallucinated span detection results on Qwen2.5-7B-Instruct

QA (Total Tokens: 124,817)
Methods SInfo EInfo SConf EConf All
Oursraw 74.1 74.4 − 4.0 68.7
Oursnorm 50.6 60.0 − 3.8 54.0
Fine-tuning 48.7 63.8 − 7.8 56.9
Hal. Tokens 1, 020 4, 742 − 501 6, 263

Data2Text (Total Tokens: 178,343)
Methods SInfo EInfo SConf EConf All
Oursraw 29.4 50.5 7.3 64.7 55.5
Oursnorm 37.8 52.7 7.3 64.8 57.1
Fine-tuning 35.8 51.6 0.0 43.7 46.2
Hal. Tokens 595 3, 118 41 3, 580 7, 334

Summarisation (Total Tokens: 121,248)
Methods SInfo EInfo SConf EConf All
Oursraw 65.2 46.5 8.5 16.4 36.7
Oursnorm 49.7 51.3 8.5 18.5 39.5
Fine-tuning 44.9 43.7 8.1 18.6 34.6
Hal. Tokens 187 2, 067 71 1, 160 3, 485

Table 7: Recall of hallucinated span detection per
hallucination type (Llama-3-8B-Instruct)

lucinations into four types: Subtle Introduction487

of Baseless Information (SInfo) and Evident488

Introduction of Baseless Information (EInfo)489

indicate whether the output text subtly adds490

information or explicitly introduces falsehoods.491

Subtle Conflict (SConf) and Evident Conflict492

(EConf) indicate whether the output alters493

meaning or directly contradicts the input text.494

For more details, see Niu et al. (2024).495

Table 7 shows detection recalls for different496

hallucination types.7 For Data2Text, the recall497

of Evident Conflict is significantly higher than498

SInfo and EInfo. This result indicates that the499

proposed method better captures conflicting in-500

formation against input context than baseless501

information introduced by LLMs. The trend is502

the opposite on QA and summarisation, where503

the proposed method achieved much higher504

recall on SInfo and EInfo than on SConf and505

7Precision (and thus F1) is difficult to compute be-
cause it is non-trivial to decide to which category does
detected hallucination belong.

EConf, which implies that baseless information 506

was easier to capture for the proposed method. 507

These results indicate that detection difficul- 508

ties of different hallucination types can vary 509

depending on tasks. 510

4.8 Performance on Qwen 511

Table 6 shows the results on Qwen2.5-7B- 512

Instruct. While the results are consistent with 513

Table 2, Qwen was consistently inferior to 514

Llama regarding the proposed method, which 515

should be attributed to different implementa- 516

tions of their attention mechanisms. Qwen has 517

fewer numbers of layers and attention heads, 518

and thus its feature dimension is smaller than 519

Llama. In addition, the parameters in multi- 520

head attention are more aggressively shared 521

in Qwen. These differences may affect the at- 522

tention features extracted from Qwen. More 523

details of the differences between Llama and 524

Qwen are discussed in Appendix B.3. 525

5 Conclusion 526

We proposed the hallucinated span detection 527

method using features that assemble attention 528

weights from different views. Our experiments 529

confirmed that these features are useful in com- 530

bination for detecting hallucinated spans, out- 531

performing a previous method that also uses 532

attention weights. 533

This study focused on hallucination detec- 534

tion, but our method may also apply to broader 535

abnormal behaviour detection of LLMs. As 536

future work, we plan to explore its poten- 537

tial for detecting backdoored LLMs (He et al., 538

2023), which behave normally on regular inputs 539

but produce malicious outputs when triggered. 540

Since our approach analyses attention distri- 541

butions, it may detect anomalous attention 542

patterns caused by the triggers. 543

8



Limitations544

While we confirmed the effectiveness of the545

proposed method on two models: Llama-3-546

8B-Instruct and Qwen2.5-7B-Instruct, there547

are lots more LLMs. The effectiveness of our548

method when applied to attention mechanisms549

from other models remains unverified. In addi-550

tion, our experiments are limited to the English551

language. We will explore the applicability of552

our method to other languages by employing553

multilingual LLMs.554

Our method requires training data that an-555

notates hallucinated spans, which is costly to556

create. A potential future direction is an explo-557

ration of an unsupervised learning approach.558

The success of the current method implies that559

our features successfully capture irregular at-560

tention patterns on hallucination. We plan561

to train our method only on non-hallucinated562

human-written text. We then identify halluci-563

nations as instances in which attention patterns564

deviate from the learned normal patterns.565
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A Details of Transformer Encoder 717

Training 718

In this study, we used the Optuna library8 to 719

perform hyperparameter optimisation shown in 720

Table 8. The training was terminated if the F1 721

score on the validation dataset did not improve 722

for 10 consecutive epochs. The setting of the 723

model with the highest F1 score was selected 724

for formal evaluation. 725

Hyperparameter Search Range

Learning rate 1e-5 ∼ 1e-3
Number of layers [2, 4, 6, 8, 10, 12, 14, 16]
Number of heads [4, 8, 16, 32]
Dropout rate 0.1 ∼ 0.5
Weight decay 1e-6 ∼ 1e-2
Model dimension [256, 512, 1024]

Parameter Setting

Optimizer AdamW
Batch size 64 (Summ. : 32)
Number of trials 200 (Summ. : 100)
Maximum epochs 150

Table 8: Settings of Transformer encoder

B Details of Experiment Settings 726

B.1 Computational Environment 727

All the experiments were conducted on 728

NVIDIA RTX A6000 (48GB memory) GPUs. 729

For training the Transformer encoder of the 730

proposed method, we used 2 GPUs. For fine- 731

tuning the LLM, we used 4 GPUs in parallel. 732

B.2 Prompts and Preprocessing of 733

RAGTruth 734

The prompts used in our experiments are 735

shown in Table 10 and Table 11. 736

8https://optuna.org/
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Parameter Value

Fine-tuning method full fine-tuning
Learning rate 5e-6
Batch size 1
Number of epochs 3
Optimizer AdamW
Warmup steps 10

Table 9: Fine-tuning Parameters

The hallucination labels in RAGTruth are737

provided at the character span level. For exam-738

ple, a hallucination might be annotated with739

“start”: 219, “end”: 229. Character span labels740

were converted into token-level labels.741

B.3 LLM Details742

Llama-3-8B-Instruct has 32 layers and 32 at-743

tention heads, while Qwen2.5-7B-Instruct has744

28 layers and 28 heads. Both models re-745

place standard Multi-Head Attention (MHA)746

with Grouped-Query Attention (GQA) (Ainslie747

et al., 2023), but Llama-3 uses more layers and748

heads than Qwen2.5.749

MHA assigns each query to a single key-value750

pair, whereas GQA allows multiple queries to751

share a key-value pair, reducing the number752

of trainable parameters. Llama-3-8B-Instruct753

processes 32 queries while reducing the number754

of keys and values to 8, so each key-value pair755

corresponds to 4 queries. In contrast, Qwen2.5-756

7B-Instruct processes 28 queries and reduces757

the number of keys and values to 4, making758

each key-value pair correspond to 7 queries.759

We conjecture these differences were re-760

flected in the different performances of Llama761

and Qwen in our method.762

B.4 Fine-Tuning763

Fine-tuning was conducted using LLaMA-764

Factory (Zheng et al., 2024)9, a library spe-765

cialized for fine-tuning LLMs. The fine-tuning766

parameters are shown in Table 9. The fine-767

tuned model predicts the hallucinated span by768

predicting character indexes. If a hallucination769

label changes within a single token in predic-770

tions, the entire token is considered as being771

hallucinated.772

9https://github.com/hiyouga/LLaMA-Factory

C Hallucination Detection 773

Examples 774

Table 12 presents hallucination detection re- 775

sults in the QA task. The Fine-tuning baseline 776

incorrectly judged the non-hallucinated span 777

as hallucinated and largely overlooked the truly 778

hallucinated span. In contrast, the proposed 779

method mostly correctly identified the halluci- 780

nated span. 781

Table 13 presents hallucination detection re- 782

sults in the summarisation task where the pro- 783

posed method failed. In the first example, the 784

proposed method overlooked the hallucinated 785

span. In the second example, the proposed 786

method mistook the non-hallucinated span as 787

hallucinated. 788
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QA Prompt
Original text (including tokens):
<|begin_of_text|><|start_header_id|>system<|end_header_id|>
You are an excellent system, generating output according to the instructions.
<|eot_id|><|start_header_id|>user<|end_header_id|>
Briefly answer the following question:
{question}
Bear in mind that your response should be strictly based on the following three
passages:
{passages}
In case the passages do not contain the necessary information to answer the question,
please reply with:
"Unable to answer based on given passages."
output:
<|eot_id|><|start_header_id|>assistant<|end_header_id|>
{answer} <|eot_id|>

Data2Text Prompt
Original text (including tokens):
<|begin_of_text|><|start_header_id|>system<|end_header_id|>
You are an excellent system, generating output according to the instructions.
<|eot_id|><|start_header_id|>user<|end_header_id|>
Instruction:
Write an objective overview about the following local business based only on the
provided structured data in the JSON format.
You should include details and cover the information mentioned in the customers’
review.
The overview should be 100 - 200 words. Don’t make up information.
Structured data:
{json_data}
Overview:
<|eot_id|><|start_header_id|>assistant<|end_header_id|>
{Converted text} <|eot_id|>

Summarisation Prompt
Original text (including tokens):
<|begin_of_text|><|start_header_id|>system<|end_header_id|>
You are an excellent system, generating output according to the instructions.
<|eot_id|><|start_header_id|>user<|end_header_id|>
Summarize the following news within {word count of the summary} words:
{text to summarize}
output:
<|eot_id|><|start_header_id|>assistant<|end_header_id|>
{summary} <|eot_id|>

Table 10: Prompts for RAGTruth (Using Llama-3-8B-Instruct)
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QA Prompt
Original text (including tokens):
<|im_start|>system
You are an excellent system, generating output according to the
instructions.<|im_end|>
<|im_start|>user
Briefly answer the following question:
{question}
Bear in mind that your response should be strictly based on the following three
passages:
{passages}
In case the passages do not contain the necessary information to answer the question,
please reply with:
"Unable to answer based on given passages."
output:<|im_end|>
<|im_start|>assistant
{answer}<|im_end|>

Data2Text Prompt
Original text (including tokens):
<|im_start|>system
You are an excellent system, generating output according to the
instructions.<|im_end|>
<|im_start|>user
Instruction:
Write an objective overview about the following local business based only on the
provided structured data in the JSON format.
You should include details and cover the information mentioned in the customers’
review.
The overview should be 100 - 200 words. Don’t make up information.
Structured data:
{json_data}
Overview:<|im_end|>
<|im_start|>assistant
{Converted text}<|im_end|>

Summarisation Prompt
Original text (including tokens):
<|im_start|>system
You are an excellent system, generating output according to the
instructions.<|im_end|>
<|im_start|>user
Summarize the following news within {word count of the summary} words:
{text to summarize}
output:<|im_end|>
<|im_start|>assistant
{summary}<|im_end|>

Table 11: Prompts for RAGTruth (Using Qwen2.5-7B-Instruct)
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Key Part of the Question
Briefly answer the following question: differences between elements, compounds, and
mixtures. Bear in mind that your response should be strictly based on the following
three passages: ... (Following this, three passages appear, but there is no information on the
bonding of elements or compounds. The content primarily focuses on mixtures.)
Ground Truth Label
... 3. Separation: Elements can be separated easily by physical means, while
separating compounds requires more complex methods like chemical reactions. It is
easy to physically separate the components of a mixture. 4. Bonding: Elements are
held together by covalent bonds, while compounds can have various types of bonds
(covalent, ionic, metallic, etc.). Mixtures do not have any bonds between their
components.
Oursraw
... 3. Separation: Elements can be separated easily by physical means, while
separating compounds requires more complex methods like chemical reactions. It is
easy to physically separate the components of a mixture. 4. Bonding: Elements are
held together by covalent bonds, while compounds can have various types of bonds
(covalent, ionic, metallic, etc.). Mixtures do not have any bonds between their
components.
Fine-tuning
... 3. Separation: Elements can be separated easily by physical means, while
separating compounds requires more complex methods like chemical reactions. It is
easy to physically separate the components of a mixture. 4. Bonding: Elements are
held together by covalent bonds, while compounds can have various types of bonds
(covalent, ionic, metallic, etc.). Mixtures do not have any bonds between their
components. (Incorrect detection in point 3 + incomplete detection in point 4. The discus-
sion on separation in point 3 is fully described in the original text.)

Table 12: Hallucination detection example (QA)
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Example 1
Key Part of the Target Sentence for Summarisation
... Doug Ducey signed legislation to allow Arizonans to get any lab test without a
doctor’s order. Freedom of information – always sounds like a good thing. ... (The
target sentence for summarisation contains no mention of Doug Ducey being the governor of Texas. In
fact, he was a former governor of Arizona, making this incorrect.)
Ground Truth Label
The article discusses the increasing trend of individuals getting tested for various
medical conditions without a prescription. Texas Governor Doug Ducey has signed
legislation allowing Arizonans to get any lab test they desire without consulting a
doctor first. ...
Oursraw
The article discusses the increasing trend of individuals getting tested for various
medical conditions without a prescription. Texas Governor Doug Ducey has signed
legislation allowing Arizonans to get any lab test they desire without consulting a
doctor first. ... (Detection failed)
Fine-tuning
The article discusses the increasing trend of individuals getting tested for various
medical conditions without a prescription. Texas Governor Doug Ducey has signed
legislation allowing Arizonans to get any lab test they desire without consulting a
doctor first. ...

Example 2
Key Part of the Target Sentence for summarisation
... Still, the average monthly benefit for retired workers rising by $59 to $1,907
will undoubtedly help retirees with lower and middle incomes to better cope with
inflation. ... ($1907-$59=$1848 increase)
Ground Truth Label
... Retired workers can expect an average monthly benefit of $1,907, up from $1,848.
...
Oursraw
... Retired workers can expect an average monthly benefit of $1,907, up from $1,848.
... (False detection)
Fine-tuning
... Retired workers can expect an average monthly benefit of $1,907, up from $1,848.
...

Table 13: Hallucination detection example (Summarisation)
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