
Batched Self-Consistency Improves LLM Relevance Assessment and
Ranking

Anonymous ACL submission

Abstract001

Given some information need, Large Language002
Models (LLMs) are increasingly used for candi-003
date text relevance assessment, typically using004
a one-by-one pointwise (PW) strategy where005
each LLM call evaluates one candidate at a006
time. Meanwhile, it has been shown that LLM007
performance can be improved through self-008
consistency: prompting the LLM to do the009
same task multiple times (possibly in perturbed010
ways) and then aggregating the responses. To011
take advantage of self-consistency, we hypothe-012
size that batched PW strategies, where mul-013
tiple passages are judged in one LLM call,014
are better suited than one-by-one PW methods015
since a larger input context can induce more016
diverse LLM sampling across self-consistency017
calls. We first propose several candidate batch-018
ing strategies to create prompt diversity across019
self-consistency calls through subset reselec-020
tion and permutation. We then test our batched021
PW methods on relevance assessment and022
ranking tasks against one-by-one PW and list-023
wise LLM ranking baselines with and without024
self-consistency, using three passage retrieval025
datasets and GPT-4o, Claude Sonnet 3, and026
Amazon Nova Pro. We find that batched PW027
methods outperform all baselines, and show028
that batching can greatly amplify the positive029
effects of self-consistency. For instance, on030
our legal search dataset, GPT-4o one-by-one031
PW ranking NDCG@10 improves only from032
44.9% to 46.8% without self-consistency vs.033
with it, while batched PW ranking improves034
from 43.8% to 51.3%, respectively.035

1 Introduction036

LLM relevance assessment and ranking have be-037

come two foundational tasks for agentic artificial038

intelligence (AI) and retrieval-augmented genera-039

tion (RAG) systems (Wang et al., 2024). Given040

an information need, existing LLM candidate rele-041

vance assessment methods typically use a one-by-042

one pointwise (PW) strategy where each LLM call043

evaluates one candidate at a time (Thomas et al., 044

2024; Upadhyay et al., 2024). While such methods 045

can avoid positional biases due to candidate order, 046

they prevent information sharing between multiple 047

candidates and can be computationally expensive, 048

requiring a separate LLM call for each candidate. 049

For LLM ranking, several techniques exist includ- 050

ing PW, listwise (LW) (Tang et al., 2024; Ma et al., 051

2023; Sun et al., 2023), and pairwise (Qin et al., 052

2024; Liusie et al., 2024) approaches, but only PW 053

methods can rank and generate absolute relevance 054

judgments. 055

Meanwhile, a simple technique for improving 056

LLM output generation quality has emerged called 057

self-consistency (Wang et al., 2023) which prompts 058

the LLM to do the same task multiple times (pos- 059

sibly with prompt perturbations) and then aggre- 060

gates the outputs – leveraging the variability in 061

LLM decoding. Motivated by these observations, 062

we propose that batched PW scoring, where multi- 063

ple passages receive relevance scores in one LLM 064

call, is especially well suited for self-consistency 065

methods. Compared to one-by-one PW appraoches, 066

we hypothesize that the larger context provided by 067

batched PW methods can induce more helpful vari- 068

ation between LLM self-consistency calls, as well 069

as benefit from diverse prompts created with vari- 070

ous candidate subsets and permutations. 071

We evaluate these batched PW methods against 072

one-by-one PW and LW techniques with and with- 073

out self-consistency using GPT-4o, Claude Sonnet 074

3, and Amazon Nova Pro on passage relevance as- 075

sessment and ranking tasks from three datsets. Our 076

contributions include: 077

• We propose several batching strategies (Figure 078

1) to diversify LLM self-consistency prompts 079

using various candidate subsets and permuta- 080

tions. 081

• We show that batching can greatly amplify 082

the positive effects of self-consistency. For 083

1



Figure 1: One-by-one PW methods (first pane) evaluate each candidate in a separate LLM call. LW methods (second
pane) prompt the LLM to rerank the candidate list but do not produce relevance judgments. All-in-one batched PW
methods (third pane) evaluate all candidates in each call while sub-batched PW methods (right pane) select a subset.
Self-consistency calls can repeat identical LLM calls, or use various candidate permutations (LW and batched PW
only), and/or different candidate subsets (sub-batched PW only).

instance, on legal search, GPT-4o one-by-084

one PW ranking NDCG@10 improves from085

44.9% without self-consistency to 46.8% with086

self-consistency – while the best batched087

PW ranking method improves from 43.8% to088

51.3%, respectively.089

• We find that large batches can introduce harm-090

ful position biases in all three LLMs, but these091

can be successfully mitigated by using smaller092

batches, shuffling, and self-consistency.093

• We observe that batched self-consistency PW094

methods outperform all LW and one-by-one095

PW methods with self-consistency.096

2 Related Work097

We briefly review existing LLM and non-LLM text098

relevance assessment and ranking techniques as099

well as emerging work on LLM self-consistency.100

2.1 Text Relevance Assessment and Ranking101

Given a query q, both non-generative and gen-102

erative approaches are widely used to rank or103

score candidate text spans in some collection104

{p1, · · · , pD} based on relevance to q. Non-neural, 105

sparse methods such as TF-IDF (Salton et al., 106

1975) and its probabilistic variant BM25 (Robert- 107

son et al., 2009) rely on syntactic token matches, 108

limiting their ability to capture semantic simi- 109

larity. Encoder-only LLM methods broadly in- 110

clude bi-encoders (Izacard et al., 2021; Gao and 111

Callan, 2021) which score using a similarity func- 112

tion (e.g. cosine similarity) between separately em- 113

bedded queries and passages, and cross-encoders 114

(Nogueira and Cho, 2019; Zhuang et al., 2023) 115

which jointly embed queries and passages to pre- 116

dict a relevance score. While these foundational 117

methods are critical for retrieving initial candidate 118

lists from large corpora, none of them are able to 119

benefit from self-consistency since they do not use 120

stochastic decoding or prompting. 121

Generative LLM-based methods typically con- 122

sist of PW, pairwise, and LW strategies. Standard 123

one-by-one PW and LW techniques (with and with- 124

out self consistency) are baselines discussed further 125

in sections 3.1.1 and 3.1.2, respectively. Pairwise 126

rankers (Qin et al., 2024; Liu et al., 2024) ask an 127

LLM which passage out of a pair (pi, pj) is more 128

2



relevant, but need a quadratic number of LLM calls129

relative to the number of candidates. There are130

also bubble-sort sliding-window based LW LLM131

rankers (Ma et al., 2023; Sun et al., 2023) requiring132

sequential LLM calls, but we instead focus on fully133

parallelizable methods.134

2.2 LLM Self-Consistency135

LLM self-consistency (Wang et al., 2023) involves136

prompting an LLM to do the same task multiple137

times (potentially with perturbed prompts) and then138

aggregating the outputs, improving response qual-139

ity by leveraging the stochasticity in LLM decod-140

ing. Multiple variations exist (Li et al., 2024), in-141

cluding using perturbations of few-shot examples142

to diversify prompts (Lu et al., 2022), and using143

heterogeneous LLM ensembles (Wan et al., 2024).144

Recent work (Tang et al., 2024; Hou et al., 2024) re-145

ported that self-consistency can improve LW LLM146

ranking, as discussed further in Section 3.1.2147

3 Methodology148

Figure 1 outlines the methods we study for LLM149

relevance assessment and ranking, all of which take150

as input a query q and an initial list of D candidate151

passages Lq = [p1, ..., pD]. All methods rerank the152

initial list, but only PW methods generate relevance153

predictions.154

PW Relevance Labels: In all PW methods, each155

LLM call generates a relevance score sq,p ∈ R156

between q and each passage p ∈ Lq. For ranking,157

passages are sorted in descending score order with158

ties broken using the order of the initial list Lq. We159

use the following 0-3 scale from the UMBRELLA160

open-source Bing prompt (Upadhyay et al., 2024),161

with our full prompt shown in Appendix C:162

• 3: The passage is dedicated to the query and163

contains the exact answer.164

• 2: The passage has some answer for the query,165

but the answer may be a bit unclear, or hidden166

amongst extraneous information.167

• 1: The passage seems related to the query but168

does not answer it.169

• 0: The passage has nothing to do with the170

query.171

Self-Consistency All our self-consistency meth-172

ods include each passage in exactly m LLM calls.173

In our PW self-consistency methods, each passage174

thus receives m scores {s1q,p, · · · , smq,p}, which are 175

aggregated into a final score sq,p by taking the 176

mean.1 Similarly, our LW methods aggregate m 177

output lists by minimizing Kendall-Tau distance, 178

as described further in Sec. 3.1.2. 179

3.1 Baselines 180

3.1.1 One-by-one Pointwise Methods 181

The first pane of Figure 1 shows one-by-one PW 182

methods (Thomas et al., 2024; Upadhyay et al., 183

2024; Törnberg, 2024), where each passage is 184

scored against the query in a separate LLM call. 185

While evaluating one candidate at a time avoids 186

inducing candidate order position biases, it also 187

prevents the LLM from seeing potentially helpful 188

context in other passages. Further, each passage 189

score requires a separate LLM call, which typically 190

leads to a very large number of calls – especially 191

with self-consistency. 192

3.1.2 Listwise Ranking Methods 193

LW ranking methods (Ma et al., 2023; Tang et al., 194

2024; Hou et al., 2024) are shown in the second 195

pane of Figure 1. 196

Standard LW: Standard LW ranking instructs 197

an LLM to rerank an input passage list in order of 198

relevance with respect to q, with our LW prompt 199

shown in Appendix C. While the LLM sees all 200

available passage context during a single inference, 201

no absolute relevance judgments are produced. 202

LW with Self-Consistency: LW ranking with 203

self-consistency (Tang et al., 2024; Hou et al., 204

2024) involves m reranking calls followed by a 205

rank aggregation of m output passage lists, which 206

can be done by minimizing the Kendall-Tau dis- 207

tance with the lists. Multiple exact and approximate 208

aggregation techniques exist, with our experiments 209

using the exact Kemeny rank aggregation linear 210

program (LP) of Tang et al.2 We test two LW self- 211

consistency variants: 212

1. Initial Order: Each of m LLM calls is iden- 213

tical and maintains the initial input list order. 214

2. Shuffled: The passage list is fully shuffled 215

before each LLM call. 216

1For ranking with integer 0-3 scores, mean aggregation
reduces the number of ties compared to majority voting.

2https://github.com/castorini/perm-sc

3



Figure 2: Effect of increasing self-consistency calls/passage (m) on PW relevance assessment quality (Legal
Search, Shallow). For all LLMs at m = 1 (no self-consistency), one-by-one PW is competitive, but by m = 15 it
underperforms batched PW by 5-10% AUC-PR. This shows that batching amplifies the benefits of self-consistency,
likely due to broader input contexts.

Figure 3: Legal Search, Deep (90 Total Psgs): effect of increasing m on relevance assessment quality. The
sub-batched methods (30 psgs/batch) perform very well, with the shuffling variants (STB and BTS) doing best. The
large batch (90 psgs/batch) all-in-one methods perform poorly for this range of m, addressed further in RQ2.

3.2 Batched PW Methods217

The right half of Figure 1 shows batched PW meth-218

ods in which multiple passages are jointly scored in219

each LLM call. This allows an LLM to see context220

from multiple passages at the same time and re-221

duces the total number of LLM calls required com-222

pared to one-by-one methods. We study the effects223

of diversifying passage subsets and permutations224

through several batching strategies, including all-225

in-one batching (c.f. Sec. 3.2.1) and sub-batching226

(c.f. Sec. 3.2.2).227

3.2.1 All-in-one228

All-in-one PW methods prompt the LLM to score229

all passages in a single batch,3 maximizing the230

context available to the model but also presenting231

3The LLM context window must be large enough to fit all
candidate passages, otherwise sub-batching (c.f. Sec 3.2.2) is
required.

it with the most complex task. We test two passage 232

ordering strategies: 233

1. Initial Order: The initial list order is kept, 234

giving m identical self-consistency calls. 235

2. Shuffled: The passage list is fully shuffled 236

before each self-consistency LLM call, giving 237

m calls with m random passage perturbations. 238

3.2.2 Sub-batched 239

Sub-batching methods select subsets of passages 240

for each batch, providing less context than all-in- 241

one batching but also asking the LLM to generate 242

fewer scores. We consider the following context 243

selection and permutation strategies: 244

1. Initial Order: To create B batches, the ini- 245

tial list is partitioned into B non-overlapping 246

intervals while maintaining its order (e.g., 247

[p1, · · · , p30] → [p1 · · · , p10], [p11 · · · , p20], 248

4



Table 1: AUCm, representing the AUC-PR at m self-consistency calls/passage, for PW relevance assessment
methods at m = 1 (no self-consistency) and m = 15. Increasing m improves all PW methods, but the batched PW
methods improve more, becoming the best methods at m = 15, likely due to their larger prompt contexts. The
highest AUC-PR for each m and LLM is in bold.

Legal Search DL-19 Covid
GPT-4o Sonnet Nova GPT-4o Sonnet Nova GPT-4o Sonnet Nova

Psg/ Psg AUC1/ AUC1/ AUC1/ AUC1/ AUC1/ AUC1/ AUC1/ AUC1/ AUC1/
Batch Order AUC15 AUC15 AUC15 AUC15 AUC15 AUC15 AUC15 AUC15 AUC15

Sh
al

lo
w

(3
0

ps
g)

1 – 32 / 41 24 / 28 24 / 29 39 / 52 27 / 31 29 / 33 70 / 78 68 / 73 68 / 77
10 Init. 31 / 44 22 / 27 27 / 33 34 / 51 25 / 33 32 / 40 70 / 77 63 / 70 68 / 74

(sub-batch) STB 31 / 46 22 / 38 25 / 39 39 / 57 25 / 41 30 / 47 69 / 80 65 / 77 68 / 79
BTS 31 / 45 23 / 35 25 / 36 39 / 55 25 / 41 32 / 46 69 / 79 63 / 75 65 / 78

30 Init. 32 / 45 23 / 27 27 / 37 46 / 55 26 / 35 30 / 44 69 / 78 63 / 69 63 / 74
(all psgs) Shuf. 30 / 45 20 / 32 24 / 38 37 / 58 24 / 41 31 / 53 69 / 80 58 / 74 65 / 77

D
ee

p
(9

0
ps

g)

1 – 20 / 29 15 / 20 15 / 20 34 / 51 23 / 28 25 / 31 63 / 72 62 / 68 62 / 70
30 Init. 20 / 34 13 / 21 18 / 28 30 / 49 20 / 30 29 / 40 64 / 75 55 / 67 60 / 72

(sub-batch) STB 20 / 36 14 / 27 17 / 31 32 / 52 19 / 40 23 / 42 64 / 77 56 / 73 60 / 75
BTS 22 / 36 14 / 26 17 / 29 29 / 52 18 / 37 25 / 44 64 / 77 55 / 72 60 / 75

90 Init. 16 / 26 11 / 16 13 / 20 22 / 48 16 / 33 23 / 37 52 / 67 48 / 57 45 / 54
(all psg) Shuf. 14 / 29 11 / 21 13 / 20 22 / 50 15 / 42 19 / 44 53 / 73 45 / 65 46 / 60

[p21, · · · , p30], where pi is the i’th passage in249

the initial list). As shown in the top right of250

Figure 1, self-consistency calls for each sub-251

batch are identical, giving this sub-batching252

strategy the least diversity in LLM sampling.253

2. Shuffled-then-Batched (STB): The passage254

list is fully shuffled and then split into B255

batches before each LLM call. When self-256

consistency is used, STB creates the most di-257

verse range of passage subsets and permuta-258

tions across LLM calls.259

3. Batched-then-Shuffled (BTS): The initial260

list is first divided into B intervals, as in Ini-261

tial Order Sub-batching above, and then each262

batch b is fully shuffled before each LLM263

call. While BTS attempts to mitigate position264

bias through shuflling, the passage mixture265

for a given batch remains constant across self-266

consistency calls, making its LLM sampling267

less diverse than STB.268

4 Experimental Setup269

We evaluate the effects of batching and self-270

consistency on the relevance assessment and rank-271

ing abilities of three LLMs, namely GPT-4o272

(128K), Sonnet 3 (200K), and Amazon Nova Pro273

(300K) at temperature 1 across three passage re-274

trieval datasets, releasing anonymized code.4275

Self-consistency: The tested number of self-276

consistency calls per passage, m, ranges from 1277

4https://anonymous.4open.science/r/batched-sc-emnlp/

(i.e., no self-consistency) to 15. We ensure that for 278

each query, each passage appears in exactly m calls 279

for all LLM methods. 280

4.1 Passage Relevance Assessment and 281

Ranking Tasks 282

Each passage retrieval task contains a set of queries 283

Q, a corpus of passages D, and a relevance la- 284

bel yq,p ∈ R for each query-passage pair. For 285

each q, we also have an list of D passages Lq = 286

[p1, · · · , pD] returned by some initial retrieval algo- 287

rithm (e.g., BM25, dense retrieval). 288

Metrics: We use NDCG@10 to evaluate LLM 289

ranking quality. We treat relevance assessment 290

(PW methods only) as a binary classification task, 291

first converting each LLM score sq,p ∈ [0, 3] to a 292

relevance probability as p(ŷq,p = 1) = sq,p/3, and 293

then using the area under the precision recall curve 294

(AUC-PR) for evaluation.5 295

Shallow vs. Deep Search To study the effect 296

of the total number of passages evaluated, we test 297

a short (D = 30) and long (D = 90) initial list 298

length in what we call shallow and deep search, 299

respectively. All sub-batching methods split the 300

initial list into three equal sized batches (i.e., 10 301

and 30 passages per batch for shallow and deep 302

search, respectively). The longest resulting batch 303

(90 TREC Covid passages) is roughly 24K words – 304

well within the context limits of all three LLMs. 305

5AUC-PR is preferred to AUC-ROC for imbalanced data
(Saito and Rehmsmeier, 2015), and IR datasets are highly
imbalanced.

5



4.2 Datasets306

Our evaluation includes two well-known open-307

source datasets, TREC DL-196 and TREC Covid308

(Thakur et al., 2021) with BM25 used to retrieve309

the initial passage list Lq for each q. We also test310

a third, closed-source dataset from a large legal311

technology company which we call Legal Search.312

Legal Search comprises 100 legal queries and pas-313

sages chunked from 100,000 proprietary legal doc-314

uments and uses the output of a multi-stage indus-315

trial retrieval pipeline to retrieve Lq. Using both316

open- and closed-source data allows us to examine317

whether our findings generalize between data that318

will have been seen by the LLMs during pretraining319

and data which has not (Törnberg, 2024).320

5 Experimental Results321

5.1 RQ1: Effects of Batching and322

Self-Consistency on Relevance Assessment323

Figures 2 and 3 and Table 1 show the effects of324

increasing the number of self-consistency LLM325

calls/passage (m) from 1 (i.e. no self-consistency)326

to 15 on relevance assessment performance (AUC-327

PR), with more plots shown in Appendix A. While328

one-by-one PW methods are competitive at m = 1,329

they are always outperformed by a batched PW330

method at m = 15.331

Batching can amplify the benefits of self-332

consistency: Though increasing the number of333

self-consistency calls greatly improved all PW334

methods, batched methods improved considerably335

more than one-by-one methods. We conjecture this336

effect may be due to the larger context created by337

batching leading to more diverse LLM sampling338

across multiple self-consistency calls. For instance,339

for GPT-4o on Legal Search (Shallow), one-by-one340

PW improved from 32% AUC-PR at m = 1 to 41%341

at m = 15 (+9%), while all-in-one PW (Shuffled)342

improved from 30% to 45% (+15%), respectively.343

Remarkably, for our shallow setting (D = 30),344

all-in-one PW uses 30 times fewer LLM calls per345

query than one-by-one PW.346

Shuffling is helpful for high-enough m: At347

m = 15, the best performance acoss all datasets348

and LLMs was always achieved by a batched349

method with shuffling, which can likely be at-350

tributed to more diverse LLM sampling with re-351

duced position bias across self-consistency calls.352

6https://github.com/microsoft/TREC-2019-Deep-
Learning

Sub-batching is useful for deep search: While 353

all batched self-consistency methods performed 354

well in shallow search (30 passages), for deep 355

search (90 passages), the all-in-one methods per- 356

formed poorly – far worse than the sub-batched 357

methods (green lines in Figure 3). RQ2 further ex- 358

plores why large batches of 90 passages degraded 359

performance at the values of m tested. 360

5.2 RQ2: Effects of Position Biases 361

Before considering the effect of the initial passage 362

order (RQ3), we first ask whether batched LLM 363

scoring exhibits consistent positional biases (e.g., 364

the first few passages in a batch are scored higher) 365

across random permutations of a given passage list. 366

Addressing this question, Figure 4 shows LLM 367

scores versus passage positions in a batch, with 368

each passage seen by an LLM in m = 15 random 369

permutations (90 total passages). 370

Figure 4: Mean relevant and irrelevant LLM scores with
sub-batches of 30 psgs/batch (left) vs. all-in-one batches
of 90 psgs/batch (right). The sub-batches are relatively
consistent in discriminating relevance throughout the
batch, while the all-in-one batches lose most of their
discriminative power towards the tail of the batch.

6



Large batches have harmful position biases that371

can be mitigated by sub-batching: The harmful372

biases in the large 90 passage batches in Figure 4373

are obvious: the capacity to discriminate between374

relevant vs. non-relevant passages is almost gone375

in the area towards the tail of the batch, with GPT-376

4o showing a clear lost-in-the-middle effect (Liu377

et al., 2024). By comparison, sub-batching with 30378

passages per batch is far more consistent in being379

able to discriminate relevance throughout the batch,380

explaining its far superior performance on deep381

search.382

5.3 RQ3: Effects of Initial Passage Order383

Next we investigate the potential positional biases384

caused by the initial list order Lq. Figure 5 com-385

pares several batched methods that use the initial386

order to one-by-one LLM scoring, which does not387

depend on the order of Lq.388

Figure 5: Mean LLM scores for one-by-one PW versus
batched PW methods with initial order. For all-in-one
PW methods, GPT-4o tracks much more closely to one-
by-one PW than Sonnet and Nova Pro. Sub-batching
with initial order creates artificial cycles and discontinu-
ities at batch junctions.

GPT-4o has the least batching bias: For GPT 389

4o all-in-one PW in Figure 5, though the front and 390

tail of the batch have slightly higher scores, overall, 391

the batched scores track quite closely to one-by- 392

one PW scores. In contrast, batched Sonnet and 393

Nova Pro scores are typically far lower than their 394

respective one-by-one scores everywhere except 395

at the very front of the batch, helping explain the 396

weakness of these LLMs. 397

Sub-batching with initial order can induce cy- 398

cles and discontinuities The RHS of Figure 5 399

shows that sub-batching with initial order can cause 400

score peaks at the start of every sub-batch, creat- 401

ing discontinuities at batch junctions, and inducing 402

cyclical score fluctuations. This explains why sub- 403

batching with the initial order performs worse than 404

the shuffling variants. 405

5.4 RQ4: Ranking Performance of Batched 406

Self Consistency Methods 407

Ranking performance in terms of NDCG@10 for 408

all LLM methods is shown in Tables 2 and 3 for 409

shallow and deep search, respectively, with detailed 410

results on the effects of m in Appendix B. 411

Batching amplifies self-consistency benefits for 412

ranking: Without self consistency (m = 1), one- 413

by-one PW and LW (initial order) methods are 414

competitive rankers, but adding self-consistency 415

helps batched PW methods more than it helps these 416

baselines, making the batched PW methods with 417

m = 15 the strongest rankers overall. For instance, 418

as seen in Table 3 for Legal Search (deep), GPT- 419

4o one-by-one PW ranking improves from 44.9% 420

NDCG@10 with m = 1 to 46.8% with m = 15, 421

while sub-batched (STB) PW ranking improves 422

from 43.8% to 51.3%, respectively (while needing 423

30 times fewer LLM calls). 424

STB (m = 15) performs best: Sub-batched 425

STB methods with m = 15 performed best over- 426

all, likely due to creating the broadest range of 427

contexts for LLM sampling by creating the most 428

diverse passage permutations and subsets. All-in- 429

one batched PW methods (which needed 3 times 430

fewer LLM calls than STB) with m = 15 were 431

also effective for shallow search (30 passages), but 432

under-performed for deep search (90 passages), 433

likely due to the harmful large-batch biases seen in 434

Figure 4. 435

7



Table 2: NDCG@10 (%) for shallow reranking (30 total passages) for all LW and PW LLM methods with m = 1
(i.e., no self-consistency) m = 15 (i.e., 15 self-consistency calls/psg). LW and one-by-one PW methods are
competitive at m = 1 but do not benefit as strongly from self-consistency as batched PW methods, causing the later
to achieve the best NDCG@10 at m = 15.

Psgs/ Psg Legal Search DL-19 Covid
Method Batch m Order GPT-4o Sonnet Nova GPT-4o Sonnet Nova GPT-4o Sonnet Nova

Initial – – – 37.2 37.2 37.2 50.6 50.6 50.6 59.5 59.5 59.5

LW 30
1

Init. 46.2 41.6 44.5 65.9 65.2 61.9 73.4 66.4 67.9
Shuf. 13.9 12.6 13.8 34.6 36.0 34.6 45.7 47.5 48.3

15
Init. 48.9 45.1 46.7 67.4 66.7 63.6 74.6 70.5 70.3
Shuf. 13.9 15.3 13.3 33.0 30.4 30.8 45.0 47.4 45.2

PW

1
1 – 45.6 42.7 41.7 63.3 63.4 64.1 75.2 73.9 75.7
15 – 46.5 44.5 43.0 67.8 65.4 64.7 76.6 76.0 78.8

10

1
Init. 45.5 40.2 42.4 65.6 63.5 65.9 75.6 72.7 75.8
STB 45.5 38.5 42.8 67.5 63.0 64.8 74.7 74.6 75.0
BTS 45.3 39.2 42.1 66.6 63.0 67.0 75.4 73.3 75.5

15
Init. 48.5 38.9 43.6 67.8 64.9 67.4 77.9 74.2 76.6
STB 50.0 45.4 48.2 68.6 67.8 68.0 80.7 79.6 80.4
BTS 48.1 43.1 45.4 68.9 67.0 68.8 78.7 79.5 79.6

30
1

Init. 46.1 42.8 43.6 66.5 63.4 65.6 76.1 73.2 73.6
Shuf. 44.5 34.8 43.9 66.7 64.1 64.3 75.6 69.5 73.3

15
Init. 49.4 41.8 46.9 69.3 65.6 68.0 77.9 74.3 76.7
Shuf. 50.0 41.3 48.3 68.6 67.7 67.6 80.3 77.2 79.1

Table 3: NDCG@10 (%) for deep reranking (90 total passages) for all LW and PW methods at m ∈ {1, 15}.
Sub-batched methods (30 psg/batch) perform best at m = 15 with the STB variant typically achieving the highest
NDCG@10, likely due having the most diverse batching strategy and avoiding large-batch position biases.

Psgs/ Psg Legal Search DL-19 Covid
Method Batch m Order GPT-4o Sonnet Nova GPT-4o Sonnet Nova GPT-4o Sonnet Nova

Initial – – – 37.2 37.2 37.2 50.6 50.6 50.6 59.5 59.5 59.5

LW 90
1

Init. 46.0 41.1 36.4 70.3 64.6 56.1 76.2 67.1 64.1
Shuf. 9.4 8.6 9.4 23.5 25.5 23.8 42.0 39.4 39.5

15
Init. 48.4 42.5 42.4 72.5 66.7 67.2 65.2 60.1 63.3
Shuf. 13.2 12.7 12.8 26.3 25.4 25.7 44.5 45.2 44.3

PW

1
1 – 44.9 41.8 41.7 69.8 66.4 67.7 78.9 77.8 80.0
15 – 46.8 43.5 42.9 73.6 68.6 69.3 80.1 79.8 83.3

30

1
Init. 43.6 38.2 42.8 72.3 62.0 68.7 82.9 72.2 75.6
STB 43.8 34.9 44.7 70.7 63.2 68.7 79.8 72.6 78.2
BTS 40.4 33.7 42.7 69.5 64.0 67.6 81.6 71.6 75.2

15
Init. 47.1 36.3 44.1 71.0 66.0 69.5 83.8 77.4 79.9
STB 51.3 41.3 49.8 76.3 71.9 72.1 86.1 82.1 84.3
BTS 50.6 39.2 46.7 73.9 70.0 70.2 86.3 82.5 83.5

90
1

Init. 43.5 37.7 41.9 66.9 62.2 64.4 73.8 71.8 68.6
Shuf. 29.0 26.4 32.7 55.4 52.5 51.3 63.3 61.3 59.0

15
Init. 48.5 39.7 45.0 72.1 66.7 66.3 79.3 77.0 72.5
Shuf. 45.1 28.4 40.4 73.0 61.2 65.9 82.6 71.8 74.4

LW ranking with the initial list order is compet-436

itive with one-by-one PW ranking: When the437

initial list order Lq is kept, LW ranking is competi-438

tive with one-by-one PW ranking, but when Lq is439

shuffled, LW methods perform very poorly. Upon440

examining the LLM outputs, we found that for mul-441

tiple shuffled input lists [p1, p2, ...] where pi is the442

i’th passage in the batch (i.e., a random passage),443

the LLM often generated the same rankings (e.g.,444

[p3, p12, p13, ...]), thus using only the input passage445

position and not the content. This effect did not446

occur when initial order was kept.447

6 Conclusion 448

We propose that batched PW LLM relevance as- 449

sessment and ranking, where multiple candidates 450

are judged in one LLM call, is especially well- 451

suited for self-consistency. Through multiple ex- 452

periments, we show that batching amplifies self- 453

consistency benefits, leading to SOTA performance. 454

We conjecture this is because large, diverse input 455

contexts (enabled by candidate batching) increase 456

the diversity of LLM sampling over multiple self- 457

consistency calls. 458

8



Limitations459

The main limitation of our work are the computa-460

tional resources required, since LLM relevance as-461

sessment and ranking is expensive computationally.462

We thus only tested a range of m ∈ {1, · · · , 15} for463

the number of self-consistency calls, even though464

higher levels of m would have added information to465

our results. Also due to computational limitations,466

we only tested three LLMs (GPT-4o, Claude Son-467

net 3, and Amazon Nova Pro) across three datasets468

(TREC DL-19, TREC Covid (Thakur et al., 2021),469

and Legal Search), though it would be interesting470

to test an even wider range of models and datasets.471

Simlarly, we were limited to testing four batch sizes472

∈ {1, 10, 30, 90} across five batching strategies473

(c.f. Figure 1) and two levels of search: shallow474

(30 initial passages) and deep (90 initial passages).475

As another limitation, we note that LLMs likely476

will have seen open-source datasets such as TREC477

DL-19 and TREC Covid during pretraining, which478

is why using the third, closed-source Legal Search479

dataset is very important in our experiments. For-480

tunately, we are able to observe that our results481

generalize across both the open-source and closed-482

source data.483

Finally, we must point out several risks of us-484

ing LLMs for ranking and relevance assessment at485

scale. Firstly, LLMs can amplify societal biases486

that they will have learned during their pretraining487

process, creating a risk for harm. Secondly, LLMs488

carry a risk of “jail-breaking", or malicious prompt489

injection, creating safety risks. Finally, LLMs may490

provide incorrect judgments on passage relevance,491

which could have severely negative effects for high-492

stakes applications.493

References494

Luyu Gao and Jamie Callan. 2021. Condenser: a pre-495
training architecture for dense retrieval. In Proceed-496
ings of the 2021 Conference on Empirical Methods497
in Natural Language Processing, pages 981–993.498

Yupeng Hou, Junjie Zhang, Zihan Lin, Hongyu Lu,499
Ruobing Xie, Julian McAuley, and Wayne Xin Zhao.500
2024. Large language models are zero-shot rankers501
for recommender systems. In European Conference502
on Information Retrieval, pages 364–381. Springer.503

Gautier Izacard, Mathilde Caron, Lucas Hosseini, Se-504
bastian Riedel, Piotr Bojanowski, Armand Joulin,505
and Edouard Grave. 2021. Unsupervised dense in-506
formation retrieval with contrastive learning. arXiv507
preprint arXiv:2112.09118.508

Junyou Li, Qin Zhang, Yangbin Yu, Qiang Fu, and 509
Deheng Ye. 2024. More agents is all you need. arXiv 510
preprint arXiv:2402.05120. 511

Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paran- 512
jape, Michele Bevilacqua, Fabio Petroni, and Percy 513
Liang. 2024. Lost in the middle: How language mod- 514
els use long contexts. Transactions of the Association 515
for Computational Linguistics, 12:157–173. 516

Adian Liusie, Potsawee Manakul, and Mark Gales. 2024. 517
Llm comparative assessment: Zero-shot nlg evalua- 518
tion through pairwise comparisons using large lan- 519
guage models. In Proceedings of the 18th Confer- 520
ence of the European Chapter of the Association for 521
Computational Linguistics (Volume 1: Long Papers), 522
pages 139–151. 523

Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel, 524
and Pontus Stenetorp. 2022. Fantastically ordered 525
prompts and where to find them: Overcoming few- 526
shot prompt order sensitivity. In Proceedings of the 527
60th Annual Meeting of the Association for Compu- 528
tational Linguistics (Volume 1: Long Papers), pages 529
8086–8098. 530

Xueguang Ma, Xinyu Zhang, Ronak Pradeep, and 531
Jimmy Lin. 2023. Zero-shot listwise document 532
reranking with a large language model. arXiv 533
preprint arXiv:2305.02156. 534

Rodrigo Nogueira and Kyunghyun Cho. 2019. Pas- 535
sage re-ranking with bert. arXiv preprint 536
arXiv:1901.04085. 537

Zhen Qin, Rolf Jagerman, Kai Hui, Honglei Zhuang, 538
Junru Wu, Le Yan, Jiaming Shen, Tianqi Liu, Jialu 539
Liu, Donald Metzler, and 1 others. 2024. Large lan- 540
guage models are effective text rankers with pairwise 541
ranking prompting. In Findings of the Association 542
for Computational Linguistics: NAACL 2024, pages 543
1504–1518. 544

Stephen Robertson, Hugo Zaragoza, and 1 others. 2009. 545
The probabilistic relevance framework: Bm25 and 546
beyond. Foundations and Trends® in Information 547
Retrieval, 3(4):333–389. 548

Takaya Saito and Marc Rehmsmeier. 2015. The 549
precision-recall plot is more informative than the roc 550
plot when evaluating binary classifiers on imbalanced 551
datasets. PloS one, 10(3):e0118432. 552

Gerard Salton, Anita Wong, and Chung-Shu Yang. 1975. 553
A vector space model for automatic indexing. Com- 554
munications of the ACM, 18(11):613–620. 555

Weiwei Sun, Lingyong Yan, Xinyu Ma, Shuaiqiang 556
Wang, Pengjie Ren, Zhumin Chen, Dawei Yin, and 557
Zhaochun Ren. 2023. Is chatgpt good at search? 558
investigating large language models as re-ranking 559
agents. In Proceedings of the 2023 Conference on 560
Empirical Methods in Natural Language Processing, 561
pages 14918–14937. 562

9



Raphael Tang, Crystina Zhang, Xueguang Ma, Jimmy563
Lin, and Ferhan Türe. 2024. Found in the middle:564
Permutation self-consistency improves listwise rank-565
ing in large language models. In Proceedings of566
the 2024 Conference of the North American Chap-567
ter of the Association for Computational Linguistics:568
Human Language Technologies (Volume 1: Long Pa-569
pers), pages 2327–2340.570

Nandan Thakur, Nils Reimers, Andreas Rücklé, Ab-571
hishek Srivastava, and Iryna Gurevych. 2021. Beir:572
A heterogenous benchmark for zero-shot evalua-573
tion of information retrieval models. arXiv preprint574
arXiv:2104.08663.575

Paul Thomas, Seth Spielman, Nick Craswell, and576
Bhaskar Mitra. 2024. Large language models can ac-577
curately predict searcher preferences. In Proceedings578
of the 47th International ACM SIGIR Conference on579
Research and Development in Information Retrieval,580
pages 1930–1940.581

Petter Törnberg. 2024. Best practices for text anno-582
tation with large language models. arXiv preprint583
arXiv:2402.05129.584

Shivani Upadhyay, Ronak Pradeep, Nandan Thakur,585
Nick Craswell, and Jimmy Lin. 2024. Umbrela: Um-586
brela is the (open-source reproduction of the) bing587
relevance assessor. arXiv preprint arXiv:2406.06519.588

Fanqi Wan, Xinting Huang, Deng Cai, Xiaojun Quan,589
Wei Bi, and Shuming Shi. 2024. Knowledge fu-590
sion of large language models. arXiv preprint591
arXiv:2401.10491.592

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao593
Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai Tang,594
Xu Chen, Yankai Lin, and 1 others. 2024. A survey595
on large language model based autonomous agents.596
Frontiers of Computer Science, 18(6):186345.597

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le,598
Ed H Chi, Sharan Narang, Aakanksha Chowdhery,599
and Denny Zhou. 2023. Self-consistency improves600
chain of thought reasoning in language models. In601
The Eleventh International Conference on Learning602
Representations.603

Honglei Zhuang, Zhen Qin, Rolf Jagerman, Kai Hui,604
Ji Ma, Jing Lu, Jianmo Ni, Xuanhui Wang, and605
Michael Bendersky. 2023. Rankt5: Fine-tuning t5606
for text ranking with ranking losses. In Proceedings607
of the 46th International ACM SIGIR Conference on608
Research and Development in Information Retrieval,609
pages 2308–2313.610

A Appendix A: Relevance Assessment611

Quality vs Scores per Passage612

Figures 6 and 7 bellow show the effects of m on613

AUC-PR of one-by-one PW and batched PW meth-614

ods for all datasets and LLMs for shallow and deep615

search, respectively.616

B Appendix B: NDCG@10 vs Scores per 617

Passage 618

Figures 8 and 9 bellow show the effects of m on 619

NDCG@10 of one-by-one PW and batched PW 620

methods for all datasets and LLMs for shallow and 621

deep search, respectively. 622

10



Figure 6: Number of LLM Scores/Passage (m) vs. AUC-PR, Shallow (30 Total Passages)

11



Figure 7: Number of LLM Scores/Passage (m) vs. AUC-PR, Deep (90 Total Passages)

12



Figure 8: Number of LLM Scores/Passage (m) vs. NDCG@10, Shallow (30 Total Passages)

13



Figure 9: Number of LLM Scores/Passage (m) vs.NDCG@10, Deep (90 Total Passages)

14



C Appendix C: Prompt Templates623

Figures 10 and 11 show the full prompts used for624

our PW and LW implementations.625

Figure 10: The pointwise relevance assessment prompt,
based on the relevance label instructions from the UM-
BRELLA open source reproduction of the Bing rele-
vance assessment prompt (Upadhyay et al., 2024).

Figure 11: The listwise ranking prompt.

15


	Introduction
	Related Work
	Text Relevance Assessment and Ranking
	LLM Self-Consistency

	Methodology
	Baselines
	One-by-one Pointwise Methods
	Listwise Ranking Methods

	Batched PW Methods
	All-in-one
	Sub-batched


	Experimental Setup
	Passage Relevance Assessment and Ranking Tasks
	Datasets

	Experimental Results
	RQ1: Effects of Batching and Self-Consistency on Relevance Assessment
	RQ2: Effects of Position Biases
	RQ3: Effects of Initial Passage Order
	RQ4: Ranking Performance of Batched Self Consistency Methods

	Conclusion
	Appendix A: Relevance Assessment Quality vs Scores per Passage
	Appendix B: NDCG@10 vs Scores per Passage
	Appendix C: Prompt Templates

