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Abstract

Given some information need, Large Language
Models (LLMs) are increasingly used for candi-
date text relevance assessment, typically using
a one-by-one pointwise (PW) strategy where
each LLM call evaluates one candidate at a
time. Meanwhile, it has been shown that LLM
performance can be improved through self-
consistency: prompting the LLM to do the
same task multiple times (possibly in perturbed
ways) and then aggregating the responses. To
take advantage of self-consistency, we hypothe-
size that batched PW strategies, where mul-
tiple passages are judged in one LLM call,
are better suited than one-by-one PW methods
since a larger input context can induce more
diverse LLM sampling across self-consistency
calls. We first propose several candidate batch-
ing strategies to create prompt diversity across
self-consistency calls through subset reselec-
tion and permutation. We then test our batched
PW methods on relevance assessment and
ranking tasks against one-by-one PW and list-
wise LLM ranking baselines with and without
self-consistency, using three passage retrieval
datasets and GPT-40, Claude Sonnet 3, and
Amazon Nova Pro. We find that batched PW
methods outperform all baselines, and show
that batching can greatly amplify the positive
effects of self-consistency. For instance, on
our legal search dataset, GPT-40 one-by-one
PW ranking NDCG@ 10 improves only from
44.9% to 46.8% without self-consistency vs.
with it, while batched PW ranking improves
from 43.8% to 51.3%, respectively.

1 Introduction

LLM relevance assessment and ranking have be-
come two foundational tasks for agentic artificial
intelligence (AI) and retrieval-augmented genera-
tion (RAG) systems (Wang et al., 2024). Given
an information need, existing LLM candidate rele-
vance assessment methods typically use a one-by-
one pointwise (PW) strategy where each LLM call

evaluates one candidate at a time (Thomas et al.,
2024; Upadhyay et al., 2024). While such methods
can avoid positional biases due to candidate order,
they prevent information sharing between multiple
candidates and can be computationally expensive,
requiring a separate LLM call for each candidate.
For LLM ranking, several techniques exist includ-
ing PW, listwise (LW) (Tang et al., 2024; Ma et al.,
2023; Sun et al., 2023), and pairwise (Qin et al.,
2024; Liusie et al., 2024) approaches, but only PW
methods can rank and generate absolute relevance
judgments.

Meanwhile, a simple technique for improving
LLM output generation quality has emerged called
self-consistency (Wang et al., 2023) which prompts
the LLM to do the same task multiple times (pos-
sibly with prompt perturbations) and then aggre-
gates the outputs — leveraging the variability in
LLM decoding. Motivated by these observations,
we propose that batched PW scoring, where multi-
ple passages receive relevance scores in one LLM
call, is especially well suited for self-consistency
methods. Compared to one-by-one PW appraoches,
we hypothesize that the larger context provided by
batched PW methods can induce more helpful vari-
ation between LLM self-consistency calls, as well
as benefit from diverse prompts created with vari-
ous candidate subsets and permutations.

We evaluate these batched PW methods against
one-by-one PW and LW techniques with and with-
out self-consistency using GPT-40, Claude Sonnet
3, and Amazon Nova Pro on passage relevance as-
sessment and ranking tasks from three datsets. Our
contributions include:

* We propose several batching strategies (Figure
1) to diversify LLM self-consistency prompts
using various candidate subsets and permuta-
tions.

* We show that batching can greatly amplify
the positive effects of self-consistency. For
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Figure 1: One-by-one PW methods (first pane) evaluate each candidate in a separate LLM call. LW methods (second
pane) prompt the LLM to rerank the candidate list but do not produce relevance judgments. All-in-one batched PW
methods (third pane) evaluate all candidates in each call while sub-batched PW methods (right pane) select a subset.
Self-consistency calls can repeat identical LLM calls, or use various candidate permutations (LW and batched PW
only), and/or different candidate subsets (sub-batched PW only).

instance, on legal search, GPT-40 one-by-
one PW ranking NDCG @ 10 improves from
44.9% without self-consistency to 46.8% with
self-consistency — while the best batched
PW ranking method improves from 43.8% to
51.3%, respectively.

* We find that large batches can introduce harm-
ful position biases in all three LLMs, but these
can be successfully mitigated by using smaller
batches, shuffling, and self-consistency.

* We observe that batched self-consistency PW
methods outperform all LW and one-by-one
PW methods with self-consistency.

2 Related Work

We briefly review existing LLM and non-LLM text
relevance assessment and ranking techniques as
well as emerging work on LLM self-consistency.

2.1 Text Relevance Assessment and Ranking

Given a query ¢, both non-generative and gen-
erative approaches are widely used to rank or
score candidate text spans in some collection

{p1,- -+, pp} based on relevance to q. Non-neural,
sparse methods such as TF-IDF (Salton et al.,
1975) and its probabilistic variant BM25 (Robert-
son et al., 2009) rely on syntactic token matches,
limiting their ability to capture semantic simi-
larity. Encoder-only LLM methods broadly in-
clude bi-encoders (Izacard et al., 2021; Gao and
Callan, 2021) which score using a similarity func-
tion (e.g. cosine similarity) between separately em-
bedded queries and passages, and cross-encoders
(Nogueira and Cho, 2019; Zhuang et al., 2023)
which jointly embed queries and passages to pre-
dict a relevance score. While these foundational
methods are critical for retrieving initial candidate
lists from large corpora, none of them are able to
benefit from self-consistency since they do not use
stochastic decoding or prompting.

Generative LLM-based methods typically con-
sist of PW, pairwise, and LW strategies. Standard
one-by-one PW and LW techniques (with and with-
out self consistency) are baselines discussed further
in sections 3.1.1 and 3.1.2, respectively. Pairwise
rankers (Qin et al., 2024; Liu et al., 2024) ask an
LLM which passage out of a pair (p;, p;) is more



relevant, but need a quadratic number of LLM calls
relative to the number of candidates. There are
also bubble-sort sliding-window based LW LLM
rankers (Ma et al., 2023; Sun et al., 2023) requiring
sequential LLM calls, but we instead focus on fully
parallelizable methods.

2.2 LLM Self-Consistency

LLM self-consistency (Wang et al., 2023) involves
prompting an LLM to do the same task multiple
times (potentially with perturbed prompts) and then
aggregating the outputs, improving response qual-
ity by leveraging the stochasticity in LLM decod-
ing. Multiple variations exist (Li et al., 2024), in-
cluding using perturbations of few-shot examples
to diversify prompts (Lu et al., 2022), and using
heterogeneous LLM ensembles (Wan et al., 2024).
Recent work (Tang et al., 2024; Hou et al., 2024) re-
ported that self-consistency can improve LW LLM
ranking, as discussed further in Section 3.1.2

3 Methodology

Figure 1 outlines the methods we study for LLM
relevance assessment and ranking, all of which take
as input a query ¢ and an initial list of D candidate
passages LY = [p1, ..., pp]. All methods rerank the
initial list, but only PW methods generate relevance
predictions.

PW Relevance Labels: In all PW methods, each
LLM call generates a relevance score s;;, € R
between ¢ and each passage p € L?. For ranking,
passages are sorted in descending score order with
ties broken using the order of the initial list L. We
use the following 0-3 scale from the UMBRELLA
open-source Bing prompt (Upadhyay et al., 2024),
with our full prompt shown in Appendix C:

* 3: The passage is dedicated to the query and
contains the exact answer.

* 2: The passage has some answer for the query,
but the answer may be a bit unclear, or hidden
amongst extraneous information.

¢ 1: The passage seems related to the query but
does not answer it.

* (0: The passage has nothing to do with the
query.
Self-Consistency All our self-consistency meth-

ods include each passage in exactly m LLM calls.
In our PW self-consistency methods, each passage

. 1 m .
thus receives m scores {s, ,, -, sy}, }» which are

aggregated into a final score s, by taking the
mean.! Similarly, our LW methods aggregate m
output lists by minimizing Kendall-Tau distance,
as described further in Sec. 3.1.2.

3.1 Baselines

3.1.1 One-by-one Pointwise Methods

The first pane of Figure 1 shows one-by-one PW
methods (Thomas et al., 2024; Upadhyay et al.,
2024; Tornberg, 2024), where each passage is
scored against the query in a separate LLLM call.
While evaluating one candidate at a time avoids
inducing candidate order position biases, it also
prevents the LLM from seeing potentially helpful
context in other passages. Further, each passage
score requires a separate LLM call, which typically
leads to a very large number of calls — especially
with self-consistency.

3.1.2 Listwise Ranking Methods

LW ranking methods (Ma et al., 2023; Tang et al.,
2024; Hou et al., 2024) are shown in the second
pane of Figure 1.

Standard LW: Standard LW ranking instructs
an LLM to rerank an input passage list in order of
relevance with respect to ¢, with our LW prompt
shown in Appendix C. While the LLM sees all
available passage context during a single inference,
no absolute relevance judgments are produced.

LW with Self-Consistency: LW ranking with
self-consistency (Tang et al., 2024; Hou et al,,
2024) involves m reranking calls followed by a
rank aggregation of m output passage lists, which
can be done by minimizing the Kendall-Tau dis-
tance with the lists. Multiple exact and approximate
aggregation techniques exist, with our experiments
using the exact Kemeny rank aggregation linear
program (LP) of Tang et al.”> We test two LW self-
consistency variants:

1. Initial Order: Each of m LLM calls is iden-
tical and maintains the initial input list order.

2. Shuffled: The passage list is fully shuffled
before each LLM call.

"For ranking with integer 0-3 scores, mean aggregation
reduces the number of ties compared to majority voting.
Zhttps://github.com/castorini/perm-sc
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Figure 2: Effect of increasing self-consistency calls/passage (m) on PW relevance assessment quality (Legal
Search, Shallow). For all LLMs at m = 1 (no self-consistency), one-by-one PW is competitive, but by m = 15 it

underperforms batched PW by 5-10% AUC-PR. This shows that batching amplifies the benefits of self-consistency,
likely due to broader input contexts.
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Figure 3: Legal Search, Deep (90 Total Psgs): effect of increasing m on relevance assessment quality. The
sub-batched methods (30 psgs/batch) perform very well, with the shuffling variants (STB and BTS) doing best. The
large batch (90 psgs/batch) all-in-one methods perform poorly for this range of m, addressed further in RQ2.

3.2 Batched PW Methods

The right half of Figure 1 shows batched PW meth-
ods in which multiple passages are jointly scored in
each LLM call. This allows an LLM to see context
from multiple passages at the same time and re-
duces the total number of LLM calls required com-
pared to one-by-one methods. We study the effects
of diversifying passage subsets and permutations
through several batching strategies, including all-
in-one batching (c.f. Sec. 3.2.1) and sub-batching
(cf. Sec. 3.2.2).

3.2.1 All-in-one

All-in-one PW methods prompt the LLM to score
all passages in a single batch,’ maximizing the
context available to the model but also presenting

3The LLM context window must be large enough to fit all
candidate passages, otherwise sub-batching (c.f. Sec 3.2.2) is
required.

it with the most complex task. We test two passage
ordering strategies:

1. Initial Order: The initial list order is kept,
giving m identical self-consistency calls.

2. Shuffled: The passage list is fully shuffled
before each self-consistency LLM call, giving
m calls with m random passage perturbations.

3.2.2 Sub-batched

Sub-batching methods select subsets of passages
for each batch, providing less context than all-in-
one batching but also asking the LLM to generate
fewer scores. We consider the following context
selection and permutation strategies:

1. Initial Order: To create B batches, the ini-
tial list is partitioned into B non-overlapping
intervals while maintaining its order (e.g.,

[pl,"'>P30] — [pl"',p10]7 [pll-">p20]7



Table 1: AUC™, representing the AUC-PR at m self-consistency calls/passage, for PW relevance assessment
methods at m = 1 (no self-consistency) and m = 15. Increasing m improves all PW methods, but the batched PW
methods improve more, becoming the best methods at m = 15, likely due to their larger prompt contexts. The

highest AUC-PR for each m and LLM is in bold.

Legal Search DL-19 Covid

GPT-40 Sonnet Nova GPT-40 Sonnet Nova GPT-40 Sonnet Nova
Psg/ Psg AUCY | Aucl | Aucl AUCY | AuclY | Aucly AUCY | AuCY | Aucly
Batch Order AUCYS | Auct | Auct AUCYS | Auct | Auct AUCYS | AuCY® | Auct
= 1 - 32/41 | 24728 | 24729 39/52 | 27/31 | 29733 70/78 | 68/73 | 68/77
& 10 Init. 31/44 | 22727 | 27733 34751 | 25/33 | 32740 70/77 | 63/70 | 68774
& | (sub-batch) | STB 31/46 | 22/38 | 25/39 39/57 | 25/41 | 30/47 69/80 | 65/77 | 68/79
2 BTS 31/45 | 23/35 | 25/36 39/55 | 25/41 | 32/46 69/79 | 63/75 | 65/78
;f 30 Tnit. 32/45 [ 23/27 | 27/37 46/55 | 26/35 | 30/44 69/78 | 63/69 | 63/74
(all psgs) Shuf. 30/45 | 20/32 | 24738 37/58 | 24/41 | 31/53 69/80 | 58/74 | 65/77
1 - 20/29 | 15/20 | 15/20 34/51 | 23/28 | 25/31 63/72 | 62/68 | 62/70
’;T_‘j 30 Tni. 20/34 | 13/21 | 18/28 30/49 | 20/30 | 29/40 64/75 | 55/67 | 60/72
S | (sub-bach) | STB 20/36 | 14/27 | 17/31 32/52 | 19740 | 23742 64/71 | 56/73 | 60/75
o BTS 22/36 | 14/26 | 17/29 29/52 | 18737 | 25/44 64/77 | 55/72 | 60775
a 90 Init. 16/26 | 11/16 | 13/20 22/48 | 16/33 | 23/37 52/67 | 48757 | 45/54
(all psg) Shuf. 14/29 | 11721 | 13720 22/50 | 15/42 | 19/44 53/73 | 45/65 | 46/60

[p21, -+ -, p3o], where p; is the i’th passage in  (i.e., no self-consistency) to 15. We ensure that for

the initial list). As shown in the top right of
Figure 1, self-consistency calls for each sub-
batch are identical, giving this sub-batching
strategy the least diversity in LLM sampling.

2. Shuffled-then-Batched (STB): The passage
list is fully shuffled and then split into B
batches before each LLM call. When self-
consistency is used, STB creates the most di-
verse range of passage subsets and permuta-
tions across LLM calls.

3. Batched-then-Shuffled (BTS): The initial
list is first divided into B intervals, as in Ini-
tial Order Sub-batching above, and then each
batch b is fully shuffled before each LLM
call. While BTS attempts to mitigate position
bias through shuflling, the passage mixture
for a given batch remains constant across self-
consistency calls, making its LLM sampling
less diverse than STB.

4 Experimental Setup

We evaluate the effects of batching and self-
consistency on the relevance assessment and rank-
ing abilities of three LLMs, namely GPT-4o0
(128K), Sonnet 3 (200K), and Amazon Nova Pro
(300K)) at temperature 1 across three passage re-
trieval datasets, releasing anonymized code.*

Self-consistency: The tested number of self-
consistency calls per passage, m, ranges from 1

*https://anonymous.4open.science/r/batched-sc-emnlp/

each query, each passage appears in exactly m calls
for all LLM methods.

4.1 Passage Relevance Assessment and
Ranking Tasks

Each passage retrieval task contains a set of queries
Q, a corpus of passages D, and a relevance la-
bel y,, € R for each query-passage pair. For
each ¢, we also have an list of D passages L? =
[p1,- -, pp] returned by some initial retrieval algo-
rithm (e.g., BM25, dense retrieval).

Metrics: We use NDCG@10 to evaluate LLM
ranking quality. We treat relevance assessment
(PW methods only) as a binary classification task,
first converting each LLM score s, ,, € [0,3] to a
relevance probability as p(g,, = 1) = s4,/3, and
then using the area under the precision recall curve
(AUC-PR) for evaluation.’

Shallow vs. Deep Search To study the effect
of the total number of passages evaluated, we test
a short (D = 30) and long (D = 90) initial list
length in what we call shallow and deep search,
respectively. All sub-batching methods split the
initial list into three equal sized batches (i.e., 10
and 30 passages per batch for shallow and deep
search, respectively). The longest resulting batch
(90 TREC Covid passages) is roughly 24K words —
well within the context limits of all three LLMs.

SAUC-PR is preferred to AUC-ROC for imbalanced data
(Saito and Rehmsmeier, 2015), and IR datasets are highly
imbalanced.



4.2 Datasets

Our evaluation includes two well-known open-
source datasets, TREC DL-19° and TREC Covid
(Thakur et al., 2021) with BM25 used to retrieve
the initial passage list L? for each q. We also test
a third, closed-source dataset from a large legal
technology company which we call Legal Search.
Legal Search comprises 100 legal queries and pas-
sages chunked from 100,000 proprietary legal doc-
uments and uses the output of a multi-stage indus-
trial retrieval pipeline to retrieve L?. Using both
open- and closed-source data allows us to examine
whether our findings generalize between data that
will have been seen by the LLMs during pretraining
and data which has not (Tornberg, 2024).

5 Experimental Results

5.1 RQ1: Effects of Batching and
Self-Consistency on Relevance Assessment

Figures 2 and 3 and Table 1 show the effects of
increasing the number of self-consistency LLM
calls/passage (m) from 1 (i.e. no self-consistency)
to 15 on relevance assessment performance (AUC-
PR), with more plots shown in Appendix A. While
one-by-one PW methods are competitive at m = 1,
they are always outperformed by a batched PW
method at m = 15.

Batching can amplify the benefits of self-
consistency: Though increasing the number of
self-consistency calls greatly improved all PW
methods, batched methods improved considerably
more than one-by-one methods. We conjecture this
effect may be due to the larger context created by
batching leading to more diverse LLM sampling
across multiple self-consistency calls. For instance,
for GPT-40 on Legal Search (Shallow), one-by-one
PW improved from 32% AUC-PR atm = 1t041%
at m = 15 (+9%), while all-in-one PW (Shuffled)
improved from 30% to 45% (+15%), respectively.
Remarkably, for our shallow setting (D = 30),
all-in-one PW uses 30 times fewer LLM calls per
query than one-by-one PW.

Shuffling is helpful for high-enough m: At
m = 15, the best performance acoss all datasets
and LLMs was always achieved by a batched
method with shuffling, which can likely be at-
tributed to more diverse LLM sampling with re-
duced position bias across self-consistency calls.

®https://github.com/microsoft/ TREC-2019-Deep-
Learning

Sub-batching is useful for deep search: While
all batched self-consistency methods performed
well in shallow search (30 passages), for deep
search (90 passages), the all-in-one methods per-
formed poorly — far worse than the sub-batched
methods (green lines in Figure 3). RQ2 further ex-
plores why large batches of 90 passages degraded
performance at the values of m tested.

5.2 RQ2: Effects of Position Biases

Before considering the effect of the initial passage
order (RQ3), we first ask whether batched LLM
scoring exhibits consistent positional biases (e.g.,
the first few passages in a batch are scored higher)
across random permutations of a given passage list.
Addressing this question, Figure 4 shows LLM
scores versus passage positions in a batch, with
each passage seen by an LLM in m = 15 random
permutations (90 total passages).

Large Batch Position Bias
m =15 Scores/Psg, Deep (90 Tot. Psgs)
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Figure 4: Mean relevant and irrelevant LLM scores with
sub-batches of 30 psgs/batch (left) vs. all-in-one batches
of 90 psgs/batch (right). The sub-batches are relatively
consistent in discriminating relevance throughout the
batch, while the all-in-one batches lose most of their
discriminative power towards the tail of the batch.



Large batches have harmful position biases that
can be mitigated by sub-batching: The harmful
biases in the large 90 passage batches in Figure 4
are obvious: the capacity to discriminate between
relevant vs. non-relevant passages is almost gone
in the area towards the tail of the batch, with GPT-
40 showing a clear lost-in-the-middle effect (Liu
et al., 2024). By comparison, sub-batching with 30
passages per batch is far more consistent in being
able to discriminate relevance throughout the batch,
explaining its far superior performance on deep
search.

5.3 RQ3: Effects of Initial Passage Order

Next we investigate the potential positional biases
caused by the initial list order L?. Figure 5 com-
pares several batched methods that use the initial
order to one-by-one LLM scoring, which does not
depend on the order of L4.

LLM Scores vs. Intial Passage Position
m =15, Shallow (30 Tot. Psgs)

-+ One-by-One, Rel. (TP/FN) —— Batched, Irrel. (TN/FP)
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Figure 5: Mean LLM scores for one-by-one PW versus
batched PW methods with initial order. For all-in-one
PW methods, GPT-4o tracks much more closely to one-
by-one PW than Sonnet and Nova Pro. Sub-batching
with initial order creates artificial cycles and discontinu-
ities at batch junctions.

GPT-40 has the least batching bias: For GPT
4o all-in-one PW in Figure 5, though the front and
tail of the batch have slightly higher scores, overall,
the batched scores track quite closely to one-by-
one PW scores. In contrast, batched Sonnet and
Nova Pro scores are typically far lower than their
respective one-by-one scores everywhere except
at the very front of the batch, helping explain the
weakness of these LLMs.

Sub-batching with initial order can induce cy-
cles and discontinuities The RHS of Figure 5
shows that sub-batching with initial order can cause
score peaks at the start of every sub-batch, creat-
ing discontinuities at batch junctions, and inducing
cyclical score fluctuations. This explains why sub-
batching with the initial order performs worse than
the shuffling variants.

5.4 RQ4: Ranking Performance of Batched
Self Consistency Methods

Ranking performance in terms of NDCG @10 for
all LLM methods is shown in Tables 2 and 3 for
shallow and deep search, respectively, with detailed
results on the effects of m in Appendix B.

Batching amplifies self-consistency benefits for
ranking: Without self consistency (m = 1), one-
by-one PW and LW (initial order) methods are
competitive rankers, but adding self-consistency
helps batched PW methods more than it helps these
baselines, making the batched PW methods with
m = 15 the strongest rankers overall. For instance,
as seen in Table 3 for Legal Search (deep), GPT-
40 one-by-one PW ranking improves from 44.9%
NDCG@10 with m = 1 to 46.8% with m = 15,
while sub-batched (STB) PW ranking improves
from 43.8% to 51.3%, respectively (while needing
30 times fewer LLM calls).

STB (m = 15) performs best: Sub-batched
STB methods with m = 15 performed best over-
all, likely due to creating the broadest range of
contexts for LLM sampling by creating the most
diverse passage permutations and subsets. All-in-
one batched PW methods (which needed 3 times
fewer LLM calls than STB) with m = 15 were
also effective for shallow search (30 passages), but
under-performed for deep search (90 passages),
likely due to the harmful large-batch biases seen in
Figure 4.



Table 2: NDCG@ 10 (%) for shallow reranking (30 total passages) for all LW and PW LLM methods with m = 1
(i.e., no self-consistency) m = 15 (i.e., 15 self-consistency calls/psg). LW and one-by-one PW methods are
competitive at m = 1 but do not benefit as strongly from self-consistency as batched PW methods, causing the later

to achieve the best NDCG@10 at m = 15.

Psgs/ Psg Legal Search DL-19 Covid
Method Batch m Order GPT-40 Sonnet Nova GPT-40 Sonnet | Nova GPT-40 Sonnet Nova
Initial - - - 37.2 37.2 37.2 50.6 50.6 50.6 59.5 59.5 59.5
| Init. 46.2 41.6 445 65.9 65.2 61.9 73.4 66.4 67.9
LW 30 Shuf. 13.9 12.6 13.8 34.6 36.0 34.6 457 47.5 48.3
s Init. 48.9 451 46.7 674 66.7 63.6 74.6 70.5 70.3
Shuf. 13.9 15.3 13.3 33.0 30.4 30.8 45.0 47.4 452
1 1 - 45.6 427 41.7 63.3 63.4 64.1 75.2 73.9 75.7
15 - 46.5 44.5 43.0 67.8 65.4 64.7 76.6 76.0 78.8
Init. 45.5 40.2 42.4 65.6 63.5 65.9 75.6 727 75.8
1 STB 455 38.5 42.8 67.5 63.0 64.8 74.7 74.6 75.0
10 BTS 453 39.2 42.1 66.6 63.0 67.0 75.4 73.3 75.5
_— Init. 48.5 38.9 43.6 67.8 64.9 67.4 77.9 74.2 76.6
15 STB 50.0 45.4 48.2 68.6 67.8 68.0 80.7 79.6 80.4
BTS 48.1 43.1 45.4 68.9 67.0 68.8 78.7 79.5 79.6
1 Init. 46.1 42.8 43.6 66.5 63.4 65.6 76.1 73.2 73.6
30 Shuf. 44.5 34.8 439 66.7 64.1 64.3 75.6 69.5 73.3
s Init. 49.4 41.8 46.9 69.3 65.6 68.0 77.9 74.3 76.7
Shuf. 50.0 41.3 48.3 68.6 67.7 67.6 80.3 77.2 79.1

Table 3: NDCG@10 (%) for deep reranking (90 total passages) for all LW and PW methods at m € {1,15}.
Sub-batched methods (30 psg/batch) perform best at m = 15 with the STB variant typically achieving the highest

NDCG @10, likely due having the most diverse batching strategy and avoiding large-batch position biases.

Psgs/ Psg Legal Search DL-19 Covid
Method Batch m Order GPT-40 Sonnet Nova GPT-40 Sonnet Nova GPT-40 Sonnet Nova
Initial - - - 37.2 37.2 37.2 50.6 50.6 50.6 59.5 59.5 59.5
I Init. 46.0 41.1 36.4 70.3 64.6 56.1 76.2 67.1 64.1
LW 90 Shuf. 9.4 8.6 9.4 235 25.5 23.8 42.0 39.4 39.5
15 Init. 484 42.5 424 72.5 66.7 67.2 65.2 60.1 63.3
Shuf. 13.2 12.7 12.8 26.3 25.4 25.7 44.5 45.2 443
1 1 - 449 41.8 41.7 69.8 66.4 67.7 78.9 77.8 80.0
15 - 46.8 43.5 429 73.6 68.6 69.3 80.1 79.8 83.3
Init. 43.6 38.2 42.8 723 62.0 68.7 82.9 722 75.6
1 STB 43.8 349 44.7 70.7 63.2 68.7 79.8 72.6 78.2
30 BTS 40.4 33.7 42.7 69.5 64.0 67.6 81.6 71.6 75.2
PW Init. 47.1 36.3 44.1 71.0 66.0 69.5 83.8 774 79.9
15 STB 51.3 41.3 49.8 76.3 71.9 72.1 86.1 82.1 84.3
BTS 50.6 39.2 46.7 73.9 70.0 70.2 86.3 82.5 83.5
I Init. 435 37.7 419 66.9 62.2 64.4 73.8 71.8 68.6
90 Shuf. 29.0 26.4 32.7 55.4 52.5 51.3 63.3 61.3 59.0
15 Init. 48.5 39.7 45.0 72.1 66.7 66.3 79.3 77.0 72.5
Shuf. 45.1 28.4 404 73.0 61.2 65.9 82.6 71.8 74.4

LW ranking with the initial list order is compet-
itive with one-by-one PW ranking: When the
initial list order L9 is kept, LW ranking is competi-
tive with one-by-one PW ranking, but when L is
shuffled, LW methods perform very poorly. Upon
examining the LLLM outputs, we found that for mul-
tiple shuffled input lists [p1, p2, ...] where p; is the
1’th passage in the batch (i.e., a random passage),
the LLM often generated the same rankings (e.g.,
[p3, P12, P13, ---]), thus using only the input passage
position and not the content. This effect did not
occur when initial order was kept.

6 Conclusion

We propose that batched PW LLM relevance as-
sessment and ranking, where multiple candidates
are judged in one LLM call, is especially well-
suited for self-consistency. Through multiple ex-
periments, we show that batching amplifies self-
consistency benefits, leading to SOTA performance.
We conjecture this is because large, diverse input
contexts (enabled by candidate batching) increase
the diversity of LLM sampling over multiple self-
consistency calls.



Limitations

The main limitation of our work are the computa-
tional resources required, since LLM relevance as-
sessment and ranking is expensive computationally.
We thus only tested arange of m € {1,---, 15} for
the number of self-consistency calls, even though
higher levels of m would have added information to
our results. Also due to computational limitations,
we only tested three LLMs (GPT-40, Claude Son-
net 3, and Amazon Nova Pro) across three datasets
(TREC DL-19, TREC Covid (Thakur et al., 2021),
and Legal Search), though it would be interesting
to test an even wider range of models and datasets.
Simlarly, we were limited to testing four batch sizes
€ {1,10,30,90} across five batching strategies
(c.f. Figure 1) and two levels of search: shallow
(30 initial passages) and deep (90 initial passages).

As another limitation, we note that LLMs likely
will have seen open-source datasets such as TREC
DL-19 and TREC Covid during pretraining, which
is why using the third, closed-source Legal Search
dataset is very important in our experiments. For-
tunately, we are able to observe that our results
generalize across both the open-source and closed-
source data.

Finally, we must point out several risks of us-
ing LLMs for ranking and relevance assessment at
scale. Firstly, LLMs can amplify societal biases
that they will have learned during their pretraining
process, creating a risk for harm. Secondly, LLMs
carry a risk of “jail-breaking", or malicious prompt
injection, creating safety risks. Finally, LLMs may
provide incorrect judgments on passage relevance,
which could have severely negative effects for high-
stakes applications.
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A Appendix A: Relevance Assessment
Quality vs Scores per Passage

Figures 6 and 7 bellow show the effects of m on
AUC-PR of one-by-one PW and batched PW meth-
ods for all datasets and LLMs for shallow and deep
search, respectively.
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B Appendix B: NDCG @10 vs Scores per
Passage

Figures 8 and 9 bellow show the effects of m on
NDCG@10 of one-by-one PW and batched PW
methods for all datasets and LLMs for shallow and
deep search, respectively.
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Figure 6: Number of LLM Scores/Passage (m) vs. AUC-PR, Shallow (30 Total Passages)
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Figure 9: Number of LLM Scores/Passage (m) vs.NDCG@ 10, Deep (90 Total Passages)
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C Appendix C: Prompt Templates

Figures 10 and 11 show the full prompts used for
our PW and LW implementations.

Assign one of the labels (i.e., integer scores) below to
each of the {{list_len}} passages based on its relevance
to the query. Following the order of the passages below,

output your answer as only a list of {{list_len}} labels.

<Label Instructions>

3 - The passage is dedicated to the query and contains
the exact answer.

2 - The passage has some answer for the query, but the
answer may be a bit unclear, or hidden amongst extraneous
information.

1 - The passage seems related to the query but does not
answer it.

© - The passage has nothing to do with the query.

</Label Instructions>

<Query>
{{query}}
</Query>

<Passages>

{% for p_id, p_text in passages %}
{{ p_id }}: {{ p_text }}

{% endfor %}

</Passages>

<Example Output Format>
[<score for pl>, <score for p2>, ...]

</Example Output Format>

<Output>

Figure 10: The pointwise relevance assessment prompt,
based on the relevance label instructions from the UM-
BRELLA open source reproduction of the Bing rele-
vance assessment prompt (Upadhyay et al., 2024).
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Return the best ordering of the passages given the query.
Output only a list of passage ID strings with a list
length of exactly k ids.

<Example>

<Example Query>
<example query text>
</Example Query>

<Example Passages>
pl: <1st passage>
p2: <2nd passage>
p3: <3rd passage>

</Example Passages>

<Example k>
3
</Example k>

<Example Output List>

Output list: [<most relevant pid>,<2nd-most relevant
pid>,<3rd-most relevant pid>]

</Example Output List>

</Example>

<Query>
{{query}}
</Query>

<Passages>
{% for p_id, p_text in passages %}

{{ p_id }}: {{ p_text }}
{% endfor %}
</Passages>

<k>
{{k}}
</k>

<Output List>
Output list:

Figure 11: The listwise ranking prompt.
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