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Abstract

Variations in Magnetic resonance imaging (MRI) scanners and acquisition protocols
cause distribution shifts that degrade reconstruction performance on unseen data.
Test-time adaptation (TTA) offers a promising solution to address this discrepancies.
However, previous single-shot TTA approaches are inefficient due to repeated
training and suboptimal distributional models. Self-supervised learning methods
may risk over-smoothing in scarce data scenarios. To address these challenges,
we propose a novel Dual-Stage Distribution and Slice Adaptation (D2SA) via
MRI implicit neural representation (MR-INR) to improve MRI reconstruction
performance and efficiency, which features two stages. In the first stage, an
MR-INR branch performs patient-wise distribution adaptation by learning shared
representations across slices and modelling patient-specific shifts with mean and
variance adjustments. In the second stage, single-slice adaptation refines the output
from frozen convolutional layers with a learnable anisotropic diffusion module,
preventing over-smoothing and reducing computation. Experiments across five
MRI distribution shifts demonstrate that our method can integrate well with various
self-supervised learning (SSL) framework, improving performance and accelerating
convergence under diverse conditions.

1 Introduction

Magnetic resonance imaging (MRI) captures detailed tissue structures using k-space sampling. In
clinical practice, MRI is often under-sampled to accelerate scan time and reduce patient burden.
However, under-sampling results in an ill-posed inverse problem, making accurate MRI reconstruction
challenging [23]. Traditional compressed sensing techniques attempt to address this through iterative
reconstruction algorithms [4, 5, 3, 28], but these methods are computationally expensive and less
accurate. Recent advances in deep learning have significantly improved both reconstruction speed and
quality by learning direct mappings from raw data [ 18], such as unrolled networks [27], plug-and-play
frameworks [1], and diffusion models [8].

Despite these advancements, deep learning models struggle with adapting to diverse clinical scenarios
due to two primary challenges. Firstly, limited MRI data for model adaptation: MRI datasets are
difficult to collect, making it challenging to generalise deep models without overfitting. Secondly,
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Figure 1: Illustration of TTA strategies for MRI reconstruction under distribution shifts. (a) Single-
slice methods require repeated training and are often unstable.(b) Self-supervised approaches with
limited data may oversmooth or converge to incorrect mean/median of target domain. (c) D2SA first
performs efficient, patient-level adaptation to unknown target distributions (blue path), followed by

optional slice-level refinement guided by requirement from clinician (orange path and H).

distribution shifts between training and test data: In real-world deployment, MRI scans may be
acquired under different conditions (e.g., scanner types, patient demographics), causing performance
degradation due to mismatched data distributions between training and test sets [10, 11]. An ideal
MRI reconstruction model should therefore balance three key goals for overcoming distribution shifts:
1) Strong adaptation to new distributions — maintaining high performance despite distribution shifts.
2) Robustness to limited data — preventing overfitting in data-scarce scenarios. 3) Fast convergence —
minimising adaptation time at test time.

Most existing methods focus primarily on distribution generalisation but fail to optimise all three
goals simultaneously. Test-time adaptation (TTA) techniques partially address this, i.e., they mitigate
the distribution shift by updating models on the fly using only test data. Besides handling distribution
shifts, batch-based TTA methods (e.g., Noiser2noise [12], FINE [38], SSDU [36]) further enforce
self-supervised learning across multiple slices to facilitate fast convergence. However, this batch-
wise approach may overfit shared features across slices while ignoring slice-specific variations,
leading to over-smoothed reconstructions. Conversely, single-slice-based TTA methods [41, 34, 35]
improve fine-grained adaptation but require repeated optimisation cycles, significantly increasing
computational overhead. More recent diffusion-based models [2, 9] generate realistic slices for
adaptation but are computationally expensive and prone to overfitting on smaller datasets.

To effectively balance all three goals, we propose Dual-Stage Distribution and Slice Adaptation
(D2SA). D2SA leverages both patient-wise and slice-wise adaptation through a two-stage process.
The first stage models single patient distribution using a small number of slices as prior knowledge.
The second stage utilises this learned prior for fast adaptation to each slice, and further introduces an
anisotropic diffusion (AD) module to enhance denoising [21, 7] while preventing over-smoothing
the structural details. It thus achieves fast adaptation with high reconstruction quality. Both stages
treat each MRI slice as a continuous function rather than a static matrix, drawing inspiration from
Functa [13] and implicit neural representations (INRs)[25]. This function-based perspective allows
us to interpret distribution shifts as small function-level variations, e.g., functions with different
mean/variance variables in the feature space. Owing to the adaptive mean/variance, this function-
centric approach can be efficiently adapted to new distributions without the need for extensive data
for retraining. It also enables the plug-in of networks at test time, thus highly flexible. Our novel
approach ensures fast convergence, robustness to limited data, and strong generalisation to new
distributions, addressing a critical gap in MRI reconstruction research. Our contributions are:

* Functional-Level Patient Adaptation. We develop an INR-based strategy that learns
a patient’s distribution from a small number of slices, with the INRs trained to capture
individualised mean and variance shifts for the second-stage fast adaptation.

* Structural-Preserving Single-Slice Refinement. After modelling patient-level shifts, the
pre-trained INR network rapidly refines each slice. We introduce a learnable Anisotropic
Diffusion (AD) module to maintain structural fidelity, reduce over-smoothing, and limit
computation by freezing the main convolutional layers.

* Extensive Validation. We evaluate D2SA on five distribution shift scenarios, using both
UNet [26] and a variational network [31]. Results demonstrate robust and efficient recon-
struction across diverse clinical conditions.



2 Related Work

Test-Time Adaptation (TTA) in Medical Imaging. TTA tackles distribution shifts by adapting
pre-trained models using unlabelled test data [22]. A key challenge is constructing supervision
signals without ground truth, typically addressed via consistency regularisation or self-supervised
losses. Consistency-based methods enforce stable predictions under perturbations. For instance,
PINER [30] leverages implicit neural representations (INRs) to select resolution-consistent CT slices,
while steerable diffusion models [2] ensure realistic reconstructions. Self-supervised approaches
define pretext tasks such as contrastive learning [19] or rotation prediction [17]. DIP-TTT [11]
applies self-supervision for slice-wise reconstruction under shifts, and Meta-TTT [34] incorporates
meta-learning to improve generalisation. In contrast to computationally expensive TTA methods,
we propose a dual-stage TTA framework that first performs patient-level adaptation to improve the
efficiency and robustness of per-slice refinement.

Implicit Neural Representations (INRs). INRs encode data as continuous functions, enabling
compact and flexible learning. Functa [14] embeds entire datasets as INRs for function-level learning,
while DeepSDF [25] uses latent-conditioned autodecoders to model 3D shape fields. Biomedical
INRs have been used to represent detailed structures like airway trees [40], allowing for effective batch
optimisation. Among various designs [15], SIREN [29] remains a strong choice for high-frequency
data due to its sine activation, and forms the basis of our patient-wise adaptation module.

3 Problem Setup

First, MRI reconstruction is an inverse problem where the goal is to recover z* € CV from under-
sampled measurements y € CM with M < N: y = Ax* + ¢, where A is the measurement operator,
and € represents noise. In multi-coil MRI, the acquired measurements for each coil 7 follow:

yu=MFS; 2" +e i=1,...,n, €))

where S; denotes the coil sensitivity map, F' is the 2D Fourier transform. M is the undersampling
mask which can be the 1D cartesian mask, or others [37]. The individual coil images x; = F~'y;
are then combined via root-sum-of-squares to reconstruct x.

Reconstruction is framed as an optimisation problem:
1
& =argmin S[|Az — |3+ AR(x), )
xT

where R(x) encodes prior knowledge (e.g., wavelet £1, total variation, or CNN-based priors), and
A controls the balance between data fidelity and regularisation. However, standard reconstruction
models assume a fixed distribution during testing, limiting their ability to generalise to new datasets
or acquisition conditions.

Domain shifts from scanners, anatomy, or acquisition protocols degrade performance. Existing
TTA methods can address this but they rely on repeated single-slice training [11] or self-supervised
learning on large datasets [12, 38, 36], lacking stability in data-scarce scenarios. To address this,
we introduce a D2SA that first learns patient-wise distributions explicitly for better initialisation,
enabling more stable and efficient refinement in the second stage.

4 Proposed Method

To address domain shifts efficiently, we propose D2SA, a dual-stage test-time adaptation (TTA)
framework that avoids large datasets and slow repeated single-slice training. As illustrated in Figure 2,
D2SA consists of: (1) Patient-wise Distribution Adaptation, where MR-INR captures shared
representations across slices and estimates variance («) and mean () shifts; and (2) Single-Slice
Refinement (SST), which refines each slice using a learnable anisotropic diffusion (AD) module with
frozen convolutional layers. This design enables efficient adaptation with improved initialization.

4.1 Functional-Level Patient Adaptation

In Figure 2, the MR-INR branch models the structure and distribution of patient-wise data. Inspired
by Functa [13] and DeepSDF [25], which use INRs to encode data as continuous functions, our
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Figure 2: Overview of the proposed two-stage D2SA framework. (a) Functional-Level Patient
Adaptation: An INR with a Gaussian-initialized latent code and random Fourier coordinates captures

patient-level mean/variance shifts. The & indicates trainable modules, including the “pretrained”
network and the affine layer. (b) Structural-Preserving Single-Slice Refinement (SST): The main
convolutional layers and learned latent code are frozen #:., while a learnable Anisotropic Diffusion
(AD) module and the INR refine individual slices, preserving structural details and finalising outputs
via the affine layer.
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Figure 3: (a) Learnable affine transform scales feature maps by « and /3 before the final layer. (b)
Learnable AD module & refines images while preserving structures, with frozen convolution %,

approach shifts from learning on discrete datasets to learning in function spaces. This enables efficient
adaptation to new unknown distributions, better handling of few-shot scenarios, and improved patient-
wise learning capabilities.

In Figure 2.a, each slice in this patient set can we assume the prior distribution over a 1D latent code
z; as zero-mean multivariate-Gaussian with a spherical covariance o21. In this work, o is set to 0.01.
The random Fourier coordinates will be calculated by geometric coordinates ¢ of each slice. The
input 4 for MR-INR is from concatenation of z; and ¢.

Y(p, z;) = [z, cos(2nB¢), sin(2r Bo)] , 3)
where the transformation matrix B is sampled from a Gaussian distribution A/(0, w?).

After this step, we use the standard batch training protocol for all slices in each patient. In the
MR-INR branch, the corresponding latent code and Fourier coordinates are modulated and passed
through a SIREN [29] network fy architecture. The ability of SIREN and Fourier feature [32] to
efficiently model target representation and stability has been shown in [15]. This MR-INR branch
can be formed as:

[ia «, B] = f@(ﬁ/(¢la Z)) = Wn(rn—l ol'y,_g0---0 FO)("?((#, Z)) + bn, @)
RO+ = 1y (AD) = sin(W;h9 + by),

Here, I'; : RM: — RN represents the i*” transformation layer. Each layer applies an affine transfor-
mation with weight matrix W; € RNiXMi and bias b; € RV, followed by a sine activation function.
The final layer produces [, a, 8] through three output heads. & with dimension (B, 2, H, W), rep-
resents the predicted pixel intensity for MRI reconstruction. « variance shifts and 5 nonzero-mean
shifts, with dimension (B, C, H, W), modulate feature maps before the final layer via an affine
transformation, as shown in Figure 3.a, where C' is the number of feature channels. This formulation



enables a shared base network to model common structures while adapting to patient-specific varia-
tions, ensuring a compact and efficient solution for TTA. Meanwhile, in the first stage, under-sampled
MR images from the target domain are input into the network gs, initialised with source domain
pre-trained weights, for TTA (gs — ¢s+a ). Here, feature maps before last layer are extracted and
adjusted via the affine transformation using « and S, as illustrated in Figure 3.a.

The predicted MR image from this branch is used to compute the self-supervised loss Lgr such
as Noiser2noise [12, 24], SSDU [36] and fidelity-based FINE [38]. The L; combines with other
two loss from MR-INR for joint optimisation. For MR-INR, we adopt a joint optimisation strategy
similar to the auto-decoder framework [25], optimising both latent codes and network parameters.
The optimisation for the first stage is formulated as:

éa'é,A = arg QHEI& /\INR Z ‘Cl(Af(:Y((rbjaz)aa%yj)

(z5,25,9;)€X

1
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Here, £1(Af(3(¢7,2),0),y;) ensures INR predictions aligning with MR signal consistency. The
regularisation term —z || 2|3 constrains sparsity of the latent codes and prevents overfitting. The final
term updates weights § + A to adapt to patient-specific variations using self-supervised loss. Agit,
ANk and Ay, are used for balancing every loss contribution.

4.2 Structural-Preserving Single-Slice Refinement Training

To refine MRI reconstruction at the slice level, we design a new SST strategy for fine-grained
adjustments. Unlike patient-wise adaptation, which learns shared representations across slices, this
stage optimises each slice independently to capture localised variations, as shown in Figure 2.b.
The latent codes are frozen to preserve the learned global prior information from patient-wise
training. This prevents instability and avoids overfitting to slice-specific noise. Instead, the SIREN
weights remain trainable, allowing the model to refine its implicit function for each slice. The affine
modulation parameters «, 8 continue adjusting the final feature maps via scaling and shifting.

In the other branch, we adopt a similar DIP-based TTT strategy [ 1] for SST. This approach leverages
CNNs’ strong image priors for structural preservation and optimises a self-supervised loss L on
under-sampled test measurements. To improve efficiency, we freeze all convolutional layers except
the final one and transpose convolutions, reducing unnecessary updates and accelerating optimisation.

A key challenge in batch training is its tendency to learn mean or median representations, leading to
over-smoothing that can obscure fine textures and edges. This is critical in MRI, where structural
details must be preserved. To address this, we introduce an Anisotropic Diffusion (AD) module,
inspired by its shape-preserving properties in image denoising [7, 6]. As shown in Figure 3.b, the AD
module refines structural details while suppressing noise by integrating diffusion filtering into the

adaptation process. Given an set of feature u, the AD equation is:
Ju . 1
(5) = av vubvas a(ve) = — ooz ©
k2

When the gradient magnitude is small (|[Vu| — 0), the diffusion coefficient g approaches 1, leading
to isotropic smoothing similar to Gaussian filtering. Near object boundaries, where |Vu| — 1, g
approaches 0, preserving fine details. This allows AD to suppress noise effectively while keeping
sharp edges, making it well-suited for edge-aware regularisation in reconstruction.

We enhance traditional convolutions by integrating difference-based operators [7] that explicitly
encode gradient information Vu. Five types of convolutions are introduced: Vanilla Convolution
(VC), Central Difference Convolution (CDC), Angular Difference Convolution (ADC), Horizontal
Difference Convolution (HDC), and Vertical Difference Convolution (VDC). These capture multiple
directional gradients, incorporating concepts from Sobel, Prewitt, and Scharr filters directly into the
convolution process [7]. The convolution operation is formulated as:

5
Vu = Fou = DConV(Fiy) = > Fia % K; = Fiy % Keu, )
i=1



where Fj, and Fy,, represent input and output feature maps, respectively. Instead of separate convolu-
tions, we merge all five kernels K into a single equivalent kernel K., using a re-parameterisation
technique. To improve efficiency, we reduce the number of output feature maps to 1/4 of the original
channels, ensuring compact gradient extraction while minimising redundancy.

In calculation of AD equation (6), the computed Vu is used to determine the diffusion coefficient
g, while the divergence div(-) is approximated via a 2D Laplacian kernel, which is more efficient
to preserve spatial information than standard finite difference methods [39]. The output of the first
equation in (6) is restored to its original feature map dimensions using a 1 x 1 convolution. Setting
the diffusion step size At = 1 in (6), the updated feature maps are:

Uir1 = u; + At - Convyx1(div (g(|Vu|)Vu,)). )

In this stage, we optimise the weights in MR-INR and the original network with AD module. The
final loss function for the second step is:

), A i T | — Ag(Aly;,0 +A
9’ A= arg%lgl Z )\INR‘Cl (Af(PY(QSJaZ)aa)a yj) + Z Aself‘yj g(yl}: )|1 .
' J

(zj,y;)€X (y;)€X
Self-sup loss

MR-INR consistency loss

(C))

The first term is for measurement consistency, ensures that the MR-INR branch reconstructs MRI
images accurately. The second term, Self-Supervised loss, refines the prediction using measurement
consistency. This formulation enables adaptive refinement while preserving prior knowledge learned
from the first stage. Asir and Avr are used for balancing every loss contribution.

4.3 Mathematical Analysis of Affine Adaptation

To motivate our use of affine transformations during test-time adaptation, we analyze a simplified
setting under distribution shift. While our method uses nonlinear system, this linear case offers
insights into how the learned parameters o and 3 operate under such shift. Consider the test
distribution:

Q: y=x+z x=Uc+pg, c~N(0,I), z~N(0,s%I). (10)
Here, U € R™*4 is an orthonormal basis of the signal subspace, and ji¢) encodes the mean shift. Our
goal is to estimate x under this shift. The optimal TTA estimator and self-supervised loss are next:

Proposition 1. An affine estimator of the form x = o UUTy + B minimizes the following self-
supervised loss:

2ad
Lss(@,8) =Eq |[[y —aUUTy = B|}] + =B [[@-vuT)y|;].  an

Theorem 1. Minimizing Lss (v, ) yields optimal parameters by solving the first-order conditions.
The gradients are:

OLss OLss .. 2
o5 = 2(8 — pg), 50 = 2d(1 — @) + 2ads”.

Solving these gives the optimal solutions o = H% and B* = pq.

These parameters decouple the effects of noise and mean shift: o* corrects variance, and 5* aligns
the mean. They are learned by minimizing the self-supervised loss under the test distribution. This
analysis provides a clear intuition for our design: although the full model is nonlinear, we apply the
linear affine adaptation in feature space of MR-INR. More detailed proof and derivations are in the
Appendix. Next, our empirical results further confirm the robustness of this effective TTA approach.

S Experimental Settings

5.1 Datasets and Experimental Settings

We evaluate on multi-coil MRI data from fastMRI [37] (knee, brain) and Stanford [16]. Each
experiment defines a source distribution S and target distribution 7, measuring performance via



SSIM, PSNR, and LPIPS. We consider two baselines: (1) U-Net [26]: 8 layers, 64 channels, trained
with Adam [20] at learning rate 10~°; (2) VarNet [31]: 12 cascades, 18 channels, trained with Adam
at 10~%. All other training settings follow [11], using combination of supervised and self-supervised
losses. We simulate 4x undersampling with 1D random Cartesian masks and 8% auto-calibration
lines, estimating sensitivity maps via ESPiRiT [33]. We examine five domain shifts: anatomy, dataset,
modality, acceleration, and sampling, evaluating both out-of-distribution (S — 7) and in-distribution
performance (see Appendix).

Anatomy Shift. Following in [11], U-Net and VarNet are trained on fastMRI knee data as the source
domain (S) and evaluated on fastMRI AXT?2 brain data as the target domain (7). For TTA evaluation,
we randomly select 10 subjects, resulting in 110 AXT?2 brain slices subsampled at 4.

Dataset Shift. Following [11], we train both models on Stanford knee data (S) and evaluate on
fastMRI knee data (7). We sample 20 patients from fastMRI, yielding 400 knee slices under the
same 4 x subsampling ratio for TTA evaluation.

Modality Shift. U-Net and VarNet are trained on fastMRI AXT2 brain slices (S) and tested on
AXTI1PRE slices (7)), following the setup in [11]. We randomly select 10 patients, yielding 110
AXTI1PRE brain slices with 4x subsampling for TTA.

Acceleration Shift. Models are trained on fastMRI knee measurements acquired with 2x acceleration
(S) and tested on the same set of knee slices with 4x acceleration (7)), as in [11]. We evaluate TTA
on 400 slices sampled from 20 patients.

Sampling Shift. The uniform sampling presents more coherent artifacts that are more challenging to
handle. We also train on fastMRI AXT2 brain data subsampled using a random 1D Cartesian mask at
4x acceleration (S)[11], and evaluate on the same AXT?2 slices sampled with a uniform 1D mask at
the same acceleration rate (7). For TTA, we randomly select 10 patients, totaling 110 slices.

Additional details of stage-1 and stage-2 training procedures are in the Appendix. Appendix is
provided as a separate file in supplementary materials.

5.2 Compared Methods

We compare D2SA with four representative test-time adaptation (TTA) baselines. DIP-TTT [11]
performs single-slice adaptation using Deep Image Prior (DIP). FINE [38] is a batch-level TTA
approach based on fidelity constraints. Noiser2noise (NR2N) [12, 24] and SSDU [36] are self-
supervised methods that operate in a patient-wise manner.

DIP-TTT follows its original setting, while FINE, NR2N, and SSDU are trained using the same
configuration as the first stage of our method. To assess the benefit of MR-INR, we integrate it into
FINE, NR2N, and SSDU for patient-wise adaptation. All resulting pretrained models—with and
without MR-INR—are then used in the second-stage single-slice refinement under the same setup as
our stage 2. Models without MR-INR adopt only self-supervised loss, similar to DIP-TTT.

We also include ZS-SSL [35], an augmentation-based self-supervised single-slice TTA method. Our
preliminary results show that it is compatible only with unrolled networks such as VarNet, and fails
to generalise to end-to-end U-Net architectures. Detailed comparisons are provided in the Appendix.
All experiments were run on a single NVIDIA RTX 3090 GPU. For timing, Stage 1 inference time is
measured as the total duration of 25 fixed training epochs. Stage 2 (SST) time is computed as the
sum of per-slice training durations until early stopping, using the same validation-based strategy as in
[11]. The final reported time combines both stages.

6 Results & Discussion

Main results. Tables | and Figure 4 summarize the average SSIM, PSNR, LPIPS, and adaptation
time for U-Net and VarNet under five domain shifts: Anatomy, Dataset, Modality, Acceleration,
and Sampling. Across most settings in Table 1, +MR-INR+SST achieves consistent improvements
over baselines. For example, in the acceleration shift, FINE+MR-INR (VarNet) improves SSIM
from 0.696 to 0.791 and PSNR from 21.39 to 25.30. While MR-INR introduces a modest runtime
overhead. +MRI-INR+SST performances rival or exceed DIP-TTT in multiple cases (e.g., SSDU
on anatomy shift, NR2N on dataset shift), while significantly reducing adaptation time (e.g., 17.1
vs. 52.5 mins/patient in anatomy shift). These results demonstrate the strong synergy between
patient-wise MR-INR adaptation and single-slice SST refinement.



Method (VarNet) Anatomy Shift Dataset Shift Modality Shift Acceleration Shift Sampling Shift
(S: Knee, 7 Brain) (S: Stanford, 7 fastMRI) (S: AXT2, 7: AXTIPRE) (S:2x, T 4x) (S: Random, 7 Uniform)

Zero-filling 0.737/24.50/0.327/- 0.747/24.33/0.359/- 0.747/25.71/0.350/- 0.754/23.37/0.396/- 0.766/26.28/0.338/-
Non-TTA 0.799/23.16/0.371/- 0.706/22.35/0.365/- 0.796/23.54/0.379/- 0.761/23.04/0.372/- 0.111/16.00/0.594/-
DIP-TTT | 0.878/27.67/0.312/52.5  0.798/28.02/0.292/41.8 0.867/28.33/0.337/71.6 0.815/28.25/0.285/137.2  0.771/27.65/0.254/38.9
FINE 0.820/24.01/0.343/3.9 0.789/26.26/0.311/6.6 0.821/26.18/0.369/3.5 0.696/21.39/0.342/6.2 0.669/21.18/0.365/3.7
FINE+MR-INR 0.862/26.45/0.328/4.7 0.795/26.44/0.306/6.9 0.830/26.58/0.369/4.4 0.791/25.30/0.310/7.5 0.789/25.10/0.339/4.1
FINE+SST 0.862/27.57/0.311/53.5  0.794/27.72/0.294/20.3 0.857/28.08/0.345/79.8 0.823/28.17/0.288/63.8 0.748/25.18/0.276/48.3
FINE+MR-INR+SST | 0.882/27.68/0.311/17.1 0.808/28.72/0.286/18.2 0.867/28.32/0.337/21.8 0.829/28.64/0.276/44.5 0.824/28.49/0.232/22.1
NR2N 0.827/23.95/0.334/4.9 0.798/26.59/0.299/6.8 0.827/25.60/0.368/4.1 0.718/20.97/0.327/6.6 0.661/21.15/0.379/4.3
NR2N+MR-INR 0.868/26.41/0.321/5.1 0.806/26.95/0.294/7.1 0.833/26.44/0.369/4.7 0.806/25.42/0.291/7.6 0.786/25.24/0.366/4.5
NR2N+SST 0.883/27.72/0.307/63.9  0.798/27.78/0.293/25.3 0.860/28.17/0.341/80.2 0.822/28.09/0.291/69.2 0.771/26.46/0.276/57.1
NR2N+MR-INR+SST | 0.884/27.81/0.306/18.7  0.812/28.76/0.281/20.4 0.869/28.36/0.336/20.3 0.826/28.89/0.273/43.1 0.822/28.40/0.241/25.2
SSDU 0.738/20.87/0.375/5.1 0.737/20.43/0.349/7.2 0.746/22.59/0.391/4.4 0.556/16.93/0.421/7.4 0.483/17.53/0.415/4.0
SSDU+MR-INR 0.821/23.25/0.350/5.3 0.764/21.67/0.339/7.5 0.796/24.09/0.390/4.8 0.728/19.57/0.358/7.9 0.554/18.88/0.409/5.3
SSDU+SST 0.879/27.65/0.310/68.3  0.789/26.79/0.299/24.9 0.857/28.07/0.343/93.4 0.803/28.06/0.293/134.2  0.736/24.84/0.288/50.5
SSDU+MR-INR+SST | 0.882/27.66/0.307/18.5  0.808/28.16/0.290/21.4 0.863/28.09/0.342/29.3 0.826/28.62/0.286/45.2 0.800/28.21/0.254/25.8

Table 1: Performance comparison of VarNet methods under different domain shifts. Each cell
presents ((SSIM 1/ PSNR 1/ LPIPS | / Time (mins/patient) |). The family of proposed methods

incorporates a self-supervised learning framework, combining MR-INR-based patient-wise adaptation
with single-slice refinement using pre-trained patient-wise models.
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Figure 4: Performance Analysis of U-Net under Different Domain Shifts. Top-left: PSNR gain from
adding MR-INR across FINE, NR2N, and SSDU in stage 1, with the largest gain in modality shift
in most strategies. Bottom-left: LPIPS vs. inference time trade-off showing that +MR-INR+SST
achieves higher quality with reduced time comsumption compared to DIP-TTT and normal +SST.
Right: SSIM across five domain shifts for each SSL family, visualized patient-level (Stage 1) and after
slice refinement (Stage 1 + Stage 2). MR-INR consistently improves performance across domains,
and combining it with SST further enhances SSIM.

Figure 4 further illustrates the effectiveness of MR-INR. The top-left plot shows PSNR consistently
increases across most TTA families, with the largest gain in the sampling shift. The bottom-left
trade-off curve shows MR-INR+SST achieves lower LPIPS with lower cost than DIP-TTT. Radar
plots confirm SSIM gains from Stage 1 (MR-INR) and further improvements when combined with
Stage 2 (SST). Quantitative results of U-Net results and performance analysis of VarNet are also
provided in the Appendix 8.

Additional findings on experiments show increased undersampling or new anatomies, modalities and
datasets show that non-TTA often outperforms zero-filling, especially for U-Net. However, under
large mask shifts, unrolled models like VarNet suffer more severe degradation without adaptation,
underscoring the necessity of TTA in such cases.

Qualitative Results. Figure 5 present visual comparisons of reconstructed images for the FINE-
based UNet methods in the anatomy shift. More results of other distribution shifts and VarnNet are
provided in the Appendix. Self-supervised methods without MR-INR (e.g., FINE [38]) may risk over-
smoothing when confronted with limited data, as highlighted in the error maps. While FINE+SST
improves over FINE by incorporating single-slice adaptation, it lacks the AD module, leading to
over-smoothing and loss of structural details. Our proposed approach, which integrates MR-INR with
SST and AD, effectively balances adaptation and detail preservation, reducing hallucinations and
enhancing reconstruction quality.
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Figure 5: Comparison of different frameworks in UNet under anatomy shift (Knee to Brain) using the
FINE method. The first row shows reconstructed MRI images, while the second row presents residual
maps between reconstructions and full-sampled MRI. The proposed method (far right) achieves the
lowest residuals, indicating improved reconstruction accuracy.

Ablation Study. We conduct a comprehensive ablation to disentangle the contributions of MR-
INR, SST, and AD to adaptation performance under anatomy shift (Table 2 and Table 3). For both
U-Net and VarNet backbones, introducing MR-INR on top of FINE yields clear PSNR improve-
ments (e.g., +0.5 dB on U-Net), demonstrating that the lightweight latent code provides effective
patient-specific adaptation with negligible parameter increase. Further integrating SST significantly
boosts performance but comes with increased inference time, highlighting its complementary role in
capturing slice-level variations. Importantly, incorporating AD alongside frozen CNN achieves the
best trade-off between performance and efficiency (27.71 dB / 12.1 min on U-Net; 27.68 dB / 17.1
min on VarNet), outperforming both purely patient-wise or slice-wise training. This suggests that
AD effectively compensates for the lack of full fine-tuning, particularly in constrained adaptation
settings, and enhances the robustness of MR-INR+SST pipelines. Interestingly, while AD brings
limited improvement when used with a fully trainable CNN, it yields notable gains when the CNN
are frozen. This highlights AD’s effectiveness in constrained settings, where its adaptive capacity
compensates for the lack of end-to-end fine-tuning. This effect is further supported by the results in
the last two rows of the table.

We conduct a sensitivity analysis on the AD step size (Table 4). We observe that reconstruction
quality is stable across a wide range of step sizes, with the best PSNR/SSIM obtained at 1.0 and
only marginal degradation at smaller values. Meanwhile, LPIPS improves slightly as the step size
decreases, indicating a tunable trade-off between fidelity and perceptual similarity. This robustness
suggests that AD is insensitive to moderate hyperparameter variations, which is desirable for test-time
deployment. Similarly, Figure 6 shows that adding directional and adaptive priors steadily improves
PSNR and SSIM, further validating the effectiveness of the adaptive components.

Additional results on in-domain adaptation, statistical analysis, sensitivity analysis, and more visual-
izations are provided in Appendix 8.

7 Conclusion and Limitation

We presented D2SA framework, a test-time adaptation framework that improves MRI reconstruction
under distribution shifts. D2SA combines patient-wise MR-INR for modeling mean/variance shifts
and single-slice refinement via a learnable AD module. This dual-stage design enhances general-
isation, preserves structural fidelity, and accelerates convergence. Extensive experiments across
five domain shifts demonstrate that D2SA consistently outperforms prior TTA approaches in both
quality and efficiency. Ablation studies further validate the contributions of MR-INR, AD, and frozen
layers in balancing performance and runtime. While D2SA reduces adaptation time and improves
generalisation, several limitations remain. First, current evaluations are limited to publicly available
datasets; further validation on real-world clinical undersampled MRI is necessary. Second, the
framework operates on 2D slices independently—extending it to exploit full 3D spatial correlations is
a natural next step. Finally, integrating stronger priors (e.g., diffusion models) and developing online
or incremental learning strategies could further enhance adaptability and prevent forgetting when
adapting to continuous patient streams.



Ablation (UNet) PSNR 71/ Params | / Time |

Ablation (VarNet) PSNR 71/ Params | / Time |

Patient-wise training
FINE

+MR-INR (# latent code)
+MR-INR (& latent code)

25.98/31.02/4.9
26.37/31.29/5.3
26.48/31.29/5.5

Patient-wise training
FINE

+MR-INR (% latent code)
+MR-INR (4 latent code)

24.01/29.45/3.9
26.37/29.69/5.3
26.45/29.69 /4.7

Single-slice training without stage 1

Single-slice training without stage 1

+SST (# cnn + & AD) 27.31/17.62/18.7
Single-slice training with stage 1

+SST (‘v cnn) 27.22/31.02/17.2
+SST (% con + & AD) 27.37/17.62/22.6

27.65/31.29/23.65
27.54/46.13/15.7
27.41/17.62/14.5
27.38/3.05/17.5
27.71/17.89/12.1

+MR-INR+SST (& cnn)
+MR-INR+SST (® cnn+& AD)
+MR-INR#+SST(#cnn+&AD)
+MR-INR+SST(# cnn)
+MR-INR+SST(#cnn+&AD)(Ours)

+SST (3 cnn + & AD) 27.50/16.74/56.8
Single-slice training with stage 1

+SST (& cnn) 27.57/29.45/53.6
+SST (3 con + & AD) 27.58/16.74/53.3

27.68/29.69/20.9
27.61/43.79/34.0
27.63/16.74/27.8
27.45/2.88/21.6
27.68/16.98 /17.1

+MR-INR+SST (® cnn)
+MR-INR+SST (& cnn+& AD)
+MR-INR#+SST(#cnn+&AD)
+MR-INR+SST(¥ cnn)
+MR-INR+SST(#cnn+&AD)(Ours)

Table 2: Ablation study on MR-INR and AD
under anatomy shift (U-Net). Each row reports
PSNR 1, parameter count (Millions) |, and in-
ference time (min/patient) |. The latent codes
only have 1408 parameters in this shift. Stage
1 compares MR-INR variants; Stage 2 evaluates
SST with and without frozen MR-INR and AD.

Table 3: Ablation study on MR-INR and AD un-
der anatomy shift (VarNet). Each row reports
PSNR 1, parameter count (Millions) |, and in-
ference time (min/patient) |. The latent codes
only have 1408 parameters in this shift. Stage
1 compares MR-INR variants; Stage 2 evaluates
SST with and without frozen MR-INR and AD.

AD Step Size PSNR T SSIM T LPIPS \L Diff Conv Kernel Comparison (SSIM & PSNR)
1.0 2771 0876  0.320 0.876 ) 7’27'55
0.1 27.38 0.874 0.322  0.874 et 22750 ¢
0.01 27.36 0.874 0.323 = «
7 0.872 &
o > -27.45 ¢
Table 4: Sensitivity analysis of AD step size. Re- 0.870[ ¥
construction quality remains stable across step Vanila DCVDC — CDCiADC Ours 27.40
sizes, with the best PSNR/SSIM at 1.0 and slightly Kernel Type

improved LPIPS for smaller values, indicating a
tunable fidelity—perception trade-off and robust-
ness to hyperparameter variations.

Figure 6: Ablation study on different kernel
designs in difference convolution in terms of
SSIM 1 and PSNR 7. Progressive improve-
ments are observed from Vanilla to HD+VD,
CD+AD, and ours, demonstrating the effective-
ness of direction-aware and adaptive designs.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstracts and introduction claims to demonstrate the capabilities of our
new method with five simulated domain shifts. Theoretical analysis and experimental results
for the main claim are described in Section 4 and Section 6

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

 The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It s fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Limitations related to the absence of validation on real-world clinically under-
sampled MR data and the lack of 3D exploration are discussed in Section 7.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

¢ The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: All theoretical assumptions and detailed proofs are provided in Section 4
("Mathematical Analysis of Affine Adaptation") and the Appendix.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

¢ Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Implementation details for our method and baselines are provided in Section 5
and the Appendix. Demo code for a representative experiment is included as supplementary
material. A public GitHub repository will be released upon publication.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The paper includes demo code in the supplementary material with clear
instructions to reproduce a representative experiment. Full implementation and training
scripts for all experiments will be made publicly available upon publication. All used
datasets are publicly available on [37, 16].

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper specifies all training and testing details, including data splits,
optimizer types, learning rates, number of epochs, and other key hyperparameters. The
hyperparameter choices and dataset-specific configurations is provided in Section 5 and
further detailed in the Appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The paper reports the standard error of the mean for all evaluated settings under
domain shifts, as shown in the Appendix. This provides a rigorous measure of uncertainty
across test samples and supports the statistical validity of the results.
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A Training Details

This section outlines the key configurations, optimisation strategies, and architectural choices em-
ployed during training.

Stage 1: Functional-Level Patient Adaptation. We train the MR-INR-based model using a batch
size of 2. Two Adam optimizers are used: one with a learning rate of 10~ for the MR-INR weights
and the base network, and the other with a learning rate of 10~3 for the learnable latent code. The
training runs for 25 epochs, with convergence typically observed after 20 epochs. The 1D latent
code (size 1 x 128) is initialized using a zero-mean multivariate Gaussian distribution with standard
deviation o = 0.01.

For the SIREN architecture [29], we use a 4-layer MLP with 256 hidden units per layer and follow
the weight initialization method from the original paper. In U-Net, the loss coefficients in this stage
are set to: Agif = 1, AIng = 1, and Ay = le—*. For VarNet, we use Agr = 1, Ang = le ™3, and
Areg = le™4.

Stage 2: Single-Slice Refinement. In this stage, we refine each slice using a learnable Anisotropic
Diffusion (AD) module while keeping the original convolutional layers frozen. We use the Adam
optimizer with a learning rate of 10~* and train for up to 1000 steps.

Following the self-validation strategy in [11], we reserve 5% of the k-space signals for validation.
If the validation error does not decrease in fixed iterations, the refinement process is terminated
early. For early stopping, we apply a sliding window of size 30 to monitor the moving average of
the validation error for methods including FINE, NR2N, and SSDU (with and without MR-INR).
DIP-TTT uses a sliding window size of 100, as defined in the original repository [11]. The loss
coefficients for U-Net are At = 1, Aing = 1, and for VarNet, they are \gjr = 1, Ang = le 3.

Mask Setup. First, a general under-sampling mask is set by using 1D Cartesian masks with an
acceleration rate of x4 and 8% auto-calibrating lines.

- For Anatomy, Dataset, and Modality shifts, the same x4 random 1D Cartesian mask is applied to
both source and target domains. - For the Acceleration shift, the source model is trained on MR
signals under-sampled at x2 using the same 8% auto-calibration strategy, while the target domain
uses a x4 mask with the same random seed to simulate the shift. - For the Sampling shift, the source
domain uses a random x4 mask, and the target domain uses a uniform x4 mask, both with 8%
calibration lines. - Specifically, for in-distribution testing under sampling shift, we apply different
random seeds to generate the masks while keeping the sampling strategy (x4, random) unchanged.

All mask generation and TTA implementation are provided in the demo script.

B Supplementary Quantitative Results in OOD Shift

Performance comparison of UNet methods under different domain shifts. Table 5 reports
comprehensive and direct quantitative comparisons of UNet-based reconstruction methods under five
distinct types of domain shift: anatomy, dataset, modality, acceleration, and sampling. Our proposed
two-stage strategy combines patient-level adaptation (MR-INR) and slice-level refinement (SST
with AD module). It consistently achieves top or near-top results across SSIM, PSNR, and LPIPS.
Meanwhile, the inference time remains practical and competitive. Notably, the two-stage models
yield especially strong improvements under more challenging shifts such as dataset and modality,
where domain discrepancies are typically larger. These gains demonstrate the benefit of globally
shared representations learned during patient-level adaptation, which are then effectively refined with
localized slice-level refinemennt training. Furthermore, compared to strong baselines like DIP-TTT
and one-stage TTA methods (e.g., +SST), our models exhibit improved stability (lower LPIPS) and
higher sample-level fidelity (SSIM/PSNR), highlighting the robustness and generalization capacity of
our hierarchical test-time learning approach under OOD scenarios.

Visual Analysis of VarNet Performance Across Domain Shifts. Figure 7 provides a detailed
visualization of VarNet’s performance under various domain shifts based on the Table of VarNet in
main paper. The bar chart (top-left) highlights PSNR gains achieved by incorporating MR-INR in
Stage 1 across FINE, NR2N, and SSDU training strategies. Acceleration and sampling shifts benefit
the most, reflecting MR-INR’s ability to capture cross-slice anatomical consistency in challenging
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Method (UNet) Anatomy Shift Dataset Shift Modality Shift Acceleration Shift Sampling Shift

(S: Knee, 7 Brain) (S: Stanford, 7 fastMRI) (S: AXT2, 7: AXTIPRE) (S:2x, T 4x) (S: Random, 7 Uniform)
Zero-filling 0.737/24.50/0.327/- 0.754/24.33/0.359/- 0.747/25.7/0.350/- 0.754/23.371/0.396/- 0.765/26.28/0.338/-
Non-TTA 0.625/21.77/0.458/- 0.559/21.87/0.454/- 0.794/27.18/0.391/- 0.726/23.37/0.396/- 0.825/26.97/0.376/-
DIP-TTT | 0.859/27.05/0.322/42.1 0.810/28.08/0.298/40.8 0.846/27.61/0.361/31.5 0.815/27.93/0.299/95.3 0.894/28.98/0.314/27.1
FINE 0.834/25.98/0.351/4.9 0.796/26.54/0.319/6.4 0.825/26.71/0.377/5.6 0.782/25.75/0.333/6.6 0.872/27.99/0.334/5.1
FINE+MR-INR 0.845/26.37/0.346/5.5 0.807/26.84/0.314/6.6 0.835/26.51/0.373/6.0 0.793/26.29/0.326/7.0 0.876/28.24/0.333/5.2
FINE+SST 0.868/27.22/0.327/17.2 0.827/28.16/0.283/21.9 0.853/27.72/0.293/21.9 0.822/28.07/0.389/52.2 0.891/29.02/0.314/18.4
FINE+MR-INR+SST | 0.876/27.71/0.320/12.1 0.829/28.34/0.279/18.7 0.861/27.93/0.279/15.7 0.825/28.54/0.286/31.9 0.895/29.05/0.311/13.2
NR2N 0.836/25.80/0.353/5.2 0.796/26.71/0.316/6.9 0.826/26.59/0.383/6.7 0.781/26.20/0.335/6.9 0.859/26.91/0.347/5.6
NR2N+MR-INR 0.849/26.11/0.346/5.7 0.798/26.42/0.317/7.4 0.829/26.64/0.380/7.3 0.791/26.37/0.332/7.5 0.867/27.43/0.343/5.7
NR2N+SST 0.868/27.38/0.323/21.7 0.825/28.23/0.284/22.5 0.854/27.69/0.284/22.6 0.822/28.07/0.291/52.7 0.892/29.08/0.313/19.3
NR2N+MR-INR+SST | 0.871/27.32/0.323/12.2 0.830/28.43/0.279/16.4 0.862/27.98/0.279/14.5 0.825/28.86/0.287/31.7 0.895/29.12/0.311/12.2
SSDU 0.851/24.82/0.353/5.4 0.788/22.37/0.344/7.8 0.819/24.27/0.339/7.1 0.789/23.03/0.346/7.3 0.856/24.88/0.349/6.5
SSDU+MR-INR 0.861/25.18/0.348/5.6 0.789/22.45/0.339/8.0 0.832/24.97/0.385/7.4 0.797/23.78/0.344/7.7 0.873/26.11/0.347/6.6
SSDU+SST 0.871/25.17/0.349/25.3 0.825/28.35/0.284/30.6 0.854/27.71/0.287/25.7 0.823/28.07/0.293/139.8 0.893/29.02/0.315/28.1
SSDU+MR-INR+SST | 0.877/27.46/0.322/11.5 0.828/28.36/0.287/18.9 0.860/28.04/0.287/17.4 0.826/28.62/0.286/44.2 0.897/29.04/0.310/14.6

Table 5: Performance comparison of UNet methods under different domain shifts. Each cell presents
(SSIM 1/ PSNR 1/ LPIPS | / Time (mins/patient) |). The proposed methods combine MR-INR-
based patient-wise adaptation and single-slice refinement.
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Figure 7: Performance Analysis of VarNet under Different Domain Shifts. Top-left: PSNR gain from
adding MR-INR across FINE, NR2N, and SSDU in stage 1, with the largest gain in modality shift
in most strategies. Bottom-left: LPIPS vs. inference time trade-off showing that +MR-INR+SST
achieves higher quality with reduced time comsumption compared to DIP-TTT and normal +SST.
Right: SSIM across five domain shifts for each SSL family, visualized patient-level (Stage 1) and after
slice refinement (Stage 1 + Stage 2). MR-INR consistently improves performance across domains,
and combining it with SST further enhances SSIM.

contexts. The LPIPS vs. inference time plot (bottom-left) illustrates that MR-INR+SST strikes
a favorable balance between reconstruction quality and computational efficiency, outperforming
DIP-TTT and conventional SST in both metrics. Radar plots (right) further validate our hierarchical
design: Stage 1 improves SSIM through patient-level adaptation, while Stage 2 refinement with
SST delivers additional performance boosts. These results reflect trends observed in Figure of
performance analysis on UNet and confirm that our framework generalizes effectively to VarNet,
enhancing robustness and generalization under all OOD shifts.

Distributional Analysis. To further assess the robustness of our method, Figure 8 presents violin
plots of adjusted SSIM, PSNR, and LPIPS metrics under two representative domain shifts: accel-
eration (top row, Knee dataset with UNet) and sampling (bottom row, Brain dataset with VarNet).
w1 and o denote the mean and standard deviation of each metric across slices per subject. Adjusted
values are computed as 1 — 0.50 per subject, considering both and emphasizing performance stability
across slices per patient. Notably, SSDU+MR-INR+SST consistently outperforms both DIP-TTT and
SSDU+SST across all metrics. Improvements are statistically significant in most cases, particularly
for PSNR and LPIPS (p < 0.01, Wilcoxon signed-rank test), highlighting our framework’s ability
to deliver high-fidelity and stable reconstructions. These results reaffirm that the two-stage strategy
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Figure 8: Comparison of model performance under domain shifts in acceleration (top) and sampling
(bottom). Violin plots show the per-subject distributions of adjusted SSIM (1), adjusted PSNR (7),
and adjusted LPIPS (), where each adjusted metric is computed as ¢ — 0.50, with p and o denoting
the mean and standard deviation of each metric across slices per subject. Three test-time strategies
are evaluated: DIP-TTT, SSDU+SST, and SSDU+MR-INR+SST. The top row presents results under
acceleration shift on the Knee dataset using UNet, while the bottom row corresponds to sampling
shift on the Brain dataset using VarNet. Mean values are marked within each violin. Statistical
significance of SSDU+MR-INR+SST compared to baseline methods (DIP-TTT and SSDU+SST) is
indicated by * (p < 0.05) or ™ (p < 0.01), based on Wilcoxon signed-rank tests.

(+MR-INR+SST with AD module) offers superior stability under diverse and challenging OOD
shifts.

C Comparison to ZS-SSL

Recent progress in TTA MRI reconstruction has introduced zero-shot paradigms such as ZS-SSL [35],
which train directly on undersampled measurements from a single subject. While effective in few
data cases, ZS-SSL reconstructs each slice independently, partitioning and augmenting available
k-space into training, loss, and validation sets. This design can limit the model’s ability to capture
shared anatomical representation.

Another representative method, DIP-TTT [11], improves upon the original Deep Image Prior by
incorporating early stopping to stabilize optimization during test-time training. However, similar
to ZS-SSL, it operates slice-by-slice and lacks modeling of inter-slice spatial dependencies. While
DIP-TTT has been shown to outperform ZS-SSL under anatomy shifts, broader comparisons across
other domain shifts are missing.

In contrast, our proposed approach adopts a two-stage test-time adaptation strategy: (1) MR-INR
performs subject-level adaptation by leveraging all patient scans to capture shared anatomical structure
and slice-wise relationships, and (2) SST refines each slice independently via AD module. This
hierarchical modeling allows us to exploit both global context and local detail refinement during
inference.

Table 6 presents quantitative results under five domain shifts: anatomy, dataset, modality, acceleration,
and sampling. ZS-SSL shows competitive performance under anatomy and modality shifts, but it
does not achieve surpassing on all metrics and spends more time to converge. It lags behind our
methods in all other settings. Our MR-INR+SST framework consistently achieves state-of-the-art
results across metrics and shifts. Furthermore, it significantly reduces inference time (e.g., 17-25
min vs. 100+ min for ZS-SSL), highlighting its practical applicability. More details about the the
comparison on visualisation are in the last section-Supplementary Visualisations.

These findings suggest that the hierarchical design of our two-stage adaptation is better suited to
handling diverse and challenging distribution shifts than methods relying solely on single-slice

24



reconstruction. By explicitly modeling cross-slice dependencies in Stage 1 and adapting locally in
Stage 2, our method achieves strong generalization and efficiency in real-world deployment scenarios.

Method Anatomy Shift Dataset Shift Modality Shift Acceleration Shift Sampling Shift
(S: Knee, 7 Brain) (S: Stanford, 7 fastMRI)  (S: AXT2, 7: AXTIPRE) (8:2x, T 4x) (S: Random, 7" Uniform)

Zero-filling 0.737/24.50/0.327/- 0.747/24.33/0.359/- 0.747/25.71/0.350/- 0.754/23.37/0.396/- 0.766/26.28/0.338/-
Non-TTT 0.799/23.16/0.371/- 0.706/22.35/0.365/- 0.796/23.54/0.379/- 0.761/23.04/0.372/- 0.111/16.00/0.594/-
DIP-TTT | 0.878/27.67/0.312/52.5  0.798/28.02/0.292/41.8 0.867/28.33/0.337/71.6 0.815/28.25/0.285/137.2  0.771/27.65/0.254/38.9
ZS-SSL 0.884/27.07/0.314/99.5  0.745/21.93/0.365/135.4 0.860/28.31/0.338/103.3  0.751/21.37/0.381/167.4  0.734/24.30/0.306/52.2
FINE+SST 0.862/27.57/0.311/53.5  0.794/27.72/0.294/20.3 0.857/28.08/0.345/79.8 0.823/28.17/0.288/63.8 0.748/25.18/0.276/48.3
NR2N+SST 0.883/27.72/0.307/63.9 0.798/27.78/0.293/25.3 0.860/28.17/0.341/80.2 0.822/28.09/0.291/69.2 0.771/26.46/0.276/57.1
SSDU+SST 0.879/27.65/0.310/68.3  0.789/26.79/0.299/24.9 0.857/28.07/0.343/93.4 0.803/28.06/0.293/134.2  0.736/24.84/0.288/50.5
FINE+MRINR+SST  0.882/27.68/0.311/17.1 0.808/28.72/0.286/18.2 0.867/28.32/0.337/21.8 0.829/28.64/0.276/44.5 0.824/28.49/0.232/22.1
NR2N+MRINR+SST  0.884/27.81/0.306/18.7  0.812/28.76/0.281/20.4 0.869/28.36/0.336/20.3 0.826/28.89/0.273/43.1 0.822/28.40/0.241/25.2
SSDU+MRINR+SST  0.882/27.66/0.307/18.5  0.808/28.16/0.290/21.4 0.863/28.09/0.342/29.3 0.826/28.62/0.286/45.2 0.800/28.21/0.254/25.8

Table 6: Cross-domain evaluation under five domain shifts: anatomy, dataset, modality, acceleration,
and sampling. Each cell shows the model performance in format SSIM (1) / PSNR (1) / LPIPS (}) /

Time (mins/patient) (]). Rows shaded in light red highlight our proposed MR-INR+SST methods,
which achieve consistent improvements across shifts with notably reduced inference time.

D Other Ablation Studies and Sensitivity Analysis

Choice of INRs To clarify our choice of SIREN as the INR backbone in MR-INR, we conducted
an additional ablation comparing different INR backbones under both patient-wise (FINE+MR-INR)
and single-slice (FINE+MR-INR+SST) training. Results are summarized below:

Backbone (Stage 1) SSIM1T / PSNRT / LPIPS] Backbone (Stage 1+2) SSIM7T /PSNRT / LPIPS|

WIRE 0.839/25.78 /0.354 Finer 0.873/27.40/0.323
Finer 0.845/26.05/0.350 WIRE 0.872/27.44/0.321
RPE + MLP 0.845/25.76/0.349 RPE + MLP 0.864 /27.22/0.326
SIREN only 0.845/26.16/0.349 SIREN only 0.874/27.51/0.322
Ours (PE+SIREN) 0.845/26.37 / 0.346 Ours (PE+SIREN) 0.876 /27.71/0.320

Table 7: Sensitivity of INR backbone choice under patient-wise (Stage 1) and single-slice (Stage 142)
Refinement.

Our design combining random Fourier positional encoding with SIREN consistently yields the best
or near-best performance, especially in perceptual quality (LPIPS). While Finer offers frequency
adaptability, its more complex architecture increases overhead without clear performance gains;
WIRE, though efficient, suffers from unstable convergence and limited representation in medical
shift settings. Compared to INCODE, our SIREN-based MR-INR avoids the need for pretraining,
supporting our lightweight, plug-and-play adaptation objective.

Loss Weight Ablation We further evaluate the sensitivity of the framework to different loss weight
configurations for Stage 1 (Aseif, AINR,> AReg) and Stage 2 (Aseir, Aivg) (Table 8). Overall performance
remains stable across a wide range of A values, demonstrating the robustness of the training objectives.
However, setting A\ing too low (e.g., 0.1) leads to notable degradation, especially in Stage 1 and
LPIPS in Stage 2. This aligns with the key role of MR-INR in capturing patient-level distribution
shifts, where a sufficient INR loss weight is critical for effective adaptation.

Stage A Settings PSNR 1 SSIM 1t LPIPS |
1/1/1e-4 24.97 0.832 0.385
Stage 1 1/0.1/1e-4 23.85 0.823 0.386
1/1/0.1 24.00 0.822 0.388
1/1 28.04 0.860 0.287
Stage 2 1/0.1 28.00 0.861 0.356
1/0.01 27.99 0.861 0.350

Table 8: Ablation of loss weight combinations. Performance is stable across a wide range of A values,
but mild degradation when A\jng is too small.
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Hyper-parameter Sensitivity. We evaluate the sensitivity of MR-INR (Stage 1) and SST+AD
(Stage 2) to key hyperparameters, including latent code size, INR depth, and initialization scale
(Table 9). The performance across PSNR, SSIM, and LPIPS remains remarkably stable, with less
than 0.15 dB variation in PSNR and negligible LPIPS differences. This robustness indicates that
the method is largely insensitive to moderate hyperparameter changes, making it well suited for
deployment without extensive tuning.

TTA Stage Hyperparameter SSIM 1 PSNR 1 LPIPS |
Latent Code Size (64 / 128 / 256) 0.849/0.845/0.850 26.39/26.37/26.47 0.345/0.346/0.335

Stage 1 INR Depth (3/4/5) 0.842/0.845/0.848 26.34/26.37/26.44 0.345/0.346/0.346
Init Std (0.1/0.01/0.001) 0.845/0.845/0.847 26.50/26.37/26.37 0.346/0.346 / 0.345
Latent Code Size (64 / 128 / 256) 0.876/0.876/0.877 27.53/27.71/27.53 0.323/0.320/0.320

Stage 2 INR Depth (3/4/5) 0.874/0.876/0.877 27.54/27.71/27.56 0.321/0.320/0.319
Init Std (0.1/0.01/0.001) 0.876/0.876/0.875 27.53/27.71/21.52 0.321/0.320/0.322

Table 9: Hyperparameter sensitivity of MR-INR (Stage 1) and SST+AD (Stage 2). The method
remains stable under variations in latent code size, network depth, and initialization, with PSNR
fluctuations < 0.15 dB and negligible LPIPS differences.

E Quantitative Results in Same Domain Shift

In-domain Generalization Analysis. Table 10 reports the performance of UNet-based reconstruc-
tion methods evaluated under same-domain (in-domain) settings across five shifts: Brain, fastMRI,
AXTIPRE, 2x, and Random. As expected, most methods perform better under in-domain testing
compared to out-of-distribution (OOD) settings, with consistently higher SSIM and PSNR and lower
LPIPS scores. Among the baselines, DIP-TTT demonstrates strong performance, especially in
settings like Brain and AXT1PRE. However, it comes at a significantly higher inference cost, as
reflected in its per-patient runtime.

Notably, our proposed two-stage pipeline (MR-INR+SST) achieves the best or second-best scores
across almost all shifts, outperforming both FINE+SST and DIP-TTT in both fidelity and efficiency.
For instance, in the sampling in same domain shift, SSDU+MR-INR+SST improves SSIM and PSNR
while maintaining reduced LPIPS and halving the inference time compared to DIP-TTT. Furthermore,
combining patient-level modeling (MR-INR) with slice-level SST refinement results in consistent
performance gains over single-stage variants, demonstrating the benefit of hierarchical adaptation
even in-domain.

This table highlights the robustness and generality of our framework: even when domain shifts are
minimal in some cases, dual-stage adaptation continues to yield meaningful improvements in both
reconstruction quality and computational efficiency.

Method (UNet) \ Brain — Brain fastMRI — fastMRI ~ AXT1PRE — AXTIPRE 2x — 2x Random — Random
Zero-filling 0.737/24.50/0.359/- 0.754/24.33/0.359/- 0.747/25.70/0.350/- 0.846/26.52/0.226/- 0.811/26.32/0.387
Non-TTT 0.822/26.50/0.358/- 0.559/21.88/0.454/- 0.799/26.08/0.395/- 0.149/15.74/0.580/- 0.764/25.87/0.331
DIP-TTT | 0.876/27.45/0.323/46.1  0.806/28.43/0.281/62.9 0.858/27.87/0.354/15.1 0.834/28.63/0.207/95.4  0.870/28.18/0.342/22.3

FINE | 0.847/26.39/0.345/4.6

0.799/26.88/0.309/6.9
0.805/27.08/0.312/7.2
0.824/28.14/0.285/33.2
0.825/28.44/0.287/29.1

0.837/26.88/0.368/4.5
0.839/27.28/0.366/4.7
0.860/27.82/0.285/11.3
0.862/28.06/0.280/9.3

0.846/26.07/0.275/7.1

0.878/28.40/0.229/7.4
0.893/30.02/0.675/59.1
0.901/30.15/0.195/39.3

0.853/27.32/0.357/4.7

0.856/27.44/0.356/4.9
0.864/28.27/0.343/14.3
0.874/28.29/0.335/13.2

FINE+MRINR 0.852/26.66/0.343/13.5
FINE+SST | 0.874/27.36/0.327/17.0
FINE+MRINR+SST  0.878/27.59/0.320/13.5
NR2N | 0.850/26.11/0.347/4.8
NR2N+MRINR 0.857/26.18/0.345/5.0
NR2N+SST | 0.875/27.49/0.323/20.7

NR2N+MRINR+SST  0.876/27.46/0.322/13.1

0.799/26.92/0.307/7.3

0.803/26.99/0.298/7.6
0.825/28.20/0.283/33.5
0.826/28.35/0.281/30.4

0.835/26.88/0.374/4.7

0.836/26.95/0.378/5.1
0.865/27.88/0.283/12.6
0.866/28.16/0.281/11.2

0.836/25.09/0.286/7.2
0.870/25.56/0.242/7.6
0.892/30.03/0.207/60.0
0.900/30.07/0.196/39.3

0.850/27.40/0.362/4.8

0.854/27.35/0.358/5.0
0.864/28.27/0.343/18.1
0.872/28.26/0.336/12.3

SSDU | 0.861/25.16/0.347/5.0
SSDU+MRINR 0.865/25.36/0.323/5.3
SSDU+SST | 0.876/27.39/0.323/24.1

SSDU+MRINR+SST ~ 0.879/27.57/0.322/11.5

0.794/22.64/0.332/7.5
0.8018/22.71/0.335/7.7
0.823/28.13/0.291/42.7
0.825/28.17/0.285/35.4

0.848/25.40/0.375/5.2

0.826/24.06/0.335/5.6
0.860/27.58/0.291/13.4
0.863/28.14/0.285/11.2

0.804/20.73/0.311/7.4

0.833/21.41/0.279/1.7
0.741/24.71/0.432/90.2
0.901/30.25/0.192/44.2

0.836/24.30/0.374/5.0

0.853/25.53/0.370/5.1
0.869/28.24/0.343/23.2
0.877/28.30/0.333/14.4

Table 10: Performance comparison of UNet methods under in-domain evaluation. Each cell reports
SSIM (1) / PSNR (1) / LPIPS (|) / Time (mins/patient) (). Shaded rows indicate methods that

include the proposed MR-INR-based adaptation ( MRINR ) and further enhancement via slice-wise
SST refinement ( MRINR+SST ).

26



In-domain Evaluation on VarNet. Table |1 presents a comprehensive comparison of VarNet-based
reconstruction methods evaluated under in-domain conditions (including DIP-TTT and ZS-SSL). As
expected, most methods demonstrate improved performance. Our proposed two-stage adaptation
pipeline, incorporating MR-INR and SST, achieves strong results across most datasets in terms of
SSIM, PSNR, and LPIPS.

Notably, our method (e.g., +MRINR+SST) attains the best SSIM, PSNR or LPIPS in four out of five
shifts. An exception occurs in the AXT1PRE — AXTI1PRE setting, where baseline+SST achieves
slightly better metrics. In contrast, our dual-stage approach imposes a strong global anatomical prior,
which promotes per-slice refinement in this homogeneous setting. A stronger global anatomical prior
from MR-INR may slightly limit the flexibility of slice-level adaptation in this shift.

Despite this, our method still delivers highly competitive results with significantly less inference time
compared to DIP-TTT. For instance, NR2N+MRINR+SST achieves a comparable PSNR of 28.27 in
the T1 case within 18.4 minutes/patient, versus 25.8 minutes for DIP-TTT. This supports the claim
that our framework achieves better trade-offs between quality and efficiency, making it favorable for
real-world applications requiring fast implementation without sacrificing reconstruction accuracy.

Method (VarNet) \ Brain — Brain fastMRI — fastMRI AXTIPRE — AXT1PRE 2x — 2x Random — Random
Zero-filling 0.754/24.33/0.359/- 0.747/24.33/0.359/- 0.747/25.70/0.350/- 0.846/26.52/0.226/- 0.764/25.88/0.331/-

Non-TTT 0.845/24.60/0.305/- 0.706/23.12/0.331/- 0.838/22.48/0.354/- 0.149/15.74/0.580/- 0.111/15.98/0.593/-

DIP-TTT 0.875/27.29/0.315/102.4  0.815/28.28/0.282/57.1 0.869/28.33/0.331/25.8  0.840/29.26/0.196/120.4  0.683/24.84/0.320/32.3
ZS-SSL 0.885/27.57/0.313/124.4  0.754/22.22/0.379/100.2 0.870/27.93/0.334/85.4 0.742/21.94/0.302/167.4  0.634/21.34/0.410/49.6
FINE | 0.854/26.49/0.328/3.9 0.801/26.55/0.300/7.2 0.862/27.70/0.335/3.5 0.816/24.17/0.273/7.4 0.646/20.62/0.388/4.3
FINE+MRINR 0.857/26.66/0.325/4.7 0.804/26.80/0.297/7.8 0.855/27.46/0.343/4.2 0.857/26.62/0.225/7.8 0.767/24.45/0.351/4.4
FINE+SST | 0.877/27.62/0.310/91.9  0.809/27.87/0.289/30.4 0.873/28.41/0.329/26.2 0.832/29.07/0.204/63.8  0.697/24.06/0.327/47.1
FINE+MRINR+SST 0.884/27.81/0.306/47.6 0.825/28.34/0.278/23.5 0.862/28.16/0.337/19.1 0.860/29.30/0.198/44.3  0.787/27.49/0.261/18.3
NR2N | 0.868/26.82/0.321/4.4 0.815/26.95/0.285/7.8 0.871/27.43/0.332/4.3 0.805/23.37/0.285/7.6 0.640/20.76/0.388/4.5
NR2N+MRINR 0.868/26.97/0.319/5.1 0.808/26.48/0.290/8.1 0.859/27.14/0.340/4.9 0.835/25.71/0.248/8.0 0.768/24.56/0.348/4.6
NR2N+SST | 0.880/27.69/0.307/110.3  0.812/27.77/0.288/33.7 0.878/28.53/0.323/26.8 0.838/29.05/0.199/59.3  0.696/24.13/0.328/48.4
NR2N+MRINR+SST  0.885/27.81/0.306/49.7 0.826/28.42/0.279/22.9 0.867/28.27/0.331/18.4 0.844/29.24/0.191/45.7  0.787/27.51/0.261/20.4
SSDU | 0.838/24.69/0.344/4.7 0.686/19.12/0.370/8.2 0.825/22.81/0.376/4.8 0.597/17.44/0.366/8.1 0.521/17.72/0.421/5.3
SSDU+MRINR 0.839/24.89/0.342/5.1 0.713/19.72/0.350/8.7 0.809/22.18/0.369/5.3 0.695/19.02/0.318/8.5 0.583/19.00/0.401/5.4
SSDU+SST | 0.881/27.57/0.310/127.2  0.802/27.77/0.289/40.7 0.871/28.31/0.331/30.4 0.819/26.07/0.243/70.5  0.677/23.02/0.340/41.3

SSDU+MRINR+SST  0.887/27.57/0.310/50.4  0.815/28.29/0.285/39.2 0.867/28.20/0.333/24.7 0.826/28.62/0.286/50.1  0.768/27.05/0.282/25.9

Table 11: Performance comparison of VarNet methods under in-domain evaluation settings. Each
cell reports SSIM (1) / PSNR (1) / LPIPS ({) / Time (mins/patient) (|). Shaded rows indicate

methods that include the proposed MR-INR-based adaptation ( MRINR ) and further enhancement
via slice-wise SST refinement ( MRINR+SST ).

F Mathematical Analysis for Proposed Method

F.1 Test Distribution and Problem Formulation

We consider a setting where the observed signal y is a corrupted version of the underlying clean
signal x, which follows the test distribution:

Q:y=x+z, x=Uc+pug, c~N(0,I), z ~ N(0,1s?). (12)

Here, U € R"*4 is an orthonormal basis for the signal subspace, and i, represents the mean shift in
the test distribution. Our goal is to estimate x under this distribution shift.

F.2 Self-Supervised Adaptation by Affine Transformation

To address the distribution shift from P to (), we introduce an adaptation mechanism that accounts
for both variance and mean shifts. The optimal estimator for x under test-time training (TTT) is:

% =aUUTy + 3, (13)

where « accounts for variance shifts, and 3 corrects for mean shifts.
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The self-supervised loss function is defined as:

2ad

Lss(a,8,U,y) =Eq [|ly —aUU"y = B3] + —Eq [|T-UU y[3]. (14

Expanding the First Term of Lgs:
Eq [ly —aUU"y - B[3] =Eq [y"y — 2ay"UU"y — 257y
+a’y"UUTUUy + 208" UUy + 87] . (15)

Taking expectation:
Eq [y"y] — 20Eq [y"UU"y] — 2Eq [5"y]
+o’Eq [y" UUTUU"y] + 2aEq [ UUTy] +Eq [87 8] . (16)

Compute Individual Expectations and using expectation properties:

Eqly"y] = u(Bqlyy"])- (17)
Since:
Eqlyy”] = UUT + 5°I + poug, (18)
Eqly"y] = tr(UUT) + s’tr(I) + tr(pqpqy), (19)
=d+s*n+ |ugl* (20)
For the second expectation:
Eqly"UU"y] = u(UUEqlyy”)). @1)
Substituting Eq[yyT]:
Eqly"UUTy] = w(UUT (UUT + $°T + pgud)), (22)
= tr(UUT) 4 s*r(UUT) + tr(UUTung), (23)
= d + s*d + w(UU pgug). (24)

Lss(a, ) = (d—|—32n—|—||,uQ||2)—2a(d—|—52d+tr(UUTuQu5))—ZﬂT,uQ—i—an—FZadﬁTuQ—F||ﬁH2.
(25)

Combine each component, we can get
Lss(a, B) = d+5°n+| gl —2a(d+s*d+ U ug||*)+od+2adB” no—28" no+18II°> (26)

Final Simplified Expression for this term

Lss(a, ) = s"n + (1 — a)’d + (o” — 2a)s%d + ||8 — po? 27)
Expending second term:

2ad
n—d

Eq [|I-UUN)y|3]. (28)

First, expanding the squared norm:
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11— U |3 = (1- VU )y)" (1-UUT)y). (29)

Since (I — UUT) is symmetric:

=y (I-UU")y. (30)
Taking expectation:
Eq [y"I-UU")y] =u (I-UU"Eqlyy"]). 31)
Using the expectation property:
Eqlyy"] = UU" + $*I + pgpus- (32)
Substituting:
=tr (I—-UU") (UU" + $°1 + popus)) - (33)
Expanding the trace:
=tr (I-UU")s’T + (I-UU" ) ugup) - (34)

Since (I — UUT) removes the UUT component:
=s*(n—d)+tr (I-UU )ugus) - (35)
Thus, the second term simplifies to:

2ad
n—d

[s*(n —d) +tr (I— UUT)ung)] . (36)
Assuming . is entirely inside the subspace spanned by U, the projection term vanishes, giving:

2ad

2
5 (n—d). 37)

Last, we take final simplification Now, simplifying the terms:

Lss(a,B) = s*n+ (1 — a)?d + (@® — 2a)s?d + |8 — pol|* + 2ads®. (38)

Combining the s2d terms:

(@ — 2a)s%d + 2as°d = a?s%d — 2as%d + 2as°d = o?s7d. 39)
Thus, the final loss function simplifies to:
Lss(a,B) = s*n+ (1 — a)?d + a?s?d + |8 — pgl* (40)

Finally, we compute the derivatives

For derivative with Respect to «

O0Lss

_ B 2
50 2d(1 — o) + 2ads”. 41)
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Setting this to zero and solving for a*:

1
* = . 42
R (42)
For derivative with respect to 3
0Lss

=2(8— . 43
PR (B = 1q) (43)

Setting this to zero and solving for 5*:
B = pq- (44)

In conclusion,

1. «o* dynamically adjusts for noise variance shifts.

2. (8* corrects for mean shifts, making adaptation robust in OOD settings.

G Supplementary Visualisations

While the main paper presents qualitative comparisons on UNet (FINE) under the anatomy shift, this
appendix includes additional visualisations across the remaining domain shifts. We provide side-by-
side comparisons of reconstruction results for our method and competing approaches, including DIP-
TTT and ZS-SSL. Notably, ZS-SSL results are visualised under the VarNet backbone as originally
proposed with data consistency block. Our visualisations offer a more comprehensive view of
cross-domain performance across architectures and adaptation strategies.

G.1 UNet

Ground-Truth Zero-filling Non-TTA DIP-TTA FINE FINE+MRINR FINE+SST Our

Figure 9: Comparison of different frameworks in UNet under dataset shift (Stanford to fastMRI)
using the FINE method. The first row shows reconstructed MRI images, while the second row
presents residual maps between reconstructions and full-sampled MRI.
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Ground-Truth Zero-filling Non-TTA DIP-TTA FINE FINE+MRINR FINE+SST Our

Figure 10: Comparison of different frameworks in UNet under modality shift (AXT2 to AXT1PRE)
using the FINE method. The first row shows reconstructed MRI images, while the second row
presents residual maps between reconstructions and full-sampled MRI.

Ground-Truth Zero-filling Non-TTA DIP-TTA FINE FINE+MRINR FINE+SST Our

Figure 11: Comparison of different frameworks in UNet under acceleration shift (2X to 4X) using
the FINE method. The first row shows reconstructed MRI images, while the second row presents
residual maps between reconstructions and full-sampled MRI.

Ground-Truth Zero-filling Non-TTA DIP-TTA FINE FINE+MRINR FINE+SST Our

Figure 12: Comparison of different frameworks in UNet under sampling shift (random to uniform)
using the FINE method. The first row shows reconstructed MRI images, while the second row
presents residual maps between reconstructions and full-sampled MRI.
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G.2 VarNet

Ground-Truth Zero-filling Non-TTA DIP-TTA - FINE+SST

Figure 13: Comparison of different frameworks in VarNet under anatomy shift (Knee to Brain) using
the FINE method. The first row shows reconstructed MRI images, while the second row presents
residual maps between reconstructions and full-sampled MRI.

Ground-Truth Zero-filling Non-TTA DIP-TTA ZS-SSL FINE FINE+MRINR FINE+SST Our

Figure 14: Comparison of different frameworks in VarNet under dataset shift (Stanford to fastMRI)
using the FINE method. The first row shows reconstructed MRI images, while the second row
presents residual maps between reconstructions and full-sampled MRI. The proposed method (far
right) achieves the lowest residuals, indicating improved reconstruction accuracy

Ground-Truth Zero-filling Non-TTA DIP-TTA ZS-SSL FINE FINE+MRINR FINE+SST

Figure 15: Comparison of different frameworks in VarNet under modality shift (AXT2 to AXT1PRE)
using the FINE method. The first row shows reconstructed MRI images, while the second row
presents residual maps between reconstructions and full-sampled MRI.

Ground-Truth Zero-filling Non-TTA DIP-TTA ZS-SSL FINE FINE+MRINR FINE+SST Our

\

Figure 16: Comparison of different frameworks in Varnet under acceleration shift (2X to 4X) using
the FINE method. The first row shows reconstructed MRI images, while the second row presents
residual maps between reconstructions and full-sampled MRI.
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Ground-Truth Zero-filling Non-TTA DIP-TTA ZS-SSsL FINE FINE+MRINR FINE+SST Our

Figure 17: Comparison of different frameworks in VarNet under sampling shift (random to uniform)
using the FINE method. The first row shows reconstructed MRI images, while the second row
presents residual maps between reconstructions and full-sampled MRI.
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