Under review as a conference paper at ICLR 2021

NEURON ACTIVATION ANALYSIS IN MULTI-JOINT
ROBOT REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent experiments indicate that pre-training of end-to-end Reinforcement Learn-
ing neural networks on general tasks can speed up the training process for specific
robotic applications. However, it remains open if these networks form general
feature extractors and a hierarchical organization that are reused as apparent e.g.
in Convolutional Neural Networks. In this paper we analyze the intrinsic neuron
activation in networks trained for target reaching of robot manipulators with in-
creasing joint number in a vertical plane. We analyze the individual neuron activ-
ity distribution in the network, introduce a pruning algorithm to reduce network
size keeping the performance, and with these dense network representations we
spot correlations of neuron activity patterns among networks trained for robot ma-
nipulators with different joint number. We show that the input and output network
layers have more distinct neuron activation in contrast to inner layers. Our pruning
algorithm reduces the network size significantly, increases the distance of neuron
activation while keeping a high performance in training and evaluation. Our re-
sults demonstrate that neuron activity can be mapped among networks trained for
robots with different complexity. Hereby, robots with small joint difference show
higher layer-wise projection accuracy whereas more different robots mostly show
projections to the first layer.

1 INTRODUCTION

Convolutional Neural Networks (CNN) are well known to demonstrate a strong general feature ex-
traction capability in lower network layers. In these networks feature kernels can not only be visual-
ized, pre-trained general feature extractors can also be reused for efficient network learning. Recent
examples propose efficient reusability experimentally for Reinforcement Learning neural networks
as well: Networks are pre-trained on similar tasks and continued learning for the goal application.
Reusing (sub)networks that can be re-assembled for an application never seen before can reduce
network training time drastically. A better understanding of uniform or inhomogeneous network
structures also improves the evaluation of network performance as well unveils opportunities for the
interpretability of networks which is crucial for the application of machine learning algorithms e.g.
in industrial scenarios. Finally, methodologies and metrics estimating network intrinsic and inter
correlations in artificial neural networks may also enhance the understanding of biological learning.
Eickenberg et al.|(2017)) could recently demonstrate that layers serving as feature extractors in CNNs
could actually be found in the Human Visual Cortex by correlating artificial networks to biological
recordings.

Successful experiments to re-use end-to-end learned networks for similar tasks leave open whether
such networks also self-organize feature extractors or in a dynamical domain motion primitives.
Here, we analyze neuron activation in networks in order to investigate activation distribution and
mapping between different networks trained on similar robot reaching tasks.

In this paper we consider a standard vertical space robot manipulator with variable number of revo-
lute joints as the test setup for target reaching end-to-end Reinforcement Learning (RL) experiments.
We introduce metrics applied to evaluate individual neuron activation over time and compare activity
within individual networks all-to-all (every neuron is correlated to any other neurons in the network)
and layer wise (only correlations between networks on the same layer are inspected). These metrics
are utilized to set up a pruning procedure to maximize the information density in learned neural
networks and reduce redundancy as well as unused network nodes. Exploiting these optimization

Under review as a conference paper at ICLR 2021

procedure we learn various neural networks with variable dimensions on robot manipulators with
two to four joints, representing two to four Degrees of Freedom (DOF). in order to analyze similar-
ities between network activation patterns.

As a result we demonstrate experimentally that the introduced pruning process reduces the network
size efficiently keeping performance loss in bounds and hereby builds a valid basis for network
analysis. We show that the networks trained and iteratively pruned on the robot manipulators form
distinct neuron activation. Analyzing neuron activation correlations between different networks of
various sizes, mappings between neurons trained on different manipulators can be found. A layer
wise interpretation reveals that networks trained for same tasks build similar structures, but we can
also discover partially similar structures between networks trained on 3 and 4 joint manipulators.

2 RELATED WORK

The apability of feature extraction in CNNs, alongside with a variety of analysis and visualization
tools, serves as a motivation for this work on training, analysis and pruning for networks trained
with RL. Analysis methods for CNNs reach from regional based methods, e.g. image occlusion
Zeiler & Fergus| (2014), that aim to expose the region of an image most relevant for classification,
to feature based methods, e.g. deconvolution Zeiler & Fergus| (2014) or guided backpropagation
Selvaraju et al| (2017). Methods combining the described techniques are for example introduced
as Grad-CAM in |Springenberg et al.| (2014). These networks demonstrate class discrimination for
features of deeper network layers (Zeiler & Fergus|(2014)) as a basis to apply such general feature
extractors to different applications after pre-training. Pre-trained networks such as ResNet He et al.
(2016), which has been trained on the ImageNet1 data set, speed up training drastically by initializ-
ing CNNs applied for similar tasks. Kopuklu2019 demonstrated that even reusing individual layers
in the same network can lead to a performance increase.

Recent advances pushed RL agents to reach super human performance in playing Atari video games
Bellemare et al.| (2013) Mnih et al.| (2015]), Chess |Silver et al.| (2017) and Go |Silver et al.| (2016).
These results were extended to cope with continuous action spaces in e.g. |Lillicrap et al.| (2015)
and demonstrated great performance on highly dynamic multi-actuated locomotion learning tasks
such as demonstrated in the NIPS 2017 Learning to Run challenge |[Kidzinski et al.|(2018). Vuong
et al.[{(2019) and Eramo et al.[|(2020) demonstrate experimentally that knowledge learned by a neural
network can be reused for other tasks in order to speed up training and hereby translate modularity
concepts from CNNs to RL frameworks. Hierarchical Reinforcement Learning incorporates these
ideas, utilizing the concept of subtask solving into neural networks e.g. in|Andreas et al.|(2016) for
question answering. A successful example of transfer learning to build up a general knowledge base
could be demonstrated with RL in Atari games inParisotto et al.|(2016)). |Gaier & Hal(2019) empha-
sizes the importance of neural architectures that can perform well even without weight learning.
With a main motivation to improve learning efficiency and reduce computational requirements, net-
work pruning is introduced for various network architectures. Early work in [LeCun et al.| (1990)
utilizes second derivative information as a heuristic to decrease network size, recent work in [Livne
& Cohen|(2020) introduces network pruning for Deep Reinforcement Learning based on redundancy
detection in an iterative process.

Li et al.|(2018)

3 EXPERIMENTAL SETUP

In this paper we focus on a robot manipulator with operation limited to a vertical plane. A neural
network is trained with end-to-end Reinforcement Learning in order to reach predefined locations in
2D space without prior knowledge of neither robot dynamics nor the environment. Hereby, end-to-
end refers to a mapping from sensory feedback in terms actual joint positions in cartesian space and
the desired goal location to output actions as joint position commands. We apply Deep g-learning,
as proposed in Mnih et al.|(2015)), to predict g-values, an action is selected by means to the softmax
exploration policy and Gradient descent of the networks weights is handled by the Adam Solver
Kingma & Ba|(2014).

For performance reasons our experiments are executed within a simplified simulation environment
as shown conceptually in (right), but exemplary behaviors have been successfully trans-

Under review as a conference paper at ICLR 2021

Figure 1: Neuron activity is analyzed in neural networks trained for target reaching of multi-joint
robotic manipulators utilizing end-to-end Deep Q-Learning. We train the network in a simplified
environment of a robot with 2 to 4 controllable joints operating in vertical space (right, initial con-
figuration with joints ;). Transferability to a sophisticated robotic simulation (left) with motions
restricted to vertical space and the robot finger tips supposed to reach the green sphere could be
demonstrated.

ferred to a realistic robotic simulation left). We simulate robots with 2 to 4 DOF that are
implemented as revolute joints restricted to vertical space motions and actuated with PID position
controllers. For all experiments, the neural networks originally consist of 6 fully connected hidden
layers with ReLU activation functions, but may be reduced in the pruning process we introduce. The
network input vector & encodes actual robot joint angles 0} as their sine and cosine contribution for
every control step ¢ (control cycle time of 50ms) as well as the desired goal position in cartesian
coordinates [x*, y*] as

z®) = {sm (é?)) cos (égt)) ... sin (éﬁf’) cos (é?) z* y*}T. 1)

The output layer contains 3" neurons as the action of every individual joint 7 is quantized into the
three change of motion states {1, —1,0} as forward, backward and no motion for each joint with
joint angle changes of +0.05rad. The goal state of an agent is a randomly instantiated 2D location to
be reached with the robot finger tip in max. 60 control steps, each representing 50ms. The distance
between the goal position p* and the tip p is mapped into [0, 1] and squared to serve as the reward

2
function r (¢;) := (m) . All network results that are presented passed a validation test

consisting of 300 test episodes. This test also serves as the pruning baseline: The probability of a
type two error for reaching the final reward threshold 7 = 0.9 with an accuracy p = 0.9 lies bellow
significance o = 0.05 on the test data.

4 NEURON ACTIVATION ANALYSIS

We first analyze individual neuron activation inside multiple neural networks trained on the intro-
duced target reaching robotic manipulator. This initial analysis servers as a baseline for pruning
and projection evaluation, therefore we study only 3 joint robotic manipulators in depth before we
investigate a comparison of different kinematic structures.

We define a distance metric between neurons that is based on the neuron activation history in scope
of every episode in order to account for the dynamics in motion trajectory learning. All neuron

activation values over the course of an episode are collected in a vector z,(f) for every neuron n; of
the network in Episode E. Utilizing the linearity of applied ReLU activation functions we normal-
ize this activation in range [0, 1] in reference to the maximum value attained. For a set of sample
episodes &, representing a set of potential robot actions, we define the distance of neurons n; and n;
as

(E) (E)
zm _ Zn,
d(n;, n;) ‘5| J ,)
el Zn Iy,

with z() € RT, denoting the vector containing activation series of neuron n; in episode F and
Zn, € R>0 the maximum activation of n; in all episodes €. For a layer wise analysis [Equation 2|
is adapted accordingly, only considering distances to neurons that belong to the same layer. The

Under review as a conference paper at ICLR 2021

upper triangular matrix of a distance matrix D holds all values d(n;,n;) with ¢? = j. The density
distribution of neuron distances can be approximated by collecting all values in the upper triangular
matrices of D.

Additionally, hierarchical clustering as described in |Hastie et al| (2009) is applied to individual
network layers in order to reveal neuron groups that show similar activation behavior. We form
groups that minimize the mean cluster distance D(C}) of contained neurons as

1
D(Cl) = m Z Z d(nil,njl)- 3)

ny €CLn; €Ci\{na}

for neuron cluster C' of layer {. We conduct an experiment with a set of M/ = 20 networks (48 neu-
rons per hidden layer), for the three joint manipulation task. A reference set of untrained networks
with identical structure is initialized by Xavier initialization |Glorot & Bengio| (2010). Neuron dis-
tances are averaged from a set of m = 500 sample episodes. The distance distribution in randomized
networks forms a bell-shaped distribution globally as well as layer wise top). However,
the all-to-all distribution of trained networks primarily indicate a lower standard deviation and mean
compared to random networks, with a slight distortion at high distances. Layer-wise analysis re-
veals that these higher distance scores occur increasingly on network layers closer to the output, in
particular in the second half of layers. In contrast, lower layers demonstrate close to normal dis-
tributions. Clustering reveals a variety in distances for all layers in untrained randomly initialized
networks (Figure 2]bottom) which is kept on the first layer only in trained networks. In particular on
the middle layers clusters with low distances emerge during training.

The intrinsic network analysis depicts successful training that visibly changes the neuron activation
characteristics which highly depends on the location inside the network.

5 HEURISTIC NETWORK PRUNING

Non-uniform density distributions and low cluster differences in the inspected neuron activation
indicate potential for network pruning. Dense information representation is a requirement for the
comparison of different networks. For this purpose we propose a pruning procedure that iteratively
unifies neurons with similar activation, identified as small cluster distances, and retrains the net-
work. Hereby a trade-off between reduced network size and maintaining high-performance learning
is aspired.

We apply Breadth First Search on the resulting cluster tree of every network layer. The first encoun-
tered clusters with distance below threshold d,, which is defined as a fraction 7 of the maximum
cluster distance, are selected to form the layer segmentation C. Based on this neuron segmentation
C® of layer [, a reduced network is constructed that represents every cluster as a single neuron.
Original network weights are reused for the initialization of the reduced network. We exploit the
linearity of ReLU activation functions and assume identical neuron behavior only altered by lin-
ear scaling inside every cluster. W.l.o.g. cluster activation (¢ are defined such that scaling factors
~vn > 0 of contained neurons sum to one and Vn € C' : (¢ = ’ZTZ’ with z,, denoting the activation

of neuron 7, holds. For cluster C' € C(Y) and arbitrary neuron n € C' the forward propagation of z,
can be rearranged to form the forward propagation of the cluster activation as

Co=RelU | S o S | @

Dec—-1) Tn meD

with w,,,, denoting the weight from neuron m to n. (@) acts as an approximation that in practice
is only achieved by clusters of dead neurons that are not activated at all. Therefore, in order to
improve stability all neurons of a cluster contribute to the reduced network weights w as wop =

,% meD WnmYm. Scaling factors v, are generated from the maximum activation Z;, of the

respective neuron n.

In order to evaluate the introduced pruning procedure, we conduct experiments with a set of M =
20 neural networks (6 hidden layers, 48 neurons each) trained for the 3 joint manipulation task.
Network reduction is applied with a set of m = 300 sample episodes, presented results are averaged
over the set of networks which reached sufficient performance. The results presented in
(left) show a nearly linear correlation between cluster threshold and resulting pruned network size
if networks had an identical initial layer size of 48 neurons. In case of 7 = 0 only dead neurons

Under review as a conference paper at ICLR 2021

Layer 1

all-to-all

4 a
S 30
o " " "
£ EZ‘ E“ EH E“ Ezs
o & 220 220 2 20 & 20
| B 3 3 3 2
£ "‘ 5 15- £1s g1s £1s
[& 0 i b
LS 210 210 3 10 210
= os 0s os o3
a0 % 00 a0 00
2 s % s
o 20 25 35
Y g2 g Y §25 B
5 tw N g . 4 L
£ g 2 H s Tu Za
3 B 1o o]] 2
& e 3 H] £ ERS 2
3 3 i 5 o Siio
o 03 . 05 05 05
0o o I %
a5 0]
254 1
25 175 25 104 354
" g 150 " M "
220 g $ 0 s 8309
£ ©ls @ 100 F 13 k] © 20
3 3 5 5 51 5
B G | Go g 15
= | = 2 104 2
3 5 3 3 3 10]
o o3
o254 03 05
ao:

Figure 2: Neuron activation analysis for randomly initialized, trained and pruned networks on a three
joint manipulator (averages over 500 sample episodes, 20 trained agents). Top: Distance measured
between all-to-all (all neurons in a network are correlated among each other, left) neurons and layer-
wise (for every neuron only neurons on this layer are considered for correlation, right) indicate a
bell-shaped distribution with higher mean in the first and last layer. Pruning sharpens the bell-shape,
increasing the mean, but reducing very high distance scores. Bottom: Clustering Dendrograms are
generated based on the distance measures for an exemplary trained network. Untrained networks
show very similar clusters, trained network highlights cluster groups and pruning reduces neurons
while increasing cluster distance. The first layer generally keeps the most distinct clusters, the
penultimate layer the strongest neuron reduction.

are reduced, which does not affect the performance of the network, though reduces the network size
significantly (initial size of all networks: 323 neurons). For values of 7 € (0,0.1] the network is
reduced, but no strong effect is apparent on initial accuracy [%)] and training duration (number of
episodes executed until the validation set is passed). We observe interesting behavior in range of
7 € (0.1,0.22], as the initial accuracy decreases significantly, whereas the duration for retraining
the networks barely increases. This implicates that the main processes in the network remain in
tact after reduction, whereas for 7 > 0.2 a strong increase in training duration indicates a loss of
relevant information. As a trade off between minimal network size and efficient training 7 = 0.2 has
been selected as the optimal cluster threshold and was applied for all further experiments. As the
pruning process highly depends on the initial network size, we analyze networks of initial hidden
layer sizes of 32, 48, 128, 256 and 512 within the same test setup. The results shown in [Figure 3|
(right) emphasize the first reduction step as the most dominant. Noticeably large networks of initial
layer neuron count of 128, 256 and 512 reach similar pruned network size already in the first iteration
step. For subsequent reduction steps the network size plateaus. Inspection of neuron per layer counts
reveal that small initial networks (32, 48) taper with depth, compared to bigger initial networks that
form an hourglass shape. The average network shape of 256 and 512 neuron networks after three

Under review as a conference paper at ICLR 2021

13000 o0] o e 6x32
08 \ 6x256

\ e 6x128
\ —e— oxd8
—e— 6x512

03 04 75 £5 7

02 3
Cluster Threshold Reduction Step

Figure 3: Evaluation of heuristic cluster based network pruning on the example of a three joint
manipulator. Left: Even though the initial network accuracy decreases rapidly, the training duration
(Number of episodes executed until the validation set is passed) only increases significantly with
cluster thresholds larger than 0.3. As a trade off between minimal network size after pruning and
efficient training 7 = 0.2 has been picked as the optimal cluster threshold and was applied for
all further experiments. Right: The first reduction step demonstrates the strongest reduction for all
networks initialized with different initial neuron count per layer. Layers with more than 128 neurons
are reduced to a very similar neuron count in the first pruning step.

reduction steps turns out as § = [51.6 21. 15.9 12.6 10.2 16.7] Network intrinsic neuron
distance densities of pruned networks implicate an increased homogeneous information
representation compared to networks trained straight away. The bell-shaped distribution with higher
mean shows lower variance, and outliers of high distance scores are reduced. While clusters remain
rather similar on the first and last layer, in particular the cluster distances on middle layers are
drastically increased along with the reduced cluster number. Overall, we find that our pruning
process reduces network size efficiently and hereby shows a visible effect on neuron activation
towards a rather uniform distribution and distinct cluster structure.

6 CORRELATIONS IN NETWORKS TRAINED FOR MULTI-JOINT ROBOTS

Based on the both the individual neuron activation analysis and heuristic network pruning, we now
investigate mappings of neuron activation between different networks learned on robot manipulators
with 2 to 4 joints. Here, the goal is to estimate whether activation patterns are similar in networks
trained for the different robot kinematics. For this purpose we construct an unidirectional linear
projection between source and target network and analyze its accuracy and structure. Based on the
source network neuron activation b € RI><0’ resulting from input x, a prediction @ = b’ P of the

target activation @ € Rgfo for the same input z is given by projection matrix P & RIZ(OX M 1'
The projection is constructed based on a set of IV training inputs X that yield activation matrices

Source Network Target Network Figure 4: Analysis of inter network mappings: Sets of two net-
““““““““ works are trained on robots with different number of joints. A
projection matrix P that reflects the network similarity is calcu-
lated to compute a from the source network neuron activation b
dd-.--o dé ok 0 with minimal difference to a.

' :
Actu;hor\s P ‘Predtctlon :dlff Activations
; a 1 a

A€ Rgox M and B € RQOXK of the target and source network, respectively. In order to obtain a
procedu}e invariant to neuron scaling, individual columns of A and B, are normalized to the interval
[0,1] dividing by the maximal values contained. The resulting projection P can be adjusted to
fit the original training data by Py, = %—’:Pmn. Two approaches for projection construction are
considered. Greedy mapping predicts each target neuron from the source neuron with minimal
distance , every entry of the greedy projection matrix P{ is 1if k = arg min; ¢ K]{d(m, i)}
and O otherwise. Linear mapping incorporates all source neurons into the prediction of a target
neuron by linear combination. Projection vectors p,,, predicting the behavior of neuron m, are
given by the solution of quadratic optimization with linear boundary constraints for each target
neuron individually. Hereby, the mean squared error plus lasso regularization, to enforce sparsity of
solution vectors, is minimized finding the best projection p, i.e.

2

Im| 4 Alp|r1 subjectto p > 0. &)

L2

minimize =~ |Bp —
2 m

Under review as a conference paper at ICLR 2021

B denotes the matrix of source activations scaled by Bk, an, the target activations and A € Rx
the regularization strength. As mapping of two networks should be invariant to neuron scaling,
all individual neuron activations are projected into the interval [0, 1] with neuron specific scaling
factors S, and «v,, for the source and target network neurons, respectively. 30 The solution vectors
P, are stacked to form the linear projection matrix P! := [p} ... pj,]. Input samples X are
deduced from a set of sample episodes of the target network without duplicates. In put vectors
of robot manipulators with different joint count are transformed by either duplicating best aligning
joints or unspecified joints being set to zero, for a more or less complex source network, respectively

(Figure 5| middle right).
6.1 EVALUATION METRICS

Projections are evaluated with regard to their goodness to fit a set of validation samples X" and
according to heuristic metrics that directly analyze a projection structure. The mean absolute
prediction error is normalized by the prediction error of the zero projection Py € {0}£*M to
construct the normalized error E(P, X)) that is invariant to weight scaling and adding dead neurons:

_ E(P,X) 1
E(P’X)'iE(PT AL, Z’a — Bpm|, (6)

The entropy of a target neuron’s projection p,,, is referred to as the saturation of neuron m, projection
P is the mean of all neuron saturations. A low saturation implies that few neurons suffice to describe
the behavior of m. We calculate the overall projection saturation S(P) according to [Equation 7

1 M K
S(P)=—7; >3 Pumlogg (Pem) € [0,1]. (7)

m=1 k=1

The utilization of the source network neurons to describe the target network is indicated by the
coverage C. It is defined as the entropy of the stochastic process that picks a target neuron m
uniformly at random and passes it on to the source network according to the distribution

low coverage value implies low utilization of the source network.

Pm
[Dm L1’

| X LM
C(P):=— Ve Z krlogk (kK), with kg = i Z
k=1

The same statistical process is applied to construct a layer-wise projection P;;. It describes the
K)

Pkm

|Pm|L1

(®)

probability of reaching the ith layer LZ(.

random neuron in the jth layer L;M)

Prm
Pij = |L(M)‘ Z Z ap 2

kEL(K) EL(M) pm|L1

of the source network when starting in some uniformly
of the target network.

6.2 RESULTS

For each robot manipulator with 2, 3 and 4 joints, M = 5 networks are trained, pruned in three
steps and we analyze all possible mappings “a-b” between the respective sets. A set of validation
inputs X'V, is generated for m = 300 sample episodes of the target network and metrics evaluated.
As a baseline we map all 3 joint manipulator agent networks with an initial neuron count of 256 for
each of the 6 hidden fully connected layers, among each other. As expected, as a baseline mappings
of networks to themselves (referred to as reflexive mapping) show zero error and saturation and
coverage of 1 top left). However, greedy mapping shows a high normalized error and
low coverage when compared to the linear mapping and thus is considered an inferior approach. In
this baseline we extract linear mapping with regularization strength of A = 50 as the best metric
as it indicates coverage and normalized error most significant on trained in contrast to random
networks. Layer-wise linear projection (A = 50) is not optimal but we observe the best mapping
to the respective layers, shown on the diagonal axis in the table of Hereby, layer one and

Under review as a conference paper at ICLR 2021

Layer-wise Linear Mapping
to layer
3 4

= Normalized error

6

W Coverage 3 s
o8 = Saturation
' 4 0029 0011 0005 0006 [RLICET
layer distance
06 [PY 020 0491 5 0046 0015 001
5
0.149 0313 0.146 0.069 0.034
04
02 0114 0208 025 0.181
02
IR 0076 0.04 0.196 (PEE]
00 BR 0058 0009 0023 0094 017 oI

reflexive mapping linear mapping (A =0) linear mapping (A=50) ~ greedy mapping random nets (\=0) random nets (A= 50)

1.0

= Normalized error
W Coverage

N Saturation

0.8 \

0y 64
0.6 A 65 03

() 03
04
6 61
4a 4b
0.0
3>3 4>3 3>4 4>2 2>4
3>3 34

4>3

5

4

N

3

Target Network Layer
~

1

=
e N
,/\"\—\"
P N oo S " W
N A N

0 0 0 0 0

Figure 5: Projection of neuron activation between networks trained for variable joint robot ma-
nipulators.(data averaged with 5 networks each, 3 pruning steps). Top: Benchmark of mapping
technique and evaluation metrics: On the example of multiple three joint manipulator networks, we
find linear mapping with A = 50 the superior mapping approach in contrast to greedy mapping. In
particular, coverage and normalized error indicate mapping quality well in comparison to untrained
networks. A layer-wise linear mapping with A = 50 is not optimal, but strongest correlations can be
found between corresponding layers. This is represented in the higher diagonal values in the table of
normalized average layer distances on the right. Here, layer 1 and 6 show best mapping. (initializa-
tion with 6 layers each 256 neurons before pruning, random nets with average pruned network size
of s =[46 22 16 13 8 20] neurons per layer). Middle: Neuron activation correlations of
networks trained on robots with different joint count (2-4 refers to a mapping from networks trained
for a 2 joint to a 4 joint robotic arm): The mapping error gets higher with increased difference in
joint numbers, the coverage accordingly decreases. Mapping a network with higher complexity into
lower complex ones performs slightly better than vice versa. In this study the mappings 4-2 are
closest to the performance of the native 3-3 mappings. This mapping is influenced by a proper trans-
formation of sensory inputs to the increased number of input neurons on the first layer. The results
are demonstrated for balanced mapping as 67 = 61,65 = 05,65 = 0,6, = 0 (4b) which performs
better than in contrast to naive mapping 6] = 61,05 = 65,03 = 0,6, = 0 (4a). (results as mean of
25 mappings). Bottom: Mean layer to layer projections: Networks trained for more similar robots
show better layer to layer mappings. The first layer of the source network shows high utilization
for mappings to all other layers, the penultimate layer is the most unlikely to be utilized. Middle
layers map reasonably well for 4-3 and 3-4 mappings, more distinct robots as 4-2 and strongest in
2-4 mostly utilize first layer neurons only.

six demonstrate the strongest correlation potentially due to increasingly specialized neurons at the
input and output of the network.

Under review as a conference paper at ICLR 2021

Linear mapping (A = 50) has been applied between sets of 2, 3 and 4 joint robot manipulators
(Figure 5| middle left), Random networks are initialized by the average network size of the respec-
tive joint count as evaluated with pruning. Scenarios 3-4 and 4-3 show similar prediction errors but
indicate a higher mean error compared to 4-2 mappings. Latter mapping performs similar to the
baseline, which might be induced by the fact that we transform inputs in a balanced way so that
the 4 joint arm can act like a 2 joint arm (figure on the right, we choose the transformation 4b). It
shows lower coverage of the source network, which is partially related to the fixed input channels for
the source networks after input transformation. The worst performance according to the prediction
error is shown by scenario 2-4 as the two joint manipulator networks are barely able to replicate the
behavior of the four joint networks. Generally, the more distinct the robots the worse the mapping,
except input transformation is implemented in a meaningful way. More complex networks map
slightly better into less complex one, as compared to the opposite way round.

A deeper insight to the source network utilization is drawn from mean layer-wise projections
[ure 5] bottom). The baseline scenario 3-3 shows more significant correlation to its respective layer
the closer it is to the input or output. The first layers of 3-4 and 4-3 mappings seem to follow the
behavior of the baseline, whereas the deeper layers show no significant correlation. Contrary to the
performance of the overall metrics, scenario 4-2 shows no strong layerwise correlation, which is
even worse in the inverted 2-4 mapping. If layers do not map well, all target layers tend to map to
the lower layers especially the first layer (most prominent in 2-4 mappings) of the source network,
only a small tendency is visible of the output layer mapping to other output layers. We hypothesize
this phenomena is credited to first layers having the highest neuron count and activation variance.
Overall, we do find that a good mapping correlation when the source network is able to imitate the
behavior of the target network, a suitable input transformation turned out to be crucial here. 4-2
mappings showed the lowest error, but networks trained on three and four joint networks map better
into their respective layer.

7 CONCLUSION

In this paper we analyzed individual neuron activation and correlations between neural networks
trained for goal reaching of vertical space robot manipulators with two, three and four joints. We
analyzed and classified the activation in order to implement a pruning algorithm that removes redun-
dant neurons and increases information density in the network. Finally, we analyzed correlations
between the overall and layerwise neuron activation of networks trained on robots with different
joint number by projection mapping. Our results demonstrate that networks develop distinct activa-
tion patterns on individual neuron layers with bell-shaped distribution of activation densities. This
distribution is compressed by our pruning algorithm that merges similar neuron activation classes
mostly on the inner network layers. Networks trained for robots with only small joint number dif-
ference show a good correlation of neuron activation, for small differences this correlation can be
found layer-wise. The more distinct the robot kinematic is in terms of joint number, the more impor-
tant is a proper input transformation that fits the different network input layers. All experiments are
benchmarked by comparison against untrained networks and self-correlations for multiple networks
trained for the same task. Our results help to improve explainability of reinforcement learning in
neural networks for robot motion learning and highlight network structures that can be reused on
similar tasks after pre-training. The experiments conducted are limited to robot manipulators of
2 to 4 joints acting in vertical space, however the underlying introduced methodologies could be
transferred to other Reinforcement Learning tasks as well. Analysis of neuron activation has been
introduced in other contexts, here here we utilize it for the analysis of the specific use case of verti-
cal space robot manipulation. In future work our pruning algorithm can be extended to also reduce
the number of overall layers, analyze additional network parameters and we will examine reusing
network structures with good correlation experimentally.

REFERENCES

Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and Dan Klein. Learning to compose neural net-
works for question answering. 2016 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, NAACL HLT 2016 - Proceedings
of the Conference, pp. 1545-1554, 2016. doi: 10.18653/v1/n16-1181.

Under review as a conference paper at ICLR 2021

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning environ-
ment: An evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:
253-279, 2013.

Michael Eickenberg, Alexandre Gramfort, Gaél Varoquaux, and Bertrand Thirion. Seeing it all:
Convolutional network layers map the function of the human visual system. Neurolmage, 152
(September 2018):184—-194, 2017. ISSN 10959572. doi: 10.1016/j.neuroimage.2016.10.001.

Carlo D Eramo, Davide Tateo, Andrea Bonarini, Marcello Restelli, Politecnico Milano, and Jan
Peters. S HARING K NOWLEDGE IN M ULTI -T ASK D EEP R EINFORCEMENT L EARN-
ING. pp. 1-18, 2020.

Adam Gaier and David Ha. Weight agnostic neural networks, 2019.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Proceedings of the thirteenth international conference on artificial intelligence and
statistics, pp. 249-256, 2010.

Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The elements of statistical learning: data
mining, inference, and prediction. Springer Science & Business Media, 2009.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770-778, 2016.

Lukasz Kidzinski, Sharada Prasanna Mohanty, Carmichael F Ong, Zhewei Huang, Shuchang Zhou,
Anton Pechenko, Adam Stelmaszczyk, Piotr Jarosik, Mikhail Pavlov, Sergey Kolesnikov, et al.
Learning to run challenge solutions: Adapting reinforcement learning methods for neuromuscu-
loskeletal environments. In The NIPS’17 Competition: Building Intelligent Systems, pp. 121-153.
Springer, 2018.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Yann LeCun, John S Denker, and Sara A. Solla. Optimal Brain Damage (Pruning). Advances in
neural information processing systems, pp. 598-605, 1990.

Chunyuan Li, Heerad Farkhoor, Rosanne Liu, and Jason Yosinski. Measuring the intrinsic dimension
of objective landscapes, 2018.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

Dor Livne and Kobi Cohen. PoPS: Policy Pruning and Shrinking for Deep Reinforcement Learning.
pp- 1-14,2020. URL |http://arxiv.org/abs/2001.05012|

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. Nature, 518(7540):529-533, 2015.

Emilio Parisotto, Jimmy Ba, and Ruslan Salakhutdinov. Actor-mimic deep multitask and transfer
reinforcement learning. 4th International Conference on Learning Representations, ICLR 2016 -
Conference Track Proceedings, pp. 1-16, 2016.

Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh,
and Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-based local-
ization. In Proceedings of the IEEE international conference on computer vision, pp. 618-626,
2017.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. nature, 529(7587):484, 2016.

10

http://arxiv.org/abs/2001.05012

Under review as a conference paper at ICLR 2021

David Silver, Thomas Hubert, Julian Schrittwieser, [oannis Antonoglou, Matthew Lai, Arthur Guez,
Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. Mastering chess and shogi
by self-play with a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815,
2017.

Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Martin Riedmiller. Striving for
simplicity: The all convolutional net. arXiv preprint arXiv:1412.6806, 2014.

Tung Long Vuong, Do Van Nguyen, Tai Long Nguyen, Cong Minh Bui, Hai Dang Kieu, Viet Cuong
Ta, Quoc Long Tran, and Thanh Ha Le. Sharing experience in multitask reinforcement learning.
IJCAI International Joint Conference on Artificial Intelligence, 2019-August:3642-3648, 2019.
ISSN 10450823. doi: 10.24963/ijcai.2019/505.

Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional networks. In
European conference on computer vision, pp. 818—-833. Springer, 2014.

11

	Introduction
	Related Work
	Experimental Setup
	Neuron Activation Analysis
	Heuristic Network Pruning
	Correlations in Networks trained for Multi-Joint Robots
	Evaluation Metrics
	Results

	Conclusion

